The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/swap_pager.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1998 Matthew Dillon,
    3  * Copyright (c) 1994 John S. Dyson
    4  * Copyright (c) 1990 University of Utah.
    5  * Copyright (c) 1982, 1986, 1989, 1993
    6  *      The Regents of the University of California.  All rights reserved.
    7  *
    8  * This code is derived from software contributed to Berkeley by
    9  * the Systems Programming Group of the University of Utah Computer
   10  * Science Department.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. All advertising materials mentioning features or use of this software
   21  *    must display the following acknowledgement:
   22  *      This product includes software developed by the University of
   23  *      California, Berkeley and its contributors.
   24  * 4. Neither the name of the University nor the names of its contributors
   25  *    may be used to endorse or promote products derived from this software
   26  *    without specific prior written permission.
   27  *
   28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   38  * SUCH DAMAGE.
   39  *
   40  *                              New Swap System
   41  *                              Matthew Dillon
   42  *
   43  * Radix Bitmap 'blists'.
   44  *
   45  *      - The new swapper uses the new radix bitmap code.  This should scale
   46  *        to arbitrarily small or arbitrarily large swap spaces and an almost
   47  *        arbitrary degree of fragmentation.
   48  *
   49  * Features:
   50  *
   51  *      - on the fly reallocation of swap during putpages.  The new system
   52  *        does not try to keep previously allocated swap blocks for dirty
   53  *        pages.  
   54  *
   55  *      - on the fly deallocation of swap
   56  *
   57  *      - No more garbage collection required.  Unnecessarily allocated swap
   58  *        blocks only exist for dirty vm_page_t's now and these are already
   59  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
   60  *        removal of invalidated swap blocks when a page is destroyed
   61  *        or renamed.
   62  *
   63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
   64  *
   65  *      @(#)swap_pager.c        8.9 (Berkeley) 3/21/94
   66  *      @(#)vm_swap.c   8.5 (Berkeley) 2/17/94
   67  */
   68 
   69 #include <sys/cdefs.h>
   70 __FBSDID("$FreeBSD: releng/9.2/sys/vm/swap_pager.c 253257 2013-07-12 10:02:47Z kib $");
   71 
   72 #include "opt_swap.h"
   73 #include "opt_vm.h"
   74 
   75 #include <sys/param.h>
   76 #include <sys/systm.h>
   77 #include <sys/conf.h>
   78 #include <sys/kernel.h>
   79 #include <sys/priv.h>
   80 #include <sys/proc.h>
   81 #include <sys/bio.h>
   82 #include <sys/buf.h>
   83 #include <sys/disk.h>
   84 #include <sys/fcntl.h>
   85 #include <sys/mount.h>
   86 #include <sys/namei.h>
   87 #include <sys/vnode.h>
   88 #include <sys/malloc.h>
   89 #include <sys/racct.h>
   90 #include <sys/resource.h>
   91 #include <sys/resourcevar.h>
   92 #include <sys/sysctl.h>
   93 #include <sys/sysproto.h>
   94 #include <sys/blist.h>
   95 #include <sys/lock.h>
   96 #include <sys/sx.h>
   97 #include <sys/vmmeter.h>
   98 
   99 #include <security/mac/mac_framework.h>
  100 
  101 #include <vm/vm.h>
  102 #include <vm/pmap.h>
  103 #include <vm/vm_map.h>
  104 #include <vm/vm_kern.h>
  105 #include <vm/vm_object.h>
  106 #include <vm/vm_page.h>
  107 #include <vm/vm_pager.h>
  108 #include <vm/vm_pageout.h>
  109 #include <vm/vm_param.h>
  110 #include <vm/swap_pager.h>
  111 #include <vm/vm_extern.h>
  112 #include <vm/uma.h>
  113 
  114 #include <geom/geom.h>
  115 
  116 /*
  117  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, 16
  118  * or 32 pages per allocation.
  119  * The 32-page limit is due to the radix code (kern/subr_blist.c).
  120  */
  121 #ifndef MAX_PAGEOUT_CLUSTER
  122 #define MAX_PAGEOUT_CLUSTER 16
  123 #endif
  124 
  125 #if !defined(SWB_NPAGES)
  126 #define SWB_NPAGES      MAX_PAGEOUT_CLUSTER
  127 #endif
  128 
  129 /*
  130  * The swblock structure maps an object and a small, fixed-size range
  131  * of page indices to disk addresses within a swap area.
  132  * The collection of these mappings is implemented as a hash table.
  133  * Unused disk addresses within a swap area are allocated and managed
  134  * using a blist.
  135  */
  136 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
  137 #define SWAP_META_PAGES         (SWB_NPAGES * 2)
  138 #define SWAP_META_MASK          (SWAP_META_PAGES - 1)
  139 
  140 struct swblock {
  141         struct swblock  *swb_hnext;
  142         vm_object_t     swb_object;
  143         vm_pindex_t     swb_index;
  144         int             swb_count;
  145         daddr_t         swb_pages[SWAP_META_PAGES];
  146 };
  147 
  148 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
  149 static struct mtx sw_dev_mtx;
  150 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
  151 static struct swdevt *swdevhd;  /* Allocate from here next */
  152 static int nswapdev;            /* Number of swap devices */
  153 int swap_pager_avail;
  154 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
  155 
  156 static vm_ooffset_t swap_total;
  157 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0, 
  158     "Total amount of available swap storage.");
  159 static vm_ooffset_t swap_reserved;
  160 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0, 
  161     "Amount of swap storage needed to back all allocated anonymous memory.");
  162 static int overcommit = 0;
  163 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0, 
  164     "Configure virtual memory overcommit behavior. See tuning(7) "
  165     "for details.");
  166 
  167 /* bits from overcommit */
  168 #define SWAP_RESERVE_FORCE_ON           (1 << 0)
  169 #define SWAP_RESERVE_RLIMIT_ON          (1 << 1)
  170 #define SWAP_RESERVE_ALLOW_NONWIRED     (1 << 2)
  171 
  172 int
  173 swap_reserve(vm_ooffset_t incr)
  174 {
  175 
  176         return (swap_reserve_by_cred(incr, curthread->td_ucred));
  177 }
  178 
  179 int
  180 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
  181 {
  182         vm_ooffset_t r, s;
  183         int res, error;
  184         static int curfail;
  185         static struct timeval lastfail;
  186         struct uidinfo *uip;
  187         
  188         uip = cred->cr_ruidinfo;
  189 
  190         if (incr & PAGE_MASK)
  191                 panic("swap_reserve: & PAGE_MASK");
  192 
  193 #ifdef RACCT
  194         PROC_LOCK(curproc);
  195         error = racct_add(curproc, RACCT_SWAP, incr);
  196         PROC_UNLOCK(curproc);
  197         if (error != 0)
  198                 return (0);
  199 #endif
  200 
  201         res = 0;
  202         mtx_lock(&sw_dev_mtx);
  203         r = swap_reserved + incr;
  204         if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
  205                 s = cnt.v_page_count - cnt.v_free_reserved - cnt.v_wire_count;
  206                 s *= PAGE_SIZE;
  207         } else
  208                 s = 0;
  209         s += swap_total;
  210         if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
  211             (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
  212                 res = 1;
  213                 swap_reserved = r;
  214         }
  215         mtx_unlock(&sw_dev_mtx);
  216 
  217         if (res) {
  218                 PROC_LOCK(curproc);
  219                 UIDINFO_VMSIZE_LOCK(uip);
  220                 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
  221                     uip->ui_vmsize + incr > lim_cur(curproc, RLIMIT_SWAP) &&
  222                     priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
  223                         res = 0;
  224                 else
  225                         uip->ui_vmsize += incr;
  226                 UIDINFO_VMSIZE_UNLOCK(uip);
  227                 PROC_UNLOCK(curproc);
  228                 if (!res) {
  229                         mtx_lock(&sw_dev_mtx);
  230                         swap_reserved -= incr;
  231                         mtx_unlock(&sw_dev_mtx);
  232                 }
  233         }
  234         if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
  235                 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
  236                     uip->ui_uid, curproc->p_pid, incr);
  237         }
  238 
  239 #ifdef RACCT
  240         if (!res) {
  241                 PROC_LOCK(curproc);
  242                 racct_sub(curproc, RACCT_SWAP, incr);
  243                 PROC_UNLOCK(curproc);
  244         }
  245 #endif
  246 
  247         return (res);
  248 }
  249 
  250 void
  251 swap_reserve_force(vm_ooffset_t incr)
  252 {
  253         struct uidinfo *uip;
  254 
  255         mtx_lock(&sw_dev_mtx);
  256         swap_reserved += incr;
  257         mtx_unlock(&sw_dev_mtx);
  258 
  259 #ifdef RACCT
  260         PROC_LOCK(curproc);
  261         racct_add_force(curproc, RACCT_SWAP, incr);
  262         PROC_UNLOCK(curproc);
  263 #endif
  264 
  265         uip = curthread->td_ucred->cr_ruidinfo;
  266         PROC_LOCK(curproc);
  267         UIDINFO_VMSIZE_LOCK(uip);
  268         uip->ui_vmsize += incr;
  269         UIDINFO_VMSIZE_UNLOCK(uip);
  270         PROC_UNLOCK(curproc);
  271 }
  272 
  273 void
  274 swap_release(vm_ooffset_t decr)
  275 {
  276         struct ucred *cred;
  277 
  278         PROC_LOCK(curproc);
  279         cred = curthread->td_ucred;
  280         swap_release_by_cred(decr, cred);
  281         PROC_UNLOCK(curproc);
  282 }
  283 
  284 void
  285 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
  286 {
  287         struct uidinfo *uip;
  288         
  289         uip = cred->cr_ruidinfo;
  290 
  291         if (decr & PAGE_MASK)
  292                 panic("swap_release: & PAGE_MASK");
  293 
  294         mtx_lock(&sw_dev_mtx);
  295         if (swap_reserved < decr)
  296                 panic("swap_reserved < decr");
  297         swap_reserved -= decr;
  298         mtx_unlock(&sw_dev_mtx);
  299 
  300         UIDINFO_VMSIZE_LOCK(uip);
  301         if (uip->ui_vmsize < decr)
  302                 printf("negative vmsize for uid = %d\n", uip->ui_uid);
  303         uip->ui_vmsize -= decr;
  304         UIDINFO_VMSIZE_UNLOCK(uip);
  305 
  306         racct_sub_cred(cred, RACCT_SWAP, decr);
  307 }
  308 
  309 static void swapdev_strategy(struct buf *, struct swdevt *sw);
  310 
  311 #define SWM_FREE        0x02    /* free, period                 */
  312 #define SWM_POP         0x04    /* pop out                      */
  313 
  314 int swap_pager_full = 2;        /* swap space exhaustion (task killing) */
  315 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
  316 static int nsw_rcount;          /* free read buffers                    */
  317 static int nsw_wcount_sync;     /* limit write buffers / synchronous    */
  318 static int nsw_wcount_async;    /* limit write buffers / asynchronous   */
  319 static int nsw_wcount_async_max;/* assigned maximum                     */
  320 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
  321 
  322 static struct swblock **swhash;
  323 static int swhash_mask;
  324 static struct mtx swhash_mtx;
  325 
  326 static int swap_async_max = 4;  /* maximum in-progress async I/O's      */
  327 static struct sx sw_alloc_sx;
  328 
  329 
  330 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
  331         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
  332 
  333 /*
  334  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
  335  * of searching a named list by hashing it just a little.
  336  */
  337 
  338 #define NOBJLISTS               8
  339 
  340 #define NOBJLIST(handle)        \
  341         (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
  342 
  343 static struct mtx sw_alloc_mtx; /* protect list manipulation */ 
  344 static struct pagerlst  swap_pager_object_list[NOBJLISTS];
  345 static uma_zone_t       swap_zone;
  346 static struct vm_object swap_zone_obj;
  347 
  348 /*
  349  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
  350  * calls hooked from other parts of the VM system and do not appear here.
  351  * (see vm/swap_pager.h).
  352  */
  353 static vm_object_t
  354                 swap_pager_alloc(void *handle, vm_ooffset_t size,
  355                     vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
  356 static void     swap_pager_dealloc(vm_object_t object);
  357 static int      swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
  358 static void     swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
  359 static boolean_t
  360                 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
  361 static void     swap_pager_init(void);
  362 static void     swap_pager_unswapped(vm_page_t);
  363 static void     swap_pager_swapoff(struct swdevt *sp);
  364 
  365 struct pagerops swappagerops = {
  366         .pgo_init =     swap_pager_init,        /* early system initialization of pager */
  367         .pgo_alloc =    swap_pager_alloc,       /* allocate an OBJT_SWAP object         */
  368         .pgo_dealloc =  swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
  369         .pgo_getpages = swap_pager_getpages,    /* pagein                               */
  370         .pgo_putpages = swap_pager_putpages,    /* pageout                              */
  371         .pgo_haspage =  swap_pager_haspage,     /* get backing store status for page    */
  372         .pgo_pageunswapped = swap_pager_unswapped,      /* remove swap related to page          */
  373 };
  374 
  375 /*
  376  * dmmax is in page-sized chunks with the new swap system.  It was
  377  * dev-bsized chunks in the old.  dmmax is always a power of 2.
  378  *
  379  * swap_*() routines are externally accessible.  swp_*() routines are
  380  * internal.
  381  */
  382 static int dmmax;
  383 static int nswap_lowat = 128;   /* in pages, swap_pager_almost_full warn */
  384 static int nswap_hiwat = 512;   /* in pages, swap_pager_almost_full warn */
  385 
  386 SYSCTL_INT(_vm, OID_AUTO, dmmax,
  387         CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
  388 
  389 static void     swp_sizecheck(void);
  390 static void     swp_pager_async_iodone(struct buf *bp);
  391 static int      swapongeom(struct thread *, struct vnode *);
  392 static int      swaponvp(struct thread *, struct vnode *, u_long);
  393 static int      swapoff_one(struct swdevt *sp, struct ucred *cred);
  394 
  395 /*
  396  * Swap bitmap functions
  397  */
  398 static void     swp_pager_freeswapspace(daddr_t blk, int npages);
  399 static daddr_t  swp_pager_getswapspace(int npages);
  400 
  401 /*
  402  * Metadata functions
  403  */
  404 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
  405 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
  406 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
  407 static void swp_pager_meta_free_all(vm_object_t);
  408 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
  409 
  410 static void
  411 swp_pager_free_nrpage(vm_page_t m)
  412 {
  413 
  414         vm_page_lock(m);
  415         if (m->wire_count == 0)
  416                 vm_page_free(m);
  417         vm_page_unlock(m);
  418 }
  419 
  420 /*
  421  * SWP_SIZECHECK() -    update swap_pager_full indication
  422  *      
  423  *      update the swap_pager_almost_full indication and warn when we are
  424  *      about to run out of swap space, using lowat/hiwat hysteresis.
  425  *
  426  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
  427  *
  428  *      No restrictions on call
  429  *      This routine may not block.
  430  */
  431 static void
  432 swp_sizecheck(void)
  433 {
  434 
  435         if (swap_pager_avail < nswap_lowat) {
  436                 if (swap_pager_almost_full == 0) {
  437                         printf("swap_pager: out of swap space\n");
  438                         swap_pager_almost_full = 1;
  439                 }
  440         } else {
  441                 swap_pager_full = 0;
  442                 if (swap_pager_avail > nswap_hiwat)
  443                         swap_pager_almost_full = 0;
  444         }
  445 }
  446 
  447 /*
  448  * SWP_PAGER_HASH() -   hash swap meta data
  449  *
  450  *      This is an helper function which hashes the swapblk given
  451  *      the object and page index.  It returns a pointer to a pointer
  452  *      to the object, or a pointer to a NULL pointer if it could not
  453  *      find a swapblk.
  454  */
  455 static struct swblock **
  456 swp_pager_hash(vm_object_t object, vm_pindex_t index)
  457 {
  458         struct swblock **pswap;
  459         struct swblock *swap;
  460 
  461         index &= ~(vm_pindex_t)SWAP_META_MASK;
  462         pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
  463         while ((swap = *pswap) != NULL) {
  464                 if (swap->swb_object == object &&
  465                     swap->swb_index == index
  466                 ) {
  467                         break;
  468                 }
  469                 pswap = &swap->swb_hnext;
  470         }
  471         return (pswap);
  472 }
  473 
  474 /*
  475  * SWAP_PAGER_INIT() -  initialize the swap pager!
  476  *
  477  *      Expected to be started from system init.  NOTE:  This code is run 
  478  *      before much else so be careful what you depend on.  Most of the VM
  479  *      system has yet to be initialized at this point.
  480  */
  481 static void
  482 swap_pager_init(void)
  483 {
  484         /*
  485          * Initialize object lists
  486          */
  487         int i;
  488 
  489         for (i = 0; i < NOBJLISTS; ++i)
  490                 TAILQ_INIT(&swap_pager_object_list[i]);
  491         mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
  492         mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
  493 
  494         /*
  495          * Device Stripe, in PAGE_SIZE'd blocks
  496          */
  497         dmmax = SWB_NPAGES * 2;
  498 }
  499 
  500 /*
  501  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
  502  *
  503  *      Expected to be started from pageout process once, prior to entering
  504  *      its main loop.
  505  */
  506 void
  507 swap_pager_swap_init(void)
  508 {
  509         int n, n2;
  510 
  511         /*
  512          * Number of in-transit swap bp operations.  Don't
  513          * exhaust the pbufs completely.  Make sure we
  514          * initialize workable values (0 will work for hysteresis
  515          * but it isn't very efficient).
  516          *
  517          * The nsw_cluster_max is constrained by the bp->b_pages[]
  518          * array (MAXPHYS/PAGE_SIZE) and our locally defined
  519          * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
  520          * constrained by the swap device interleave stripe size.
  521          *
  522          * Currently we hardwire nsw_wcount_async to 4.  This limit is 
  523          * designed to prevent other I/O from having high latencies due to
  524          * our pageout I/O.  The value 4 works well for one or two active swap
  525          * devices but is probably a little low if you have more.  Even so,
  526          * a higher value would probably generate only a limited improvement
  527          * with three or four active swap devices since the system does not
  528          * typically have to pageout at extreme bandwidths.   We will want
  529          * at least 2 per swap devices, and 4 is a pretty good value if you
  530          * have one NFS swap device due to the command/ack latency over NFS.
  531          * So it all works out pretty well.
  532          */
  533         nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
  534 
  535         mtx_lock(&pbuf_mtx);
  536         nsw_rcount = (nswbuf + 1) / 2;
  537         nsw_wcount_sync = (nswbuf + 3) / 4;
  538         nsw_wcount_async = 4;
  539         nsw_wcount_async_max = nsw_wcount_async;
  540         mtx_unlock(&pbuf_mtx);
  541 
  542         /*
  543          * Initialize our zone.  Right now I'm just guessing on the number
  544          * we need based on the number of pages in the system.  Each swblock
  545          * can hold 16 pages, so this is probably overkill.  This reservation
  546          * is typically limited to around 32MB by default.
  547          */
  548         n = cnt.v_page_count / 2;
  549         if (maxswzone && n > maxswzone / sizeof(struct swblock))
  550                 n = maxswzone / sizeof(struct swblock);
  551         n2 = n;
  552         swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
  553             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
  554         if (swap_zone == NULL)
  555                 panic("failed to create swap_zone.");
  556         do {
  557                 if (uma_zone_set_obj(swap_zone, &swap_zone_obj, n))
  558                         break;
  559                 /*
  560                  * if the allocation failed, try a zone two thirds the
  561                  * size of the previous attempt.
  562                  */
  563                 n -= ((n + 2) / 3);
  564         } while (n > 0);
  565         if (n2 != n)
  566                 printf("Swap zone entries reduced from %d to %d.\n", n2, n);
  567         n2 = n;
  568 
  569         /*
  570          * Initialize our meta-data hash table.  The swapper does not need to
  571          * be quite as efficient as the VM system, so we do not use an 
  572          * oversized hash table.
  573          *
  574          *      n:              size of hash table, must be power of 2
  575          *      swhash_mask:    hash table index mask
  576          */
  577         for (n = 1; n < n2 / 8; n *= 2)
  578                 ;
  579         swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
  580         swhash_mask = n - 1;
  581         mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
  582 }
  583 
  584 /*
  585  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
  586  *                      its metadata structures.
  587  *
  588  *      This routine is called from the mmap and fork code to create a new
  589  *      OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
  590  *      and then converting it with swp_pager_meta_build().
  591  *
  592  *      This routine may block in vm_object_allocate() and create a named
  593  *      object lookup race, so we must interlock.
  594  *
  595  * MPSAFE
  596  */
  597 static vm_object_t
  598 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
  599     vm_ooffset_t offset, struct ucred *cred)
  600 {
  601         vm_object_t object;
  602         vm_pindex_t pindex;
  603 
  604         pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
  605         if (handle) {
  606                 mtx_lock(&Giant);
  607                 /*
  608                  * Reference existing named region or allocate new one.  There
  609                  * should not be a race here against swp_pager_meta_build()
  610                  * as called from vm_page_remove() in regards to the lookup
  611                  * of the handle.
  612                  */
  613                 sx_xlock(&sw_alloc_sx);
  614                 object = vm_pager_object_lookup(NOBJLIST(handle), handle);
  615                 if (object == NULL) {
  616                         if (cred != NULL) {
  617                                 if (!swap_reserve_by_cred(size, cred)) {
  618                                         sx_xunlock(&sw_alloc_sx);
  619                                         mtx_unlock(&Giant);
  620                                         return (NULL);
  621                                 }
  622                                 crhold(cred);
  623                         }
  624                         object = vm_object_allocate(OBJT_DEFAULT, pindex);
  625                         VM_OBJECT_LOCK(object);
  626                         object->handle = handle;
  627                         if (cred != NULL) {
  628                                 object->cred = cred;
  629                                 object->charge = size;
  630                         }
  631                         swp_pager_meta_build(object, 0, SWAPBLK_NONE);
  632                         VM_OBJECT_UNLOCK(object);
  633                 }
  634                 sx_xunlock(&sw_alloc_sx);
  635                 mtx_unlock(&Giant);
  636         } else {
  637                 if (cred != NULL) {
  638                         if (!swap_reserve_by_cred(size, cred))
  639                                 return (NULL);
  640                         crhold(cred);
  641                 }
  642                 object = vm_object_allocate(OBJT_DEFAULT, pindex);
  643                 VM_OBJECT_LOCK(object);
  644                 if (cred != NULL) {
  645                         object->cred = cred;
  646                         object->charge = size;
  647                 }
  648                 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
  649                 VM_OBJECT_UNLOCK(object);
  650         }
  651         return (object);
  652 }
  653 
  654 /*
  655  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
  656  *
  657  *      The swap backing for the object is destroyed.  The code is 
  658  *      designed such that we can reinstantiate it later, but this
  659  *      routine is typically called only when the entire object is
  660  *      about to be destroyed.
  661  *
  662  *      The object must be locked.
  663  */
  664 static void
  665 swap_pager_dealloc(vm_object_t object)
  666 {
  667 
  668         /*
  669          * Remove from list right away so lookups will fail if we block for
  670          * pageout completion.
  671          */
  672         if (object->handle != NULL) {
  673                 mtx_lock(&sw_alloc_mtx);
  674                 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
  675                 mtx_unlock(&sw_alloc_mtx);
  676         }
  677 
  678         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  679         vm_object_pip_wait(object, "swpdea");
  680 
  681         /*
  682          * Free all remaining metadata.  We only bother to free it from 
  683          * the swap meta data.  We do not attempt to free swapblk's still
  684          * associated with vm_page_t's for this object.  We do not care
  685          * if paging is still in progress on some objects.
  686          */
  687         swp_pager_meta_free_all(object);
  688 }
  689 
  690 /************************************************************************
  691  *                      SWAP PAGER BITMAP ROUTINES                      *
  692  ************************************************************************/
  693 
  694 /*
  695  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
  696  *
  697  *      Allocate swap for the requested number of pages.  The starting
  698  *      swap block number (a page index) is returned or SWAPBLK_NONE
  699  *      if the allocation failed.
  700  *
  701  *      Also has the side effect of advising that somebody made a mistake
  702  *      when they configured swap and didn't configure enough.
  703  *
  704  *      This routine may not sleep.
  705  *
  706  *      We allocate in round-robin fashion from the configured devices.
  707  */
  708 static daddr_t
  709 swp_pager_getswapspace(int npages)
  710 {
  711         daddr_t blk;
  712         struct swdevt *sp;
  713         int i;
  714 
  715         blk = SWAPBLK_NONE;
  716         mtx_lock(&sw_dev_mtx);
  717         sp = swdevhd;
  718         for (i = 0; i < nswapdev; i++) {
  719                 if (sp == NULL)
  720                         sp = TAILQ_FIRST(&swtailq);
  721                 if (!(sp->sw_flags & SW_CLOSING)) {
  722                         blk = blist_alloc(sp->sw_blist, npages);
  723                         if (blk != SWAPBLK_NONE) {
  724                                 blk += sp->sw_first;
  725                                 sp->sw_used += npages;
  726                                 swap_pager_avail -= npages;
  727                                 swp_sizecheck();
  728                                 swdevhd = TAILQ_NEXT(sp, sw_list);
  729                                 goto done;
  730                         }
  731                 }
  732                 sp = TAILQ_NEXT(sp, sw_list);
  733         }
  734         if (swap_pager_full != 2) {
  735                 printf("swap_pager_getswapspace(%d): failed\n", npages);
  736                 swap_pager_full = 2;
  737                 swap_pager_almost_full = 1;
  738         }
  739         swdevhd = NULL;
  740 done:
  741         mtx_unlock(&sw_dev_mtx);
  742         return (blk);
  743 }
  744 
  745 static int
  746 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
  747 {
  748 
  749         return (blk >= sp->sw_first && blk < sp->sw_end);
  750 }
  751         
  752 static void
  753 swp_pager_strategy(struct buf *bp)
  754 {
  755         struct swdevt *sp;
  756 
  757         mtx_lock(&sw_dev_mtx);
  758         TAILQ_FOREACH(sp, &swtailq, sw_list) {
  759                 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
  760                         mtx_unlock(&sw_dev_mtx);
  761                         if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
  762                             unmapped_buf_allowed) {
  763                                 bp->b_kvaalloc = bp->b_data;
  764                                 bp->b_data = unmapped_buf;
  765                                 bp->b_kvabase = unmapped_buf;
  766                                 bp->b_offset = 0;
  767                                 bp->b_flags |= B_UNMAPPED;
  768                         } else {
  769                                 pmap_qenter((vm_offset_t)bp->b_data,
  770                                     &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
  771                         }
  772                         sp->sw_strategy(bp, sp);
  773                         return;
  774                 }
  775         }
  776         panic("Swapdev not found");
  777 }
  778         
  779 
  780 /*
  781  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space 
  782  *
  783  *      This routine returns the specified swap blocks back to the bitmap.
  784  *
  785  *      This routine may not sleep.
  786  */
  787 static void
  788 swp_pager_freeswapspace(daddr_t blk, int npages)
  789 {
  790         struct swdevt *sp;
  791 
  792         mtx_lock(&sw_dev_mtx);
  793         TAILQ_FOREACH(sp, &swtailq, sw_list) {
  794                 if (blk >= sp->sw_first && blk < sp->sw_end) {
  795                         sp->sw_used -= npages;
  796                         /*
  797                          * If we are attempting to stop swapping on
  798                          * this device, we don't want to mark any
  799                          * blocks free lest they be reused.  
  800                          */
  801                         if ((sp->sw_flags & SW_CLOSING) == 0) {
  802                                 blist_free(sp->sw_blist, blk - sp->sw_first,
  803                                     npages);
  804                                 swap_pager_avail += npages;
  805                                 swp_sizecheck();
  806                         }
  807                         mtx_unlock(&sw_dev_mtx);
  808                         return;
  809                 }
  810         }
  811         panic("Swapdev not found");
  812 }
  813 
  814 /*
  815  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
  816  *                              range within an object.
  817  *
  818  *      This is a globally accessible routine.
  819  *
  820  *      This routine removes swapblk assignments from swap metadata.
  821  *
  822  *      The external callers of this routine typically have already destroyed 
  823  *      or renamed vm_page_t's associated with this range in the object so 
  824  *      we should be ok.
  825  */
  826 void
  827 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
  828 {
  829 
  830         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  831         swp_pager_meta_free(object, start, size);
  832 }
  833 
  834 /*
  835  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
  836  *
  837  *      Assigns swap blocks to the specified range within the object.  The 
  838  *      swap blocks are not zeroed.  Any previous swap assignment is destroyed.
  839  *
  840  *      Returns 0 on success, -1 on failure.
  841  */
  842 int
  843 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
  844 {
  845         int n = 0;
  846         daddr_t blk = SWAPBLK_NONE;
  847         vm_pindex_t beg = start;        /* save start index */
  848 
  849         VM_OBJECT_LOCK(object);
  850         while (size) {
  851                 if (n == 0) {
  852                         n = BLIST_MAX_ALLOC;
  853                         while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
  854                                 n >>= 1;
  855                                 if (n == 0) {
  856                                         swp_pager_meta_free(object, beg, start - beg);
  857                                         VM_OBJECT_UNLOCK(object);
  858                                         return (-1);
  859                                 }
  860                         }
  861                 }
  862                 swp_pager_meta_build(object, start, blk);
  863                 --size;
  864                 ++start;
  865                 ++blk;
  866                 --n;
  867         }
  868         swp_pager_meta_free(object, start, n);
  869         VM_OBJECT_UNLOCK(object);
  870         return (0);
  871 }
  872 
  873 /*
  874  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
  875  *                      and destroy the source.
  876  *
  877  *      Copy any valid swapblks from the source to the destination.  In
  878  *      cases where both the source and destination have a valid swapblk,
  879  *      we keep the destination's.
  880  *
  881  *      This routine is allowed to sleep.  It may sleep allocating metadata
  882  *      indirectly through swp_pager_meta_build() or if paging is still in
  883  *      progress on the source. 
  884  *
  885  *      The source object contains no vm_page_t's (which is just as well)
  886  *
  887  *      The source object is of type OBJT_SWAP.
  888  *
  889  *      The source and destination objects must be locked.
  890  *      Both object locks may temporarily be released.
  891  */
  892 void
  893 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
  894     vm_pindex_t offset, int destroysource)
  895 {
  896         vm_pindex_t i;
  897 
  898         VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED);
  899         VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED);
  900 
  901         /*
  902          * If destroysource is set, we remove the source object from the 
  903          * swap_pager internal queue now. 
  904          */
  905         if (destroysource) {
  906                 if (srcobject->handle != NULL) {
  907                         mtx_lock(&sw_alloc_mtx);
  908                         TAILQ_REMOVE(
  909                             NOBJLIST(srcobject->handle),
  910                             srcobject,
  911                             pager_object_list
  912                         );
  913                         mtx_unlock(&sw_alloc_mtx);
  914                 }
  915         }
  916 
  917         /*
  918          * transfer source to destination.
  919          */
  920         for (i = 0; i < dstobject->size; ++i) {
  921                 daddr_t dstaddr;
  922 
  923                 /*
  924                  * Locate (without changing) the swapblk on the destination,
  925                  * unless it is invalid in which case free it silently, or
  926                  * if the destination is a resident page, in which case the
  927                  * source is thrown away.
  928                  */
  929                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
  930 
  931                 if (dstaddr == SWAPBLK_NONE) {
  932                         /*
  933                          * Destination has no swapblk and is not resident,
  934                          * copy source.
  935                          */
  936                         daddr_t srcaddr;
  937 
  938                         srcaddr = swp_pager_meta_ctl(
  939                             srcobject, 
  940                             i + offset,
  941                             SWM_POP
  942                         );
  943 
  944                         if (srcaddr != SWAPBLK_NONE) {
  945                                 /*
  946                                  * swp_pager_meta_build() can sleep.
  947                                  */
  948                                 vm_object_pip_add(srcobject, 1);
  949                                 VM_OBJECT_UNLOCK(srcobject);
  950                                 vm_object_pip_add(dstobject, 1);
  951                                 swp_pager_meta_build(dstobject, i, srcaddr);
  952                                 vm_object_pip_wakeup(dstobject);
  953                                 VM_OBJECT_LOCK(srcobject);
  954                                 vm_object_pip_wakeup(srcobject);
  955                         }
  956                 } else {
  957                         /*
  958                          * Destination has valid swapblk or it is represented
  959                          * by a resident page.  We destroy the sourceblock.
  960                          */
  961                         
  962                         swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
  963                 }
  964         }
  965 
  966         /*
  967          * Free left over swap blocks in source.
  968          *
  969          * We have to revert the type to OBJT_DEFAULT so we do not accidently
  970          * double-remove the object from the swap queues.
  971          */
  972         if (destroysource) {
  973                 swp_pager_meta_free_all(srcobject);
  974                 /*
  975                  * Reverting the type is not necessary, the caller is going
  976                  * to destroy srcobject directly, but I'm doing it here
  977                  * for consistency since we've removed the object from its
  978                  * queues.
  979                  */
  980                 srcobject->type = OBJT_DEFAULT;
  981         }
  982 }
  983 
  984 /*
  985  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
  986  *                              the requested page.
  987  *
  988  *      We determine whether good backing store exists for the requested
  989  *      page and return TRUE if it does, FALSE if it doesn't.
  990  *
  991  *      If TRUE, we also try to determine how much valid, contiguous backing
  992  *      store exists before and after the requested page within a reasonable
  993  *      distance.  We do not try to restrict it to the swap device stripe
  994  *      (that is handled in getpages/putpages).  It probably isn't worth
  995  *      doing here.
  996  */
  997 static boolean_t
  998 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
  999 {
 1000         daddr_t blk0;
 1001 
 1002         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1003         /*
 1004          * do we have good backing store at the requested index ?
 1005          */
 1006         blk0 = swp_pager_meta_ctl(object, pindex, 0);
 1007 
 1008         if (blk0 == SWAPBLK_NONE) {
 1009                 if (before)
 1010                         *before = 0;
 1011                 if (after)
 1012                         *after = 0;
 1013                 return (FALSE);
 1014         }
 1015 
 1016         /*
 1017          * find backwards-looking contiguous good backing store
 1018          */
 1019         if (before != NULL) {
 1020                 int i;
 1021 
 1022                 for (i = 1; i < (SWB_NPAGES/2); ++i) {
 1023                         daddr_t blk;
 1024 
 1025                         if (i > pindex)
 1026                                 break;
 1027                         blk = swp_pager_meta_ctl(object, pindex - i, 0);
 1028                         if (blk != blk0 - i)
 1029                                 break;
 1030                 }
 1031                 *before = (i - 1);
 1032         }
 1033 
 1034         /*
 1035          * find forward-looking contiguous good backing store
 1036          */
 1037         if (after != NULL) {
 1038                 int i;
 1039 
 1040                 for (i = 1; i < (SWB_NPAGES/2); ++i) {
 1041                         daddr_t blk;
 1042 
 1043                         blk = swp_pager_meta_ctl(object, pindex + i, 0);
 1044                         if (blk != blk0 + i)
 1045                                 break;
 1046                 }
 1047                 *after = (i - 1);
 1048         }
 1049         return (TRUE);
 1050 }
 1051 
 1052 /*
 1053  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
 1054  *
 1055  *      This removes any associated swap backing store, whether valid or
 1056  *      not, from the page.  
 1057  *
 1058  *      This routine is typically called when a page is made dirty, at
 1059  *      which point any associated swap can be freed.  MADV_FREE also
 1060  *      calls us in a special-case situation
 1061  *
 1062  *      NOTE!!!  If the page is clean and the swap was valid, the caller
 1063  *      should make the page dirty before calling this routine.  This routine
 1064  *      does NOT change the m->dirty status of the page.  Also: MADV_FREE
 1065  *      depends on it.
 1066  *
 1067  *      This routine may not sleep.
 1068  */
 1069 static void
 1070 swap_pager_unswapped(vm_page_t m)
 1071 {
 1072 
 1073         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1074         swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
 1075 }
 1076 
 1077 /*
 1078  * SWAP_PAGER_GETPAGES() - bring pages in from swap
 1079  *
 1080  *      Attempt to retrieve (m, count) pages from backing store, but make
 1081  *      sure we retrieve at least m[reqpage].  We try to load in as large
 1082  *      a chunk surrounding m[reqpage] as is contiguous in swap and which
 1083  *      belongs to the same object.
 1084  *
 1085  *      The code is designed for asynchronous operation and 
 1086  *      immediate-notification of 'reqpage' but tends not to be
 1087  *      used that way.  Please do not optimize-out this algorithmic
 1088  *      feature, I intend to improve on it in the future.
 1089  *
 1090  *      The parent has a single vm_object_pip_add() reference prior to
 1091  *      calling us and we should return with the same.
 1092  *
 1093  *      The parent has BUSY'd the pages.  We should return with 'm'
 1094  *      left busy, but the others adjusted.
 1095  */
 1096 static int
 1097 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
 1098 {
 1099         struct buf *bp;
 1100         vm_page_t mreq;
 1101         int i;
 1102         int j;
 1103         daddr_t blk;
 1104 
 1105         mreq = m[reqpage];
 1106 
 1107         KASSERT(mreq->object == object,
 1108             ("swap_pager_getpages: object mismatch %p/%p",
 1109             object, mreq->object));
 1110 
 1111         /*
 1112          * Calculate range to retrieve.  The pages have already been assigned
 1113          * their swapblks.  We require a *contiguous* range but we know it to
 1114          * not span devices.   If we do not supply it, bad things
 1115          * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 
 1116          * loops are set up such that the case(s) are handled implicitly.
 1117          *
 1118          * The swp_*() calls must be made with the object locked.
 1119          */
 1120         blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
 1121 
 1122         for (i = reqpage - 1; i >= 0; --i) {
 1123                 daddr_t iblk;
 1124 
 1125                 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
 1126                 if (blk != iblk + (reqpage - i))
 1127                         break;
 1128         }
 1129         ++i;
 1130 
 1131         for (j = reqpage + 1; j < count; ++j) {
 1132                 daddr_t jblk;
 1133 
 1134                 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
 1135                 if (blk != jblk - (j - reqpage))
 1136                         break;
 1137         }
 1138 
 1139         /*
 1140          * free pages outside our collection range.   Note: we never free
 1141          * mreq, it must remain busy throughout.
 1142          */
 1143         if (0 < i || j < count) {
 1144                 int k;
 1145 
 1146                 for (k = 0; k < i; ++k)
 1147                         swp_pager_free_nrpage(m[k]);
 1148                 for (k = j; k < count; ++k)
 1149                         swp_pager_free_nrpage(m[k]);
 1150         }
 1151 
 1152         /*
 1153          * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq 
 1154          * still busy, but the others unbusied.
 1155          */
 1156         if (blk == SWAPBLK_NONE)
 1157                 return (VM_PAGER_FAIL);
 1158 
 1159         /*
 1160          * Getpbuf() can sleep.
 1161          */
 1162         VM_OBJECT_UNLOCK(object);
 1163         /*
 1164          * Get a swap buffer header to perform the IO
 1165          */
 1166         bp = getpbuf(&nsw_rcount);
 1167         bp->b_flags |= B_PAGING;
 1168 
 1169         bp->b_iocmd = BIO_READ;
 1170         bp->b_iodone = swp_pager_async_iodone;
 1171         bp->b_rcred = crhold(thread0.td_ucred);
 1172         bp->b_wcred = crhold(thread0.td_ucred);
 1173         bp->b_blkno = blk - (reqpage - i);
 1174         bp->b_bcount = PAGE_SIZE * (j - i);
 1175         bp->b_bufsize = PAGE_SIZE * (j - i);
 1176         bp->b_pager.pg_reqpage = reqpage - i;
 1177 
 1178         VM_OBJECT_LOCK(object);
 1179         {
 1180                 int k;
 1181 
 1182                 for (k = i; k < j; ++k) {
 1183                         bp->b_pages[k - i] = m[k];
 1184                         m[k]->oflags |= VPO_SWAPINPROG;
 1185                 }
 1186         }
 1187         bp->b_npages = j - i;
 1188 
 1189         PCPU_INC(cnt.v_swapin);
 1190         PCPU_ADD(cnt.v_swappgsin, bp->b_npages);
 1191 
 1192         /*
 1193          * We still hold the lock on mreq, and our automatic completion routine
 1194          * does not remove it.
 1195          */
 1196         vm_object_pip_add(object, bp->b_npages);
 1197         VM_OBJECT_UNLOCK(object);
 1198 
 1199         /*
 1200          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
 1201          * this point because we automatically release it on completion.
 1202          * Instead, we look at the one page we are interested in which we
 1203          * still hold a lock on even through the I/O completion.
 1204          *
 1205          * The other pages in our m[] array are also released on completion,
 1206          * so we cannot assume they are valid anymore either.
 1207          *
 1208          * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1209          */
 1210         BUF_KERNPROC(bp);
 1211         swp_pager_strategy(bp);
 1212 
 1213         /*
 1214          * wait for the page we want to complete.  VPO_SWAPINPROG is always
 1215          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
 1216          * is set in the meta-data.
 1217          */
 1218         VM_OBJECT_LOCK(object);
 1219         while ((mreq->oflags & VPO_SWAPINPROG) != 0) {
 1220                 mreq->oflags |= VPO_WANTED;
 1221                 PCPU_INC(cnt.v_intrans);
 1222                 if (msleep(mreq, VM_OBJECT_MTX(object), PSWP, "swread", hz*20)) {
 1223                         printf(
 1224 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
 1225                             bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
 1226                 }
 1227         }
 1228 
 1229         /*
 1230          * mreq is left busied after completion, but all the other pages
 1231          * are freed.  If we had an unrecoverable read error the page will
 1232          * not be valid.
 1233          */
 1234         if (mreq->valid != VM_PAGE_BITS_ALL) {
 1235                 return (VM_PAGER_ERROR);
 1236         } else {
 1237                 return (VM_PAGER_OK);
 1238         }
 1239 
 1240         /*
 1241          * A final note: in a low swap situation, we cannot deallocate swap
 1242          * and mark a page dirty here because the caller is likely to mark
 1243          * the page clean when we return, causing the page to possibly revert 
 1244          * to all-zero's later.
 1245          */
 1246 }
 1247 
 1248 /*
 1249  *      swap_pager_putpages: 
 1250  *
 1251  *      Assign swap (if necessary) and initiate I/O on the specified pages.
 1252  *
 1253  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
 1254  *      are automatically converted to SWAP objects.
 1255  *
 1256  *      In a low memory situation we may block in VOP_STRATEGY(), but the new 
 1257  *      vm_page reservation system coupled with properly written VFS devices 
 1258  *      should ensure that no low-memory deadlock occurs.  This is an area
 1259  *      which needs work.
 1260  *
 1261  *      The parent has N vm_object_pip_add() references prior to
 1262  *      calling us and will remove references for rtvals[] that are
 1263  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
 1264  *      completion.
 1265  *
 1266  *      The parent has soft-busy'd the pages it passes us and will unbusy
 1267  *      those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
 1268  *      We need to unbusy the rest on I/O completion.
 1269  */
 1270 void
 1271 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
 1272     boolean_t sync, int *rtvals)
 1273 {
 1274         int i;
 1275         int n = 0;
 1276 
 1277         if (count && m[0]->object != object) {
 1278                 panic("swap_pager_putpages: object mismatch %p/%p", 
 1279                     object, 
 1280                     m[0]->object
 1281                 );
 1282         }
 1283 
 1284         /*
 1285          * Step 1
 1286          *
 1287          * Turn object into OBJT_SWAP
 1288          * check for bogus sysops
 1289          * force sync if not pageout process
 1290          */
 1291         if (object->type != OBJT_SWAP)
 1292                 swp_pager_meta_build(object, 0, SWAPBLK_NONE);
 1293         VM_OBJECT_UNLOCK(object);
 1294 
 1295         if (curproc != pageproc)
 1296                 sync = TRUE;
 1297 
 1298         /*
 1299          * Step 2
 1300          *
 1301          * Update nsw parameters from swap_async_max sysctl values.  
 1302          * Do not let the sysop crash the machine with bogus numbers.
 1303          */
 1304         mtx_lock(&pbuf_mtx);
 1305         if (swap_async_max != nsw_wcount_async_max) {
 1306                 int n;
 1307 
 1308                 /*
 1309                  * limit range
 1310                  */
 1311                 if ((n = swap_async_max) > nswbuf / 2)
 1312                         n = nswbuf / 2;
 1313                 if (n < 1)
 1314                         n = 1;
 1315                 swap_async_max = n;
 1316 
 1317                 /*
 1318                  * Adjust difference ( if possible ).  If the current async
 1319                  * count is too low, we may not be able to make the adjustment
 1320                  * at this time.
 1321                  */
 1322                 n -= nsw_wcount_async_max;
 1323                 if (nsw_wcount_async + n >= 0) {
 1324                         nsw_wcount_async += n;
 1325                         nsw_wcount_async_max += n;
 1326                         wakeup(&nsw_wcount_async);
 1327                 }
 1328         }
 1329         mtx_unlock(&pbuf_mtx);
 1330 
 1331         /*
 1332          * Step 3
 1333          *
 1334          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
 1335          * The page is left dirty until the pageout operation completes
 1336          * successfully.
 1337          */
 1338         for (i = 0; i < count; i += n) {
 1339                 int j;
 1340                 struct buf *bp;
 1341                 daddr_t blk;
 1342 
 1343                 /*
 1344                  * Maximum I/O size is limited by a number of factors.
 1345                  */
 1346                 n = min(BLIST_MAX_ALLOC, count - i);
 1347                 n = min(n, nsw_cluster_max);
 1348 
 1349                 /*
 1350                  * Get biggest block of swap we can.  If we fail, fall
 1351                  * back and try to allocate a smaller block.  Don't go
 1352                  * overboard trying to allocate space if it would overly
 1353                  * fragment swap.
 1354                  */
 1355                 while (
 1356                     (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
 1357                     n > 4
 1358                 ) {
 1359                         n >>= 1;
 1360                 }
 1361                 if (blk == SWAPBLK_NONE) {
 1362                         for (j = 0; j < n; ++j)
 1363                                 rtvals[i+j] = VM_PAGER_FAIL;
 1364                         continue;
 1365                 }
 1366 
 1367                 /*
 1368                  * All I/O parameters have been satisfied, build the I/O
 1369                  * request and assign the swap space.
 1370                  */
 1371                 if (sync == TRUE) {
 1372                         bp = getpbuf(&nsw_wcount_sync);
 1373                 } else {
 1374                         bp = getpbuf(&nsw_wcount_async);
 1375                         bp->b_flags = B_ASYNC;
 1376                 }
 1377                 bp->b_flags |= B_PAGING;
 1378                 bp->b_iocmd = BIO_WRITE;
 1379 
 1380                 bp->b_rcred = crhold(thread0.td_ucred);
 1381                 bp->b_wcred = crhold(thread0.td_ucred);
 1382                 bp->b_bcount = PAGE_SIZE * n;
 1383                 bp->b_bufsize = PAGE_SIZE * n;
 1384                 bp->b_blkno = blk;
 1385 
 1386                 VM_OBJECT_LOCK(object);
 1387                 for (j = 0; j < n; ++j) {
 1388                         vm_page_t mreq = m[i+j];
 1389 
 1390                         swp_pager_meta_build(
 1391                             mreq->object, 
 1392                             mreq->pindex,
 1393                             blk + j
 1394                         );
 1395                         vm_page_dirty(mreq);
 1396                         rtvals[i+j] = VM_PAGER_OK;
 1397 
 1398                         mreq->oflags |= VPO_SWAPINPROG;
 1399                         bp->b_pages[j] = mreq;
 1400                 }
 1401                 VM_OBJECT_UNLOCK(object);
 1402                 bp->b_npages = n;
 1403                 /*
 1404                  * Must set dirty range for NFS to work.
 1405                  */
 1406                 bp->b_dirtyoff = 0;
 1407                 bp->b_dirtyend = bp->b_bcount;
 1408 
 1409                 PCPU_INC(cnt.v_swapout);
 1410                 PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
 1411 
 1412                 /*
 1413                  * asynchronous
 1414                  *
 1415                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1416                  */
 1417                 if (sync == FALSE) {
 1418                         bp->b_iodone = swp_pager_async_iodone;
 1419                         BUF_KERNPROC(bp);
 1420                         swp_pager_strategy(bp);
 1421 
 1422                         for (j = 0; j < n; ++j)
 1423                                 rtvals[i+j] = VM_PAGER_PEND;
 1424                         /* restart outter loop */
 1425                         continue;
 1426                 }
 1427 
 1428                 /*
 1429                  * synchronous
 1430                  *
 1431                  * NOTE: b_blkno is destroyed by the call to swapdev_strategy
 1432                  */
 1433                 bp->b_iodone = bdone;
 1434                 swp_pager_strategy(bp);
 1435 
 1436                 /*
 1437                  * Wait for the sync I/O to complete, then update rtvals.
 1438                  * We just set the rtvals[] to VM_PAGER_PEND so we can call
 1439                  * our async completion routine at the end, thus avoiding a
 1440                  * double-free.
 1441                  */
 1442                 bwait(bp, PVM, "swwrt");
 1443                 for (j = 0; j < n; ++j)
 1444                         rtvals[i+j] = VM_PAGER_PEND;
 1445                 /*
 1446                  * Now that we are through with the bp, we can call the
 1447                  * normal async completion, which frees everything up.
 1448                  */
 1449                 swp_pager_async_iodone(bp);
 1450         }
 1451         VM_OBJECT_LOCK(object);
 1452 }
 1453 
 1454 /*
 1455  *      swp_pager_async_iodone:
 1456  *
 1457  *      Completion routine for asynchronous reads and writes from/to swap.
 1458  *      Also called manually by synchronous code to finish up a bp.
 1459  *
 1460  *      For READ operations, the pages are VPO_BUSY'd.  For WRITE operations, 
 1461  *      the pages are vm_page_t->busy'd.  For READ operations, we VPO_BUSY 
 1462  *      unbusy all pages except the 'main' request page.  For WRITE 
 1463  *      operations, we vm_page_t->busy'd unbusy all pages ( we can do this 
 1464  *      because we marked them all VM_PAGER_PEND on return from putpages ).
 1465  *
 1466  *      This routine may not sleep.
 1467  */
 1468 static void
 1469 swp_pager_async_iodone(struct buf *bp)
 1470 {
 1471         int i;
 1472         vm_object_t object = NULL;
 1473 
 1474         /*
 1475          * report error
 1476          */
 1477         if (bp->b_ioflags & BIO_ERROR) {
 1478                 printf(
 1479                     "swap_pager: I/O error - %s failed; blkno %ld,"
 1480                         "size %ld, error %d\n",
 1481                     ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
 1482                     (long)bp->b_blkno, 
 1483                     (long)bp->b_bcount,
 1484                     bp->b_error
 1485                 );
 1486         }
 1487 
 1488         /*
 1489          * remove the mapping for kernel virtual
 1490          */
 1491         if ((bp->b_flags & B_UNMAPPED) != 0) {
 1492                 bp->b_data = bp->b_kvaalloc;
 1493                 bp->b_kvabase = bp->b_kvaalloc;
 1494                 bp->b_flags &= ~B_UNMAPPED;
 1495         } else
 1496                 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
 1497 
 1498         if (bp->b_npages) {
 1499                 object = bp->b_pages[0]->object;
 1500                 VM_OBJECT_LOCK(object);
 1501         }
 1502 
 1503         /*
 1504          * cleanup pages.  If an error occurs writing to swap, we are in
 1505          * very serious trouble.  If it happens to be a disk error, though,
 1506          * we may be able to recover by reassigning the swap later on.  So
 1507          * in this case we remove the m->swapblk assignment for the page 
 1508          * but do not free it in the rlist.  The errornous block(s) are thus
 1509          * never reallocated as swap.  Redirty the page and continue.
 1510          */
 1511         for (i = 0; i < bp->b_npages; ++i) {
 1512                 vm_page_t m = bp->b_pages[i];
 1513 
 1514                 m->oflags &= ~VPO_SWAPINPROG;
 1515 
 1516                 if (bp->b_ioflags & BIO_ERROR) {
 1517                         /*
 1518                          * If an error occurs I'd love to throw the swapblk
 1519                          * away without freeing it back to swapspace, so it
 1520                          * can never be used again.  But I can't from an 
 1521                          * interrupt.
 1522                          */
 1523                         if (bp->b_iocmd == BIO_READ) {
 1524                                 /*
 1525                                  * When reading, reqpage needs to stay
 1526                                  * locked for the parent, but all other
 1527                                  * pages can be freed.  We still want to
 1528                                  * wakeup the parent waiting on the page,
 1529                                  * though.  ( also: pg_reqpage can be -1 and 
 1530                                  * not match anything ).
 1531                                  *
 1532                                  * We have to wake specifically requested pages
 1533                                  * up too because we cleared VPO_SWAPINPROG and
 1534                                  * someone may be waiting for that.
 1535                                  *
 1536                                  * NOTE: for reads, m->dirty will probably
 1537                                  * be overridden by the original caller of
 1538                                  * getpages so don't play cute tricks here.
 1539                                  */
 1540                                 m->valid = 0;
 1541                                 if (i != bp->b_pager.pg_reqpage)
 1542                                         swp_pager_free_nrpage(m);
 1543                                 else
 1544                                         vm_page_flash(m);
 1545                                 /*
 1546                                  * If i == bp->b_pager.pg_reqpage, do not wake 
 1547                                  * the page up.  The caller needs to.
 1548                                  */
 1549                         } else {
 1550                                 /*
 1551                                  * If a write error occurs, reactivate page
 1552                                  * so it doesn't clog the inactive list,
 1553                                  * then finish the I/O.
 1554                                  */
 1555                                 vm_page_dirty(m);
 1556                                 vm_page_lock(m);
 1557                                 vm_page_activate(m);
 1558                                 vm_page_unlock(m);
 1559                                 vm_page_io_finish(m);
 1560                         }
 1561                 } else if (bp->b_iocmd == BIO_READ) {
 1562                         /*
 1563                          * NOTE: for reads, m->dirty will probably be 
 1564                          * overridden by the original caller of getpages so
 1565                          * we cannot set them in order to free the underlying
 1566                          * swap in a low-swap situation.  I don't think we'd
 1567                          * want to do that anyway, but it was an optimization
 1568                          * that existed in the old swapper for a time before
 1569                          * it got ripped out due to precisely this problem.
 1570                          *
 1571                          * If not the requested page then deactivate it.
 1572                          *
 1573                          * Note that the requested page, reqpage, is left
 1574                          * busied, but we still have to wake it up.  The
 1575                          * other pages are released (unbusied) by 
 1576                          * vm_page_wakeup().
 1577                          */
 1578                         KASSERT(!pmap_page_is_mapped(m),
 1579                             ("swp_pager_async_iodone: page %p is mapped", m));
 1580                         m->valid = VM_PAGE_BITS_ALL;
 1581                         KASSERT(m->dirty == 0,
 1582                             ("swp_pager_async_iodone: page %p is dirty", m));
 1583 
 1584                         /*
 1585                          * We have to wake specifically requested pages
 1586                          * up too because we cleared VPO_SWAPINPROG and
 1587                          * could be waiting for it in getpages.  However,
 1588                          * be sure to not unbusy getpages specifically
 1589                          * requested page - getpages expects it to be 
 1590                          * left busy.
 1591                          */
 1592                         if (i != bp->b_pager.pg_reqpage) {
 1593                                 vm_page_lock(m);
 1594                                 vm_page_deactivate(m);
 1595                                 vm_page_unlock(m);
 1596                                 vm_page_wakeup(m);
 1597                         } else
 1598                                 vm_page_flash(m);
 1599                 } else {
 1600                         /*
 1601                          * For write success, clear the dirty
 1602                          * status, then finish the I/O ( which decrements the 
 1603                          * busy count and possibly wakes waiter's up ).
 1604                          */
 1605                         KASSERT(!pmap_page_is_write_mapped(m),
 1606                             ("swp_pager_async_iodone: page %p is not write"
 1607                             " protected", m));
 1608                         vm_page_undirty(m);
 1609                         vm_page_io_finish(m);
 1610                         if (vm_page_count_severe()) {
 1611                                 vm_page_lock(m);
 1612                                 vm_page_try_to_cache(m);
 1613                                 vm_page_unlock(m);
 1614                         }
 1615                 }
 1616         }
 1617 
 1618         /*
 1619          * adjust pip.  NOTE: the original parent may still have its own
 1620          * pip refs on the object.
 1621          */
 1622         if (object != NULL) {
 1623                 vm_object_pip_wakeupn(object, bp->b_npages);
 1624                 VM_OBJECT_UNLOCK(object);
 1625         }
 1626 
 1627         /* 
 1628          * swapdev_strategy() manually sets b_vp and b_bufobj before calling 
 1629          * bstrategy(). Set them back to NULL now we're done with it, or we'll
 1630          * trigger a KASSERT in relpbuf().
 1631          */
 1632         if (bp->b_vp) {
 1633                     bp->b_vp = NULL;
 1634                     bp->b_bufobj = NULL;
 1635         }
 1636         /*
 1637          * release the physical I/O buffer
 1638          */
 1639         relpbuf(
 1640             bp, 
 1641             ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 
 1642                 ((bp->b_flags & B_ASYNC) ? 
 1643                     &nsw_wcount_async : 
 1644                     &nsw_wcount_sync
 1645                 )
 1646             )
 1647         );
 1648 }
 1649 
 1650 /*
 1651  *      swap_pager_isswapped:
 1652  *
 1653  *      Return 1 if at least one page in the given object is paged
 1654  *      out to the given swap device.
 1655  *
 1656  *      This routine may not sleep.
 1657  */
 1658 int
 1659 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
 1660 {
 1661         daddr_t index = 0;
 1662         int bcount;
 1663         int i;
 1664 
 1665         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1666         if (object->type != OBJT_SWAP)
 1667                 return (0);
 1668 
 1669         mtx_lock(&swhash_mtx);
 1670         for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
 1671                 struct swblock *swap;
 1672 
 1673                 if ((swap = *swp_pager_hash(object, index)) != NULL) {
 1674                         for (i = 0; i < SWAP_META_PAGES; ++i) {
 1675                                 if (swp_pager_isondev(swap->swb_pages[i], sp)) {
 1676                                         mtx_unlock(&swhash_mtx);
 1677                                         return (1);
 1678                                 }
 1679                         }
 1680                 }
 1681                 index += SWAP_META_PAGES;
 1682         }
 1683         mtx_unlock(&swhash_mtx);
 1684         return (0);
 1685 }
 1686 
 1687 /*
 1688  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
 1689  *
 1690  *      This routine dissociates the page at the given index within a
 1691  *      swap block from its backing store, paging it in if necessary.
 1692  *      If the page is paged in, it is placed in the inactive queue,
 1693  *      since it had its backing store ripped out from under it.
 1694  *      We also attempt to swap in all other pages in the swap block,
 1695  *      we only guarantee that the one at the specified index is
 1696  *      paged in.
 1697  *
 1698  *      XXX - The code to page the whole block in doesn't work, so we
 1699  *            revert to the one-by-one behavior for now.  Sigh.
 1700  */
 1701 static inline void
 1702 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
 1703 {
 1704         vm_page_t m;
 1705 
 1706         vm_object_pip_add(object, 1);
 1707         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY);
 1708         if (m->valid == VM_PAGE_BITS_ALL) {
 1709                 vm_object_pip_subtract(object, 1);
 1710                 vm_page_dirty(m);
 1711                 vm_page_lock(m);
 1712                 vm_page_activate(m);
 1713                 vm_page_unlock(m);
 1714                 vm_page_wakeup(m);
 1715                 vm_pager_page_unswapped(m);
 1716                 return;
 1717         }
 1718 
 1719         if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK)
 1720                 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
 1721         vm_object_pip_subtract(object, 1);
 1722         vm_page_dirty(m);
 1723         vm_page_lock(m);
 1724         vm_page_deactivate(m);
 1725         vm_page_unlock(m);
 1726         vm_page_wakeup(m);
 1727         vm_pager_page_unswapped(m);
 1728 }
 1729 
 1730 /*
 1731  *      swap_pager_swapoff:
 1732  *
 1733  *      Page in all of the pages that have been paged out to the
 1734  *      given device.  The corresponding blocks in the bitmap must be
 1735  *      marked as allocated and the device must be flagged SW_CLOSING.
 1736  *      There may be no processes swapped out to the device.
 1737  *
 1738  *      This routine may block.
 1739  */
 1740 static void
 1741 swap_pager_swapoff(struct swdevt *sp)
 1742 {
 1743         struct swblock *swap;
 1744         int i, j, retries;
 1745 
 1746         GIANT_REQUIRED;
 1747 
 1748         retries = 0;
 1749 full_rescan:
 1750         mtx_lock(&swhash_mtx);
 1751         for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
 1752 restart:
 1753                 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
 1754                         vm_object_t object = swap->swb_object;
 1755                         vm_pindex_t pindex = swap->swb_index;
 1756                         for (j = 0; j < SWAP_META_PAGES; ++j) {
 1757                                 if (swp_pager_isondev(swap->swb_pages[j], sp)) {
 1758                                         /* avoid deadlock */
 1759                                         if (!VM_OBJECT_TRYLOCK(object)) {
 1760                                                 break;
 1761                                         } else {
 1762                                                 mtx_unlock(&swhash_mtx);
 1763                                                 swp_pager_force_pagein(object,
 1764                                                     pindex + j);
 1765                                                 VM_OBJECT_UNLOCK(object);
 1766                                                 mtx_lock(&swhash_mtx);
 1767                                                 goto restart;
 1768                                         }
 1769                                 }
 1770                         }
 1771                 }
 1772         }
 1773         mtx_unlock(&swhash_mtx);
 1774         if (sp->sw_used) {
 1775                 /*
 1776                  * Objects may be locked or paging to the device being
 1777                  * removed, so we will miss their pages and need to
 1778                  * make another pass.  We have marked this device as
 1779                  * SW_CLOSING, so the activity should finish soon.
 1780                  */
 1781                 retries++;
 1782                 if (retries > 100) {
 1783                         panic("swapoff: failed to locate %d swap blocks",
 1784                             sp->sw_used);
 1785                 }
 1786                 pause("swpoff", hz / 20);
 1787                 goto full_rescan;
 1788         }
 1789 }
 1790 
 1791 /************************************************************************
 1792  *                              SWAP META DATA                          *
 1793  ************************************************************************
 1794  *
 1795  *      These routines manipulate the swap metadata stored in the 
 1796  *      OBJT_SWAP object.
 1797  *
 1798  *      Swap metadata is implemented with a global hash and not directly
 1799  *      linked into the object.  Instead the object simply contains
 1800  *      appropriate tracking counters.
 1801  */
 1802 
 1803 /*
 1804  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
 1805  *
 1806  *      We first convert the object to a swap object if it is a default
 1807  *      object.
 1808  *
 1809  *      The specified swapblk is added to the object's swap metadata.  If
 1810  *      the swapblk is not valid, it is freed instead.  Any previously
 1811  *      assigned swapblk is freed.
 1812  */
 1813 static void
 1814 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
 1815 {
 1816         static volatile int exhausted;
 1817         struct swblock *swap;
 1818         struct swblock **pswap;
 1819         int idx;
 1820 
 1821         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1822         /*
 1823          * Convert default object to swap object if necessary
 1824          */
 1825         if (object->type != OBJT_SWAP) {
 1826                 object->type = OBJT_SWAP;
 1827                 object->un_pager.swp.swp_bcount = 0;
 1828 
 1829                 if (object->handle != NULL) {
 1830                         mtx_lock(&sw_alloc_mtx);
 1831                         TAILQ_INSERT_TAIL(
 1832                             NOBJLIST(object->handle),
 1833                             object, 
 1834                             pager_object_list
 1835                         );
 1836                         mtx_unlock(&sw_alloc_mtx);
 1837                 }
 1838         }
 1839         
 1840         /*
 1841          * Locate hash entry.  If not found create, but if we aren't adding
 1842          * anything just return.  If we run out of space in the map we wait
 1843          * and, since the hash table may have changed, retry.
 1844          */
 1845 retry:
 1846         mtx_lock(&swhash_mtx);
 1847         pswap = swp_pager_hash(object, pindex);
 1848 
 1849         if ((swap = *pswap) == NULL) {
 1850                 int i;
 1851 
 1852                 if (swapblk == SWAPBLK_NONE)
 1853                         goto done;
 1854 
 1855                 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT);
 1856                 if (swap == NULL) {
 1857                         mtx_unlock(&swhash_mtx);
 1858                         VM_OBJECT_UNLOCK(object);
 1859                         if (uma_zone_exhausted(swap_zone)) {
 1860                                 if (atomic_cmpset_rel_int(&exhausted, 0, 1))
 1861                                         printf("swap zone exhausted, "
 1862                                             "increase kern.maxswzone\n");
 1863                                 vm_pageout_oom(VM_OOM_SWAPZ);
 1864                                 pause("swzonex", 10);
 1865                         } else
 1866                                 VM_WAIT;
 1867                         VM_OBJECT_LOCK(object);
 1868                         goto retry;
 1869                 }
 1870 
 1871                 if (atomic_cmpset_rel_int(&exhausted, 1, 0))
 1872                         printf("swap zone ok\n");
 1873 
 1874                 swap->swb_hnext = NULL;
 1875                 swap->swb_object = object;
 1876                 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
 1877                 swap->swb_count = 0;
 1878 
 1879                 ++object->un_pager.swp.swp_bcount;
 1880 
 1881                 for (i = 0; i < SWAP_META_PAGES; ++i)
 1882                         swap->swb_pages[i] = SWAPBLK_NONE;
 1883         }
 1884 
 1885         /*
 1886          * Delete prior contents of metadata
 1887          */
 1888         idx = pindex & SWAP_META_MASK;
 1889 
 1890         if (swap->swb_pages[idx] != SWAPBLK_NONE) {
 1891                 swp_pager_freeswapspace(swap->swb_pages[idx], 1);
 1892                 --swap->swb_count;
 1893         }
 1894 
 1895         /*
 1896          * Enter block into metadata
 1897          */
 1898         swap->swb_pages[idx] = swapblk;
 1899         if (swapblk != SWAPBLK_NONE)
 1900                 ++swap->swb_count;
 1901 done:
 1902         mtx_unlock(&swhash_mtx);
 1903 }
 1904 
 1905 /*
 1906  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
 1907  *
 1908  *      The requested range of blocks is freed, with any associated swap 
 1909  *      returned to the swap bitmap.
 1910  *
 1911  *      This routine will free swap metadata structures as they are cleaned 
 1912  *      out.  This routine does *NOT* operate on swap metadata associated
 1913  *      with resident pages.
 1914  */
 1915 static void
 1916 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
 1917 {
 1918 
 1919         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1920         if (object->type != OBJT_SWAP)
 1921                 return;
 1922 
 1923         while (count > 0) {
 1924                 struct swblock **pswap;
 1925                 struct swblock *swap;
 1926 
 1927                 mtx_lock(&swhash_mtx);
 1928                 pswap = swp_pager_hash(object, index);
 1929 
 1930                 if ((swap = *pswap) != NULL) {
 1931                         daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
 1932 
 1933                         if (v != SWAPBLK_NONE) {
 1934                                 swp_pager_freeswapspace(v, 1);
 1935                                 swap->swb_pages[index & SWAP_META_MASK] =
 1936                                         SWAPBLK_NONE;
 1937                                 if (--swap->swb_count == 0) {
 1938                                         *pswap = swap->swb_hnext;
 1939                                         uma_zfree(swap_zone, swap);
 1940                                         --object->un_pager.swp.swp_bcount;
 1941                                 }
 1942                         }
 1943                         --count;
 1944                         ++index;
 1945                 } else {
 1946                         int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
 1947                         count -= n;
 1948                         index += n;
 1949                 }
 1950                 mtx_unlock(&swhash_mtx);
 1951         }
 1952 }
 1953 
 1954 /*
 1955  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
 1956  *
 1957  *      This routine locates and destroys all swap metadata associated with
 1958  *      an object.
 1959  */
 1960 static void
 1961 swp_pager_meta_free_all(vm_object_t object)
 1962 {
 1963         daddr_t index = 0;
 1964 
 1965         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1966         if (object->type != OBJT_SWAP)
 1967                 return;
 1968 
 1969         while (object->un_pager.swp.swp_bcount) {
 1970                 struct swblock **pswap;
 1971                 struct swblock *swap;
 1972 
 1973                 mtx_lock(&swhash_mtx);
 1974                 pswap = swp_pager_hash(object, index);
 1975                 if ((swap = *pswap) != NULL) {
 1976                         int i;
 1977 
 1978                         for (i = 0; i < SWAP_META_PAGES; ++i) {
 1979                                 daddr_t v = swap->swb_pages[i];
 1980                                 if (v != SWAPBLK_NONE) {
 1981                                         --swap->swb_count;
 1982                                         swp_pager_freeswapspace(v, 1);
 1983                                 }
 1984                         }
 1985                         if (swap->swb_count != 0)
 1986                                 panic("swap_pager_meta_free_all: swb_count != 0");
 1987                         *pswap = swap->swb_hnext;
 1988                         uma_zfree(swap_zone, swap);
 1989                         --object->un_pager.swp.swp_bcount;
 1990                 }
 1991                 mtx_unlock(&swhash_mtx);
 1992                 index += SWAP_META_PAGES;
 1993         }
 1994 }
 1995 
 1996 /*
 1997  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
 1998  *
 1999  *      This routine is capable of looking up, popping, or freeing
 2000  *      swapblk assignments in the swap meta data or in the vm_page_t.
 2001  *      The routine typically returns the swapblk being looked-up, or popped,
 2002  *      or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
 2003  *      was invalid.  This routine will automatically free any invalid 
 2004  *      meta-data swapblks.
 2005  *
 2006  *      It is not possible to store invalid swapblks in the swap meta data
 2007  *      (other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
 2008  *
 2009  *      When acting on a busy resident page and paging is in progress, we 
 2010  *      have to wait until paging is complete but otherwise can act on the 
 2011  *      busy page.
 2012  *
 2013  *      SWM_FREE        remove and free swap block from metadata
 2014  *      SWM_POP         remove from meta data but do not free.. pop it out
 2015  */
 2016 static daddr_t
 2017 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
 2018 {
 2019         struct swblock **pswap;
 2020         struct swblock *swap;
 2021         daddr_t r1;
 2022         int idx;
 2023 
 2024         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2025         /*
 2026          * The meta data only exists of the object is OBJT_SWAP 
 2027          * and even then might not be allocated yet.
 2028          */
 2029         if (object->type != OBJT_SWAP)
 2030                 return (SWAPBLK_NONE);
 2031 
 2032         r1 = SWAPBLK_NONE;
 2033         mtx_lock(&swhash_mtx);
 2034         pswap = swp_pager_hash(object, pindex);
 2035 
 2036         if ((swap = *pswap) != NULL) {
 2037                 idx = pindex & SWAP_META_MASK;
 2038                 r1 = swap->swb_pages[idx];
 2039 
 2040                 if (r1 != SWAPBLK_NONE) {
 2041                         if (flags & SWM_FREE) {
 2042                                 swp_pager_freeswapspace(r1, 1);
 2043                                 r1 = SWAPBLK_NONE;
 2044                         }
 2045                         if (flags & (SWM_FREE|SWM_POP)) {
 2046                                 swap->swb_pages[idx] = SWAPBLK_NONE;
 2047                                 if (--swap->swb_count == 0) {
 2048                                         *pswap = swap->swb_hnext;
 2049                                         uma_zfree(swap_zone, swap);
 2050                                         --object->un_pager.swp.swp_bcount;
 2051                                 }
 2052                         } 
 2053                 }
 2054         }
 2055         mtx_unlock(&swhash_mtx);
 2056         return (r1);
 2057 }
 2058 
 2059 /*
 2060  * System call swapon(name) enables swapping on device name,
 2061  * which must be in the swdevsw.  Return EBUSY
 2062  * if already swapping on this device.
 2063  */
 2064 #ifndef _SYS_SYSPROTO_H_
 2065 struct swapon_args {
 2066         char *name;
 2067 };
 2068 #endif
 2069 
 2070 /* 
 2071  * MPSAFE
 2072  */
 2073 /* ARGSUSED */
 2074 int
 2075 sys_swapon(struct thread *td, struct swapon_args *uap)
 2076 {
 2077         struct vattr attr;
 2078         struct vnode *vp;
 2079         struct nameidata nd;
 2080         int error;
 2081 
 2082         error = priv_check(td, PRIV_SWAPON);
 2083         if (error)
 2084                 return (error);
 2085 
 2086         mtx_lock(&Giant);
 2087         while (swdev_syscall_active)
 2088             tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
 2089         swdev_syscall_active = 1;
 2090 
 2091         /*
 2092          * Swap metadata may not fit in the KVM if we have physical
 2093          * memory of >1GB.
 2094          */
 2095         if (swap_zone == NULL) {
 2096                 error = ENOMEM;
 2097                 goto done;
 2098         }
 2099 
 2100         NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
 2101             uap->name, td);
 2102         error = namei(&nd);
 2103         if (error)
 2104                 goto done;
 2105 
 2106         NDFREE(&nd, NDF_ONLY_PNBUF);
 2107         vp = nd.ni_vp;
 2108 
 2109         if (vn_isdisk(vp, &error)) {
 2110                 error = swapongeom(td, vp);
 2111         } else if (vp->v_type == VREG &&
 2112             (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
 2113             (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
 2114                 /*
 2115                  * Allow direct swapping to NFS regular files in the same
 2116                  * way that nfs_mountroot() sets up diskless swapping.
 2117                  */
 2118                 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
 2119         }
 2120 
 2121         if (error)
 2122                 vrele(vp);
 2123 done:
 2124         swdev_syscall_active = 0;
 2125         wakeup_one(&swdev_syscall_active);
 2126         mtx_unlock(&Giant);
 2127         return (error);
 2128 }
 2129 
 2130 /*
 2131  * Check that the total amount of swap currently configured does not
 2132  * exceed half the theoretical maximum.  If it does, print a warning
 2133  * message and return -1; otherwise, return 0.
 2134  */
 2135 static int
 2136 swapon_check_swzone(unsigned long npages)
 2137 {
 2138         unsigned long maxpages;
 2139 
 2140         /* absolute maximum we can handle assuming 100% efficiency */
 2141         maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES;
 2142 
 2143         /* recommend using no more than half that amount */
 2144         if (npages > maxpages / 2) {
 2145                 printf("warning: total configured swap (%lu pages) "
 2146                     "exceeds maximum recommended amount (%lu pages).\n",
 2147                     npages, maxpages / 2);
 2148                 printf("warning: increase kern.maxswzone "
 2149                     "or reduce amount of swap.\n");
 2150                 return (-1);
 2151         }
 2152         return (0);
 2153 }
 2154 
 2155 static void
 2156 swaponsomething(struct vnode *vp, void *id, u_long nblks,
 2157     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
 2158 {
 2159         struct swdevt *sp, *tsp;
 2160         swblk_t dvbase;
 2161         u_long mblocks;
 2162 
 2163         /*
 2164          * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
 2165          * First chop nblks off to page-align it, then convert.
 2166          * 
 2167          * sw->sw_nblks is in page-sized chunks now too.
 2168          */
 2169         nblks &= ~(ctodb(1) - 1);
 2170         nblks = dbtoc(nblks);
 2171 
 2172         /*
 2173          * If we go beyond this, we get overflows in the radix
 2174          * tree bitmap code.
 2175          */
 2176         mblocks = 0x40000000 / BLIST_META_RADIX;
 2177         if (nblks > mblocks) {
 2178                 printf(
 2179     "WARNING: reducing swap size to maximum of %luMB per unit\n",
 2180                     mblocks / 1024 / 1024 * PAGE_SIZE);
 2181                 nblks = mblocks;
 2182         }
 2183 
 2184         sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
 2185         sp->sw_vp = vp;
 2186         sp->sw_id = id;
 2187         sp->sw_dev = dev;
 2188         sp->sw_flags = 0;
 2189         sp->sw_nblks = nblks;
 2190         sp->sw_used = 0;
 2191         sp->sw_strategy = strategy;
 2192         sp->sw_close = close;
 2193         sp->sw_flags = flags;
 2194 
 2195         sp->sw_blist = blist_create(nblks, M_WAITOK);
 2196         /*
 2197          * Do not free the first two block in order to avoid overwriting
 2198          * any bsd label at the front of the partition
 2199          */
 2200         blist_free(sp->sw_blist, 2, nblks - 2);
 2201 
 2202         dvbase = 0;
 2203         mtx_lock(&sw_dev_mtx);
 2204         TAILQ_FOREACH(tsp, &swtailq, sw_list) {
 2205                 if (tsp->sw_end >= dvbase) {
 2206                         /*
 2207                          * We put one uncovered page between the devices
 2208                          * in order to definitively prevent any cross-device
 2209                          * I/O requests
 2210                          */
 2211                         dvbase = tsp->sw_end + 1;
 2212                 }
 2213         }
 2214         sp->sw_first = dvbase;
 2215         sp->sw_end = dvbase + nblks;
 2216         TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
 2217         nswapdev++;
 2218         swap_pager_avail += nblks;
 2219         swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
 2220         swapon_check_swzone(swap_total / PAGE_SIZE);
 2221         swp_sizecheck();
 2222         mtx_unlock(&sw_dev_mtx);
 2223 }
 2224 
 2225 /*
 2226  * SYSCALL: swapoff(devname)
 2227  *
 2228  * Disable swapping on the given device.
 2229  *
 2230  * XXX: Badly designed system call: it should use a device index
 2231  * rather than filename as specification.  We keep sw_vp around
 2232  * only to make this work.
 2233  */
 2234 #ifndef _SYS_SYSPROTO_H_
 2235 struct swapoff_args {
 2236         char *name;
 2237 };
 2238 #endif
 2239 
 2240 /*
 2241  * MPSAFE
 2242  */
 2243 /* ARGSUSED */
 2244 int
 2245 sys_swapoff(struct thread *td, struct swapoff_args *uap)
 2246 {
 2247         struct vnode *vp;
 2248         struct nameidata nd;
 2249         struct swdevt *sp;
 2250         int error;
 2251 
 2252         error = priv_check(td, PRIV_SWAPOFF);
 2253         if (error)
 2254                 return (error);
 2255 
 2256         mtx_lock(&Giant);
 2257         while (swdev_syscall_active)
 2258             tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
 2259         swdev_syscall_active = 1;
 2260 
 2261         NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
 2262             td);
 2263         error = namei(&nd);
 2264         if (error)
 2265                 goto done;
 2266         NDFREE(&nd, NDF_ONLY_PNBUF);
 2267         vp = nd.ni_vp;
 2268 
 2269         mtx_lock(&sw_dev_mtx);
 2270         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2271                 if (sp->sw_vp == vp)
 2272                         break;
 2273         }
 2274         mtx_unlock(&sw_dev_mtx);
 2275         if (sp == NULL) {
 2276                 error = EINVAL;
 2277                 goto done;
 2278         }
 2279         error = swapoff_one(sp, td->td_ucred);
 2280 done:
 2281         swdev_syscall_active = 0;
 2282         wakeup_one(&swdev_syscall_active);
 2283         mtx_unlock(&Giant);
 2284         return (error);
 2285 }
 2286 
 2287 static int
 2288 swapoff_one(struct swdevt *sp, struct ucred *cred)
 2289 {
 2290         u_long nblks, dvbase;
 2291 #ifdef MAC
 2292         int error;
 2293 #endif
 2294 
 2295         mtx_assert(&Giant, MA_OWNED);
 2296 #ifdef MAC
 2297         (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
 2298         error = mac_system_check_swapoff(cred, sp->sw_vp);
 2299         (void) VOP_UNLOCK(sp->sw_vp, 0);
 2300         if (error != 0)
 2301                 return (error);
 2302 #endif
 2303         nblks = sp->sw_nblks;
 2304 
 2305         /*
 2306          * We can turn off this swap device safely only if the
 2307          * available virtual memory in the system will fit the amount
 2308          * of data we will have to page back in, plus an epsilon so
 2309          * the system doesn't become critically low on swap space.
 2310          */
 2311         if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail <
 2312             nblks + nswap_lowat) {
 2313                 return (ENOMEM);
 2314         }
 2315 
 2316         /*
 2317          * Prevent further allocations on this device.
 2318          */
 2319         mtx_lock(&sw_dev_mtx);
 2320         sp->sw_flags |= SW_CLOSING;
 2321         for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
 2322                 swap_pager_avail -= blist_fill(sp->sw_blist,
 2323                      dvbase, dmmax);
 2324         }
 2325         swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
 2326         mtx_unlock(&sw_dev_mtx);
 2327 
 2328         /*
 2329          * Page in the contents of the device and close it.
 2330          */
 2331         swap_pager_swapoff(sp);
 2332 
 2333         sp->sw_close(curthread, sp);
 2334         sp->sw_id = NULL;
 2335         mtx_lock(&sw_dev_mtx);
 2336         TAILQ_REMOVE(&swtailq, sp, sw_list);
 2337         nswapdev--;
 2338         if (nswapdev == 0) {
 2339                 swap_pager_full = 2;
 2340                 swap_pager_almost_full = 1;
 2341         }
 2342         if (swdevhd == sp)
 2343                 swdevhd = NULL;
 2344         mtx_unlock(&sw_dev_mtx);
 2345         blist_destroy(sp->sw_blist);
 2346         free(sp, M_VMPGDATA);
 2347         return (0);
 2348 }
 2349 
 2350 void
 2351 swapoff_all(void)
 2352 {
 2353         struct swdevt *sp, *spt;
 2354         const char *devname;
 2355         int error;
 2356  
 2357         mtx_lock(&Giant);
 2358         while (swdev_syscall_active)
 2359                 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
 2360         swdev_syscall_active = 1;
 2361  
 2362         mtx_lock(&sw_dev_mtx);
 2363         TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
 2364                 mtx_unlock(&sw_dev_mtx);
 2365                 if (vn_isdisk(sp->sw_vp, NULL))
 2366                         devname = devtoname(sp->sw_vp->v_rdev);
 2367                 else
 2368                         devname = "[file]";
 2369                 error = swapoff_one(sp, thread0.td_ucred);
 2370                 if (error != 0) {
 2371                         printf("Cannot remove swap device %s (error=%d), "
 2372                             "skipping.\n", devname, error);
 2373                 } else if (bootverbose) {
 2374                         printf("Swap device %s removed.\n", devname);
 2375                 }
 2376                 mtx_lock(&sw_dev_mtx);
 2377         }
 2378         mtx_unlock(&sw_dev_mtx);
 2379  
 2380         swdev_syscall_active = 0;
 2381         wakeup_one(&swdev_syscall_active);
 2382         mtx_unlock(&Giant);
 2383 }
 2384 
 2385 void
 2386 swap_pager_status(int *total, int *used)
 2387 {
 2388         struct swdevt *sp;
 2389 
 2390         *total = 0;
 2391         *used = 0;
 2392         mtx_lock(&sw_dev_mtx);
 2393         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2394                 *total += sp->sw_nblks;
 2395                 *used += sp->sw_used;
 2396         }
 2397         mtx_unlock(&sw_dev_mtx);
 2398 }
 2399 
 2400 int
 2401 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
 2402 {
 2403         struct swdevt *sp;
 2404         const char *tmp_devname;
 2405         int error, n;
 2406 
 2407         n = 0;
 2408         error = ENOENT;
 2409         mtx_lock(&sw_dev_mtx);
 2410         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2411                 if (n != name) {
 2412                         n++;
 2413                         continue;
 2414                 }
 2415                 xs->xsw_version = XSWDEV_VERSION;
 2416                 xs->xsw_dev = sp->sw_dev;
 2417                 xs->xsw_flags = sp->sw_flags;
 2418                 xs->xsw_nblks = sp->sw_nblks;
 2419                 xs->xsw_used = sp->sw_used;
 2420                 if (devname != NULL) {
 2421                         if (vn_isdisk(sp->sw_vp, NULL))
 2422                                 tmp_devname = devtoname(sp->sw_vp->v_rdev);
 2423                         else
 2424                                 tmp_devname = "[file]";
 2425                         strncpy(devname, tmp_devname, len);
 2426                 }
 2427                 error = 0;
 2428                 break;
 2429         }
 2430         mtx_unlock(&sw_dev_mtx);
 2431         return (error);
 2432 }
 2433 
 2434 static int
 2435 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
 2436 {
 2437         struct xswdev xs;
 2438         int error;
 2439 
 2440         if (arg2 != 1)                  /* name length */
 2441                 return (EINVAL);
 2442         error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
 2443         if (error != 0)
 2444                 return (error);
 2445         error = SYSCTL_OUT(req, &xs, sizeof(xs));
 2446         return (error);
 2447 }
 2448 
 2449 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
 2450     "Number of swap devices");
 2451 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
 2452     "Swap statistics by device");
 2453 
 2454 /*
 2455  * vmspace_swap_count() - count the approximate swap usage in pages for a
 2456  *                        vmspace.
 2457  *
 2458  *      The map must be locked.
 2459  *
 2460  *      Swap usage is determined by taking the proportional swap used by
 2461  *      VM objects backing the VM map.  To make up for fractional losses,
 2462  *      if the VM object has any swap use at all the associated map entries
 2463  *      count for at least 1 swap page.
 2464  */
 2465 long
 2466 vmspace_swap_count(struct vmspace *vmspace)
 2467 {
 2468         vm_map_t map;
 2469         vm_map_entry_t cur;
 2470         vm_object_t object;
 2471         long count, n;
 2472 
 2473         map = &vmspace->vm_map;
 2474         count = 0;
 2475 
 2476         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
 2477                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
 2478                     (object = cur->object.vm_object) != NULL) {
 2479                         VM_OBJECT_LOCK(object);
 2480                         if (object->type == OBJT_SWAP &&
 2481                             object->un_pager.swp.swp_bcount != 0) {
 2482                                 n = (cur->end - cur->start) / PAGE_SIZE;
 2483                                 count += object->un_pager.swp.swp_bcount *
 2484                                     SWAP_META_PAGES * n / object->size + 1;
 2485                         }
 2486                         VM_OBJECT_UNLOCK(object);
 2487                 }
 2488         }
 2489         return (count);
 2490 }
 2491 
 2492 /*
 2493  * GEOM backend
 2494  *
 2495  * Swapping onto disk devices.
 2496  *
 2497  */
 2498 
 2499 static g_orphan_t swapgeom_orphan;
 2500 
 2501 static struct g_class g_swap_class = {
 2502         .name = "SWAP",
 2503         .version = G_VERSION,
 2504         .orphan = swapgeom_orphan,
 2505 };
 2506 
 2507 DECLARE_GEOM_CLASS(g_swap_class, g_class);
 2508 
 2509 
 2510 static void
 2511 swapgeom_done(struct bio *bp2)
 2512 {
 2513         struct buf *bp;
 2514 
 2515         bp = bp2->bio_caller2;
 2516         bp->b_ioflags = bp2->bio_flags;
 2517         if (bp2->bio_error)
 2518                 bp->b_ioflags |= BIO_ERROR;
 2519         bp->b_resid = bp->b_bcount - bp2->bio_completed;
 2520         bp->b_error = bp2->bio_error;
 2521         bufdone(bp);
 2522         g_destroy_bio(bp2);
 2523 }
 2524 
 2525 static void
 2526 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
 2527 {
 2528         struct bio *bio;
 2529         struct g_consumer *cp;
 2530 
 2531         cp = sp->sw_id;
 2532         if (cp == NULL) {
 2533                 bp->b_error = ENXIO;
 2534                 bp->b_ioflags |= BIO_ERROR;
 2535                 bufdone(bp);
 2536                 return;
 2537         }
 2538         if (bp->b_iocmd == BIO_WRITE)
 2539                 bio = g_new_bio();
 2540         else
 2541                 bio = g_alloc_bio();
 2542         if (bio == NULL) {
 2543                 bp->b_error = ENOMEM;
 2544                 bp->b_ioflags |= BIO_ERROR;
 2545                 bufdone(bp);
 2546                 return;
 2547         }
 2548 
 2549         bio->bio_caller2 = bp;
 2550         bio->bio_cmd = bp->b_iocmd;
 2551         bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
 2552         bio->bio_length = bp->b_bcount;
 2553         bio->bio_done = swapgeom_done;
 2554         if ((bp->b_flags & B_UNMAPPED) != 0) {
 2555                 bio->bio_ma = bp->b_pages;
 2556                 bio->bio_data = unmapped_buf;
 2557                 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
 2558                 bio->bio_ma_n = bp->b_npages;
 2559                 bio->bio_flags |= BIO_UNMAPPED;
 2560         } else {
 2561                 bio->bio_data = bp->b_data;
 2562                 bio->bio_ma = NULL;
 2563         }
 2564         g_io_request(bio, cp);
 2565         return;
 2566 }
 2567 
 2568 static void
 2569 swapgeom_orphan(struct g_consumer *cp)
 2570 {
 2571         struct swdevt *sp;
 2572 
 2573         mtx_lock(&sw_dev_mtx);
 2574         TAILQ_FOREACH(sp, &swtailq, sw_list)
 2575                 if (sp->sw_id == cp)
 2576                         sp->sw_flags |= SW_CLOSING;
 2577         mtx_unlock(&sw_dev_mtx);
 2578 }
 2579 
 2580 static void
 2581 swapgeom_close_ev(void *arg, int flags)
 2582 {
 2583         struct g_consumer *cp;
 2584 
 2585         cp = arg;
 2586         g_access(cp, -1, -1, 0);
 2587         g_detach(cp);
 2588         g_destroy_consumer(cp);
 2589 }
 2590 
 2591 static void
 2592 swapgeom_close(struct thread *td, struct swdevt *sw)
 2593 {
 2594 
 2595         /* XXX: direct call when Giant untangled */
 2596         g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL);
 2597 }
 2598 
 2599 
 2600 struct swh0h0 {
 2601         struct cdev *dev;
 2602         struct vnode *vp;
 2603         int     error;
 2604 };
 2605 
 2606 static void
 2607 swapongeom_ev(void *arg, int flags)
 2608 {
 2609         struct swh0h0 *swh;
 2610         struct g_provider *pp;
 2611         struct g_consumer *cp;
 2612         static struct g_geom *gp;
 2613         struct swdevt *sp;
 2614         u_long nblks;
 2615         int error;
 2616 
 2617         swh = arg;
 2618         swh->error = 0;
 2619         pp = g_dev_getprovider(swh->dev);
 2620         if (pp == NULL) {
 2621                 swh->error = ENODEV;
 2622                 return;
 2623         }
 2624         mtx_lock(&sw_dev_mtx);
 2625         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2626                 cp = sp->sw_id;
 2627                 if (cp != NULL && cp->provider == pp) {
 2628                         mtx_unlock(&sw_dev_mtx);
 2629                         swh->error = EBUSY;
 2630                         return;
 2631                 }
 2632         }
 2633         mtx_unlock(&sw_dev_mtx);
 2634         if (gp == NULL)
 2635                 gp = g_new_geomf(&g_swap_class, "swap");
 2636         cp = g_new_consumer(gp);
 2637         g_attach(cp, pp);
 2638         /*
 2639          * XXX: Everytime you think you can improve the margin for
 2640          * footshooting, somebody depends on the ability to do so:
 2641          * savecore(8) wants to write to our swapdev so we cannot
 2642          * set an exclusive count :-(
 2643          */
 2644         error = g_access(cp, 1, 1, 0);
 2645         if (error) {
 2646                 g_detach(cp);
 2647                 g_destroy_consumer(cp);
 2648                 swh->error = error;
 2649                 return;
 2650         }
 2651         nblks = pp->mediasize / DEV_BSIZE;
 2652         swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
 2653             swapgeom_close, dev2udev(swh->dev),
 2654             (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
 2655         swh->error = 0;
 2656 }
 2657 
 2658 static int
 2659 swapongeom(struct thread *td, struct vnode *vp)
 2660 {
 2661         int error;
 2662         struct swh0h0 swh;
 2663 
 2664         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 2665 
 2666         swh.dev = vp->v_rdev;
 2667         swh.vp = vp;
 2668         swh.error = 0;
 2669         /* XXX: direct call when Giant untangled */
 2670         error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
 2671         if (!error)
 2672                 error = swh.error;
 2673         VOP_UNLOCK(vp, 0);
 2674         return (error);
 2675 }
 2676 
 2677 /*
 2678  * VNODE backend
 2679  *
 2680  * This is used mainly for network filesystem (read: probably only tested
 2681  * with NFS) swapfiles.
 2682  *
 2683  */
 2684 
 2685 static void
 2686 swapdev_strategy(struct buf *bp, struct swdevt *sp)
 2687 {
 2688         struct vnode *vp2;
 2689 
 2690         bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
 2691 
 2692         vp2 = sp->sw_id;
 2693         vhold(vp2);
 2694         if (bp->b_iocmd == BIO_WRITE) {
 2695                 if (bp->b_bufobj)
 2696                         bufobj_wdrop(bp->b_bufobj);
 2697                 bufobj_wref(&vp2->v_bufobj);
 2698         }
 2699         if (bp->b_bufobj != &vp2->v_bufobj)
 2700                 bp->b_bufobj = &vp2->v_bufobj;
 2701         bp->b_vp = vp2;
 2702         bp->b_iooffset = dbtob(bp->b_blkno);
 2703         bstrategy(bp);
 2704         return;
 2705 }
 2706 
 2707 static void
 2708 swapdev_close(struct thread *td, struct swdevt *sp)
 2709 {
 2710 
 2711         VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
 2712         vrele(sp->sw_vp);
 2713 }
 2714 
 2715 
 2716 static int
 2717 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
 2718 {
 2719         struct swdevt *sp;
 2720         int error;
 2721 
 2722         if (nblks == 0)
 2723                 return (ENXIO);
 2724         mtx_lock(&sw_dev_mtx);
 2725         TAILQ_FOREACH(sp, &swtailq, sw_list) {
 2726                 if (sp->sw_id == vp) {
 2727                         mtx_unlock(&sw_dev_mtx);
 2728                         return (EBUSY);
 2729                 }
 2730         }
 2731         mtx_unlock(&sw_dev_mtx);
 2732     
 2733         (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 2734 #ifdef MAC
 2735         error = mac_system_check_swapon(td->td_ucred, vp);
 2736         if (error == 0)
 2737 #endif
 2738                 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
 2739         (void) VOP_UNLOCK(vp, 0);
 2740         if (error)
 2741                 return (error);
 2742 
 2743         swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
 2744             NODEV, 0);
 2745         return (0);
 2746 }

Cache object: 7444de818a457a3c8152d4a88b5e0787


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.