The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/swap_pager.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1998 Matthew Dillon,
    3  * Copyright (c) 1994 John S. Dyson
    4  * Copyright (c) 1990 University of Utah.
    5  * Copyright (c) 1982, 1986, 1989, 1993
    6  *      The Regents of the University of California.  All rights reserved.
    7  *
    8  * This code is derived from software contributed to Berkeley by
    9  * the Systems Programming Group of the University of Utah Computer
   10  * Science Department.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. All advertising materials mentioning features or use of this software
   21  *    must display the following acknowledgement:
   22  *      This product includes software developed by the University of
   23  *      California, Berkeley and its contributors.
   24  * 4. Neither the name of the University nor the names of its contributors
   25  *    may be used to endorse or promote products derived from this software
   26  *    without specific prior written permission.
   27  *
   28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   38  * SUCH DAMAGE.
   39  *
   40  *                              New Swap System
   41  *                              Matthew Dillon
   42  *
   43  * Radix Bitmap 'blists'.
   44  *
   45  *      - The new swapper uses the new radix bitmap code.  This should scale
   46  *        to arbitrarily small or arbitrarily large swap spaces and an almost
   47  *        arbitrary degree of fragmentation.
   48  *
   49  * Features:
   50  *
   51  *      - on the fly reallocation of swap during putpages.  The new system
   52  *        does not try to keep previously allocated swap blocks for dirty
   53  *        pages.  
   54  *
   55  *      - on the fly deallocation of swap
   56  *
   57  *      - No more garbage collection required.  Unnecessarily allocated swap
   58  *        blocks only exist for dirty vm_page_t's now and these are already
   59  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
   60  *        removal of invalidated swap blocks when a page is destroyed
   61  *        or renamed.
   62  *
   63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
   64  *
   65  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
   66  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
   67  */
   68 
   69 #include <sys/cdefs.h>
   70 __FBSDID("$FreeBSD: releng/8.2/sys/vm/swap_pager.c 214319 2010-10-25 07:06:24Z avg $");
   71 
   72 #include "opt_swap.h"
   73 #include "opt_vm.h"
   74 
   75 #include <sys/param.h>
   76 #include <sys/systm.h>
   77 #include <sys/conf.h>
   78 #include <sys/kernel.h>
   79 #include <sys/priv.h>
   80 #include <sys/proc.h>
   81 #include <sys/bio.h>
   82 #include <sys/buf.h>
   83 #include <sys/disk.h>
   84 #include <sys/fcntl.h>
   85 #include <sys/mount.h>
   86 #include <sys/namei.h>
   87 #include <sys/vnode.h>
   88 #include <sys/malloc.h>
   89 #include <sys/resource.h>
   90 #include <sys/resourcevar.h>
   91 #include <sys/sysctl.h>
   92 #include <sys/sysproto.h>
   93 #include <sys/blist.h>
   94 #include <sys/lock.h>
   95 #include <sys/sx.h>
   96 #include <sys/vmmeter.h>
   97 
   98 #include <security/mac/mac_framework.h>
   99 
  100 #include <vm/vm.h>
  101 #include <vm/pmap.h>
  102 #include <vm/vm_map.h>
  103 #include <vm/vm_kern.h>
  104 #include <vm/vm_object.h>
  105 #include <vm/vm_page.h>
  106 #include <vm/vm_pager.h>
  107 #include <vm/vm_pageout.h>
  108 #include <vm/vm_param.h>
  109 #include <vm/swap_pager.h>
  110 #include <vm/vm_extern.h>
  111 #include <vm/uma.h>
  112 
  113 #include <geom/geom.h>
  114 
  115 /*
  116  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, or 16
  117  * pages per allocation.  We recommend you stick with the default of 8.
  118  * The 16-page limit is due to the radix code (kern/subr_blist.c).
  119  */
  120 #ifndef MAX_PAGEOUT_CLUSTER
  121 #define MAX_PAGEOUT_CLUSTER 16
  122 #endif
  123 
  124 #if !defined(SWB_NPAGES)
  125 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
  126 #endif
  127 
  128 /*
  129  * Piecemeal swap metadata structure.  Swap is stored in a radix tree.
  130  *
  131  * If SWB_NPAGES is 8 and sizeof(char *) == sizeof(daddr_t), our radix
  132  * is basically 8.  Assuming PAGE_SIZE == 4096, one tree level represents
  133  * 32K worth of data, two levels represent 256K, three levels represent
  134  * 2 MBytes.   This is acceptable.
  135  *
  136  * Overall memory utilization is about the same as the old swap structure.
  137  */
  138 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
  139 #define SWAP_META_PAGES         (SWB_NPAGES * 2)
  140 #define SWAP_META_MASK          (SWAP_META_PAGES - 1)
  141 
  142 struct swblock {
  143         struct swblock  *swb_hnext;
  144         vm_object_t     swb_object;
  145         vm_pindex_t     swb_index;
  146         int             swb_count;
  147         daddr_t         swb_pages[SWAP_META_PAGES];
  148 };
  149 
  150 static struct mtx sw_dev_mtx;
  151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
  152 static struct swdevt *swdevhd;  /* Allocate from here next */
  153 static int nswapdev;            /* Number of swap devices */
  154 int swap_pager_avail;
  155 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
  156 
  157 static vm_ooffset_t swap_total;
  158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0, "");
  159 static vm_ooffset_t swap_reserved;
  160 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0, "");
  161 static int overcommit = 0;
  162 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0, "");
  163 
  164 /* bits from overcommit */
  165 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
  166 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
  167 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
  168 
  169 int
  170 swap_reserve(vm_ooffset_t incr)
  171 {
  172 
  173         return (swap_reserve_by_uid(incr, curthread->td_ucred->cr_ruidinfo));
  174 }
  175 
  176 int
  177 swap_reserve_by_uid(vm_ooffset_t incr, struct uidinfo *uip)
  178 {
  179         vm_ooffset_t r, s;
  180         int res, error;
  181         static int curfail;
  182         static struct timeval lastfail;
  183 
  184         if (incr & PAGE_MASK)
  185                 panic("swap_reserve: & PAGE_MASK");
  186 
  187         res = 0;
  188         mtx_lock(&sw_dev_mtx);
  189         r = swap_reserved + incr;
  190         if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
  191                 s = cnt.v_page_count - cnt.v_free_reserved - cnt.v_wire_count;
  192                 s *= PAGE_SIZE;
  193         } else
  194                 s = 0;
  195         s += swap_total;
  196         if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
  197             (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
  198                 res = 1;
  199                 swap_reserved = r;
  200         }
  201         mtx_unlock(&sw_dev_mtx);
  202 
  203         if (res) {
  204                 PROC_LOCK(curproc);
  205                 UIDINFO_VMSIZE_LOCK(uip);
  206                 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
  207                     uip->ui_vmsize + incr > lim_cur(curproc, RLIMIT_SWAP) &&
  208                     priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
  209                         res = 0;
  210                 else
  211                         uip->ui_vmsize += incr;
  212                 UIDINFO_VMSIZE_UNLOCK(uip);
  213                 PROC_UNLOCK(curproc);
  214                 if (!res) {
  215                         mtx_lock(&sw_dev_mtx);
  216                         swap_reserved -= incr;
  217                         mtx_unlock(&sw_dev_mtx);
  218                 }
  219         }
  220         if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
  221                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
  222                     curproc->p_pid, uip->ui_uid, incr);
  223         }
  224 
  225         return (res);
  226 }
  227 
  228 void
  229 swap_reserve_force(vm_ooffset_t incr)
  230 {
  231         struct uidinfo *uip;
  232 
  233         mtx_lock(&sw_dev_mtx);
  234         swap_reserved += incr;
  235         mtx_unlock(&sw_dev_mtx);
  236 
  237         uip = curthread->td_ucred->cr_ruidinfo;
  238         PROC_LOCK(curproc);
  239         UIDINFO_VMSIZE_LOCK(uip);
  240         uip->ui_vmsize += incr;
  241         UIDINFO_VMSIZE_UNLOCK(uip);
  242         PROC_UNLOCK(curproc);
  243 }
  244 
  245 void
  246 swap_release(vm_ooffset_t decr)
  247 {
  248         struct uidinfo *uip;
  249 
  250         PROC_LOCK(curproc);
  251         uip = curthread->td_ucred->cr_ruidinfo;
  252         swap_release_by_uid(decr, uip);
  253         PROC_UNLOCK(curproc);
  254 }
  255 
  256 void
  257 swap_release_by_uid(vm_ooffset_t decr, struct uidinfo *uip)
  258 {
  259 
  260         if (decr & PAGE_MASK)
  261                 panic("swap_release: & PAGE_MASK");
  262 
  263         mtx_lock(&sw_dev_mtx);
  264         if (swap_reserved < decr)
  265                 panic("swap_reserved < decr");
  266         swap_reserved -= decr;
  267         mtx_unlock(&sw_dev_mtx);
  268 
  269         UIDINFO_VMSIZE_LOCK(uip);
  270         if (uip->ui_vmsize < decr)
  271                 printf("negative vmsize for uid = %d\n", uip->ui_uid);
  272         uip->ui_vmsize -= decr;
  273         UIDINFO_VMSIZE_UNLOCK(uip);
  274 }
  275 
  276 static void swapdev_strategy(struct buf *, struct swdevt *sw);
  277 
  278 #define SWM_FREE        0x02    /* free, period                 */
  279 #define SWM_POP         0x04    /* pop out                      */
  280 
  281 int swap_pager_full = 2;        /* swap space exhaustion (task killing) */
  282 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
  283 static int nsw_rcount;          /* free read buffers                    */
  284 static int nsw_wcount_sync;     /* limit write buffers / synchronous    */
  285 static int nsw_wcount_async;    /* limit write buffers / asynchronous   */
  286 static int nsw_wcount_async_max;/* assigned maximum                     */
  287 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
  288 
  289 static struct swblock **swhash;
  290 static int swhash_mask;
  291 static struct mtx swhash_mtx;
  292 
  293 static int swap_async_max = 4;  /* maximum in-progress async I/O's      */
  294 static struct sx sw_alloc_sx;
  295 
  296 
  297 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
  298         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
  299 
  300 /*
  301  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
  302  * of searching a named list by hashing it just a little.
  303  */
  304 
  305 #define NOBJLISTS               8
  306 
  307 #define NOBJLIST(handle)        \
  308         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
  309 
  310 static struct mtx sw_alloc_mtx; /* protect list manipulation */ 
  311 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
  312 static uma_zone_t       swap_zone;
  313 static struct vm_object swap_zone_obj;
  314 
  315 /*
  316  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
  317  * calls hooked from other parts of the VM system and do not appear here.
  318  * (see vm/swap_pager.h).
  319  */
  320 static vm_object_t
  321                 swap_pager_alloc(void *handle, vm_ooffset_t size,
  322                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
  323 static void     swap_pager_dealloc(vm_object_t object);
  324 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
  325 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
  326 static boolean_t
  327                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
  328 static void     swap_pager_init(void);
  329 static void     swap_pager_unswapped(vm_page_t);
  330 static void     swap_pager_swapoff(struct swdevt *sp);
  331 
  332 struct pagerops swappagerops = {
  333         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
  334         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
  335         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
  336         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
  337         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
  338         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
  339         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
  340 };
  341 
  342 /*
  343  * dmmax is in page-sized chunks with the new swap system.  It was
  344  * dev-bsized chunks in the old.  dmmax is always a power of 2.
  345  *
  346  * swap_*() routines are externally accessible.  swp_*() routines are
  347  * internal.
  348  */
  349 static int dmmax;
  350 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
  351 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
  352 
  353 SYSCTL_INT(_vm, OID_AUTO, dmmax,
  354         CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
  355 
  356 static void     swp_sizecheck(void);
  357 static void     swp_pager_async_iodone(struct buf *bp);
  358 static int      swapongeom(struct thread *, struct vnode *);
  359 static int      swaponvp(struct thread *, struct vnode *, u_long);
  360 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
  361 
  362 /*
  363  * Swap bitmap functions
  364  */
  365 static void     swp_pager_freeswapspace(daddr_t blk, int npages);
  366 static daddr_t  swp_pager_getswapspace(int npages);
  367 
  368 /*
  369  * Metadata functions
  370  */
  371 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
  372 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
  373 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
  374 static void swp_pager_meta_free_all(vm_object_t);
  375 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
  376 
  377 static void
  378 swp_pager_free_nrpage(vm_page_t m)
  379 {
  380 
  381         if (m->wire_count == 0)
  382                 vm_page_free(m);
  383 }
  384 
  385 /*
  386  * SWP_SIZECHECK() -    update swap_pager_full indication
  387  *      
  388  *      update the swap_pager_almost_full indication and warn when we are
  389  *      about to run out of swap space, using lowat/hiwat hysteresis.
  390  *
  391  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
  392  *
  393  *      No restrictions on call
  394  *      This routine may not block.
  395  *      This routine must be called at splvm()
  396  */
  397 static void
  398 swp_sizecheck(void)
  399 {
  400 
  401         if (swap_pager_avail < nswap_lowat) {
  402                 if (swap_pager_almost_full == 0) {
  403                         printf("swap_pager: out of swap space\n");
  404                         swap_pager_almost_full = 1;
  405                 }
  406         } else {
  407                 swap_pager_full = 0;
  408                 if (swap_pager_avail > nswap_hiwat)
  409                         swap_pager_almost_full = 0;
  410         }
  411 }
  412 
  413 /*
  414  * SWP_PAGER_HASH() -   hash swap meta data
  415  *
  416  *      This is an helper function which hashes the swapblk given
  417  *      the object and page index.  It returns a pointer to a pointer
  418  *      to the object, or a pointer to a NULL pointer if it could not
  419  *      find a swapblk.
  420  *
  421  *      This routine must be called at splvm().
  422  */
  423 static struct swblock **
  424 swp_pager_hash(vm_object_t object, vm_pindex_t index)
  425 {
  426         struct swblock **pswap;
  427         struct swblock *swap;
  428 
  429         index &= ~(vm_pindex_t)SWAP_META_MASK;
  430         pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
  431         while ((swap = *pswap) != NULL) {
  432                 if (swap->swb_object == object &&
  433                     swap->swb_index == index
  434                 ) {
  435                         break;
  436                 }
  437                 pswap = &swap->swb_hnext;
  438         }
  439         return (pswap);
  440 }
  441 
  442 /*
  443  * SWAP_PAGER_INIT() -  initialize the swap pager!
  444  *
  445  *      Expected to be started from system init.  NOTE:  This code is run 
  446  *      before much else so be careful what you depend on.  Most of the VM
  447  *      system has yet to be initialized at this point.
  448  */
  449 static void
  450 swap_pager_init(void)
  451 {
  452         /*
  453          * Initialize object lists
  454          */
  455         int i;
  456 
  457         for (i = 0; i < NOBJLISTS; ++i)
  458                 TAILQ_INIT(&swap_pager_object_list[i]);
  459         mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
  460         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
  461 
  462         /*
  463          * Device Stripe, in PAGE_SIZE'd blocks
  464          */
  465         dmmax = SWB_NPAGES * 2;
  466 }
  467 
  468 /*
  469  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
  470  *
  471  *      Expected to be started from pageout process once, prior to entering
  472  *      its main loop.
  473  */
  474 void
  475 swap_pager_swap_init(void)
  476 {
  477         int n, n2;
  478 
  479         /*
  480          * Number of in-transit swap bp operations.  Don't
  481          * exhaust the pbufs completely.  Make sure we
  482          * initialize workable values (0 will work for hysteresis
  483          * but it isn't very efficient).
  484          *
  485          * The nsw_cluster_max is constrained by the bp->b_pages[]
  486          * array (MAXPHYS/PAGE_SIZE) and our locally defined
  487          * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
  488          * constrained by the swap device interleave stripe size.
  489          *
  490          * Currently we hardwire nsw_wcount_async to 4.  This limit is 
  491          * designed to prevent other I/O from having high latencies due to
  492          * our pageout I/O.  The value 4 works well for one or two active swap
  493          * devices but is probably a little low if you have more.  Even so,
  494          * a higher value would probably generate only a limited improvement
  495          * with three or four active swap devices since the system does not
  496          * typically have to pageout at extreme bandwidths.   We will want
  497          * at least 2 per swap devices, and 4 is a pretty good value if you
  498          * have one NFS swap device due to the command/ack latency over NFS.
  499          * So it all works out pretty well.
  500          */
  501         nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
  502 
  503         mtx_lock(&pbuf_mtx);
  504         nsw_rcount = (nswbuf + 1) / 2;
  505         nsw_wcount_sync = (nswbuf + 3) / 4;
  506         nsw_wcount_async = 4;
  507         nsw_wcount_async_max = nsw_wcount_async;
  508         mtx_unlock(&pbuf_mtx);
  509 
  510         /*
  511          * Initialize our zone.  Right now I'm just guessing on the number
  512          * we need based on the number of pages in the system.  Each swblock
  513          * can hold 16 pages, so this is probably overkill.  This reservation
  514          * is typically limited to around 32MB by default.
  515          */
  516         n = cnt.v_page_count / 2;
  517         if (maxswzone && n > maxswzone / sizeof(struct swblock))
  518                 n = maxswzone / sizeof(struct swblock);
  519         n2 = n;
  520         swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
  521             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
  522         if (swap_zone == NULL)
  523                 panic("failed to create swap_zone.");
  524         do {
  525                 if (uma_zone_set_obj(swap_zone, &swap_zone_obj, n))
  526                         break;
  527                 /*
  528                  * if the allocation failed, try a zone two thirds the
  529                  * size of the previous attempt.
  530                  */
  531                 n -= ((n + 2) / 3);
  532         } while (n > 0);
  533         if (n2 != n)
  534                 printf("Swap zone entries reduced from %d to %d.\n", n2, n);
  535         n2 = n;
  536 
  537         /*
  538          * Initialize our meta-data hash table.  The swapper does not need to
  539          * be quite as efficient as the VM system, so we do not use an 
  540          * oversized hash table.
  541          *
  542          *      n:              size of hash table, must be power of 2
  543          *      swhash_mask:    hash table index mask
  544          */
  545         for (n = 1; n < n2 / 8; n *= 2)
  546                 ;
  547         swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
  548         swhash_mask = n - 1;
  549         mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
  550 }
  551 
  552 /*
  553  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
  554  *                      its metadata structures.
  555  *
  556  *      This routine is called from the mmap and fork code to create a new
  557  *      OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
  558  *      and then converting it with swp_pager_meta_build().
  559  *
  560  *      This routine may block in vm_object_allocate() and create a named
  561  *      object lookup race, so we must interlock.   We must also run at
  562  *      splvm() for the object lookup to handle races with interrupts, but
  563  *      we do not have to maintain splvm() in between the lookup and the
  564  *      add because (I believe) it is not possible to attempt to create
  565  *      a new swap object w/handle when a default object with that handle
  566  *      already exists.
  567  *
  568  * MPSAFE
  569  */
  570 static vm_object_t
  571 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
  572     vm_ooffset_t offset, struct ucred *cred)
  573 {
  574         vm_object_t object;
  575         vm_pindex_t pindex;
  576         struct uidinfo *uip;
  577 
  578         uip = NULL;
  579         pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
  580         if (handle) {
  581                 mtx_lock(&Giant);
  582                 /*
  583                  * Reference existing named region or allocate new one.  There
  584                  * should not be a race here against swp_pager_meta_build()
  585                  * as called from vm_page_remove() in regards to the lookup
  586                  * of the handle.
  587                  */
  588                 sx_xlock(&sw_alloc_sx);
  589                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
  590                 if (object == NULL) {
  591                         if (cred != NULL) {
  592                                 uip = cred->cr_ruidinfo;
  593                                 if (!swap_reserve_by_uid(size, uip)) {
  594                                         sx_xunlock(&sw_alloc_sx);
  595                                         mtx_unlock(&Giant);
  596                                         return (NULL);
  597                                 }
  598                                 uihold(uip);
  599                         }
  600                         object = vm_object_allocate(OBJT_DEFAULT, pindex);
  601                         VM_OBJECT_LOCK(object);
  602                         object->handle = handle;
  603                         if (cred != NULL) {
  604                                 object->uip = uip;
  605                                 object->charge = size;
  606                         }
  607                         swp_pager_meta_build(object, 0, SWAPBLK_NONE);
  608                         VM_OBJECT_UNLOCK(object);
  609                 }
  610                 sx_xunlock(&sw_alloc_sx);
  611                 mtx_unlock(&Giant);
  612         } else {
  613                 if (cred != NULL) {
  614                         uip = cred->cr_ruidinfo;
  615                         if (!swap_reserve_by_uid(size, uip))
  616                                 return (NULL);
  617                         uihold(uip);
  618                 }
  619                 object = vm_object_allocate(OBJT_DEFAULT, pindex);
  620                 VM_OBJECT_LOCK(object);
  621                 if (cred != NULL) {
  622                         object->uip = uip;
  623                         object->charge = size;
  624                 }
  625                 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
  626                 VM_OBJECT_UNLOCK(object);
  627         }
  628         return (object);
  629 }
  630 
  631 /*
  632  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
  633  *
  634  *      The swap backing for the object is destroyed.  The code is 
  635  *      designed such that we can reinstantiate it later, but this
  636  *      routine is typically called only when the entire object is
  637  *      about to be destroyed.
  638  *
  639  *      This routine may block, but no longer does. 
  640  *
  641  *      The object must be locked or unreferenceable.
  642  */
  643 static void
  644 swap_pager_dealloc(vm_object_t object)
  645 {
  646 
  647         /*
  648          * Remove from list right away so lookups will fail if we block for
  649          * pageout completion.
  650          */
  651         if (object->handle != NULL) {
  652                 mtx_lock(&sw_alloc_mtx);
  653                 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
  654                 mtx_unlock(&sw_alloc_mtx);
  655         }
  656 
  657         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  658         vm_object_pip_wait(object, "swpdea");
  659 
  660         /*
  661          * Free all remaining metadata.  We only bother to free it from 
  662          * the swap meta data.  We do not attempt to free swapblk's still
  663          * associated with vm_page_t's for this object.  We do not care
  664          * if paging is still in progress on some objects.
  665          */
  666         swp_pager_meta_free_all(object);
  667 }
  668 
  669 /************************************************************************
  670  *                      SWAP PAGER BITMAP ROUTINES                      *
  671  ************************************************************************/
  672 
  673 /*
  674  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
  675  *
  676  *      Allocate swap for the requested number of pages.  The starting
  677  *      swap block number (a page index) is returned or SWAPBLK_NONE
  678  *      if the allocation failed.
  679  *
  680  *      Also has the side effect of advising that somebody made a mistake
  681  *      when they configured swap and didn't configure enough.
  682  *
  683  *      Must be called at splvm() to avoid races with bitmap frees from
  684  *      vm_page_remove() aka swap_pager_page_removed().
  685  *
  686  *      This routine may not block
  687  *      This routine must be called at splvm().
  688  *
  689  *      We allocate in round-robin fashion from the configured devices.
  690  */
  691 static daddr_t
  692 swp_pager_getswapspace(int npages)
  693 {
  694         daddr_t blk;
  695         struct swdevt *sp;
  696         int i;
  697 
  698         blk = SWAPBLK_NONE;
  699         mtx_lock(&sw_dev_mtx);
  700         sp = swdevhd;
  701         for (i = 0; i < nswapdev; i++) {
  702                 if (sp == NULL)
  703                         sp = TAILQ_FIRST(&swtailq);
  704                 if (!(sp->sw_flags & SW_CLOSING)) {
  705                         blk = blist_alloc(sp->sw_blist, npages);
  706                         if (blk != SWAPBLK_NONE) {
  707                                 blk += sp->sw_first;
  708                                 sp->sw_used += npages;
  709                                 swap_pager_avail -= npages;
  710                                 swp_sizecheck();
  711                                 swdevhd = TAILQ_NEXT(sp, sw_list);
  712                                 goto done;
  713                         }
  714                 }
  715                 sp = TAILQ_NEXT(sp, sw_list);
  716         }
  717         if (swap_pager_full != 2) {
  718                 printf("swap_pager_getswapspace(%d): failed\n", npages);
  719                 swap_pager_full = 2;
  720                 swap_pager_almost_full = 1;
  721         }
  722         swdevhd = NULL;
  723 done:
  724         mtx_unlock(&sw_dev_mtx);
  725         return (blk);
  726 }
  727 
  728 static int
  729 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
  730 {
  731 
  732         return (blk >= sp->sw_first && blk < sp->sw_end);
  733 }
  734         
  735 static void
  736 swp_pager_strategy(struct buf *bp)
  737 {
  738         struct swdevt *sp;
  739 
  740         mtx_lock(&sw_dev_mtx);
  741         TAILQ_FOREACH(sp, &swtailq, sw_list) {
  742                 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
  743                         mtx_unlock(&sw_dev_mtx);
  744                         sp->sw_strategy(bp, sp);
  745                         return;
  746                 }
  747         }
  748         panic("Swapdev not found");
  749 }
  750         
  751 
  752 /*
  753  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space 
  754  *
  755  *      This routine returns the specified swap blocks back to the bitmap.
  756  *
  757  *      Note:  This routine may not block (it could in the old swap code),
  758  *      and through the use of the new blist routines it does not block.
  759  *
  760  *      We must be called at splvm() to avoid races with bitmap frees from
  761  *      vm_page_remove() aka swap_pager_page_removed().
  762  *
  763  *      This routine may not block
  764  *      This routine must be called at splvm().
  765  */
  766 static void
  767 swp_pager_freeswapspace(daddr_t blk, int npages)
  768 {
  769         struct swdevt *sp;
  770 
  771         mtx_lock(&sw_dev_mtx);
  772         TAILQ_FOREACH(sp, &swtailq, sw_list) {
  773                 if (blk >= sp->sw_first && blk < sp->sw_end) {
  774                         sp->sw_used -= npages;
  775                         /*
  776                          * If we are attempting to stop swapping on
  777                          * this device, we don't want to mark any
  778                          * blocks free lest they be reused.  
  779                          */
  780                         if ((sp->sw_flags & SW_CLOSING) == 0) {
  781                                 blist_free(sp->sw_blist, blk - sp->sw_first,
  782                                     npages);
  783                                 swap_pager_avail += npages;
  784                                 swp_sizecheck();
  785                         }
  786                         mtx_unlock(&sw_dev_mtx);
  787                         return;
  788                 }
  789         }
  790         panic("Swapdev not found");
  791 }
  792 
  793 /*
  794  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
  795  *                              range within an object.
  796  *
  797  *      This is a globally accessible routine.
  798  *
  799  *      This routine removes swapblk assignments from swap metadata.
  800  *
  801  *      The external callers of this routine typically have already destroyed 
  802  *      or renamed vm_page_t's associated with this range in the object so 
  803  *      we should be ok.
  804  *
  805  *      This routine may be called at any spl.  We up our spl to splvm temporarily
  806  *      in order to perform the metadata removal.
  807  */
  808 void
  809 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
  810 {
  811 
  812         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  813         swp_pager_meta_free(object, start, size);
  814 }
  815 
  816 /*
  817  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
  818  *
  819  *      Assigns swap blocks to the specified range within the object.  The 
  820  *      swap blocks are not zerod.  Any previous swap assignment is destroyed.
  821  *
  822  *      Returns 0 on success, -1 on failure.
  823  */
  824 int
  825 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
  826 {
  827         int n = 0;
  828         daddr_t blk = SWAPBLK_NONE;
  829         vm_pindex_t beg = start;        /* save start index */
  830 
  831         VM_OBJECT_LOCK(object);
  832         while (size) {
  833                 if (n == 0) {
  834                         n = BLIST_MAX_ALLOC;
  835                         while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
  836                                 n >>= 1;
  837                                 if (n == 0) {
  838                                         swp_pager_meta_free(object, beg, start - beg);
  839                                         VM_OBJECT_UNLOCK(object);
  840                                         return (-1);
  841                                 }
  842                         }
  843                 }
  844                 swp_pager_meta_build(object, start, blk);
  845                 --size;
  846                 ++start;
  847                 ++blk;
  848                 --n;
  849         }
  850         swp_pager_meta_free(object, start, n);
  851         VM_OBJECT_UNLOCK(object);
  852         return (0);
  853 }
  854 
  855 /*
  856  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
  857  *                      and destroy the source.
  858  *
  859  *      Copy any valid swapblks from the source to the destination.  In
  860  *      cases where both the source and destination have a valid swapblk,
  861  *      we keep the destination's.
  862  *
  863  *      This routine is allowed to block.  It may block allocating metadata
  864  *      indirectly through swp_pager_meta_build() or if paging is still in
  865  *      progress on the source. 
  866  *
  867  *      This routine can be called at any spl
  868  *
  869  *      XXX vm_page_collapse() kinda expects us not to block because we 
  870  *      supposedly do not need to allocate memory, but for the moment we
  871  *      *may* have to get a little memory from the zone allocator, but
  872  *      it is taken from the interrupt memory.  We should be ok. 
  873  *
  874  *      The source object contains no vm_page_t's (which is just as well)
  875  *
  876  *      The source object is of type OBJT_SWAP.
  877  *
  878  *      The source and destination objects must be locked or 
  879  *      inaccessible (XXX are they ?)
  880  */
  881 void
  882 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
  883     vm_pindex_t offset, int destroysource)
  884 {
  885         vm_pindex_t i;
  886 
  887         VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED);
  888         VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED);
  889 
  890         /*
  891          * If destroysource is set, we remove the source object from the 
  892          * swap_pager internal queue now. 
  893          */
  894         if (destroysource) {
  895                 if (srcobject->handle != NULL) {
  896                         mtx_lock(&sw_alloc_mtx);
  897                         TAILQ_REMOVE(
  898                             NOBJLIST(srcobject->handle),
  899                             srcobject,
  900                             pager_object_list
  901                         );
  902                         mtx_unlock(&sw_alloc_mtx);
  903                 }
  904         }
  905 
  906         /*
  907          * transfer source to destination.
  908          */
  909         for (i = 0; i < dstobject->size; ++i) {
  910                 daddr_t dstaddr;
  911 
  912                 /*
  913                  * Locate (without changing) the swapblk on the destination,
  914                  * unless it is invalid in which case free it silently, or
  915                  * if the destination is a resident page, in which case the
  916                  * source is thrown away.
  917                  */
  918                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
  919 
  920                 if (dstaddr == SWAPBLK_NONE) {
  921                         /*
  922                          * Destination has no swapblk and is not resident,
  923                          * copy source.
  924                          */
  925                         daddr_t srcaddr;
  926 
  927                         srcaddr = swp_pager_meta_ctl(
  928                             srcobject, 
  929                             i + offset,
  930                             SWM_POP
  931                         );
  932 
  933                         if (srcaddr != SWAPBLK_NONE) {
  934                                 /*
  935                                  * swp_pager_meta_build() can sleep.
  936                                  */
  937                                 vm_object_pip_add(srcobject, 1);
  938                                 VM_OBJECT_UNLOCK(srcobject);
  939                                 vm_object_pip_add(dstobject, 1);
  940                                 swp_pager_meta_build(dstobject, i, srcaddr);
  941                                 vm_object_pip_wakeup(dstobject);
  942                                 VM_OBJECT_LOCK(srcobject);
  943                                 vm_object_pip_wakeup(srcobject);
  944                         }
  945                 } else {
  946                         /*
  947                          * Destination has valid swapblk or it is represented
  948                          * by a resident page.  We destroy the sourceblock.
  949                          */
  950                         
  951                         swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
  952                 }
  953         }
  954 
  955         /*
  956          * Free left over swap blocks in source.
  957          *
  958          * We have to revert the type to OBJT_DEFAULT so we do not accidently
  959          * double-remove the object from the swap queues.
  960          */
  961         if (destroysource) {
  962                 swp_pager_meta_free_all(srcobject);
  963                 /*
  964                  * Reverting the type is not necessary, the caller is going
  965                  * to destroy srcobject directly, but I'm doing it here
  966                  * for consistency since we've removed the object from its
  967                  * queues.
  968                  */
  969                 srcobject->type = OBJT_DEFAULT;
  970         }
  971 }
  972 
  973 /*
  974  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
  975  *                              the requested page.
  976  *
  977  *      We determine whether good backing store exists for the requested
  978  *      page and return TRUE if it does, FALSE if it doesn't.
  979  *
  980  *      If TRUE, we also try to determine how much valid, contiguous backing
  981  *      store exists before and after the requested page within a reasonable
  982  *      distance.  We do not try to restrict it to the swap device stripe
  983  *      (that is handled in getpages/putpages).  It probably isn't worth
  984  *      doing here.
  985  */
  986 static boolean_t
  987 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
  988 {
  989         daddr_t blk0;
  990 
  991         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  992         /*
  993          * do we have good backing store at the requested index ?
  994          */
  995         blk0 = swp_pager_meta_ctl(object, pindex, 0);
  996 
  997         if (blk0 == SWAPBLK_NONE) {
  998                 if (before)
  999                         *before = 0;
 1000                 if (after)
 1001                         *after = 0;
 1002                 return (FALSE);
 1003         }
 1004 
 1005         /*
 1006          * find backwards-looking contiguous good backing store
 1007          */
 1008         if (before != NULL) {
 1009                 int i;
 1010 
 1011                 for (i = 1; i < (SWB_NPAGES/2); ++i) {
 1012                         daddr_t blk;
 1013 
 1014                         if (i > pindex)
 1015                                 break;
 1016                         blk = swp_pager_meta_ctl(object, pindex - i, 0);
 1017                         if (blk != blk0 - i)
 1018                                 break;
 1019                 }
 1020                 *before = (i - 1);
 1021         }
 1022 
 1023         /*
 1024          * find forward-looking contiguous good backing store
 1025          */
 1026         if (after != NULL) {
 1027                 int i;
 1028 
 1029                 for (i = 1; i < (SWB_NPAGES/2); ++i) {
 1030                         daddr_t blk;
 1031 
 1032                         blk = swp_pager_meta_ctl(object, pindex + i, 0);
 1033                         if (blk != blk0 + i)
 1034                                 break;
 1035                 }
 1036                 *after = (i - 1);
 1037         }
 1038         return (TRUE);
 1039 }
 1040 
 1041 /*
 1042  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
 1043  *
 1044  *      This removes any associated swap backing store, whether valid or
 1045  *      not, from the page.  
 1046  *
 1047  *      This routine is typically called when a page is made dirty, at
 1048  *      which point any associated swap can be freed.  MADV_FREE also
 1049  *      calls us in a special-case situation
 1050  *
 1051  *      NOTE!!!  If the page is clean and the swap was valid, the caller
 1052  *      should make the page dirty before calling this routine.  This routine
 1053  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
 1054  *      depends on it.
 1055  *
 1056  *      This routine may not block
 1057  *      This routine must be called at splvm()
 1058  */
 1059 static void
 1060 swap_pager_unswapped(vm_page_t m)
 1061 {
 1062 
 1063         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1064         swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
 1065 }
 1066 
 1067 /*
 1068  * SWAP_PAGER_GETPAGES() - bring pages in from swap
 1069  *
 1070  *      Attempt to retrieve (m, count) pages from backing store, but make
 1071  *      sure we retrieve at least m[reqpage].  We try to load in as large
 1072  *      a chunk surrounding m[reqpage] as is contiguous in swap and which
 1073  *      belongs to the same object.
 1074  *
 1075  *      The code is designed for asynchronous operation and 
 1076  *      immediate-notification of 'reqpage' but tends not to be
 1077  *      used that way.  Please do not optimize-out this algorithmic
 1078  *      feature, I intend to improve on it in the future.
 1079  *
 1080  *      The parent has a single vm_object_pip_add() reference prior to
 1081  *      calling us and we should return with the same.
 1082  *
 1083  *      The parent has BUSY'd the pages.  We should return with 'm'
 1084  *      left busy, but the others adjusted.
 1085  */
 1086 static int
 1087 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
 1088 {
 1089         struct buf *bp;
 1090         vm_page_t mreq;
 1091         int i;
 1092         int j;
 1093         daddr_t blk;
 1094 
 1095         mreq = m[reqpage];
 1096 
 1097         KASSERT(mreq->object == object,
 1098             ("swap_pager_getpages: object mismatch %p/%p",
 1099             object, mreq->object));
 1100 
 1101         /*
 1102          * Calculate range to retrieve.  The pages have already been assigned
 1103          * their swapblks.  We require a *contiguous* range but we know it to
 1104          * not span devices.   If we do not supply it, bad things
 1105          * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 
 1106          * loops are set up such that the case(s) are handled implicitly.
 1107          *
 1108          * The swp_*() calls must be made with the object locked.
 1109          */
 1110         blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
 1111 
 1112         for (i = reqpage - 1; i >= 0; --i) {
 1113                 daddr_t iblk;
 1114 
 1115                 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
 1116                 if (blk != iblk + (reqpage - i))
 1117                         break;
 1118         }
 1119         ++i;
 1120 
 1121         for (j = reqpage + 1; j < count; ++j) {
 1122                 daddr_t jblk;
 1123 
 1124                 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
 1125                 if (blk != jblk - (j - reqpage))
 1126                         break;
 1127         }
 1128 
 1129         /*
 1130          * free pages outside our collection range.   Note: we never free
 1131          * mreq, it must remain busy throughout.
 1132          */
 1133         if (0 < i || j < count) {
 1134                 int k;
 1135 
 1136                 vm_page_lock_queues();
 1137                 for (k = 0; k < i; ++k)
 1138                         swp_pager_free_nrpage(m[k]);
 1139                 for (k = j; k < count; ++k)
 1140                         swp_pager_free_nrpage(m[k]);
 1141                 vm_page_unlock_queues();
 1142         }
 1143 
 1144         /*
 1145          * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq 
 1146          * still busy, but the others unbusied.
 1147          */
 1148         if (blk == SWAPBLK_NONE)
 1149                 return (VM_PAGER_FAIL);
 1150 
 1151         /*
 1152          * Getpbuf() can sleep.
 1153          */
 1154         VM_OBJECT_UNLOCK(object);
 1155         /*
 1156          * Get a swap buffer header to perform the IO
 1157          */
 1158         bp = getpbuf(&nsw_rcount);
 1159         bp->b_flags |= B_PAGING;
 1160 
 1161         /*
 1162          * map our page(s) into kva for input
 1163          */
 1164         pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i);
 1165 
 1166         bp->b_iocmd = BIO_READ;
 1167         bp->b_iodone = swp_pager_async_iodone;
 1168         bp->b_rcred = crhold(thread0.td_ucred);
 1169         bp->b_wcred = crhold(thread0.td_ucred);
 1170         bp->b_blkno = blk - (reqpage - i);
 1171         bp->b_bcount = PAGE_SIZE * (j - i);
 1172         bp->b_bufsize = PAGE_SIZE * (j - i);
 1173         bp->b_pager.pg_reqpage = reqpage - i;
 1174 
 1175         VM_OBJECT_LOCK(object);
 1176         {
 1177                 int k;
 1178 
 1179                 for (k = i; k < j; ++k) {
 1180                         bp->b_pages[k - i] = m[k];
 1181                         m[k]->oflags |= VPO_SWAPINPROG;
 1182                 }
 1183         }
 1184         bp->b_npages = j - i;
 1185 
 1186         PCPU_INC(cnt.v_swapin);
 1187         PCPU_ADD(cnt.v_swappgsin, bp->b_npages);
 1188 
 1189         /*
 1190          * We still hold the lock on mreq, and our automatic completion routine
 1191          * does not remove it.
 1192          */
 1193         vm_object_pip_add(object, bp->b_npages);
 1194         VM_OBJECT_UNLOCK(object);
 1195 
 1196         /*
 1197          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
 1198          * this point because we automatically release it on completion.
 1199          * Instead, we look at the one page we are interested in which we
 1200          * still hold a lock on even through the I/O completion.
 1201          *
 1202          * The other pages in our m[] array are also released on completion,
 1203          * so we cannot assume they are valid anymore either.
 1204          *
 1205          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1206          */
 1207         BUF_KERNPROC(bp);
 1208         swp_pager_strategy(bp);
 1209 
 1210         /*
 1211          * wait for the page we want to complete.  VPO_SWAPINPROG is always
 1212          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
 1213          * is set in the meta-data.
 1214          */
 1215         VM_OBJECT_LOCK(object);
 1216         while ((mreq->oflags & VPO_SWAPINPROG) != 0) {
 1217                 mreq->oflags |= VPO_WANTED;
 1218                 PCPU_INC(cnt.v_intrans);
 1219                 if (msleep(mreq, VM_OBJECT_MTX(object), PSWP, "swread", hz*20)) {
 1220                         printf(
 1221 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
 1222                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
 1223                 }
 1224         }
 1225 
 1226         /*
 1227          * mreq is left busied after completion, but all the other pages
 1228          * are freed.  If we had an unrecoverable read error the page will
 1229          * not be valid.
 1230          */
 1231         if (mreq->valid != VM_PAGE_BITS_ALL) {
 1232                 return (VM_PAGER_ERROR);
 1233         } else {
 1234                 return (VM_PAGER_OK);
 1235         }
 1236 
 1237         /*
 1238          * A final note: in a low swap situation, we cannot deallocate swap
 1239          * and mark a page dirty here because the caller is likely to mark
 1240          * the page clean when we return, causing the page to possibly revert 
 1241          * to all-zero's later.
 1242          */
 1243 }
 1244 
 1245 /*
 1246  *      swap_pager_putpages: 
 1247  *
 1248  *      Assign swap (if necessary) and initiate I/O on the specified pages.
 1249  *
 1250  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
 1251  *      are automatically converted to SWAP objects.
 1252  *
 1253  *      In a low memory situation we may block in VOP_STRATEGY(), but the new 
 1254  *      vm_page reservation system coupled with properly written VFS devices 
 1255  *      should ensure that no low-memory deadlock occurs.  This is an area
 1256  *      which needs work.
 1257  *
 1258  *      The parent has N vm_object_pip_add() references prior to
 1259  *      calling us and will remove references for rtvals[] that are
 1260  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
 1261  *      completion.
 1262  *
 1263  *      The parent has soft-busy'd the pages it passes us and will unbusy
 1264  *      those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
 1265  *      We need to unbusy the rest on I/O completion.
 1266  */
 1267 void
 1268 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
 1269     boolean_t sync, int *rtvals)
 1270 {
 1271         int i;
 1272         int n = 0;
 1273 
 1274         if (count && m[0]->object != object) {
 1275                 panic("swap_pager_putpages: object mismatch %p/%p", 
 1276                     object, 
 1277                     m[0]->object
 1278                 );
 1279         }
 1280 
 1281         /*
 1282          * Step 1
 1283          *
 1284          * Turn object into OBJT_SWAP
 1285          * check for bogus sysops
 1286          * force sync if not pageout process
 1287          */
 1288         if (object->type != OBJT_SWAP)
 1289                 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
 1290         VM_OBJECT_UNLOCK(object);
 1291 
 1292         if (curproc != pageproc)
 1293                 sync = TRUE;
 1294 
 1295         /*
 1296          * Step 2
 1297          *
 1298          * Update nsw parameters from swap_async_max sysctl values.  
 1299          * Do not let the sysop crash the machine with bogus numbers.
 1300          */
 1301         mtx_lock(&pbuf_mtx);
 1302         if (swap_async_max != nsw_wcount_async_max) {
 1303                 int n;
 1304 
 1305                 /*
 1306                  * limit range
 1307                  */
 1308                 if ((n = swap_async_max) > nswbuf / 2)
 1309                         n = nswbuf / 2;
 1310                 if (n < 1)
 1311                         n = 1;
 1312                 swap_async_max = n;
 1313 
 1314                 /*
 1315                  * Adjust difference ( if possible ).  If the current async
 1316                  * count is too low, we may not be able to make the adjustment
 1317                  * at this time.
 1318                  */
 1319                 n -= nsw_wcount_async_max;
 1320                 if (nsw_wcount_async + n >= 0) {
 1321                         nsw_wcount_async += n;
 1322                         nsw_wcount_async_max += n;
 1323                         wakeup(&nsw_wcount_async);
 1324                 }
 1325         }
 1326         mtx_unlock(&pbuf_mtx);
 1327 
 1328         /*
 1329          * Step 3
 1330          *
 1331          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
 1332          * The page is left dirty until the pageout operation completes
 1333          * successfully.
 1334          */
 1335         for (i = 0; i < count; i += n) {
 1336                 int j;
 1337                 struct buf *bp;
 1338                 daddr_t blk;
 1339 
 1340                 /*
 1341                  * Maximum I/O size is limited by a number of factors.
 1342                  */
 1343                 n = min(BLIST_MAX_ALLOC, count - i);
 1344                 n = min(n, nsw_cluster_max);
 1345 
 1346                 /*
 1347                  * Get biggest block of swap we can.  If we fail, fall
 1348                  * back and try to allocate a smaller block.  Don't go
 1349                  * overboard trying to allocate space if it would overly
 1350                  * fragment swap.
 1351                  */
 1352                 while (
 1353                     (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
 1354                     n > 4
 1355                 ) {
 1356                         n >>= 1;
 1357                 }
 1358                 if (blk == SWAPBLK_NONE) {
 1359                         for (j = 0; j < n; ++j)
 1360                                 rtvals[i+j] = VM_PAGER_FAIL;
 1361                         continue;
 1362                 }
 1363 
 1364                 /*
 1365                  * All I/O parameters have been satisfied, build the I/O
 1366                  * request and assign the swap space.
 1367                  */
 1368                 if (sync == TRUE) {
 1369                         bp = getpbuf(&nsw_wcount_sync);
 1370                 } else {
 1371                         bp = getpbuf(&nsw_wcount_async);
 1372                         bp->b_flags = B_ASYNC;
 1373                 }
 1374                 bp->b_flags |= B_PAGING;
 1375                 bp->b_iocmd = BIO_WRITE;
 1376 
 1377                 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
 1378 
 1379                 bp->b_rcred = crhold(thread0.td_ucred);
 1380                 bp->b_wcred = crhold(thread0.td_ucred);
 1381                 bp->b_bcount = PAGE_SIZE * n;
 1382                 bp->b_bufsize = PAGE_SIZE * n;
 1383                 bp->b_blkno = blk;
 1384 
 1385                 VM_OBJECT_LOCK(object);
 1386                 for (j = 0; j < n; ++j) {
 1387                         vm_page_t mreq = m[i+j];
 1388 
 1389                         swp_pager_meta_build(
 1390                             mreq->object, 
 1391                             mreq->pindex,
 1392                             blk + j
 1393                         );
 1394                         vm_page_dirty(mreq);
 1395                         rtvals[i+j] = VM_PAGER_OK;
 1396 
 1397                         mreq->oflags |= VPO_SWAPINPROG;
 1398                         bp->b_pages[j] = mreq;
 1399                 }
 1400                 VM_OBJECT_UNLOCK(object);
 1401                 bp->b_npages = n;
 1402                 /*
 1403                  * Must set dirty range for NFS to work.
 1404                  */
 1405                 bp->b_dirtyoff = 0;
 1406                 bp->b_dirtyend = bp->b_bcount;
 1407 
 1408                 PCPU_INC(cnt.v_swapout);
 1409                 PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
 1410 
 1411                 /*
 1412                  * asynchronous
 1413                  *
 1414                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1415                  */
 1416                 if (sync == FALSE) {
 1417                         bp->b_iodone = swp_pager_async_iodone;
 1418                         BUF_KERNPROC(bp);
 1419                         swp_pager_strategy(bp);
 1420 
 1421                         for (j = 0; j < n; ++j)
 1422                                 rtvals[i+j] = VM_PAGER_PEND;
 1423                         /* restart outter loop */
 1424                         continue;
 1425                 }
 1426 
 1427                 /*
 1428                  * synchronous
 1429                  *
 1430                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1431                  */
 1432                 bp->b_iodone = bdone;
 1433                 swp_pager_strategy(bp);
 1434 
 1435                 /*
 1436                  * Wait for the sync I/O to complete, then update rtvals.
 1437                  * We just set the rtvals[] to VM_PAGER_PEND so we can call
 1438                  * our async completion routine at the end, thus avoiding a
 1439                  * double-free.
 1440                  */
 1441                 bwait(bp, PVM, "swwrt");
 1442                 for (j = 0; j < n; ++j)
 1443                         rtvals[i+j] = VM_PAGER_PEND;
 1444                 /*
 1445                  * Now that we are through with the bp, we can call the
 1446                  * normal async completion, which frees everything up.
 1447                  */
 1448                 swp_pager_async_iodone(bp);
 1449         }
 1450         VM_OBJECT_LOCK(object);
 1451 }
 1452 
 1453 /*
 1454  *      swp_pager_async_iodone:
 1455  *
 1456  *      Completion routine for asynchronous reads and writes from/to swap.
 1457  *      Also called manually by synchronous code to finish up a bp.
 1458  *
 1459  *      For READ operations, the pages are VPO_BUSY'd.  For WRITE operations, 
 1460  *      the pages are vm_page_t->busy'd.  For READ operations, we VPO_BUSY 
 1461  *      unbusy all pages except the 'main' request page.  For WRITE 
 1462  *      operations, we vm_page_t->busy'd unbusy all pages ( we can do this 
 1463  *      because we marked them all VM_PAGER_PEND on return from putpages ).
 1464  *
 1465  *      This routine may not block.
 1466  */
 1467 static void
 1468 swp_pager_async_iodone(struct buf *bp)
 1469 {
 1470         int i;
 1471         vm_object_t object = NULL;
 1472 
 1473         /*
 1474          * report error
 1475          */
 1476         if (bp->b_ioflags & BIO_ERROR) {
 1477                 printf(
 1478                     "swap_pager: I/O error - %s failed; blkno %ld,"
 1479                         "size %ld, error %d\n",
 1480                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
 1481                     (long)bp->b_blkno, 
 1482                     (long)bp->b_bcount,
 1483                     bp->b_error
 1484                 );
 1485         }
 1486 
 1487         /*
 1488          * remove the mapping for kernel virtual
 1489          */
 1490         pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
 1491 
 1492         if (bp->b_npages) {
 1493                 object = bp->b_pages[0]->object;
 1494                 VM_OBJECT_LOCK(object);
 1495         }
 1496         vm_page_lock_queues();
 1497         /*
 1498          * cleanup pages.  If an error occurs writing to swap, we are in
 1499          * very serious trouble.  If it happens to be a disk error, though,
 1500          * we may be able to recover by reassigning the swap later on.  So
 1501          * in this case we remove the m->swapblk assignment for the page 
 1502          * but do not free it in the rlist.  The errornous block(s) are thus
 1503          * never reallocated as swap.  Redirty the page and continue.
 1504          */
 1505         for (i = 0; i < bp->b_npages; ++i) {
 1506                 vm_page_t m = bp->b_pages[i];
 1507 
 1508                 m->oflags &= ~VPO_SWAPINPROG;
 1509 
 1510                 if (bp->b_ioflags & BIO_ERROR) {
 1511                         /*
 1512                          * If an error occurs I'd love to throw the swapblk
 1513                          * away without freeing it back to swapspace, so it
 1514                          * can never be used again.  But I can't from an 
 1515                          * interrupt.
 1516                          */
 1517                         if (bp->b_iocmd == BIO_READ) {
 1518                                 /*
 1519                                  * When reading, reqpage needs to stay
 1520                                  * locked for the parent, but all other
 1521                                  * pages can be freed.  We still want to
 1522                                  * wakeup the parent waiting on the page,
 1523                                  * though.  ( also: pg_reqpage can be -1 and 
 1524                                  * not match anything ).
 1525                                  *
 1526                                  * We have to wake specifically requested pages
 1527                                  * up too because we cleared VPO_SWAPINPROG and
 1528                                  * someone may be waiting for that.
 1529                                  *
 1530                                  * NOTE: for reads, m->dirty will probably
 1531                                  * be overridden by the original caller of
 1532                                  * getpages so don't play cute tricks here.
 1533                                  */
 1534                                 m->valid = 0;
 1535                                 if (i != bp->b_pager.pg_reqpage)
 1536                                         swp_pager_free_nrpage(m);
 1537                                 else
 1538                                         vm_page_flash(m);
 1539                                 /*
 1540                                  * If i == bp->b_pager.pg_reqpage, do not wake 
 1541                                  * the page up.  The caller needs to.
 1542                                  */
 1543                         } else {
 1544                                 /*
 1545                                  * If a write error occurs, reactivate page
 1546                                  * so it doesn't clog the inactive list,
 1547                                  * then finish the I/O.
 1548                                  */
 1549                                 vm_page_dirty(m);
 1550                                 vm_page_activate(m);
 1551                                 vm_page_io_finish(m);
 1552                         }
 1553                 } else if (bp->b_iocmd == BIO_READ) {
 1554                         /*
 1555                          * NOTE: for reads, m->dirty will probably be 
 1556                          * overridden by the original caller of getpages so
 1557                          * we cannot set them in order to free the underlying
 1558                          * swap in a low-swap situation.  I don't think we'd
 1559                          * want to do that anyway, but it was an optimization
 1560                          * that existed in the old swapper for a time before
 1561                          * it got ripped out due to precisely this problem.
 1562                          *
 1563                          * If not the requested page then deactivate it.
 1564                          *
 1565                          * Note that the requested page, reqpage, is left
 1566                          * busied, but we still have to wake it up.  The
 1567                          * other pages are released (unbusied) by 
 1568                          * vm_page_wakeup().
 1569                          */
 1570                         KASSERT(!pmap_page_is_mapped(m),
 1571                             ("swp_pager_async_iodone: page %p is mapped", m));
 1572                         m->valid = VM_PAGE_BITS_ALL;
 1573                         KASSERT(m->dirty == 0,
 1574                             ("swp_pager_async_iodone: page %p is dirty", m));
 1575 
 1576                         /*
 1577                          * We have to wake specifically requested pages
 1578                          * up too because we cleared VPO_SWAPINPROG and
 1579                          * could be waiting for it in getpages.  However,
 1580                          * be sure to not unbusy getpages specifically
 1581                          * requested page - getpages expects it to be 
 1582                          * left busy.
 1583                          */
 1584                         if (i != bp->b_pager.pg_reqpage) {
 1585                                 vm_page_deactivate(m);
 1586                                 vm_page_wakeup(m);
 1587                         } else {
 1588                                 vm_page_flash(m);
 1589                         }
 1590                 } else {
 1591                         /*
 1592                          * For write success, clear the dirty
 1593                          * status, then finish the I/O ( which decrements the 
 1594                          * busy count and possibly wakes waiter's up ).
 1595                          */
 1596                         KASSERT((m->flags & PG_WRITEABLE) == 0,
 1597                             ("swp_pager_async_iodone: page %p is not write"
 1598                             " protected", m));
 1599                         vm_page_undirty(m);
 1600                         vm_page_io_finish(m);
 1601                         if (vm_page_count_severe())
 1602                                 vm_page_try_to_cache(m);
 1603                 }
 1604         }
 1605         vm_page_unlock_queues();
 1606 
 1607         /*
 1608          * adjust pip.  NOTE: the original parent may still have its own
 1609          * pip refs on the object.
 1610          */
 1611         if (object != NULL) {
 1612                 vm_object_pip_wakeupn(object, bp->b_npages);
 1613                 VM_OBJECT_UNLOCK(object);
 1614         }
 1615 
 1616         /* 
 1617          * swapdev_strategy() manually sets b_vp and b_bufobj before calling 
 1618          * bstrategy(). Set them back to NULL now we're done with it, or we'll
 1619          * trigger a KASSERT in relpbuf().
 1620          */
 1621         if (bp->b_vp) {
 1622                     bp->b_vp = NULL;
 1623                     bp->b_bufobj = NULL;
 1624         }
 1625         /*
 1626          * release the physical I/O buffer
 1627          */
 1628         relpbuf(
 1629             bp, 
 1630             ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 
 1631                 ((bp->b_flags & B_ASYNC) ? 
 1632                     &nsw_wcount_async : 
 1633                     &nsw_wcount_sync
 1634                 )
 1635             )
 1636         );
 1637 }
 1638 
 1639 /*
 1640  *      swap_pager_isswapped:
 1641  *
 1642  *      Return 1 if at least one page in the given object is paged
 1643  *      out to the given swap device.
 1644  *
 1645  *      This routine may not block.
 1646  */
 1647 int
 1648 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
 1649 {
 1650         daddr_t index = 0;
 1651         int bcount;
 1652         int i;
 1653 
 1654         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1655         if (object->type != OBJT_SWAP)
 1656                 return (0);
 1657 
 1658         mtx_lock(&swhash_mtx);
 1659         for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
 1660                 struct swblock *swap;
 1661 
 1662                 if ((swap = *swp_pager_hash(object, index)) != NULL) {
 1663                         for (i = 0; i < SWAP_META_PAGES; ++i) {
 1664                                 if (swp_pager_isondev(swap->swb_pages[i], sp)) {
 1665                                         mtx_unlock(&swhash_mtx);
 1666                                         return (1);
 1667                                 }
 1668                         }
 1669                 }
 1670                 index += SWAP_META_PAGES;
 1671                 if (index > 0x20000000)
 1672                         panic("swap_pager_isswapped: failed to locate all swap meta blocks");
 1673         }
 1674         mtx_unlock(&swhash_mtx);
 1675         return (0);
 1676 }
 1677 
 1678 /*
 1679  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
 1680  *
 1681  *      This routine dissociates the page at the given index within a
 1682  *      swap block from its backing store, paging it in if necessary.
 1683  *      If the page is paged in, it is placed in the inactive queue,
 1684  *      since it had its backing store ripped out from under it.
 1685  *      We also attempt to swap in all other pages in the swap block,
 1686  *      we only guarantee that the one at the specified index is
 1687  *      paged in.
 1688  *
 1689  *      XXX - The code to page the whole block in doesn't work, so we
 1690  *            revert to the one-by-one behavior for now.  Sigh.
 1691  */
 1692 static inline void
 1693 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
 1694 {
 1695         vm_page_t m;
 1696 
 1697         vm_object_pip_add(object, 1);
 1698         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY);
 1699         if (m->valid == VM_PAGE_BITS_ALL) {
 1700                 vm_object_pip_subtract(object, 1);
 1701                 vm_page_lock_queues();
 1702                 vm_page_activate(m);
 1703                 vm_page_dirty(m);
 1704                 vm_page_unlock_queues();
 1705                 vm_page_wakeup(m);
 1706                 vm_pager_page_unswapped(m);
 1707                 return;
 1708         }
 1709 
 1710         if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK)
 1711                 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
 1712         vm_object_pip_subtract(object, 1);
 1713         vm_page_lock_queues();
 1714         vm_page_dirty(m);
 1715         vm_page_dontneed(m);
 1716         vm_page_unlock_queues();
 1717         vm_page_wakeup(m);
 1718         vm_pager_page_unswapped(m);
 1719 }
 1720 
 1721 /*
 1722  *      swap_pager_swapoff:
 1723  *
 1724  *      Page in all of the pages that have been paged out to the
 1725  *      given device.  The corresponding blocks in the bitmap must be
 1726  *      marked as allocated and the device must be flagged SW_CLOSING.
 1727  *      There may be no processes swapped out to the device.
 1728  *
 1729  *      This routine may block.
 1730  */
 1731 static void
 1732 swap_pager_swapoff(struct swdevt *sp)
 1733 {
 1734         struct swblock *swap;
 1735         int i, j, retries;
 1736 
 1737         GIANT_REQUIRED;
 1738 
 1739         retries = 0;
 1740 full_rescan:
 1741         mtx_lock(&swhash_mtx);
 1742         for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
 1743 restart:
 1744                 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
 1745                         vm_object_t object = swap->swb_object;
 1746                         vm_pindex_t pindex = swap->swb_index;
 1747                         for (j = 0; j < SWAP_META_PAGES; ++j) {
 1748                                 if (swp_pager_isondev(swap->swb_pages[j], sp)) {
 1749                                         /* avoid deadlock */
 1750                                         if (!VM_OBJECT_TRYLOCK(object)) {
 1751                                                 break;
 1752                                         } else {
 1753                                                 mtx_unlock(&swhash_mtx);
 1754                                                 swp_pager_force_pagein(object,
 1755                                                     pindex + j);
 1756                                                 VM_OBJECT_UNLOCK(object);
 1757                                                 mtx_lock(&swhash_mtx);
 1758                                                 goto restart;
 1759                                         }
 1760                                 }
 1761                         }
 1762                 }
 1763         }
 1764         mtx_unlock(&swhash_mtx);
 1765         if (sp->sw_used) {
 1766                 /*
 1767                  * Objects may be locked or paging to the device being
 1768                  * removed, so we will miss their pages and need to
 1769                  * make another pass.  We have marked this device as
 1770                  * SW_CLOSING, so the activity should finish soon.
 1771                  */
 1772                 retries++;
 1773                 if (retries > 100) {
 1774                         panic("swapoff: failed to locate %d swap blocks",
 1775                             sp->sw_used);
 1776                 }
 1777                 pause("swpoff", hz / 20);
 1778                 goto full_rescan;
 1779         }
 1780 }
 1781 
 1782 /************************************************************************
 1783  *                              SWAP META DATA                          *
 1784  ************************************************************************
 1785  *
 1786  *      These routines manipulate the swap metadata stored in the 
 1787  *      OBJT_SWAP object.  All swp_*() routines must be called at
 1788  *      splvm() because swap can be freed up by the low level vm_page
 1789  *      code which might be called from interrupts beyond what splbio() covers.
 1790  *
 1791  *      Swap metadata is implemented with a global hash and not directly
 1792  *      linked into the object.  Instead the object simply contains
 1793  *      appropriate tracking counters.
 1794  */
 1795 
 1796 /*
 1797  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
 1798  *
 1799  *      We first convert the object to a swap object if it is a default
 1800  *      object.
 1801  *
 1802  *      The specified swapblk is added to the object's swap metadata.  If
 1803  *      the swapblk is not valid, it is freed instead.  Any previously
 1804  *      assigned swapblk is freed.
 1805  *
 1806  *      This routine must be called at splvm(), except when used to convert
 1807  *      an OBJT_DEFAULT object into an OBJT_SWAP object.
 1808  */
 1809 static void
 1810 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
 1811 {
 1812         struct swblock *swap;
 1813         struct swblock **pswap;
 1814         int idx;
 1815 
 1816         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1817         /*
 1818          * Convert default object to swap object if necessary
 1819          */
 1820         if (object->type != OBJT_SWAP) {
 1821                 object->type = OBJT_SWAP;
 1822                 object->un_pager.swp.swp_bcount = 0;
 1823 
 1824                 if (object->handle != NULL) {
 1825                         mtx_lock(&sw_alloc_mtx);
 1826                         TAILQ_INSERT_TAIL(
 1827                             NOBJLIST(object->handle),
 1828                             object, 
 1829                             pager_object_list
 1830                         );
 1831                         mtx_unlock(&sw_alloc_mtx);
 1832                 }
 1833         }
 1834         
 1835         /*
 1836          * Locate hash entry.  If not found create, but if we aren't adding
 1837          * anything just return.  If we run out of space in the map we wait
 1838          * and, since the hash table may have changed, retry.
 1839          */
 1840 retry:
 1841         mtx_lock(&swhash_mtx);
 1842         pswap = swp_pager_hash(object, pindex);
 1843 
 1844         if ((swap = *pswap) == NULL) {
 1845                 int i;
 1846 
 1847                 if (swapblk == SWAPBLK_NONE)
 1848                         goto done;
 1849 
 1850                 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT);
 1851                 if (swap == NULL) {
 1852                         mtx_unlock(&swhash_mtx);
 1853                         VM_OBJECT_UNLOCK(object);
 1854                         if (uma_zone_exhausted(swap_zone)) {
 1855                                 printf("swap zone exhausted, increase kern.maxswzone\n");
 1856                                 vm_pageout_oom(VM_OOM_SWAPZ);
 1857                                 pause("swzonex", 10);
 1858                         } else
 1859                                 VM_WAIT;
 1860                         VM_OBJECT_LOCK(object);
 1861                         goto retry;
 1862                 }
 1863 
 1864                 swap->swb_hnext = NULL;
 1865                 swap->swb_object = object;
 1866                 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
 1867                 swap->swb_count = 0;
 1868 
 1869                 ++object->un_pager.swp.swp_bcount;
 1870 
 1871                 for (i = 0; i < SWAP_META_PAGES; ++i)
 1872                         swap->swb_pages[i] = SWAPBLK_NONE;
 1873         }
 1874 
 1875         /*
 1876          * Delete prior contents of metadata
 1877          */
 1878         idx = pindex & SWAP_META_MASK;
 1879 
 1880         if (swap->swb_pages[idx] != SWAPBLK_NONE) {
 1881                 swp_pager_freeswapspace(swap->swb_pages[idx], 1);
 1882                 --swap->swb_count;
 1883         }
 1884 
 1885         /*
 1886          * Enter block into metadata
 1887          */
 1888         swap->swb_pages[idx] = swapblk;
 1889         if (swapblk != SWAPBLK_NONE)
 1890                 ++swap->swb_count;
 1891 done:
 1892         mtx_unlock(&swhash_mtx);
 1893 }
 1894 
 1895 /*
 1896  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
 1897  *
 1898  *      The requested range of blocks is freed, with any associated swap 
 1899  *      returned to the swap bitmap.
 1900  *
 1901  *      This routine will free swap metadata structures as they are cleaned 
 1902  *      out.  This routine does *NOT* operate on swap metadata associated
 1903  *      with resident pages.
 1904  *
 1905  *      This routine must be called at splvm()
 1906  */
 1907 static void
 1908 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
 1909 {
 1910 
 1911         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1912         if (object->type != OBJT_SWAP)
 1913                 return;
 1914 
 1915         while (count > 0) {
 1916                 struct swblock **pswap;
 1917                 struct swblock *swap;
 1918 
 1919                 mtx_lock(&swhash_mtx);
 1920                 pswap = swp_pager_hash(object, index);
 1921 
 1922                 if ((swap = *pswap) != NULL) {
 1923                         daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
 1924 
 1925                         if (v != SWAPBLK_NONE) {
 1926                                 swp_pager_freeswapspace(v, 1);
 1927                                 swap->swb_pages[index & SWAP_META_MASK] =
 1928                                         SWAPBLK_NONE;
 1929                                 if (--swap->swb_count == 0) {
 1930                                         *pswap = swap->swb_hnext;
 1931                                         uma_zfree(swap_zone, swap);
 1932                                         --object->un_pager.swp.swp_bcount;
 1933                                 }
 1934                         }
 1935                         --count;
 1936                         ++index;
 1937                 } else {
 1938                         int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
 1939                         count -= n;
 1940                         index += n;
 1941                 }
 1942                 mtx_unlock(&swhash_mtx);
 1943         }
 1944 }
 1945 
 1946 /*
 1947  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
 1948  *
 1949  *      This routine locates and destroys all swap metadata associated with
 1950  *      an object.
 1951  *
 1952  *      This routine must be called at splvm()
 1953  */
 1954 static void
 1955 swp_pager_meta_free_all(vm_object_t object)
 1956 {
 1957         daddr_t index = 0;
 1958 
 1959         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1960         if (object->type != OBJT_SWAP)
 1961                 return;
 1962 
 1963         while (object->un_pager.swp.swp_bcount) {
 1964                 struct swblock **pswap;
 1965                 struct swblock *swap;
 1966 
 1967                 mtx_lock(&swhash_mtx);
 1968                 pswap = swp_pager_hash(object, index);
 1969                 if ((swap = *pswap) != NULL) {
 1970                         int i;
 1971 
 1972                         for (i = 0; i < SWAP_META_PAGES; ++i) {
 1973                                 daddr_t v = swap->swb_pages[i];
 1974                                 if (v != SWAPBLK_NONE) {
 1975                                         --swap->swb_count;
 1976                                         swp_pager_freeswapspace(v, 1);
 1977                                 }
 1978                         }
 1979                         if (swap->swb_count != 0)
 1980                                 panic("swap_pager_meta_free_all: swb_count != 0");
 1981                         *pswap = swap->swb_hnext;
 1982                         uma_zfree(swap_zone, swap);
 1983                         --object->un_pager.swp.swp_bcount;
 1984                 }
 1985                 mtx_unlock(&swhash_mtx);
 1986                 index += SWAP_META_PAGES;
 1987                 if (index > 0x20000000)
 1988                         panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
 1989         }
 1990 }
 1991 
 1992 /*
 1993  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
 1994  *
 1995  *      This routine is capable of looking up, popping, or freeing
 1996  *      swapblk assignments in the swap meta data or in the vm_page_t.
 1997  *      The routine typically returns the swapblk being looked-up, or popped,
 1998  *      or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
 1999  *      was invalid.  This routine will automatically free any invalid 
 2000  *      meta-data swapblks.
 2001  *
 2002  *      It is not possible to store invalid swapblks in the swap meta data
 2003  *      (other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
 2004  *
 2005  *      When acting on a busy resident page and paging is in progress, we 
 2006  *      have to wait until paging is complete but otherwise can act on the 
 2007  *      busy page.
 2008  *
 2009  *      This routine must be called at splvm().
 2010  *
 2011  *      SWM_FREE        remove and free swap block from metadata
 2012  *      SWM_POP         remove from meta data but do not free.. pop it out
 2013  */
 2014 static daddr_t
 2015 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
 2016 {
 2017         struct swblock **pswap;
 2018         struct swblock *swap;
 2019         daddr_t r1;
 2020         int idx;
 2021 
 2022         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2023         /*
 2024          * The meta data only exists of the object is OBJT_SWAP 
 2025          * and even then might not be allocated yet.
 2026          */
 2027         if (object->type != OBJT_SWAP)
 2028                 return (SWAPBLK_NONE);
 2029 
 2030         r1 = SWAPBLK_NONE;
 2031         mtx_lock(&swhash_mtx);
 2032         pswap = swp_pager_hash(object, pindex);
 2033 
 2034         if ((swap = *pswap) != NULL) {
 2035                 idx = pindex & SWAP_META_MASK;
 2036                 r1 = swap->swb_pages[idx];
 2037 
 2038                 if (r1 != SWAPBLK_NONE) {
 2039                         if (flags & SWM_FREE) {
 2040                                 swp_pager_freeswapspace(r1, 1);
 2041                                 r1 = SWAPBLK_NONE;
 2042                         }
 2043                         if (flags & (SWM_FREE|SWM_POP)) {
 2044                                 swap->swb_pages[idx] = SWAPBLK_NONE;
 2045                                 if (--swap->swb_count == 0) {
 2046                                         *pswap = swap->swb_hnext;
 2047                                         uma_zfree(swap_zone, swap);
 2048                                         --object->un_pager.swp.swp_bcount;
 2049                                 }
 2050                         } 
 2051                 }
 2052         }
 2053         mtx_unlock(&swhash_mtx);
 2054         return (r1);
 2055 }
 2056 
 2057 /*
 2058  * System call swapon(name) enables swapping on device name,
 2059  * which must be in the swdevsw.  Return EBUSY
 2060  * if already swapping on this device.
 2061  */
 2062 #ifndef _SYS_SYSPROTO_H_
 2063 struct swapon_args {
 2064         char *name;
 2065 };
 2066 #endif
 2067 
 2068 /* 
 2069  * MPSAFE
 2070  */
 2071 /* ARGSUSED */
 2072 int
 2073 swapon(struct thread *td, struct swapon_args *uap)
 2074 {
 2075         struct vattr attr;
 2076         struct vnode *vp;
 2077         struct nameidata nd;
 2078         int error;
 2079 
 2080         error = priv_check(td, PRIV_SWAPON);
 2081         if (error)
 2082                 return (error);
 2083 
 2084         mtx_lock(&Giant);
 2085         while (swdev_syscall_active)
 2086             tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
 2087         swdev_syscall_active = 1;
 2088 
 2089         /*
 2090          * Swap metadata may not fit in the KVM if we have physical
 2091          * memory of >1GB.
 2092          */
 2093         if (swap_zone == NULL) {
 2094                 error = ENOMEM;
 2095                 goto done;
 2096         }
 2097 
 2098         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
 2099             uap->name, td);
 2100         error = namei(&nd);
 2101         if (error)
 2102                 goto done;
 2103 
 2104         NDFREE(&nd, NDF_ONLY_PNBUF);
 2105         vp = nd.ni_vp;
 2106 
 2107         if (vn_isdisk(vp, &error)) {
 2108                 error = swapongeom(td, vp);
 2109         } else if (vp->v_type == VREG &&
 2110             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
 2111             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
 2112                 /*
 2113                  * Allow direct swapping to NFS regular files in the same
 2114                  * way that nfs_mountroot() sets up diskless swapping.
 2115                  */
 2116                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
 2117         }
 2118 
 2119         if (error)
 2120                 vrele(vp);
 2121 done:
 2122         swdev_syscall_active = 0;
 2123         wakeup_one(&swdev_syscall_active);
 2124         mtx_unlock(&Giant);
 2125         return (error);
 2126 }
 2127 
 2128 static void
 2129 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, dev_t dev)
 2130 {
 2131         struct swdevt *sp, *tsp;
 2132         swblk_t dvbase;
 2133         u_long mblocks;
 2134 
 2135         /*
 2136          * If we go beyond this, we get overflows in the radix
 2137          * tree bitmap code.
 2138          */
 2139         mblocks = 0x40000000 / BLIST_META_RADIX;
 2140         if (nblks > mblocks) {
 2141                 printf("WARNING: reducing size to maximum of %lu blocks per swap unit\n",
 2142                         mblocks);
 2143                 nblks = mblocks;
 2144         }
 2145         /*
 2146          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
 2147          * First chop nblks off to page-align it, then convert.
 2148          * 
 2149          * sw->sw_nblks is in page-sized chunks now too.
 2150          */
 2151         nblks &= ~(ctodb(1) - 1);
 2152         nblks = dbtoc(nblks);
 2153 
 2154         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
 2155         sp->sw_vp = vp;
 2156         sp->sw_id = id;
 2157         sp->sw_dev = dev;
 2158         sp->sw_flags = 0;
 2159         sp->sw_nblks = nblks;
 2160         sp->sw_used = 0;
 2161         sp->sw_strategy = strategy;
 2162         sp->sw_close = close;
 2163 
 2164         sp->sw_blist = blist_create(nblks, M_WAITOK);
 2165         /*
 2166          * Do not free the first two block in order to avoid overwriting
 2167          * any bsd label at the front of the partition
 2168          */
 2169         blist_free(sp->sw_blist, 2, nblks - 2);
 2170 
 2171         dvbase = 0;
 2172         mtx_lock(&sw_dev_mtx);
 2173         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
 2174                 if (tsp->sw_end >= dvbase) {
 2175                         /*
 2176                          * We put one uncovered page between the devices
 2177                          * in order to definitively prevent any cross-device
 2178                          * I/O requests
 2179                          */
 2180                         dvbase = tsp->sw_end + 1;
 2181                 }
 2182         }
 2183         sp->sw_first = dvbase;
 2184         sp->sw_end = dvbase + nblks;
 2185         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
 2186         nswapdev++;
 2187         swap_pager_avail += nblks;
 2188         swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
 2189         swp_sizecheck();
 2190         mtx_unlock(&sw_dev_mtx);
 2191 }
 2192 
 2193 /*
 2194  * SYSCALL: swapoff(devname)
 2195  *
 2196  * Disable swapping on the given device.
 2197  *
 2198  * XXX: Badly designed system call: it should use a device index
 2199  * rather than filename as specification.  We keep sw_vp around
 2200  * only to make this work.
 2201  */
 2202 #ifndef _SYS_SYSPROTO_H_
 2203 struct swapoff_args {
 2204         char *name;
 2205 };
 2206 #endif
 2207 
 2208 /*
 2209  * MPSAFE
 2210  */
 2211 /* ARGSUSED */
 2212 int
 2213 swapoff(struct thread *td, struct swapoff_args *uap)
 2214 {
 2215         struct vnode *vp;
 2216         struct nameidata nd;
 2217         struct swdevt *sp;
 2218         int error;
 2219 
 2220         error = priv_check(td, PRIV_SWAPOFF);
 2221         if (error)
 2222                 return (error);
 2223 
 2224         mtx_lock(&Giant);
 2225         while (swdev_syscall_active)
 2226             tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
 2227         swdev_syscall_active = 1;
 2228 
 2229         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
 2230             td);
 2231         error = namei(&nd);
 2232         if (error)
 2233                 goto done;
 2234         NDFREE(&nd, NDF_ONLY_PNBUF);
 2235         vp = nd.ni_vp;
 2236 
 2237         mtx_lock(&sw_dev_mtx);
 2238         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2239                 if (sp->sw_vp == vp)
 2240                         break;
 2241         }
 2242         mtx_unlock(&sw_dev_mtx);
 2243         if (sp == NULL) {
 2244                 error = EINVAL;
 2245                 goto done;
 2246         }
 2247         error = swapoff_one(sp, td->td_ucred);
 2248 done:
 2249         swdev_syscall_active = 0;
 2250         wakeup_one(&swdev_syscall_active);
 2251         mtx_unlock(&Giant);
 2252         return (error);
 2253 }
 2254 
 2255 static int
 2256 swapoff_one(struct swdevt *sp, struct ucred *cred)
 2257 {
 2258         u_long nblks, dvbase;
 2259 #ifdef MAC
 2260         int error;
 2261 #endif
 2262 
 2263         mtx_assert(&Giant, MA_OWNED);
 2264 #ifdef MAC
 2265         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
 2266         error = mac_system_check_swapoff(cred, sp->sw_vp);
 2267         (void) VOP_UNLOCK(sp->sw_vp, 0);
 2268         if (error != 0)
 2269                 return (error);
 2270 #endif
 2271         nblks = sp->sw_nblks;
 2272 
 2273         /*
 2274          * We can turn off this swap device safely only if the
 2275          * available virtual memory in the system will fit the amount
 2276          * of data we will have to page back in, plus an epsilon so
 2277          * the system doesn't become critically low on swap space.
 2278          */
 2279         if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail <
 2280             nblks + nswap_lowat) {
 2281                 return (ENOMEM);
 2282         }
 2283 
 2284         /*
 2285          * Prevent further allocations on this device.
 2286          */
 2287         mtx_lock(&sw_dev_mtx);
 2288         sp->sw_flags |= SW_CLOSING;
 2289         for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
 2290                 swap_pager_avail -= blist_fill(sp->sw_blist,
 2291                      dvbase, dmmax);
 2292         }
 2293         swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
 2294         mtx_unlock(&sw_dev_mtx);
 2295 
 2296         /*
 2297          * Page in the contents of the device and close it.
 2298          */
 2299         swap_pager_swapoff(sp);
 2300 
 2301         sp->sw_close(curthread, sp);
 2302         sp->sw_id = NULL;
 2303         mtx_lock(&sw_dev_mtx);
 2304         TAILQ_REMOVE(&swtailq, sp, sw_list);
 2305         nswapdev--;
 2306         if (nswapdev == 0) {
 2307                 swap_pager_full = 2;
 2308                 swap_pager_almost_full = 1;
 2309         }
 2310         if (swdevhd == sp)
 2311                 swdevhd = NULL;
 2312         mtx_unlock(&sw_dev_mtx);
 2313         blist_destroy(sp->sw_blist);
 2314         free(sp, M_VMPGDATA);
 2315         return (0);
 2316 }
 2317 
 2318 void
 2319 swapoff_all(void)
 2320 {
 2321         struct swdevt *sp, *spt;
 2322         const char *devname;
 2323         int error;
 2324  
 2325         mtx_lock(&Giant);
 2326         while (swdev_syscall_active)
 2327                 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
 2328         swdev_syscall_active = 1;
 2329  
 2330         mtx_lock(&sw_dev_mtx);
 2331         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
 2332                 mtx_unlock(&sw_dev_mtx);
 2333                 if (vn_isdisk(sp->sw_vp, NULL))
 2334                         devname = sp->sw_vp->v_rdev->si_name;
 2335                 else
 2336                         devname = "[file]";
 2337                 error = swapoff_one(sp, thread0.td_ucred);
 2338                 if (error != 0) {
 2339                         printf("Cannot remove swap device %s (error=%d), "
 2340                             "skipping.\n", devname, error);
 2341                 } else if (bootverbose) {
 2342                         printf("Swap device %s removed.\n", devname);
 2343                 }
 2344                 mtx_lock(&sw_dev_mtx);
 2345         }
 2346         mtx_unlock(&sw_dev_mtx);
 2347  
 2348         swdev_syscall_active = 0;
 2349         wakeup_one(&swdev_syscall_active);
 2350         mtx_unlock(&Giant);
 2351 }
 2352 
 2353 void
 2354 swap_pager_status(int *total, int *used)
 2355 {
 2356         struct swdevt *sp;
 2357 
 2358         *total = 0;
 2359         *used = 0;
 2360         mtx_lock(&sw_dev_mtx);
 2361         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2362                 *total += sp->sw_nblks;
 2363                 *used += sp->sw_used;
 2364         }
 2365         mtx_unlock(&sw_dev_mtx);
 2366 }
 2367 
 2368 static int
 2369 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
 2370 {
 2371         int     *name = (int *)arg1;
 2372         int     error, n;
 2373         struct xswdev xs;
 2374         struct swdevt *sp;
 2375 
 2376         if (arg2 != 1) /* name length */
 2377                 return (EINVAL);
 2378 
 2379         n = 0;
 2380         mtx_lock(&sw_dev_mtx);
 2381         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2382                 if (n == *name) {
 2383                         mtx_unlock(&sw_dev_mtx);
 2384                         xs.xsw_version = XSWDEV_VERSION;
 2385                         xs.xsw_dev = sp->sw_dev;
 2386                         xs.xsw_flags = sp->sw_flags;
 2387                         xs.xsw_nblks = sp->sw_nblks;
 2388                         xs.xsw_used = sp->sw_used;
 2389 
 2390                         error = SYSCTL_OUT(req, &xs, sizeof(xs));
 2391                         return (error);
 2392                 }
 2393                 n++;
 2394         }
 2395         mtx_unlock(&sw_dev_mtx);
 2396         return (ENOENT);
 2397 }
 2398 
 2399 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
 2400     "Number of swap devices");
 2401 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
 2402     "Swap statistics by device");
 2403 
 2404 /*
 2405  * vmspace_swap_count() - count the approximate swap usage in pages for a
 2406  *                        vmspace.
 2407  *
 2408  *      The map must be locked.
 2409  *
 2410  *      Swap usage is determined by taking the proportional swap used by
 2411  *      VM objects backing the VM map.  To make up for fractional losses,
 2412  *      if the VM object has any swap use at all the associated map entries
 2413  *      count for at least 1 swap page.
 2414  */
 2415 int
 2416 vmspace_swap_count(struct vmspace *vmspace)
 2417 {
 2418         vm_map_t map = &vmspace->vm_map;
 2419         vm_map_entry_t cur;
 2420         int count = 0;
 2421 
 2422         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
 2423                 vm_object_t object;
 2424 
 2425                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
 2426                     (object = cur->object.vm_object) != NULL) {
 2427                         VM_OBJECT_LOCK(object);
 2428                         if (object->type == OBJT_SWAP &&
 2429                             object->un_pager.swp.swp_bcount != 0) {
 2430                                 int n = (cur->end - cur->start) / PAGE_SIZE;
 2431 
 2432                                 count += object->un_pager.swp.swp_bcount *
 2433                                     SWAP_META_PAGES * n / object->size + 1;
 2434                         }
 2435                         VM_OBJECT_UNLOCK(object);
 2436                 }
 2437         }
 2438         return (count);
 2439 }
 2440 
 2441 /*
 2442  * GEOM backend
 2443  *
 2444  * Swapping onto disk devices.
 2445  *
 2446  */
 2447 
 2448 static g_orphan_t swapgeom_orphan;
 2449 
 2450 static struct g_class g_swap_class = {
 2451         .name = "SWAP",
 2452         .version = G_VERSION,
 2453         .orphan = swapgeom_orphan,
 2454 };
 2455 
 2456 DECLARE_GEOM_CLASS(g_swap_class, g_class);
 2457 
 2458 
 2459 static void
 2460 swapgeom_done(struct bio *bp2)
 2461 {
 2462         struct buf *bp;
 2463 
 2464         bp = bp2->bio_caller2;
 2465         bp->b_ioflags = bp2->bio_flags;
 2466         if (bp2->bio_error)
 2467                 bp->b_ioflags |= BIO_ERROR;
 2468         bp->b_resid = bp->b_bcount - bp2->bio_completed;
 2469         bp->b_error = bp2->bio_error;
 2470         bufdone(bp);
 2471         g_destroy_bio(bp2);
 2472 }
 2473 
 2474 static void
 2475 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
 2476 {
 2477         struct bio *bio;
 2478         struct g_consumer *cp;
 2479 
 2480         cp = sp->sw_id;
 2481         if (cp == NULL) {
 2482                 bp->b_error = ENXIO;
 2483                 bp->b_ioflags |= BIO_ERROR;
 2484                 bufdone(bp);
 2485                 return;
 2486         }
 2487         if (bp->b_iocmd == BIO_WRITE)
 2488                 bio = g_new_bio();
 2489         else
 2490                 bio = g_alloc_bio();
 2491         if (bio == NULL) {
 2492                 bp->b_error = ENOMEM;
 2493                 bp->b_ioflags |= BIO_ERROR;
 2494                 bufdone(bp);
 2495                 return;
 2496         }
 2497 
 2498         bio->bio_caller2 = bp;
 2499         bio->bio_cmd = bp->b_iocmd;
 2500         bio->bio_data = bp->b_data;
 2501         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
 2502         bio->bio_length = bp->b_bcount;
 2503         bio->bio_done = swapgeom_done;
 2504         g_io_request(bio, cp);
 2505         return;
 2506 }
 2507 
 2508 static void
 2509 swapgeom_orphan(struct g_consumer *cp)
 2510 {
 2511         struct swdevt *sp;
 2512 
 2513         mtx_lock(&sw_dev_mtx);
 2514         TAILQ_FOREACH(sp, &swtailq, sw_list)
 2515                 if (sp->sw_id == cp)
 2516                         sp->sw_id = NULL;
 2517         mtx_unlock(&sw_dev_mtx);
 2518 }
 2519 
 2520 static void
 2521 swapgeom_close_ev(void *arg, int flags)
 2522 {
 2523         struct g_consumer *cp;
 2524 
 2525         cp = arg;
 2526         g_access(cp, -1, -1, 0);
 2527         g_detach(cp);
 2528         g_destroy_consumer(cp);
 2529 }
 2530 
 2531 static void
 2532 swapgeom_close(struct thread *td, struct swdevt *sw)
 2533 {
 2534 
 2535         /* XXX: direct call when Giant untangled */
 2536         g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL);
 2537 }
 2538 
 2539 
 2540 struct swh0h0 {
 2541         struct cdev *dev;
 2542         struct vnode *vp;
 2543         int     error;
 2544 };
 2545 
 2546 static void
 2547 swapongeom_ev(void *arg, int flags)
 2548 {
 2549         struct swh0h0 *swh;
 2550         struct g_provider *pp;
 2551         struct g_consumer *cp;
 2552         static struct g_geom *gp;
 2553         struct swdevt *sp;
 2554         u_long nblks;
 2555         int error;
 2556 
 2557         swh = arg;
 2558         swh->error = 0;
 2559         pp = g_dev_getprovider(swh->dev);
 2560         if (pp == NULL) {
 2561                 swh->error = ENODEV;
 2562                 return;
 2563         }
 2564         mtx_lock(&sw_dev_mtx);
 2565         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2566                 cp = sp->sw_id;
 2567                 if (cp != NULL && cp->provider == pp) {
 2568                         mtx_unlock(&sw_dev_mtx);
 2569                         swh->error = EBUSY;
 2570                         return;
 2571                 }
 2572         }
 2573         mtx_unlock(&sw_dev_mtx);
 2574         if (gp == NULL)
 2575                 gp = g_new_geomf(&g_swap_class, "swap", NULL);
 2576         cp = g_new_consumer(gp);
 2577         g_attach(cp, pp);
 2578         /*
 2579          * XXX: Everytime you think you can improve the margin for
 2580          * footshooting, somebody depends on the ability to do so:
 2581          * savecore(8) wants to write to our swapdev so we cannot
 2582          * set an exclusive count :-(
 2583          */
 2584         error = g_access(cp, 1, 1, 0);
 2585         if (error) {
 2586                 g_detach(cp);
 2587                 g_destroy_consumer(cp);
 2588                 swh->error = error;
 2589                 return;
 2590         }
 2591         nblks = pp->mediasize / DEV_BSIZE;
 2592         swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
 2593             swapgeom_close, dev2udev(swh->dev));
 2594         swh->error = 0;
 2595         return;
 2596 }
 2597 
 2598 static int
 2599 swapongeom(struct thread *td, struct vnode *vp)
 2600 {
 2601         int error;
 2602         struct swh0h0 swh;
 2603 
 2604         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 2605 
 2606         swh.dev = vp->v_rdev;
 2607         swh.vp = vp;
 2608         swh.error = 0;
 2609         /* XXX: direct call when Giant untangled */
 2610         error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
 2611         if (!error)
 2612                 error = swh.error;
 2613         VOP_UNLOCK(vp, 0);
 2614         return (error);
 2615 }
 2616 
 2617 /*
 2618  * VNODE backend
 2619  *
 2620  * This is used mainly for network filesystem (read: probably only tested
 2621  * with NFS) swapfiles.
 2622  *
 2623  */
 2624 
 2625 static void
 2626 swapdev_strategy(struct buf *bp, struct swdevt *sp)
 2627 {
 2628         struct vnode *vp2;
 2629 
 2630         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
 2631 
 2632         vp2 = sp->sw_id;
 2633         vhold(vp2);
 2634         if (bp->b_iocmd == BIO_WRITE) {
 2635                 if (bp->b_bufobj)
 2636                         bufobj_wdrop(bp->b_bufobj);
 2637                 bufobj_wref(&vp2->v_bufobj);
 2638         }
 2639         if (bp->b_bufobj != &vp2->v_bufobj)
 2640                 bp->b_bufobj = &vp2->v_bufobj;
 2641         bp->b_vp = vp2;
 2642         bp->b_iooffset = dbtob(bp->b_blkno);
 2643         bstrategy(bp);
 2644         return;
 2645 }
 2646 
 2647 static void
 2648 swapdev_close(struct thread *td, struct swdevt *sp)
 2649 {
 2650 
 2651         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
 2652         vrele(sp->sw_vp);
 2653 }
 2654 
 2655 
 2656 static int
 2657 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
 2658 {
 2659         struct swdevt *sp;
 2660         int error;
 2661 
 2662         if (nblks == 0)
 2663                 return (ENXIO);
 2664         mtx_lock(&sw_dev_mtx);
 2665         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2666                 if (sp->sw_id == vp) {
 2667                         mtx_unlock(&sw_dev_mtx);
 2668                         return (EBUSY);
 2669                 }
 2670         }
 2671         mtx_unlock(&sw_dev_mtx);
 2672     
 2673         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 2674 #ifdef MAC
 2675         error = mac_system_check_swapon(td->td_ucred, vp);
 2676         if (error == 0)
 2677 #endif
 2678                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
 2679         (void) VOP_UNLOCK(vp, 0);
 2680         if (error)
 2681                 return (error);
 2682 
 2683         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
 2684             NODEV);
 2685         return (0);
 2686 }

Cache object: 27ed1454a28094aa9992cdd7507c9781


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.