The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/uma_core.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org>
    5  * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
    6  * Copyright (c) 2004-2006 Robert N. M. Watson
    7  * All rights reserved.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice unmodified, this list of conditions, and the following
   14  *    disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   29  */
   30 
   31 /*
   32  * uma_core.c  Implementation of the Universal Memory allocator
   33  *
   34  * This allocator is intended to replace the multitude of similar object caches
   35  * in the standard FreeBSD kernel.  The intent is to be flexible as well as
   36  * efficient.  A primary design goal is to return unused memory to the rest of
   37  * the system.  This will make the system as a whole more flexible due to the
   38  * ability to move memory to subsystems which most need it instead of leaving
   39  * pools of reserved memory unused.
   40  *
   41  * The basic ideas stem from similar slab/zone based allocators whose algorithms
   42  * are well known.
   43  *
   44  */
   45 
   46 /*
   47  * TODO:
   48  *      - Improve memory usage for large allocations
   49  *      - Investigate cache size adjustments
   50  */
   51 
   52 #include <sys/cdefs.h>
   53 __FBSDID("$FreeBSD$");
   54 
   55 #include "opt_ddb.h"
   56 #include "opt_param.h"
   57 #include "opt_vm.h"
   58 
   59 #include <sys/param.h>
   60 #include <sys/systm.h>
   61 #include <sys/asan.h>
   62 #include <sys/bitset.h>
   63 #include <sys/domainset.h>
   64 #include <sys/eventhandler.h>
   65 #include <sys/kernel.h>
   66 #include <sys/types.h>
   67 #include <sys/limits.h>
   68 #include <sys/queue.h>
   69 #include <sys/malloc.h>
   70 #include <sys/ktr.h>
   71 #include <sys/lock.h>
   72 #include <sys/msan.h>
   73 #include <sys/mutex.h>
   74 #include <sys/proc.h>
   75 #include <sys/random.h>
   76 #include <sys/rwlock.h>
   77 #include <sys/sbuf.h>
   78 #include <sys/sched.h>
   79 #include <sys/sleepqueue.h>
   80 #include <sys/smp.h>
   81 #include <sys/smr.h>
   82 #include <sys/sysctl.h>
   83 #include <sys/taskqueue.h>
   84 #include <sys/vmmeter.h>
   85 
   86 #include <vm/vm.h>
   87 #include <vm/vm_param.h>
   88 #include <vm/vm_domainset.h>
   89 #include <vm/vm_object.h>
   90 #include <vm/vm_page.h>
   91 #include <vm/vm_pageout.h>
   92 #include <vm/vm_phys.h>
   93 #include <vm/vm_pagequeue.h>
   94 #include <vm/vm_map.h>
   95 #include <vm/vm_kern.h>
   96 #include <vm/vm_extern.h>
   97 #include <vm/vm_dumpset.h>
   98 #include <vm/uma.h>
   99 #include <vm/uma_int.h>
  100 #include <vm/uma_dbg.h>
  101 
  102 #include <ddb/ddb.h>
  103 
  104 #ifdef DEBUG_MEMGUARD
  105 #include <vm/memguard.h>
  106 #endif
  107 
  108 #include <machine/md_var.h>
  109 
  110 #ifdef INVARIANTS
  111 #define UMA_ALWAYS_CTORDTOR     1
  112 #else
  113 #define UMA_ALWAYS_CTORDTOR     0
  114 #endif
  115 
  116 /*
  117  * This is the zone and keg from which all zones are spawned.
  118  */
  119 static uma_zone_t kegs;
  120 static uma_zone_t zones;
  121 
  122 /*
  123  * On INVARIANTS builds, the slab contains a second bitset of the same size,
  124  * "dbg_bits", which is laid out immediately after us_free.
  125  */
  126 #ifdef INVARIANTS
  127 #define SLAB_BITSETS    2
  128 #else
  129 #define SLAB_BITSETS    1
  130 #endif
  131 
  132 /*
  133  * These are the two zones from which all offpage uma_slab_ts are allocated.
  134  *
  135  * One zone is for slab headers that can represent a larger number of items,
  136  * making the slabs themselves more efficient, and the other zone is for
  137  * headers that are smaller and represent fewer items, making the headers more
  138  * efficient.
  139  */
  140 #define SLABZONE_SIZE(setsize)                                  \
  141     (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS)
  142 #define SLABZONE0_SETSIZE       (PAGE_SIZE / 16)
  143 #define SLABZONE1_SETSIZE       SLAB_MAX_SETSIZE
  144 #define SLABZONE0_SIZE  SLABZONE_SIZE(SLABZONE0_SETSIZE)
  145 #define SLABZONE1_SIZE  SLABZONE_SIZE(SLABZONE1_SETSIZE)
  146 static uma_zone_t slabzones[2];
  147 
  148 /*
  149  * The initial hash tables come out of this zone so they can be allocated
  150  * prior to malloc coming up.
  151  */
  152 static uma_zone_t hashzone;
  153 
  154 /* The boot-time adjusted value for cache line alignment. */
  155 int uma_align_cache = 64 - 1;
  156 
  157 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
  158 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc");
  159 
  160 /*
  161  * Are we allowed to allocate buckets?
  162  */
  163 static int bucketdisable = 1;
  164 
  165 /* Linked list of all kegs in the system */
  166 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
  167 
  168 /* Linked list of all cache-only zones in the system */
  169 static LIST_HEAD(,uma_zone) uma_cachezones =
  170     LIST_HEAD_INITIALIZER(uma_cachezones);
  171 
  172 /*
  173  * Mutex for global lists: uma_kegs, uma_cachezones, and the per-keg list of
  174  * zones.
  175  */
  176 static struct rwlock_padalign __exclusive_cache_line uma_rwlock;
  177 
  178 static struct sx uma_reclaim_lock;
  179 
  180 /*
  181  * First available virual address for boot time allocations.
  182  */
  183 static vm_offset_t bootstart;
  184 static vm_offset_t bootmem;
  185 
  186 /*
  187  * kmem soft limit, initialized by uma_set_limit().  Ensure that early
  188  * allocations don't trigger a wakeup of the reclaim thread.
  189  */
  190 unsigned long uma_kmem_limit = LONG_MAX;
  191 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0,
  192     "UMA kernel memory soft limit");
  193 unsigned long uma_kmem_total;
  194 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0,
  195     "UMA kernel memory usage");
  196 
  197 /* Is the VM done starting up? */
  198 static enum {
  199         BOOT_COLD,
  200         BOOT_KVA,
  201         BOOT_PCPU,
  202         BOOT_RUNNING,
  203         BOOT_SHUTDOWN,
  204 } booted = BOOT_COLD;
  205 
  206 /*
  207  * This is the handle used to schedule events that need to happen
  208  * outside of the allocation fast path.
  209  */
  210 static struct timeout_task uma_timeout_task;
  211 #define UMA_TIMEOUT     20              /* Seconds for callout interval. */
  212 
  213 /*
  214  * This structure is passed as the zone ctor arg so that I don't have to create
  215  * a special allocation function just for zones.
  216  */
  217 struct uma_zctor_args {
  218         const char *name;
  219         size_t size;
  220         uma_ctor ctor;
  221         uma_dtor dtor;
  222         uma_init uminit;
  223         uma_fini fini;
  224         uma_import import;
  225         uma_release release;
  226         void *arg;
  227         uma_keg_t keg;
  228         int align;
  229         uint32_t flags;
  230 };
  231 
  232 struct uma_kctor_args {
  233         uma_zone_t zone;
  234         size_t size;
  235         uma_init uminit;
  236         uma_fini fini;
  237         int align;
  238         uint32_t flags;
  239 };
  240 
  241 struct uma_bucket_zone {
  242         uma_zone_t      ubz_zone;
  243         const char      *ubz_name;
  244         int             ubz_entries;    /* Number of items it can hold. */
  245         int             ubz_maxsize;    /* Maximum allocation size per-item. */
  246 };
  247 
  248 /*
  249  * Compute the actual number of bucket entries to pack them in power
  250  * of two sizes for more efficient space utilization.
  251  */
  252 #define BUCKET_SIZE(n)                                          \
  253     (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))
  254 
  255 #define BUCKET_MAX      BUCKET_SIZE(256)
  256 
  257 struct uma_bucket_zone bucket_zones[] = {
  258         /* Literal bucket sizes. */
  259         { NULL, "2 Bucket", 2, 4096 },
  260         { NULL, "4 Bucket", 4, 3072 },
  261         { NULL, "8 Bucket", 8, 2048 },
  262         { NULL, "16 Bucket", 16, 1024 },
  263         /* Rounded down power of 2 sizes for efficiency. */
  264         { NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
  265         { NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
  266         { NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
  267         { NULL, "256 Bucket", BUCKET_SIZE(256), 64 },
  268         { NULL, NULL, 0}
  269 };
  270 
  271 /*
  272  * Flags and enumerations to be passed to internal functions.
  273  */
  274 enum zfreeskip {
  275         SKIP_NONE =     0,
  276         SKIP_CNT =      0x00000001,
  277         SKIP_DTOR =     0x00010000,
  278         SKIP_FINI =     0x00020000,
  279 };
  280 
  281 /* Prototypes.. */
  282 
  283 void    uma_startup1(vm_offset_t);
  284 void    uma_startup2(void);
  285 
  286 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
  287 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
  288 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
  289 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
  290 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
  291 static void page_free(void *, vm_size_t, uint8_t);
  292 static void pcpu_page_free(void *, vm_size_t, uint8_t);
  293 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int);
  294 static void cache_drain(uma_zone_t);
  295 static void bucket_drain(uma_zone_t, uma_bucket_t);
  296 static void bucket_cache_reclaim(uma_zone_t zone, bool, int);
  297 static bool bucket_cache_reclaim_domain(uma_zone_t, bool, bool, int);
  298 static int keg_ctor(void *, int, void *, int);
  299 static void keg_dtor(void *, int, void *);
  300 static void keg_drain(uma_keg_t keg, int domain);
  301 static int zone_ctor(void *, int, void *, int);
  302 static void zone_dtor(void *, int, void *);
  303 static inline void item_dtor(uma_zone_t zone, void *item, int size,
  304     void *udata, enum zfreeskip skip);
  305 static int zero_init(void *, int, int);
  306 static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata,
  307     int itemdomain, bool ws);
  308 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *);
  309 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *);
  310 static void zone_timeout(uma_zone_t zone, void *);
  311 static int hash_alloc(struct uma_hash *, u_int);
  312 static int hash_expand(struct uma_hash *, struct uma_hash *);
  313 static void hash_free(struct uma_hash *hash);
  314 static void uma_timeout(void *, int);
  315 static void uma_shutdown(void);
  316 static void *zone_alloc_item(uma_zone_t, void *, int, int);
  317 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
  318 static int zone_alloc_limit(uma_zone_t zone, int count, int flags);
  319 static void zone_free_limit(uma_zone_t zone, int count);
  320 static void bucket_enable(void);
  321 static void bucket_init(void);
  322 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
  323 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
  324 static void bucket_zone_drain(int domain);
  325 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int);
  326 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
  327 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item);
  328 static size_t slab_sizeof(int nitems);
  329 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
  330     uma_fini fini, int align, uint32_t flags);
  331 static int zone_import(void *, void **, int, int, int);
  332 static void zone_release(void *, void **, int);
  333 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int);
  334 static bool cache_free(uma_zone_t, uma_cache_t, void *, int);
  335 
  336 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
  337 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
  338 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS);
  339 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS);
  340 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS);
  341 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS);
  342 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS);
  343 
  344 static uint64_t uma_zone_get_allocs(uma_zone_t zone);
  345 
  346 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
  347     "Memory allocation debugging");
  348 
  349 #ifdef INVARIANTS
  350 static uint64_t uma_keg_get_allocs(uma_keg_t zone);
  351 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg);
  352 
  353 static bool uma_dbg_kskip(uma_keg_t keg, void *mem);
  354 static bool uma_dbg_zskip(uma_zone_t zone, void *mem);
  355 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item);
  356 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item);
  357 
  358 static u_int dbg_divisor = 1;
  359 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor,
  360     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0,
  361     "Debug & thrash every this item in memory allocator");
  362 
  363 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER;
  364 static counter_u64_t uma_skip_cnt = EARLY_COUNTER;
  365 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD,
  366     &uma_dbg_cnt, "memory items debugged");
  367 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD,
  368     &uma_skip_cnt, "memory items skipped, not debugged");
  369 #endif
  370 
  371 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
  372     "Universal Memory Allocator");
  373 
  374 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT,
  375     0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
  376 
  377 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT,
  378     0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
  379 
  380 static int zone_warnings = 1;
  381 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0,
  382     "Warn when UMA zones becomes full");
  383 
  384 static int multipage_slabs = 1;
  385 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs);
  386 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs,
  387     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0,
  388     "UMA may choose larger slab sizes for better efficiency");
  389 
  390 /*
  391  * Select the slab zone for an offpage slab with the given maximum item count.
  392  */
  393 static inline uma_zone_t
  394 slabzone(int ipers)
  395 {
  396 
  397         return (slabzones[ipers > SLABZONE0_SETSIZE]);
  398 }
  399 
  400 /*
  401  * This routine checks to see whether or not it's safe to enable buckets.
  402  */
  403 static void
  404 bucket_enable(void)
  405 {
  406 
  407         KASSERT(booted >= BOOT_KVA, ("Bucket enable before init"));
  408         bucketdisable = vm_page_count_min();
  409 }
  410 
  411 /*
  412  * Initialize bucket_zones, the array of zones of buckets of various sizes.
  413  *
  414  * For each zone, calculate the memory required for each bucket, consisting
  415  * of the header and an array of pointers.
  416  */
  417 static void
  418 bucket_init(void)
  419 {
  420         struct uma_bucket_zone *ubz;
  421         int size;
  422 
  423         for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
  424                 size = roundup(sizeof(struct uma_bucket), sizeof(void *));
  425                 size += sizeof(void *) * ubz->ubz_entries;
  426                 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
  427                     NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
  428                     UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET |
  429                     UMA_ZONE_FIRSTTOUCH);
  430         }
  431 }
  432 
  433 /*
  434  * Given a desired number of entries for a bucket, return the zone from which
  435  * to allocate the bucket.
  436  */
  437 static struct uma_bucket_zone *
  438 bucket_zone_lookup(int entries)
  439 {
  440         struct uma_bucket_zone *ubz;
  441 
  442         for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
  443                 if (ubz->ubz_entries >= entries)
  444                         return (ubz);
  445         ubz--;
  446         return (ubz);
  447 }
  448 
  449 static int
  450 bucket_select(int size)
  451 {
  452         struct uma_bucket_zone *ubz;
  453 
  454         ubz = &bucket_zones[0];
  455         if (size > ubz->ubz_maxsize)
  456                 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);
  457 
  458         for (; ubz->ubz_entries != 0; ubz++)
  459                 if (ubz->ubz_maxsize < size)
  460                         break;
  461         ubz--;
  462         return (ubz->ubz_entries);
  463 }
  464 
  465 static uma_bucket_t
  466 bucket_alloc(uma_zone_t zone, void *udata, int flags)
  467 {
  468         struct uma_bucket_zone *ubz;
  469         uma_bucket_t bucket;
  470 
  471         /*
  472          * Don't allocate buckets early in boot.
  473          */
  474         if (__predict_false(booted < BOOT_KVA))
  475                 return (NULL);
  476 
  477         /*
  478          * To limit bucket recursion we store the original zone flags
  479          * in a cookie passed via zalloc_arg/zfree_arg.  This allows the
  480          * NOVM flag to persist even through deep recursions.  We also
  481          * store ZFLAG_BUCKET once we have recursed attempting to allocate
  482          * a bucket for a bucket zone so we do not allow infinite bucket
  483          * recursion.  This cookie will even persist to frees of unused
  484          * buckets via the allocation path or bucket allocations in the
  485          * free path.
  486          */
  487         if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
  488                 udata = (void *)(uintptr_t)zone->uz_flags;
  489         else {
  490                 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
  491                         return (NULL);
  492                 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
  493         }
  494         if (((uintptr_t)udata & UMA_ZONE_VM) != 0)
  495                 flags |= M_NOVM;
  496         ubz = bucket_zone_lookup(atomic_load_16(&zone->uz_bucket_size));
  497         if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0)
  498                 ubz++;
  499         bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
  500         if (bucket) {
  501 #ifdef INVARIANTS
  502                 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
  503 #endif
  504                 bucket->ub_cnt = 0;
  505                 bucket->ub_entries = min(ubz->ubz_entries,
  506                     zone->uz_bucket_size_max);
  507                 bucket->ub_seq = SMR_SEQ_INVALID;
  508                 CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p",
  509                     zone->uz_name, zone, bucket);
  510         }
  511 
  512         return (bucket);
  513 }
  514 
  515 static void
  516 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
  517 {
  518         struct uma_bucket_zone *ubz;
  519 
  520         if (bucket->ub_cnt != 0)
  521                 bucket_drain(zone, bucket);
  522 
  523         KASSERT(bucket->ub_cnt == 0,
  524             ("bucket_free: Freeing a non free bucket."));
  525         KASSERT(bucket->ub_seq == SMR_SEQ_INVALID,
  526             ("bucket_free: Freeing an SMR bucket."));
  527         if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
  528                 udata = (void *)(uintptr_t)zone->uz_flags;
  529         ubz = bucket_zone_lookup(bucket->ub_entries);
  530         uma_zfree_arg(ubz->ubz_zone, bucket, udata);
  531 }
  532 
  533 static void
  534 bucket_zone_drain(int domain)
  535 {
  536         struct uma_bucket_zone *ubz;
  537 
  538         for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
  539                 uma_zone_reclaim_domain(ubz->ubz_zone, UMA_RECLAIM_DRAIN,
  540                     domain);
  541 }
  542 
  543 #ifdef KASAN
  544 _Static_assert(UMA_SMALLEST_UNIT % KASAN_SHADOW_SCALE == 0,
  545     "Base UMA allocation size not a multiple of the KASAN scale factor");
  546 
  547 static void
  548 kasan_mark_item_valid(uma_zone_t zone, void *item)
  549 {
  550         void *pcpu_item;
  551         size_t sz, rsz;
  552         int i;
  553 
  554         if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0)
  555                 return;
  556 
  557         sz = zone->uz_size;
  558         rsz = roundup2(sz, KASAN_SHADOW_SCALE);
  559         if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) {
  560                 kasan_mark(item, sz, rsz, KASAN_GENERIC_REDZONE);
  561         } else {
  562                 pcpu_item = zpcpu_base_to_offset(item);
  563                 for (i = 0; i <= mp_maxid; i++)
  564                         kasan_mark(zpcpu_get_cpu(pcpu_item, i), sz, rsz,
  565                             KASAN_GENERIC_REDZONE);
  566         }
  567 }
  568 
  569 static void
  570 kasan_mark_item_invalid(uma_zone_t zone, void *item)
  571 {
  572         void *pcpu_item;
  573         size_t sz;
  574         int i;
  575 
  576         if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0)
  577                 return;
  578 
  579         sz = roundup2(zone->uz_size, KASAN_SHADOW_SCALE);
  580         if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) {
  581                 kasan_mark(item, 0, sz, KASAN_UMA_FREED);
  582         } else {
  583                 pcpu_item = zpcpu_base_to_offset(item);
  584                 for (i = 0; i <= mp_maxid; i++)
  585                         kasan_mark(zpcpu_get_cpu(pcpu_item, i), 0, sz,
  586                             KASAN_UMA_FREED);
  587         }
  588 }
  589 
  590 static void
  591 kasan_mark_slab_valid(uma_keg_t keg, void *mem)
  592 {
  593         size_t sz;
  594 
  595         if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) {
  596                 sz = keg->uk_ppera * PAGE_SIZE;
  597                 kasan_mark(mem, sz, sz, 0);
  598         }
  599 }
  600 
  601 static void
  602 kasan_mark_slab_invalid(uma_keg_t keg, void *mem)
  603 {
  604         size_t sz;
  605 
  606         if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) {
  607                 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0)
  608                         sz = keg->uk_ppera * PAGE_SIZE;
  609                 else
  610                         sz = keg->uk_pgoff;
  611                 kasan_mark(mem, 0, sz, KASAN_UMA_FREED);
  612         }
  613 }
  614 #else /* !KASAN */
  615 static void
  616 kasan_mark_item_valid(uma_zone_t zone __unused, void *item __unused)
  617 {
  618 }
  619 
  620 static void
  621 kasan_mark_item_invalid(uma_zone_t zone __unused, void *item __unused)
  622 {
  623 }
  624 
  625 static void
  626 kasan_mark_slab_valid(uma_keg_t keg __unused, void *mem __unused)
  627 {
  628 }
  629 
  630 static void
  631 kasan_mark_slab_invalid(uma_keg_t keg __unused, void *mem __unused)
  632 {
  633 }
  634 #endif /* KASAN */
  635 
  636 #ifdef KMSAN
  637 static inline void
  638 kmsan_mark_item_uninitialized(uma_zone_t zone, void *item)
  639 {
  640         void *pcpu_item;
  641         size_t sz;
  642         int i;
  643 
  644         if ((zone->uz_flags &
  645             (UMA_ZFLAG_CACHE | UMA_ZONE_SECONDARY | UMA_ZONE_MALLOC)) != 0) {
  646                 /*
  647                  * Cache zones should not be instrumented by default, as UMA
  648                  * does not have enough information to do so correctly.
  649                  * Consumers can mark items themselves if it makes sense to do
  650                  * so.
  651                  *
  652                  * Items from secondary zones are initialized by the parent
  653                  * zone and thus cannot safely be marked by UMA.
  654                  *
  655                  * malloc zones are handled directly by malloc(9) and friends,
  656                  * since they can provide more precise origin tracking.
  657                  */
  658                 return;
  659         }
  660         if (zone->uz_keg->uk_init != NULL) {
  661                 /*
  662                  * By definition, initialized items cannot be marked.  The
  663                  * best we can do is mark items from these zones after they
  664                  * are freed to the keg.
  665                  */
  666                 return;
  667         }
  668 
  669         sz = zone->uz_size;
  670         if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) {
  671                 kmsan_orig(item, sz, KMSAN_TYPE_UMA, KMSAN_RET_ADDR);
  672                 kmsan_mark(item, sz, KMSAN_STATE_UNINIT);
  673         } else {
  674                 pcpu_item = zpcpu_base_to_offset(item);
  675                 for (i = 0; i <= mp_maxid; i++) {
  676                         kmsan_orig(zpcpu_get_cpu(pcpu_item, i), sz,
  677                             KMSAN_TYPE_UMA, KMSAN_RET_ADDR);
  678                         kmsan_mark(zpcpu_get_cpu(pcpu_item, i), sz,
  679                             KMSAN_STATE_INITED);
  680                 }
  681         }
  682 }
  683 #else /* !KMSAN */
  684 static inline void
  685 kmsan_mark_item_uninitialized(uma_zone_t zone __unused, void *item __unused)
  686 {
  687 }
  688 #endif /* KMSAN */
  689 
  690 /*
  691  * Acquire the domain lock and record contention.
  692  */
  693 static uma_zone_domain_t
  694 zone_domain_lock(uma_zone_t zone, int domain)
  695 {
  696         uma_zone_domain_t zdom;
  697         bool lockfail;
  698 
  699         zdom = ZDOM_GET(zone, domain);
  700         lockfail = false;
  701         if (ZDOM_OWNED(zdom))
  702                 lockfail = true;
  703         ZDOM_LOCK(zdom);
  704         /* This is unsynchronized.  The counter does not need to be precise. */
  705         if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max)
  706                 zone->uz_bucket_size++;
  707         return (zdom);
  708 }
  709 
  710 /*
  711  * Search for the domain with the least cached items and return it if it
  712  * is out of balance with the preferred domain.
  713  */
  714 static __noinline int
  715 zone_domain_lowest(uma_zone_t zone, int pref)
  716 {
  717         long least, nitems, prefitems;
  718         int domain;
  719         int i;
  720 
  721         prefitems = least = LONG_MAX;
  722         domain = 0;
  723         for (i = 0; i < vm_ndomains; i++) {
  724                 nitems = ZDOM_GET(zone, i)->uzd_nitems;
  725                 if (nitems < least) {
  726                         domain = i;
  727                         least = nitems;
  728                 }
  729                 if (domain == pref)
  730                         prefitems = nitems;
  731         }
  732         if (prefitems < least * 2)
  733                 return (pref);
  734 
  735         return (domain);
  736 }
  737 
  738 /*
  739  * Search for the domain with the most cached items and return it or the
  740  * preferred domain if it has enough to proceed.
  741  */
  742 static __noinline int
  743 zone_domain_highest(uma_zone_t zone, int pref)
  744 {
  745         long most, nitems;
  746         int domain;
  747         int i;
  748 
  749         if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX)
  750                 return (pref);
  751 
  752         most = 0;
  753         domain = 0;
  754         for (i = 0; i < vm_ndomains; i++) {
  755                 nitems = ZDOM_GET(zone, i)->uzd_nitems;
  756                 if (nitems > most) {
  757                         domain = i;
  758                         most = nitems;
  759                 }
  760         }
  761 
  762         return (domain);
  763 }
  764 
  765 /*
  766  * Set the maximum imax value.
  767  */
  768 static void
  769 zone_domain_imax_set(uma_zone_domain_t zdom, int nitems)
  770 {
  771         long old;
  772 
  773         old = zdom->uzd_imax;
  774         do {
  775                 if (old >= nitems)
  776                         return;
  777         } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0);
  778 
  779         /*
  780          * We are at new maximum, so do the last WSS update for the old
  781          * bimin and prepare to measure next allocation batch.
  782          */
  783         if (zdom->uzd_wss < old - zdom->uzd_bimin)
  784                 zdom->uzd_wss = old - zdom->uzd_bimin;
  785         zdom->uzd_bimin = nitems;
  786 }
  787 
  788 /*
  789  * Attempt to satisfy an allocation by retrieving a full bucket from one of the
  790  * zone's caches.  If a bucket is found the zone is not locked on return.
  791  */
  792 static uma_bucket_t
  793 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim)
  794 {
  795         uma_bucket_t bucket;
  796         long cnt;
  797         int i;
  798         bool dtor = false;
  799 
  800         ZDOM_LOCK_ASSERT(zdom);
  801 
  802         if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL)
  803                 return (NULL);
  804 
  805         /* SMR Buckets can not be re-used until readers expire. */
  806         if ((zone->uz_flags & UMA_ZONE_SMR) != 0 &&
  807             bucket->ub_seq != SMR_SEQ_INVALID) {
  808                 if (!smr_poll(zone->uz_smr, bucket->ub_seq, false))
  809                         return (NULL);
  810                 bucket->ub_seq = SMR_SEQ_INVALID;
  811                 dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR;
  812                 if (STAILQ_NEXT(bucket, ub_link) != NULL)
  813                         zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq;
  814         }
  815         STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link);
  816 
  817         KASSERT(zdom->uzd_nitems >= bucket->ub_cnt,
  818             ("%s: item count underflow (%ld, %d)",
  819             __func__, zdom->uzd_nitems, bucket->ub_cnt));
  820         KASSERT(bucket->ub_cnt > 0,
  821             ("%s: empty bucket in bucket cache", __func__));
  822         zdom->uzd_nitems -= bucket->ub_cnt;
  823 
  824         if (reclaim) {
  825                 /*
  826                  * Shift the bounds of the current WSS interval to avoid
  827                  * perturbing the estimates.
  828                  */
  829                 cnt = lmin(zdom->uzd_bimin, bucket->ub_cnt);
  830                 atomic_subtract_long(&zdom->uzd_imax, cnt);
  831                 zdom->uzd_bimin -= cnt;
  832                 zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt);
  833                 if (zdom->uzd_limin >= bucket->ub_cnt) {
  834                         zdom->uzd_limin -= bucket->ub_cnt;
  835                 } else {
  836                         zdom->uzd_limin = 0;
  837                         zdom->uzd_timin = 0;
  838                 }
  839         } else if (zdom->uzd_bimin > zdom->uzd_nitems) {
  840                 zdom->uzd_bimin = zdom->uzd_nitems;
  841                 if (zdom->uzd_imin > zdom->uzd_nitems)
  842                         zdom->uzd_imin = zdom->uzd_nitems;
  843         }
  844 
  845         ZDOM_UNLOCK(zdom);
  846         if (dtor)
  847                 for (i = 0; i < bucket->ub_cnt; i++)
  848                         item_dtor(zone, bucket->ub_bucket[i], zone->uz_size,
  849                             NULL, SKIP_NONE);
  850 
  851         return (bucket);
  852 }
  853 
  854 /*
  855  * Insert a full bucket into the specified cache.  The "ws" parameter indicates
  856  * whether the bucket's contents should be counted as part of the zone's working
  857  * set.  The bucket may be freed if it exceeds the bucket limit.
  858  */
  859 static void
  860 zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata,
  861     const bool ws)
  862 {
  863         uma_zone_domain_t zdom;
  864 
  865         /* We don't cache empty buckets.  This can happen after a reclaim. */
  866         if (bucket->ub_cnt == 0)
  867                 goto out;
  868         zdom = zone_domain_lock(zone, domain);
  869 
  870         /*
  871          * Conditionally set the maximum number of items.
  872          */
  873         zdom->uzd_nitems += bucket->ub_cnt;
  874         if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) {
  875                 if (ws) {
  876                         zone_domain_imax_set(zdom, zdom->uzd_nitems);
  877                 } else {
  878                         /*
  879                          * Shift the bounds of the current WSS interval to
  880                          * avoid perturbing the estimates.
  881                          */
  882                         atomic_add_long(&zdom->uzd_imax, bucket->ub_cnt);
  883                         zdom->uzd_imin += bucket->ub_cnt;
  884                         zdom->uzd_bimin += bucket->ub_cnt;
  885                         zdom->uzd_limin += bucket->ub_cnt;
  886                 }
  887                 if (STAILQ_EMPTY(&zdom->uzd_buckets))
  888                         zdom->uzd_seq = bucket->ub_seq;
  889 
  890                 /*
  891                  * Try to promote reuse of recently used items.  For items
  892                  * protected by SMR, try to defer reuse to minimize polling.
  893                  */
  894                 if (bucket->ub_seq == SMR_SEQ_INVALID)
  895                         STAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link);
  896                 else
  897                         STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link);
  898                 ZDOM_UNLOCK(zdom);
  899                 return;
  900         }
  901         zdom->uzd_nitems -= bucket->ub_cnt;
  902         ZDOM_UNLOCK(zdom);
  903 out:
  904         bucket_free(zone, bucket, udata);
  905 }
  906 
  907 /* Pops an item out of a per-cpu cache bucket. */
  908 static inline void *
  909 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket)
  910 {
  911         void *item;
  912 
  913         CRITICAL_ASSERT(curthread);
  914 
  915         bucket->ucb_cnt--;
  916         item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt];
  917 #ifdef INVARIANTS
  918         bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL;
  919         KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
  920 #endif
  921         cache->uc_allocs++;
  922 
  923         return (item);
  924 }
  925 
  926 /* Pushes an item into a per-cpu cache bucket. */
  927 static inline void
  928 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item)
  929 {
  930 
  931         CRITICAL_ASSERT(curthread);
  932         KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL,
  933             ("uma_zfree: Freeing to non free bucket index."));
  934 
  935         bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item;
  936         bucket->ucb_cnt++;
  937         cache->uc_frees++;
  938 }
  939 
  940 /*
  941  * Unload a UMA bucket from a per-cpu cache.
  942  */
  943 static inline uma_bucket_t
  944 cache_bucket_unload(uma_cache_bucket_t bucket)
  945 {
  946         uma_bucket_t b;
  947 
  948         b = bucket->ucb_bucket;
  949         if (b != NULL) {
  950                 MPASS(b->ub_entries == bucket->ucb_entries);
  951                 b->ub_cnt = bucket->ucb_cnt;
  952                 bucket->ucb_bucket = NULL;
  953                 bucket->ucb_entries = bucket->ucb_cnt = 0;
  954         }
  955 
  956         return (b);
  957 }
  958 
  959 static inline uma_bucket_t
  960 cache_bucket_unload_alloc(uma_cache_t cache)
  961 {
  962 
  963         return (cache_bucket_unload(&cache->uc_allocbucket));
  964 }
  965 
  966 static inline uma_bucket_t
  967 cache_bucket_unload_free(uma_cache_t cache)
  968 {
  969 
  970         return (cache_bucket_unload(&cache->uc_freebucket));
  971 }
  972 
  973 static inline uma_bucket_t
  974 cache_bucket_unload_cross(uma_cache_t cache)
  975 {
  976 
  977         return (cache_bucket_unload(&cache->uc_crossbucket));
  978 }
  979 
  980 /*
  981  * Load a bucket into a per-cpu cache bucket.
  982  */
  983 static inline void
  984 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b)
  985 {
  986 
  987         CRITICAL_ASSERT(curthread);
  988         MPASS(bucket->ucb_bucket == NULL);
  989         MPASS(b->ub_seq == SMR_SEQ_INVALID);
  990 
  991         bucket->ucb_bucket = b;
  992         bucket->ucb_cnt = b->ub_cnt;
  993         bucket->ucb_entries = b->ub_entries;
  994 }
  995 
  996 static inline void
  997 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b)
  998 {
  999 
 1000         cache_bucket_load(&cache->uc_allocbucket, b);
 1001 }
 1002 
 1003 static inline void
 1004 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b)
 1005 {
 1006 
 1007         cache_bucket_load(&cache->uc_freebucket, b);
 1008 }
 1009 
 1010 #ifdef NUMA
 1011 static inline void 
 1012 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b)
 1013 {
 1014 
 1015         cache_bucket_load(&cache->uc_crossbucket, b);
 1016 }
 1017 #endif
 1018 
 1019 /*
 1020  * Copy and preserve ucb_spare.
 1021  */
 1022 static inline void
 1023 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2)
 1024 {
 1025 
 1026         b1->ucb_bucket = b2->ucb_bucket;
 1027         b1->ucb_entries = b2->ucb_entries;
 1028         b1->ucb_cnt = b2->ucb_cnt;
 1029 }
 1030 
 1031 /*
 1032  * Swap two cache buckets.
 1033  */
 1034 static inline void
 1035 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2)
 1036 {
 1037         struct uma_cache_bucket b3;
 1038 
 1039         CRITICAL_ASSERT(curthread);
 1040 
 1041         cache_bucket_copy(&b3, b1);
 1042         cache_bucket_copy(b1, b2);
 1043         cache_bucket_copy(b2, &b3);
 1044 }
 1045 
 1046 /*
 1047  * Attempt to fetch a bucket from a zone on behalf of the current cpu cache.
 1048  */
 1049 static uma_bucket_t
 1050 cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain)
 1051 {
 1052         uma_zone_domain_t zdom;
 1053         uma_bucket_t bucket;
 1054         smr_seq_t seq;
 1055 
 1056         /*
 1057          * Avoid the lock if possible.
 1058          */
 1059         zdom = ZDOM_GET(zone, domain);
 1060         if (zdom->uzd_nitems == 0)
 1061                 return (NULL);
 1062 
 1063         if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 &&
 1064             (seq = atomic_load_32(&zdom->uzd_seq)) != SMR_SEQ_INVALID &&
 1065             !smr_poll(zone->uz_smr, seq, false))
 1066                 return (NULL);
 1067 
 1068         /*
 1069          * Check the zone's cache of buckets.
 1070          */
 1071         zdom = zone_domain_lock(zone, domain);
 1072         if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL)
 1073                 return (bucket);
 1074         ZDOM_UNLOCK(zdom);
 1075 
 1076         return (NULL);
 1077 }
 1078 
 1079 static void
 1080 zone_log_warning(uma_zone_t zone)
 1081 {
 1082         static const struct timeval warninterval = { 300, 0 };
 1083 
 1084         if (!zone_warnings || zone->uz_warning == NULL)
 1085                 return;
 1086 
 1087         if (ratecheck(&zone->uz_ratecheck, &warninterval))
 1088                 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
 1089 }
 1090 
 1091 static inline void
 1092 zone_maxaction(uma_zone_t zone)
 1093 {
 1094 
 1095         if (zone->uz_maxaction.ta_func != NULL)
 1096                 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction);
 1097 }
 1098 
 1099 /*
 1100  * Routine called by timeout which is used to fire off some time interval
 1101  * based calculations.  (stats, hash size, etc.)
 1102  *
 1103  * Arguments:
 1104  *      arg   Unused
 1105  *
 1106  * Returns:
 1107  *      Nothing
 1108  */
 1109 static void
 1110 uma_timeout(void *context __unused, int pending __unused)
 1111 {
 1112         bucket_enable();
 1113         zone_foreach(zone_timeout, NULL);
 1114 
 1115         /* Reschedule this event */
 1116         taskqueue_enqueue_timeout(taskqueue_thread, &uma_timeout_task,
 1117             UMA_TIMEOUT * hz);
 1118 }
 1119 
 1120 /*
 1121  * Update the working set size estimates for the zone's bucket cache.
 1122  * The constants chosen here are somewhat arbitrary.
 1123  */
 1124 static void
 1125 zone_domain_update_wss(uma_zone_domain_t zdom)
 1126 {
 1127         long m;
 1128 
 1129         ZDOM_LOCK_ASSERT(zdom);
 1130         MPASS(zdom->uzd_imax >= zdom->uzd_nitems);
 1131         MPASS(zdom->uzd_nitems >= zdom->uzd_bimin);
 1132         MPASS(zdom->uzd_bimin >= zdom->uzd_imin);
 1133 
 1134         /*
 1135          * Estimate WSS as modified moving average of biggest allocation
 1136          * batches for each period over few minutes (UMA_TIMEOUT of 20s).
 1137          */
 1138         zdom->uzd_wss = lmax(zdom->uzd_wss * 3 / 4,
 1139             zdom->uzd_imax - zdom->uzd_bimin);
 1140 
 1141         /*
 1142          * Estimate longtime minimum item count as a combination of recent
 1143          * minimum item count, adjusted by WSS for safety, and the modified
 1144          * moving average over the last several hours (UMA_TIMEOUT of 20s).
 1145          * timin measures time since limin tried to go negative, that means
 1146          * we were dangerously close to or got out of cache.
 1147          */
 1148         m = zdom->uzd_imin - zdom->uzd_wss;
 1149         if (m >= 0) {
 1150                 if (zdom->uzd_limin >= m)
 1151                         zdom->uzd_limin = m;
 1152                 else
 1153                         zdom->uzd_limin = (m + zdom->uzd_limin * 255) / 256;
 1154                 zdom->uzd_timin++;
 1155         } else {
 1156                 zdom->uzd_limin = 0;
 1157                 zdom->uzd_timin = 0;
 1158         }
 1159 
 1160         /* To reduce period edge effects on WSS keep half of the imax. */
 1161         atomic_subtract_long(&zdom->uzd_imax,
 1162             (zdom->uzd_imax - zdom->uzd_nitems + 1) / 2);
 1163         zdom->uzd_imin = zdom->uzd_bimin = zdom->uzd_nitems;
 1164 }
 1165 
 1166 /*
 1167  * Routine to perform timeout driven calculations.  This expands the
 1168  * hashes and does per cpu statistics aggregation.
 1169  *
 1170  *  Returns nothing.
 1171  */
 1172 static void
 1173 zone_timeout(uma_zone_t zone, void *unused)
 1174 {
 1175         uma_keg_t keg;
 1176         u_int slabs, pages;
 1177 
 1178         if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0)
 1179                 goto trim;
 1180 
 1181         keg = zone->uz_keg;
 1182 
 1183         /*
 1184          * Hash zones are non-numa by definition so the first domain
 1185          * is the only one present.
 1186          */
 1187         KEG_LOCK(keg, 0);
 1188         pages = keg->uk_domain[0].ud_pages;
 1189 
 1190         /*
 1191          * Expand the keg hash table.
 1192          *
 1193          * This is done if the number of slabs is larger than the hash size.
 1194          * What I'm trying to do here is completely reduce collisions.  This
 1195          * may be a little aggressive.  Should I allow for two collisions max?
 1196          */
 1197         if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) {
 1198                 struct uma_hash newhash;
 1199                 struct uma_hash oldhash;
 1200                 int ret;
 1201 
 1202                 /*
 1203                  * This is so involved because allocating and freeing
 1204                  * while the keg lock is held will lead to deadlock.
 1205                  * I have to do everything in stages and check for
 1206                  * races.
 1207                  */
 1208                 KEG_UNLOCK(keg, 0);
 1209                 ret = hash_alloc(&newhash, 1 << fls(slabs));
 1210                 KEG_LOCK(keg, 0);
 1211                 if (ret) {
 1212                         if (hash_expand(&keg->uk_hash, &newhash)) {
 1213                                 oldhash = keg->uk_hash;
 1214                                 keg->uk_hash = newhash;
 1215                         } else
 1216                                 oldhash = newhash;
 1217 
 1218                         KEG_UNLOCK(keg, 0);
 1219                         hash_free(&oldhash);
 1220                         goto trim;
 1221                 }
 1222         }
 1223         KEG_UNLOCK(keg, 0);
 1224 
 1225 trim:
 1226         /* Trim caches not used for a long time. */
 1227         if ((zone->uz_flags & UMA_ZONE_UNMANAGED) == 0) {
 1228                 for (int i = 0; i < vm_ndomains; i++) {
 1229                         if (bucket_cache_reclaim_domain(zone, false, false, i) &&
 1230                             (zone->uz_flags & UMA_ZFLAG_CACHE) == 0)
 1231                                 keg_drain(zone->uz_keg, i);
 1232                 }
 1233         }
 1234 }
 1235 
 1236 /*
 1237  * Allocate and zero fill the next sized hash table from the appropriate
 1238  * backing store.
 1239  *
 1240  * Arguments:
 1241  *      hash  A new hash structure with the old hash size in uh_hashsize
 1242  *
 1243  * Returns:
 1244  *      1 on success and 0 on failure.
 1245  */
 1246 static int
 1247 hash_alloc(struct uma_hash *hash, u_int size)
 1248 {
 1249         size_t alloc;
 1250 
 1251         KASSERT(powerof2(size), ("hash size must be power of 2"));
 1252         if (size > UMA_HASH_SIZE_INIT)  {
 1253                 hash->uh_hashsize = size;
 1254                 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
 1255                 hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT);
 1256         } else {
 1257                 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
 1258                 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
 1259                     UMA_ANYDOMAIN, M_WAITOK);
 1260                 hash->uh_hashsize = UMA_HASH_SIZE_INIT;
 1261         }
 1262         if (hash->uh_slab_hash) {
 1263                 bzero(hash->uh_slab_hash, alloc);
 1264                 hash->uh_hashmask = hash->uh_hashsize - 1;
 1265                 return (1);
 1266         }
 1267 
 1268         return (0);
 1269 }
 1270 
 1271 /*
 1272  * Expands the hash table for HASH zones.  This is done from zone_timeout
 1273  * to reduce collisions.  This must not be done in the regular allocation
 1274  * path, otherwise, we can recurse on the vm while allocating pages.
 1275  *
 1276  * Arguments:
 1277  *      oldhash  The hash you want to expand
 1278  *      newhash  The hash structure for the new table
 1279  *
 1280  * Returns:
 1281  *      Nothing
 1282  *
 1283  * Discussion:
 1284  */
 1285 static int
 1286 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
 1287 {
 1288         uma_hash_slab_t slab;
 1289         u_int hval;
 1290         u_int idx;
 1291 
 1292         if (!newhash->uh_slab_hash)
 1293                 return (0);
 1294 
 1295         if (oldhash->uh_hashsize >= newhash->uh_hashsize)
 1296                 return (0);
 1297 
 1298         /*
 1299          * I need to investigate hash algorithms for resizing without a
 1300          * full rehash.
 1301          */
 1302 
 1303         for (idx = 0; idx < oldhash->uh_hashsize; idx++)
 1304                 while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) {
 1305                         slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]);
 1306                         LIST_REMOVE(slab, uhs_hlink);
 1307                         hval = UMA_HASH(newhash, slab->uhs_data);
 1308                         LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
 1309                             slab, uhs_hlink);
 1310                 }
 1311 
 1312         return (1);
 1313 }
 1314 
 1315 /*
 1316  * Free the hash bucket to the appropriate backing store.
 1317  *
 1318  * Arguments:
 1319  *      slab_hash  The hash bucket we're freeing
 1320  *      hashsize   The number of entries in that hash bucket
 1321  *
 1322  * Returns:
 1323  *      Nothing
 1324  */
 1325 static void
 1326 hash_free(struct uma_hash *hash)
 1327 {
 1328         if (hash->uh_slab_hash == NULL)
 1329                 return;
 1330         if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
 1331                 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
 1332         else
 1333                 free(hash->uh_slab_hash, M_UMAHASH);
 1334 }
 1335 
 1336 /*
 1337  * Frees all outstanding items in a bucket
 1338  *
 1339  * Arguments:
 1340  *      zone   The zone to free to, must be unlocked.
 1341  *      bucket The free/alloc bucket with items.
 1342  *
 1343  * Returns:
 1344  *      Nothing
 1345  */
 1346 static void
 1347 bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
 1348 {
 1349         int i;
 1350 
 1351         if (bucket->ub_cnt == 0)
 1352                 return;
 1353 
 1354         if ((zone->uz_flags & UMA_ZONE_SMR) != 0 &&
 1355             bucket->ub_seq != SMR_SEQ_INVALID) {
 1356                 smr_wait(zone->uz_smr, bucket->ub_seq);
 1357                 bucket->ub_seq = SMR_SEQ_INVALID;
 1358                 for (i = 0; i < bucket->ub_cnt; i++)
 1359                         item_dtor(zone, bucket->ub_bucket[i],
 1360                             zone->uz_size, NULL, SKIP_NONE);
 1361         }
 1362         if (zone->uz_fini)
 1363                 for (i = 0; i < bucket->ub_cnt; i++) {
 1364                         kasan_mark_item_valid(zone, bucket->ub_bucket[i]);
 1365                         zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
 1366                         kasan_mark_item_invalid(zone, bucket->ub_bucket[i]);
 1367                 }
 1368         zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
 1369         if (zone->uz_max_items > 0)
 1370                 zone_free_limit(zone, bucket->ub_cnt);
 1371 #ifdef INVARIANTS
 1372         bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt);
 1373 #endif
 1374         bucket->ub_cnt = 0;
 1375 }
 1376 
 1377 /*
 1378  * Drains the per cpu caches for a zone.
 1379  *
 1380  * NOTE: This may only be called while the zone is being torn down, and not
 1381  * during normal operation.  This is necessary in order that we do not have
 1382  * to migrate CPUs to drain the per-CPU caches.
 1383  *
 1384  * Arguments:
 1385  *      zone     The zone to drain, must be unlocked.
 1386  *
 1387  * Returns:
 1388  *      Nothing
 1389  */
 1390 static void
 1391 cache_drain(uma_zone_t zone)
 1392 {
 1393         uma_cache_t cache;
 1394         uma_bucket_t bucket;
 1395         smr_seq_t seq;
 1396         int cpu;
 1397 
 1398         /*
 1399          * XXX: It is safe to not lock the per-CPU caches, because we're
 1400          * tearing down the zone anyway.  I.e., there will be no further use
 1401          * of the caches at this point.
 1402          *
 1403          * XXX: It would good to be able to assert that the zone is being
 1404          * torn down to prevent improper use of cache_drain().
 1405          */
 1406         seq = SMR_SEQ_INVALID;
 1407         if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
 1408                 seq = smr_advance(zone->uz_smr);
 1409         CPU_FOREACH(cpu) {
 1410                 cache = &zone->uz_cpu[cpu];
 1411                 bucket = cache_bucket_unload_alloc(cache);
 1412                 if (bucket != NULL)
 1413                         bucket_free(zone, bucket, NULL);
 1414                 bucket = cache_bucket_unload_free(cache);
 1415                 if (bucket != NULL) {
 1416                         bucket->ub_seq = seq;
 1417                         bucket_free(zone, bucket, NULL);
 1418                 }
 1419                 bucket = cache_bucket_unload_cross(cache);
 1420                 if (bucket != NULL) {
 1421                         bucket->ub_seq = seq;
 1422                         bucket_free(zone, bucket, NULL);
 1423                 }
 1424         }
 1425         bucket_cache_reclaim(zone, true, UMA_ANYDOMAIN);
 1426 }
 1427 
 1428 static void
 1429 cache_shrink(uma_zone_t zone, void *unused)
 1430 {
 1431 
 1432         if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
 1433                 return;
 1434 
 1435         ZONE_LOCK(zone);
 1436         zone->uz_bucket_size =
 1437             (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2;
 1438         ZONE_UNLOCK(zone);
 1439 }
 1440 
 1441 static void
 1442 cache_drain_safe_cpu(uma_zone_t zone, void *unused)
 1443 {
 1444         uma_cache_t cache;
 1445         uma_bucket_t b1, b2, b3;
 1446         int domain;
 1447 
 1448         if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
 1449                 return;
 1450 
 1451         b1 = b2 = b3 = NULL;
 1452         critical_enter();
 1453         cache = &zone->uz_cpu[curcpu];
 1454         domain = PCPU_GET(domain);
 1455         b1 = cache_bucket_unload_alloc(cache);
 1456 
 1457         /*
 1458          * Don't flush SMR zone buckets.  This leaves the zone without a
 1459          * bucket and forces every free to synchronize().
 1460          */
 1461         if ((zone->uz_flags & UMA_ZONE_SMR) == 0) {
 1462                 b2 = cache_bucket_unload_free(cache);
 1463                 b3 = cache_bucket_unload_cross(cache);
 1464         }
 1465         critical_exit();
 1466 
 1467         if (b1 != NULL)
 1468                 zone_free_bucket(zone, b1, NULL, domain, false);
 1469         if (b2 != NULL)
 1470                 zone_free_bucket(zone, b2, NULL, domain, false);
 1471         if (b3 != NULL) {
 1472                 /* Adjust the domain so it goes to zone_free_cross. */
 1473                 domain = (domain + 1) % vm_ndomains;
 1474                 zone_free_bucket(zone, b3, NULL, domain, false);
 1475         }
 1476 }
 1477 
 1478 /*
 1479  * Safely drain per-CPU caches of a zone(s) to alloc bucket.
 1480  * This is an expensive call because it needs to bind to all CPUs
 1481  * one by one and enter a critical section on each of them in order
 1482  * to safely access their cache buckets.
 1483  * Zone lock must not be held on call this function.
 1484  */
 1485 static void
 1486 pcpu_cache_drain_safe(uma_zone_t zone)
 1487 {
 1488         int cpu;
 1489 
 1490         /*
 1491          * Polite bucket sizes shrinking was not enough, shrink aggressively.
 1492          */
 1493         if (zone)
 1494                 cache_shrink(zone, NULL);
 1495         else
 1496                 zone_foreach(cache_shrink, NULL);
 1497 
 1498         CPU_FOREACH(cpu) {
 1499                 thread_lock(curthread);
 1500                 sched_bind(curthread, cpu);
 1501                 thread_unlock(curthread);
 1502 
 1503                 if (zone)
 1504                         cache_drain_safe_cpu(zone, NULL);
 1505                 else
 1506                         zone_foreach(cache_drain_safe_cpu, NULL);
 1507         }
 1508         thread_lock(curthread);
 1509         sched_unbind(curthread);
 1510         thread_unlock(curthread);
 1511 }
 1512 
 1513 /*
 1514  * Reclaim cached buckets from a zone.  All buckets are reclaimed if the caller
 1515  * requested a drain, otherwise the per-domain caches are trimmed to either
 1516  * estimated working set size.
 1517  */
 1518 static bool
 1519 bucket_cache_reclaim_domain(uma_zone_t zone, bool drain, bool trim, int domain)
 1520 {
 1521         uma_zone_domain_t zdom;
 1522         uma_bucket_t bucket;
 1523         long target;
 1524         bool done = false;
 1525 
 1526         /*
 1527          * The cross bucket is partially filled and not part of
 1528          * the item count.  Reclaim it individually here.
 1529          */
 1530         zdom = ZDOM_GET(zone, domain);
 1531         if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) {
 1532                 ZONE_CROSS_LOCK(zone);
 1533                 bucket = zdom->uzd_cross;
 1534                 zdom->uzd_cross = NULL;
 1535                 ZONE_CROSS_UNLOCK(zone);
 1536                 if (bucket != NULL)
 1537                         bucket_free(zone, bucket, NULL);
 1538         }
 1539 
 1540         /*
 1541          * If we were asked to drain the zone, we are done only once
 1542          * this bucket cache is empty.  If trim, we reclaim items in
 1543          * excess of the zone's estimated working set size.  Multiple
 1544          * consecutive calls will shrink the WSS and so reclaim more.
 1545          * If neither drain nor trim, then voluntarily reclaim 1/4
 1546          * (to reduce first spike) of items not used for a long time.
 1547          */
 1548         ZDOM_LOCK(zdom);
 1549         zone_domain_update_wss(zdom);
 1550         if (drain)
 1551                 target = 0;
 1552         else if (trim)
 1553                 target = zdom->uzd_wss;
 1554         else if (zdom->uzd_timin > 900 / UMA_TIMEOUT)
 1555                 target = zdom->uzd_nitems - zdom->uzd_limin / 4;
 1556         else {
 1557                 ZDOM_UNLOCK(zdom);
 1558                 return (done);
 1559         }
 1560         while ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) != NULL &&
 1561             zdom->uzd_nitems >= target + bucket->ub_cnt) {
 1562                 bucket = zone_fetch_bucket(zone, zdom, true);
 1563                 if (bucket == NULL)
 1564                         break;
 1565                 bucket_free(zone, bucket, NULL);
 1566                 done = true;
 1567                 ZDOM_LOCK(zdom);
 1568         }
 1569         ZDOM_UNLOCK(zdom);
 1570         return (done);
 1571 }
 1572 
 1573 static void
 1574 bucket_cache_reclaim(uma_zone_t zone, bool drain, int domain)
 1575 {
 1576         int i;
 1577 
 1578         /*
 1579          * Shrink the zone bucket size to ensure that the per-CPU caches
 1580          * don't grow too large.
 1581          */
 1582         if (zone->uz_bucket_size > zone->uz_bucket_size_min)
 1583                 zone->uz_bucket_size--;
 1584 
 1585         if (domain != UMA_ANYDOMAIN &&
 1586             (zone->uz_flags & UMA_ZONE_ROUNDROBIN) == 0) {
 1587                 bucket_cache_reclaim_domain(zone, drain, true, domain);
 1588         } else {
 1589                 for (i = 0; i < vm_ndomains; i++)
 1590                         bucket_cache_reclaim_domain(zone, drain, true, i);
 1591         }
 1592 }
 1593 
 1594 static void
 1595 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
 1596 {
 1597         uint8_t *mem;
 1598         size_t size;
 1599         int i;
 1600         uint8_t flags;
 1601 
 1602         CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes",
 1603             keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera);
 1604 
 1605         mem = slab_data(slab, keg);
 1606         size = PAGE_SIZE * keg->uk_ppera;
 1607 
 1608         kasan_mark_slab_valid(keg, mem);
 1609         if (keg->uk_fini != NULL) {
 1610                 for (i = start - 1; i > -1; i--)
 1611 #ifdef INVARIANTS
 1612                 /*
 1613                  * trash_fini implies that dtor was trash_dtor. trash_fini
 1614                  * would check that memory hasn't been modified since free,
 1615                  * which executed trash_dtor.
 1616                  * That's why we need to run uma_dbg_kskip() check here,
 1617                  * albeit we don't make skip check for other init/fini
 1618                  * invocations.
 1619                  */
 1620                 if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) ||
 1621                     keg->uk_fini != trash_fini)
 1622 #endif
 1623                         keg->uk_fini(slab_item(slab, keg, i), keg->uk_size);
 1624         }
 1625         flags = slab->us_flags;
 1626         if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) {
 1627                 zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab),
 1628                     NULL, SKIP_NONE);
 1629         }
 1630         keg->uk_freef(mem, size, flags);
 1631         uma_total_dec(size);
 1632 }
 1633 
 1634 static void
 1635 keg_drain_domain(uma_keg_t keg, int domain)
 1636 {
 1637         struct slabhead freeslabs;
 1638         uma_domain_t dom;
 1639         uma_slab_t slab, tmp;
 1640         uint32_t i, stofree, stokeep, partial;
 1641 
 1642         dom = &keg->uk_domain[domain];
 1643         LIST_INIT(&freeslabs);
 1644 
 1645         CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u",
 1646             keg->uk_name, keg, domain, dom->ud_free_items);
 1647 
 1648         KEG_LOCK(keg, domain);
 1649 
 1650         /*
 1651          * Are the free items in partially allocated slabs sufficient to meet
 1652          * the reserve? If not, compute the number of fully free slabs that must
 1653          * be kept.
 1654          */
 1655         partial = dom->ud_free_items - dom->ud_free_slabs * keg->uk_ipers;
 1656         if (partial < keg->uk_reserve) {
 1657                 stokeep = min(dom->ud_free_slabs,
 1658                     howmany(keg->uk_reserve - partial, keg->uk_ipers));
 1659         } else {
 1660                 stokeep = 0;
 1661         }
 1662         stofree = dom->ud_free_slabs - stokeep;
 1663 
 1664         /*
 1665          * Partition the free slabs into two sets: those that must be kept in
 1666          * order to maintain the reserve, and those that may be released back to
 1667          * the system.  Since one set may be much larger than the other,
 1668          * populate the smaller of the two sets and swap them if necessary.
 1669          */
 1670         for (i = min(stofree, stokeep); i > 0; i--) {
 1671                 slab = LIST_FIRST(&dom->ud_free_slab);
 1672                 LIST_REMOVE(slab, us_link);
 1673                 LIST_INSERT_HEAD(&freeslabs, slab, us_link);
 1674         }
 1675         if (stofree > stokeep)
 1676                 LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link);
 1677 
 1678         if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) {
 1679                 LIST_FOREACH(slab, &freeslabs, us_link)
 1680                         UMA_HASH_REMOVE(&keg->uk_hash, slab);
 1681         }
 1682         dom->ud_free_items -= stofree * keg->uk_ipers;
 1683         dom->ud_free_slabs -= stofree;
 1684         dom->ud_pages -= stofree * keg->uk_ppera;
 1685         KEG_UNLOCK(keg, domain);
 1686 
 1687         LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp)
 1688                 keg_free_slab(keg, slab, keg->uk_ipers);
 1689 }
 1690 
 1691 /*
 1692  * Frees pages from a keg back to the system.  This is done on demand from
 1693  * the pageout daemon.
 1694  *
 1695  * Returns nothing.
 1696  */
 1697 static void
 1698 keg_drain(uma_keg_t keg, int domain)
 1699 {
 1700         int i;
 1701 
 1702         if ((keg->uk_flags & UMA_ZONE_NOFREE) != 0)
 1703                 return;
 1704         if (domain != UMA_ANYDOMAIN) {
 1705                 keg_drain_domain(keg, domain);
 1706         } else {
 1707                 for (i = 0; i < vm_ndomains; i++)
 1708                         keg_drain_domain(keg, i);
 1709         }
 1710 }
 1711 
 1712 static void
 1713 zone_reclaim(uma_zone_t zone, int domain, int waitok, bool drain)
 1714 {
 1715         /*
 1716          * Count active reclaim operations in order to interlock with
 1717          * zone_dtor(), which removes the zone from global lists before
 1718          * attempting to reclaim items itself.
 1719          *
 1720          * The zone may be destroyed while sleeping, so only zone_dtor() should
 1721          * specify M_WAITOK.
 1722          */
 1723         ZONE_LOCK(zone);
 1724         if (waitok == M_WAITOK) {
 1725                 while (zone->uz_reclaimers > 0)
 1726                         msleep(zone, ZONE_LOCKPTR(zone), PVM, "zonedrain", 1);
 1727         }
 1728         zone->uz_reclaimers++;
 1729         ZONE_UNLOCK(zone);
 1730         bucket_cache_reclaim(zone, drain, domain);
 1731 
 1732         if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0)
 1733                 keg_drain(zone->uz_keg, domain);
 1734         ZONE_LOCK(zone);
 1735         zone->uz_reclaimers--;
 1736         if (zone->uz_reclaimers == 0)
 1737                 wakeup(zone);
 1738         ZONE_UNLOCK(zone);
 1739 }
 1740 
 1741 /*
 1742  * Allocate a new slab for a keg and inserts it into the partial slab list.
 1743  * The keg should be unlocked on entry.  If the allocation succeeds it will
 1744  * be locked on return.
 1745  *
 1746  * Arguments:
 1747  *      flags   Wait flags for the item initialization routine
 1748  *      aflags  Wait flags for the slab allocation
 1749  *
 1750  * Returns:
 1751  *      The slab that was allocated or NULL if there is no memory and the
 1752  *      caller specified M_NOWAIT.
 1753  */
 1754 static uma_slab_t
 1755 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags,
 1756     int aflags)
 1757 {
 1758         uma_domain_t dom;
 1759         uma_slab_t slab;
 1760         unsigned long size;
 1761         uint8_t *mem;
 1762         uint8_t sflags;
 1763         int i;
 1764 
 1765         TSENTER();
 1766 
 1767         KASSERT(domain >= 0 && domain < vm_ndomains,
 1768             ("keg_alloc_slab: domain %d out of range", domain));
 1769 
 1770         slab = NULL;
 1771         mem = NULL;
 1772         if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) {
 1773                 uma_hash_slab_t hslab;
 1774                 hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL,
 1775                     domain, aflags);
 1776                 if (hslab == NULL)
 1777                         goto fail;
 1778                 slab = &hslab->uhs_slab;
 1779         }
 1780 
 1781         /*
 1782          * This reproduces the old vm_zone behavior of zero filling pages the
 1783          * first time they are added to a zone.
 1784          *
 1785          * Malloced items are zeroed in uma_zalloc.
 1786          */
 1787 
 1788         if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
 1789                 aflags |= M_ZERO;
 1790         else
 1791                 aflags &= ~M_ZERO;
 1792 
 1793         if (keg->uk_flags & UMA_ZONE_NODUMP)
 1794                 aflags |= M_NODUMP;
 1795 
 1796         /* zone is passed for legacy reasons. */
 1797         size = keg->uk_ppera * PAGE_SIZE;
 1798         mem = keg->uk_allocf(zone, size, domain, &sflags, aflags);
 1799         if (mem == NULL) {
 1800                 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE)
 1801                         zone_free_item(slabzone(keg->uk_ipers),
 1802                             slab_tohashslab(slab), NULL, SKIP_NONE);
 1803                 goto fail;
 1804         }
 1805         uma_total_inc(size);
 1806 
 1807         /* For HASH zones all pages go to the same uma_domain. */
 1808         if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0)
 1809                 domain = 0;
 1810 
 1811         kmsan_mark(mem, size,
 1812             (aflags & M_ZERO) != 0 ? KMSAN_STATE_INITED : KMSAN_STATE_UNINIT);
 1813 
 1814         /* Point the slab into the allocated memory */
 1815         if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE))
 1816                 slab = (uma_slab_t)(mem + keg->uk_pgoff);
 1817         else
 1818                 slab_tohashslab(slab)->uhs_data = mem;
 1819 
 1820         if (keg->uk_flags & UMA_ZFLAG_VTOSLAB)
 1821                 for (i = 0; i < keg->uk_ppera; i++)
 1822                         vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE),
 1823                             zone, slab);
 1824 
 1825         slab->us_freecount = keg->uk_ipers;
 1826         slab->us_flags = sflags;
 1827         slab->us_domain = domain;
 1828 
 1829         BIT_FILL(keg->uk_ipers, &slab->us_free);
 1830 #ifdef INVARIANTS
 1831         BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg));
 1832 #endif
 1833 
 1834         if (keg->uk_init != NULL) {
 1835                 for (i = 0; i < keg->uk_ipers; i++)
 1836                         if (keg->uk_init(slab_item(slab, keg, i),
 1837                             keg->uk_size, flags) != 0)
 1838                                 break;
 1839                 if (i != keg->uk_ipers) {
 1840                         keg_free_slab(keg, slab, i);
 1841                         goto fail;
 1842                 }
 1843         }
 1844         kasan_mark_slab_invalid(keg, mem);
 1845         KEG_LOCK(keg, domain);
 1846 
 1847         CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)",
 1848             slab, keg->uk_name, keg);
 1849 
 1850         if (keg->uk_flags & UMA_ZFLAG_HASH)
 1851                 UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
 1852 
 1853         /*
 1854          * If we got a slab here it's safe to mark it partially used
 1855          * and return.  We assume that the caller is going to remove
 1856          * at least one item.
 1857          */
 1858         dom = &keg->uk_domain[domain];
 1859         LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
 1860         dom->ud_pages += keg->uk_ppera;
 1861         dom->ud_free_items += keg->uk_ipers;
 1862 
 1863         TSEXIT();
 1864         return (slab);
 1865 
 1866 fail:
 1867         return (NULL);
 1868 }
 1869 
 1870 /*
 1871  * This function is intended to be used early on in place of page_alloc().  It
 1872  * performs contiguous physical memory allocations and uses a bump allocator for
 1873  * KVA, so is usable before the kernel map is initialized.
 1874  */
 1875 static void *
 1876 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
 1877     int wait)
 1878 {
 1879         vm_paddr_t pa;
 1880         vm_page_t m;
 1881         int i, pages;
 1882 
 1883         pages = howmany(bytes, PAGE_SIZE);
 1884         KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__));
 1885 
 1886         *pflag = UMA_SLAB_BOOT;
 1887         m = vm_page_alloc_noobj_contig_domain(domain, malloc2vm_flags(wait) |
 1888             VM_ALLOC_WIRED, pages, (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0,
 1889             VM_MEMATTR_DEFAULT);
 1890         if (m == NULL)
 1891                 return (NULL);
 1892 
 1893         pa = VM_PAGE_TO_PHYS(m);
 1894         for (i = 0; i < pages; i++, pa += PAGE_SIZE) {
 1895 #if defined(__aarch64__) || defined(__amd64__) || \
 1896     defined(__riscv) || defined(__powerpc64__)
 1897                 if ((wait & M_NODUMP) == 0)
 1898                         dump_add_page(pa);
 1899 #endif
 1900         }
 1901 
 1902         /* Allocate KVA and indirectly advance bootmem. */
 1903         return ((void *)pmap_map(&bootmem, m->phys_addr,
 1904             m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE));
 1905 }
 1906 
 1907 static void
 1908 startup_free(void *mem, vm_size_t bytes)
 1909 {
 1910         vm_offset_t va;
 1911         vm_page_t m;
 1912 
 1913         va = (vm_offset_t)mem;
 1914         m = PHYS_TO_VM_PAGE(pmap_kextract(va));
 1915 
 1916         /*
 1917          * startup_alloc() returns direct-mapped slabs on some platforms.  Avoid
 1918          * unmapping ranges of the direct map.
 1919          */
 1920         if (va >= bootstart && va + bytes <= bootmem)
 1921                 pmap_remove(kernel_pmap, va, va + bytes);
 1922         for (; bytes != 0; bytes -= PAGE_SIZE, m++) {
 1923 #if defined(__aarch64__) || defined(__amd64__) || \
 1924     defined(__riscv) || defined(__powerpc64__)
 1925                 dump_drop_page(VM_PAGE_TO_PHYS(m));
 1926 #endif
 1927                 vm_page_unwire_noq(m);
 1928                 vm_page_free(m);
 1929         }
 1930 }
 1931 
 1932 /*
 1933  * Allocates a number of pages from the system
 1934  *
 1935  * Arguments:
 1936  *      bytes  The number of bytes requested
 1937  *      wait  Shall we wait?
 1938  *
 1939  * Returns:
 1940  *      A pointer to the alloced memory or possibly
 1941  *      NULL if M_NOWAIT is set.
 1942  */
 1943 static void *
 1944 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
 1945     int wait)
 1946 {
 1947         void *p;        /* Returned page */
 1948 
 1949         *pflag = UMA_SLAB_KERNEL;
 1950         p = kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait);
 1951 
 1952         return (p);
 1953 }
 1954 
 1955 static void *
 1956 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
 1957     int wait)
 1958 {
 1959         struct pglist alloctail;
 1960         vm_offset_t addr, zkva;
 1961         int cpu, flags;
 1962         vm_page_t p, p_next;
 1963 #ifdef NUMA
 1964         struct pcpu *pc;
 1965 #endif
 1966 
 1967         MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE);
 1968 
 1969         TAILQ_INIT(&alloctail);
 1970         flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | malloc2vm_flags(wait);
 1971         *pflag = UMA_SLAB_KERNEL;
 1972         for (cpu = 0; cpu <= mp_maxid; cpu++) {
 1973                 if (CPU_ABSENT(cpu)) {
 1974                         p = vm_page_alloc_noobj(flags);
 1975                 } else {
 1976 #ifndef NUMA
 1977                         p = vm_page_alloc_noobj(flags);
 1978 #else
 1979                         pc = pcpu_find(cpu);
 1980                         if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain)))
 1981                                 p = NULL;
 1982                         else
 1983                                 p = vm_page_alloc_noobj_domain(pc->pc_domain,
 1984                                     flags);
 1985                         if (__predict_false(p == NULL))
 1986                                 p = vm_page_alloc_noobj(flags);
 1987 #endif
 1988                 }
 1989                 if (__predict_false(p == NULL))
 1990                         goto fail;
 1991                 TAILQ_INSERT_TAIL(&alloctail, p, listq);
 1992         }
 1993         if ((addr = kva_alloc(bytes)) == 0)
 1994                 goto fail;
 1995         zkva = addr;
 1996         TAILQ_FOREACH(p, &alloctail, listq) {
 1997                 pmap_qenter(zkva, &p, 1);
 1998                 zkva += PAGE_SIZE;
 1999         }
 2000         return ((void*)addr);
 2001 fail:
 2002         TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
 2003                 vm_page_unwire_noq(p);
 2004                 vm_page_free(p);
 2005         }
 2006         return (NULL);
 2007 }
 2008 
 2009 /*
 2010  * Allocates a number of pages not belonging to a VM object
 2011  *
 2012  * Arguments:
 2013  *      bytes  The number of bytes requested
 2014  *      wait   Shall we wait?
 2015  *
 2016  * Returns:
 2017  *      A pointer to the alloced memory or possibly
 2018  *      NULL if M_NOWAIT is set.
 2019  */
 2020 static void *
 2021 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
 2022     int wait)
 2023 {
 2024         TAILQ_HEAD(, vm_page) alloctail;
 2025         u_long npages;
 2026         vm_offset_t retkva, zkva;
 2027         vm_page_t p, p_next;
 2028         uma_keg_t keg;
 2029         int req;
 2030 
 2031         TAILQ_INIT(&alloctail);
 2032         keg = zone->uz_keg;
 2033         req = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
 2034         if ((wait & M_WAITOK) != 0)
 2035                 req |= VM_ALLOC_WAITOK;
 2036 
 2037         npages = howmany(bytes, PAGE_SIZE);
 2038         while (npages > 0) {
 2039                 p = vm_page_alloc_noobj_domain(domain, req);
 2040                 if (p != NULL) {
 2041                         /*
 2042                          * Since the page does not belong to an object, its
 2043                          * listq is unused.
 2044                          */
 2045                         TAILQ_INSERT_TAIL(&alloctail, p, listq);
 2046                         npages--;
 2047                         continue;
 2048                 }
 2049                 /*
 2050                  * Page allocation failed, free intermediate pages and
 2051                  * exit.
 2052                  */
 2053                 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
 2054                         vm_page_unwire_noq(p);
 2055                         vm_page_free(p); 
 2056                 }
 2057                 return (NULL);
 2058         }
 2059         *flags = UMA_SLAB_PRIV;
 2060         zkva = keg->uk_kva +
 2061             atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
 2062         retkva = zkva;
 2063         TAILQ_FOREACH(p, &alloctail, listq) {
 2064                 pmap_qenter(zkva, &p, 1);
 2065                 zkva += PAGE_SIZE;
 2066         }
 2067 
 2068         return ((void *)retkva);
 2069 }
 2070 
 2071 /*
 2072  * Allocate physically contiguous pages.
 2073  */
 2074 static void *
 2075 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
 2076     int wait)
 2077 {
 2078 
 2079         *pflag = UMA_SLAB_KERNEL;
 2080         return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain),
 2081             bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT));
 2082 }
 2083 
 2084 /*
 2085  * Frees a number of pages to the system
 2086  *
 2087  * Arguments:
 2088  *      mem   A pointer to the memory to be freed
 2089  *      size  The size of the memory being freed
 2090  *      flags The original p->us_flags field
 2091  *
 2092  * Returns:
 2093  *      Nothing
 2094  */
 2095 static void
 2096 page_free(void *mem, vm_size_t size, uint8_t flags)
 2097 {
 2098 
 2099         if ((flags & UMA_SLAB_BOOT) != 0) {
 2100                 startup_free(mem, size);
 2101                 return;
 2102         }
 2103 
 2104         KASSERT((flags & UMA_SLAB_KERNEL) != 0,
 2105             ("UMA: page_free used with invalid flags %x", flags));
 2106 
 2107         kmem_free(mem, size);
 2108 }
 2109 
 2110 /*
 2111  * Frees pcpu zone allocations
 2112  *
 2113  * Arguments:
 2114  *      mem   A pointer to the memory to be freed
 2115  *      size  The size of the memory being freed
 2116  *      flags The original p->us_flags field
 2117  *
 2118  * Returns:
 2119  *      Nothing
 2120  */
 2121 static void
 2122 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags)
 2123 {
 2124         vm_offset_t sva, curva;
 2125         vm_paddr_t paddr;
 2126         vm_page_t m;
 2127 
 2128         MPASS(size == (mp_maxid+1)*PAGE_SIZE);
 2129 
 2130         if ((flags & UMA_SLAB_BOOT) != 0) {
 2131                 startup_free(mem, size);
 2132                 return;
 2133         }
 2134 
 2135         sva = (vm_offset_t)mem;
 2136         for (curva = sva; curva < sva + size; curva += PAGE_SIZE) {
 2137                 paddr = pmap_kextract(curva);
 2138                 m = PHYS_TO_VM_PAGE(paddr);
 2139                 vm_page_unwire_noq(m);
 2140                 vm_page_free(m);
 2141         }
 2142         pmap_qremove(sva, size >> PAGE_SHIFT);
 2143         kva_free(sva, size);
 2144 }
 2145 
 2146 /*
 2147  * Zero fill initializer
 2148  *
 2149  * Arguments/Returns follow uma_init specifications
 2150  */
 2151 static int
 2152 zero_init(void *mem, int size, int flags)
 2153 {
 2154         bzero(mem, size);
 2155         return (0);
 2156 }
 2157 
 2158 #ifdef INVARIANTS
 2159 static struct noslabbits *
 2160 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg)
 2161 {
 2162 
 2163         return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers)));
 2164 }
 2165 #endif
 2166 
 2167 /*
 2168  * Actual size of embedded struct slab (!OFFPAGE).
 2169  */
 2170 static size_t
 2171 slab_sizeof(int nitems)
 2172 {
 2173         size_t s;
 2174 
 2175         s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS;
 2176         return (roundup(s, UMA_ALIGN_PTR + 1));
 2177 }
 2178 
 2179 #define UMA_FIXPT_SHIFT 31
 2180 #define UMA_FRAC_FIXPT(n, d)                                            \
 2181         ((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d)))
 2182 #define UMA_FIXPT_PCT(f)                                                \
 2183         ((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT))
 2184 #define UMA_PCT_FIXPT(pct)      UMA_FRAC_FIXPT((pct), 100)
 2185 #define UMA_MIN_EFF     UMA_PCT_FIXPT(100 - UMA_MAX_WASTE)
 2186 
 2187 /*
 2188  * Compute the number of items that will fit in a slab.  If hdr is true, the
 2189  * item count may be limited to provide space in the slab for an inline slab
 2190  * header.  Otherwise, all slab space will be provided for item storage.
 2191  */
 2192 static u_int
 2193 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr)
 2194 {
 2195         u_int ipers;
 2196         u_int padpi;
 2197 
 2198         /* The padding between items is not needed after the last item. */
 2199         padpi = rsize - size;
 2200 
 2201         if (hdr) {
 2202                 /*
 2203                  * Start with the maximum item count and remove items until
 2204                  * the slab header first alongside the allocatable memory.
 2205                  */
 2206                 for (ipers = MIN(SLAB_MAX_SETSIZE,
 2207                     (slabsize + padpi - slab_sizeof(1)) / rsize);
 2208                     ipers > 0 &&
 2209                     ipers * rsize - padpi + slab_sizeof(ipers) > slabsize;
 2210                     ipers--)
 2211                         continue;
 2212         } else {
 2213                 ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE);
 2214         }
 2215 
 2216         return (ipers);
 2217 }
 2218 
 2219 struct keg_layout_result {
 2220         u_int format;
 2221         u_int slabsize;
 2222         u_int ipers;
 2223         u_int eff;
 2224 };
 2225 
 2226 static void
 2227 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt,
 2228     struct keg_layout_result *kl)
 2229 {
 2230         u_int total;
 2231 
 2232         kl->format = fmt;
 2233         kl->slabsize = slabsize;
 2234 
 2235         /* Handle INTERNAL as inline with an extra page. */
 2236         if ((fmt & UMA_ZFLAG_INTERNAL) != 0) {
 2237                 kl->format &= ~UMA_ZFLAG_INTERNAL;
 2238                 kl->slabsize += PAGE_SIZE;
 2239         }
 2240 
 2241         kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize,
 2242             (fmt & UMA_ZFLAG_OFFPAGE) == 0);
 2243 
 2244         /* Account for memory used by an offpage slab header. */
 2245         total = kl->slabsize;
 2246         if ((fmt & UMA_ZFLAG_OFFPAGE) != 0)
 2247                 total += slabzone(kl->ipers)->uz_keg->uk_rsize;
 2248 
 2249         kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total);
 2250 }
 2251 
 2252 /*
 2253  * Determine the format of a uma keg.  This determines where the slab header
 2254  * will be placed (inline or offpage) and calculates ipers, rsize, and ppera.
 2255  *
 2256  * Arguments
 2257  *      keg  The zone we should initialize
 2258  *
 2259  * Returns
 2260  *      Nothing
 2261  */
 2262 static void
 2263 keg_layout(uma_keg_t keg)
 2264 {
 2265         struct keg_layout_result kl = {}, kl_tmp;
 2266         u_int fmts[2];
 2267         u_int alignsize;
 2268         u_int nfmt;
 2269         u_int pages;
 2270         u_int rsize;
 2271         u_int slabsize;
 2272         u_int i, j;
 2273 
 2274         KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
 2275             (keg->uk_size <= UMA_PCPU_ALLOC_SIZE &&
 2276              (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0),
 2277             ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b",
 2278              __func__, keg->uk_name, keg->uk_size, keg->uk_flags,
 2279              PRINT_UMA_ZFLAGS));
 2280         KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 ||
 2281             (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0,
 2282             ("%s: incompatible flags 0x%b", __func__, keg->uk_flags,
 2283              PRINT_UMA_ZFLAGS));
 2284 
 2285         alignsize = keg->uk_align + 1;
 2286 #ifdef KASAN
 2287         /*
 2288          * ASAN requires that each allocation be aligned to the shadow map
 2289          * scale factor.
 2290          */
 2291         if (alignsize < KASAN_SHADOW_SCALE)
 2292                 alignsize = KASAN_SHADOW_SCALE;
 2293 #endif
 2294 
 2295         /*
 2296          * Calculate the size of each allocation (rsize) according to
 2297          * alignment.  If the requested size is smaller than we have
 2298          * allocation bits for we round it up.
 2299          */
 2300         rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT);
 2301         rsize = roundup2(rsize, alignsize);
 2302 
 2303         if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) {
 2304                 /*
 2305                  * We want one item to start on every align boundary in a page.
 2306                  * To do this we will span pages.  We will also extend the item
 2307                  * by the size of align if it is an even multiple of align.
 2308                  * Otherwise, it would fall on the same boundary every time.
 2309                  */
 2310                 if ((rsize & alignsize) == 0)
 2311                         rsize += alignsize;
 2312                 slabsize = rsize * (PAGE_SIZE / alignsize);
 2313                 slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE);
 2314                 slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE);
 2315                 slabsize = round_page(slabsize);
 2316         } else {
 2317                 /*
 2318                  * Start with a slab size of as many pages as it takes to
 2319                  * represent a single item.  We will try to fit as many
 2320                  * additional items into the slab as possible.
 2321                  */
 2322                 slabsize = round_page(keg->uk_size);
 2323         }
 2324 
 2325         /* Build a list of all of the available formats for this keg. */
 2326         nfmt = 0;
 2327 
 2328         /* Evaluate an inline slab layout. */
 2329         if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0)
 2330                 fmts[nfmt++] = 0;
 2331 
 2332         /* TODO: vm_page-embedded slab. */
 2333 
 2334         /*
 2335          * We can't do OFFPAGE if we're internal or if we've been
 2336          * asked to not go to the VM for buckets.  If we do this we
 2337          * may end up going to the VM for slabs which we do not want
 2338          * to do if we're UMA_ZONE_VM, which clearly forbids it.
 2339          * In those cases, evaluate a pseudo-format called INTERNAL
 2340          * which has an inline slab header and one extra page to
 2341          * guarantee that it fits.
 2342          *
 2343          * Otherwise, see if using an OFFPAGE slab will improve our
 2344          * efficiency.
 2345          */
 2346         if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0)
 2347                 fmts[nfmt++] = UMA_ZFLAG_INTERNAL;
 2348         else
 2349                 fmts[nfmt++] = UMA_ZFLAG_OFFPAGE;
 2350 
 2351         /*
 2352          * Choose a slab size and format which satisfy the minimum efficiency.
 2353          * Prefer the smallest slab size that meets the constraints.
 2354          *
 2355          * Start with a minimum slab size, to accommodate CACHESPREAD.  Then,
 2356          * for small items (up to PAGE_SIZE), the iteration increment is one
 2357          * page; and for large items, the increment is one item.
 2358          */
 2359         i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize);
 2360         KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u",
 2361             keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize,
 2362             rsize, i));
 2363         for ( ; ; i++) {
 2364                 slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) :
 2365                     round_page(rsize * (i - 1) + keg->uk_size);
 2366 
 2367                 for (j = 0; j < nfmt; j++) {
 2368                         /* Only if we have no viable format yet. */
 2369                         if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 &&
 2370                             kl.ipers > 0)
 2371                                 continue;
 2372 
 2373                         keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp);
 2374                         if (kl_tmp.eff <= kl.eff)
 2375                                 continue;
 2376 
 2377                         kl = kl_tmp;
 2378 
 2379                         CTR6(KTR_UMA, "keg %s layout: format %#x "
 2380                             "(ipers %u * rsize %u) / slabsize %#x = %u%% eff",
 2381                             keg->uk_name, kl.format, kl.ipers, rsize,
 2382                             kl.slabsize, UMA_FIXPT_PCT(kl.eff));
 2383 
 2384                         /* Stop when we reach the minimum efficiency. */
 2385                         if (kl.eff >= UMA_MIN_EFF)
 2386                                 break;
 2387                 }
 2388 
 2389                 if (kl.eff >= UMA_MIN_EFF || !multipage_slabs ||
 2390                     slabsize >= SLAB_MAX_SETSIZE * rsize ||
 2391                     (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0)
 2392                         break;
 2393         }
 2394 
 2395         pages = atop(kl.slabsize);
 2396         if ((keg->uk_flags & UMA_ZONE_PCPU) != 0)
 2397                 pages *= mp_maxid + 1;
 2398 
 2399         keg->uk_rsize = rsize;
 2400         keg->uk_ipers = kl.ipers;
 2401         keg->uk_ppera = pages;
 2402         keg->uk_flags |= kl.format;
 2403 
 2404         /*
 2405          * How do we find the slab header if it is offpage or if not all item
 2406          * start addresses are in the same page?  We could solve the latter
 2407          * case with vaddr alignment, but we don't.
 2408          */
 2409         if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 ||
 2410             (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) {
 2411                 if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0)
 2412                         keg->uk_flags |= UMA_ZFLAG_HASH;
 2413                 else
 2414                         keg->uk_flags |= UMA_ZFLAG_VTOSLAB;
 2415         }
 2416 
 2417         CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u",
 2418             __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers,
 2419             pages);
 2420         KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE,
 2421             ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__,
 2422              keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize,
 2423              keg->uk_ipers, pages));
 2424 }
 2425 
 2426 /*
 2427  * Keg header ctor.  This initializes all fields, locks, etc.  And inserts
 2428  * the keg onto the global keg list.
 2429  *
 2430  * Arguments/Returns follow uma_ctor specifications
 2431  *      udata  Actually uma_kctor_args
 2432  */
 2433 static int
 2434 keg_ctor(void *mem, int size, void *udata, int flags)
 2435 {
 2436         struct uma_kctor_args *arg = udata;
 2437         uma_keg_t keg = mem;
 2438         uma_zone_t zone;
 2439         int i;
 2440 
 2441         bzero(keg, size);
 2442         keg->uk_size = arg->size;
 2443         keg->uk_init = arg->uminit;
 2444         keg->uk_fini = arg->fini;
 2445         keg->uk_align = arg->align;
 2446         keg->uk_reserve = 0;
 2447         keg->uk_flags = arg->flags;
 2448 
 2449         /*
 2450          * We use a global round-robin policy by default.  Zones with
 2451          * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which
 2452          * case the iterator is never run.
 2453          */
 2454         keg->uk_dr.dr_policy = DOMAINSET_RR();
 2455         keg->uk_dr.dr_iter = 0;
 2456 
 2457         /*
 2458          * The primary zone is passed to us at keg-creation time.
 2459          */
 2460         zone = arg->zone;
 2461         keg->uk_name = zone->uz_name;
 2462 
 2463         if (arg->flags & UMA_ZONE_ZINIT)
 2464                 keg->uk_init = zero_init;
 2465 
 2466         if (arg->flags & UMA_ZONE_MALLOC)
 2467                 keg->uk_flags |= UMA_ZFLAG_VTOSLAB;
 2468 
 2469 #ifndef SMP
 2470         keg->uk_flags &= ~UMA_ZONE_PCPU;
 2471 #endif
 2472 
 2473         keg_layout(keg);
 2474 
 2475         /*
 2476          * Use a first-touch NUMA policy for kegs that pmap_extract() will
 2477          * work on.  Use round-robin for everything else.
 2478          *
 2479          * Zones may override the default by specifying either.
 2480          */
 2481 #ifdef NUMA
 2482         if ((keg->uk_flags &
 2483             (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0)
 2484                 keg->uk_flags |= UMA_ZONE_FIRSTTOUCH;
 2485         else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0)
 2486                 keg->uk_flags |= UMA_ZONE_ROUNDROBIN;
 2487 #endif
 2488 
 2489         /*
 2490          * If we haven't booted yet we need allocations to go through the
 2491          * startup cache until the vm is ready.
 2492          */
 2493 #ifdef UMA_MD_SMALL_ALLOC
 2494         if (keg->uk_ppera == 1)
 2495                 keg->uk_allocf = uma_small_alloc;
 2496         else
 2497 #endif
 2498         if (booted < BOOT_KVA)
 2499                 keg->uk_allocf = startup_alloc;
 2500         else if (keg->uk_flags & UMA_ZONE_PCPU)
 2501                 keg->uk_allocf = pcpu_page_alloc;
 2502         else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1)
 2503                 keg->uk_allocf = contig_alloc;
 2504         else
 2505                 keg->uk_allocf = page_alloc;
 2506 #ifdef UMA_MD_SMALL_ALLOC
 2507         if (keg->uk_ppera == 1)
 2508                 keg->uk_freef = uma_small_free;
 2509         else
 2510 #endif
 2511         if (keg->uk_flags & UMA_ZONE_PCPU)
 2512                 keg->uk_freef = pcpu_page_free;
 2513         else
 2514                 keg->uk_freef = page_free;
 2515 
 2516         /*
 2517          * Initialize keg's locks.
 2518          */
 2519         for (i = 0; i < vm_ndomains; i++)
 2520                 KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS));
 2521 
 2522         /*
 2523          * If we're putting the slab header in the actual page we need to
 2524          * figure out where in each page it goes.  See slab_sizeof
 2525          * definition.
 2526          */
 2527         if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) {
 2528                 size_t shsize;
 2529 
 2530                 shsize = slab_sizeof(keg->uk_ipers);
 2531                 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize;
 2532                 /*
 2533                  * The only way the following is possible is if with our
 2534                  * UMA_ALIGN_PTR adjustments we are now bigger than
 2535                  * UMA_SLAB_SIZE.  I haven't checked whether this is
 2536                  * mathematically possible for all cases, so we make
 2537                  * sure here anyway.
 2538                  */
 2539                 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera,
 2540                     ("zone %s ipers %d rsize %d size %d slab won't fit",
 2541                     zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size));
 2542         }
 2543 
 2544         if (keg->uk_flags & UMA_ZFLAG_HASH)
 2545                 hash_alloc(&keg->uk_hash, 0);
 2546 
 2547         CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone);
 2548 
 2549         LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
 2550 
 2551         rw_wlock(&uma_rwlock);
 2552         LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
 2553         rw_wunlock(&uma_rwlock);
 2554         return (0);
 2555 }
 2556 
 2557 static void
 2558 zone_kva_available(uma_zone_t zone, void *unused)
 2559 {
 2560         uma_keg_t keg;
 2561 
 2562         if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
 2563                 return;
 2564         KEG_GET(zone, keg);
 2565 
 2566         if (keg->uk_allocf == startup_alloc) {
 2567                 /* Switch to the real allocator. */
 2568                 if (keg->uk_flags & UMA_ZONE_PCPU)
 2569                         keg->uk_allocf = pcpu_page_alloc;
 2570                 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 &&
 2571                     keg->uk_ppera > 1)
 2572                         keg->uk_allocf = contig_alloc;
 2573                 else
 2574                         keg->uk_allocf = page_alloc;
 2575         }
 2576 }
 2577 
 2578 static void
 2579 zone_alloc_counters(uma_zone_t zone, void *unused)
 2580 {
 2581 
 2582         zone->uz_allocs = counter_u64_alloc(M_WAITOK);
 2583         zone->uz_frees = counter_u64_alloc(M_WAITOK);
 2584         zone->uz_fails = counter_u64_alloc(M_WAITOK);
 2585         zone->uz_xdomain = counter_u64_alloc(M_WAITOK);
 2586 }
 2587 
 2588 static void
 2589 zone_alloc_sysctl(uma_zone_t zone, void *unused)
 2590 {
 2591         uma_zone_domain_t zdom;
 2592         uma_domain_t dom;
 2593         uma_keg_t keg;
 2594         struct sysctl_oid *oid, *domainoid;
 2595         int domains, i, cnt;
 2596         static const char *nokeg = "cache zone";
 2597         char *c;
 2598 
 2599         /*
 2600          * Make a sysctl safe copy of the zone name by removing
 2601          * any special characters and handling dups by appending
 2602          * an index.
 2603          */
 2604         if (zone->uz_namecnt != 0) {
 2605                 /* Count the number of decimal digits and '_' separator. */
 2606                 for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++)
 2607                         cnt /= 10;
 2608                 zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1,
 2609                     M_UMA, M_WAITOK);
 2610                 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name,
 2611                     zone->uz_namecnt);
 2612         } else
 2613                 zone->uz_ctlname = strdup(zone->uz_name, M_UMA);
 2614         for (c = zone->uz_ctlname; *c != '\0'; c++)
 2615                 if (strchr("./\\ -", *c) != NULL)
 2616                         *c = '_';
 2617 
 2618         /*
 2619          * Basic parameters at the root.
 2620          */
 2621         zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma),
 2622             OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
 2623         oid = zone->uz_oid;
 2624         SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2625             "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size");
 2626         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2627             "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE,
 2628             zone, 0, sysctl_handle_uma_zone_flags, "A",
 2629             "Allocator configuration flags");
 2630         SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2631             "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0,
 2632             "Desired per-cpu cache size");
 2633         SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2634             "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0,
 2635             "Maximum allowed per-cpu cache size");
 2636 
 2637         /*
 2638          * keg if present.
 2639          */
 2640         if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0)
 2641                 domains = vm_ndomains;
 2642         else
 2643                 domains = 1;
 2644         oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
 2645             "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
 2646         keg = zone->uz_keg;
 2647         if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) {
 2648                 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2649                     "name", CTLFLAG_RD, keg->uk_name, "Keg name");
 2650                 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2651                     "rsize", CTLFLAG_RD, &keg->uk_rsize, 0,
 2652                     "Real object size with alignment");
 2653                 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2654                     "ppera", CTLFLAG_RD, &keg->uk_ppera, 0,
 2655                     "pages per-slab allocation");
 2656                 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2657                     "ipers", CTLFLAG_RD, &keg->uk_ipers, 0,
 2658                     "items available per-slab");
 2659                 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2660                     "align", CTLFLAG_RD, &keg->uk_align, 0,
 2661                     "item alignment mask");
 2662                 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2663                     "reserve", CTLFLAG_RD, &keg->uk_reserve, 0,
 2664                     "number of reserved items");
 2665                 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2666                     "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE,
 2667                     keg, 0, sysctl_handle_uma_slab_efficiency, "I",
 2668                     "Slab utilization (100 - internal fragmentation %)");
 2669                 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid),
 2670                     OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
 2671                 for (i = 0; i < domains; i++) {
 2672                         dom = &keg->uk_domain[i];
 2673                         oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid),
 2674                             OID_AUTO, VM_DOMAIN(i)->vmd_name,
 2675                             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
 2676                         SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2677                             "pages", CTLFLAG_RD, &dom->ud_pages, 0,
 2678                             "Total pages currently allocated from VM");
 2679                         SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2680                             "free_items", CTLFLAG_RD, &dom->ud_free_items, 0,
 2681                             "Items free in the slab layer");
 2682                         SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2683                             "free_slabs", CTLFLAG_RD, &dom->ud_free_slabs, 0,
 2684                             "Unused slabs");
 2685                 }
 2686         } else
 2687                 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2688                     "name", CTLFLAG_RD, nokeg, "Keg name");
 2689 
 2690         /*
 2691          * Information about zone limits.
 2692          */
 2693         oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
 2694             "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
 2695         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2696             "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
 2697             zone, 0, sysctl_handle_uma_zone_items, "QU",
 2698             "Current number of allocated items if limit is set");
 2699         SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2700             "max_items", CTLFLAG_RD, &zone->uz_max_items, 0,
 2701             "Maximum number of allocated and cached items");
 2702         SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2703             "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0,
 2704             "Number of threads sleeping at limit");
 2705         SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2706             "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0,
 2707             "Total zone limit sleeps");
 2708         SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2709             "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0,
 2710             "Maximum number of items in each domain's bucket cache");
 2711 
 2712         /*
 2713          * Per-domain zone information.
 2714          */
 2715         domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid),
 2716             OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
 2717         for (i = 0; i < domains; i++) {
 2718                 zdom = ZDOM_GET(zone, i);
 2719                 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid),
 2720                     OID_AUTO, VM_DOMAIN(i)->vmd_name,
 2721                     CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
 2722                 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2723                     "nitems", CTLFLAG_RD, &zdom->uzd_nitems,
 2724                     "number of items in this domain");
 2725                 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2726                     "imax", CTLFLAG_RD, &zdom->uzd_imax,
 2727                     "maximum item count in this period");
 2728                 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2729                     "imin", CTLFLAG_RD, &zdom->uzd_imin,
 2730                     "minimum item count in this period");
 2731                 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2732                     "bimin", CTLFLAG_RD, &zdom->uzd_bimin,
 2733                     "Minimum item count in this batch");
 2734                 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2735                     "wss", CTLFLAG_RD, &zdom->uzd_wss,
 2736                     "Working set size");
 2737                 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2738                     "limin", CTLFLAG_RD, &zdom->uzd_limin,
 2739                     "Long time minimum item count");
 2740                 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2741                     "timin", CTLFLAG_RD, &zdom->uzd_timin, 0,
 2742                     "Time since zero long time minimum item count");
 2743         }
 2744 
 2745         /*
 2746          * General statistics.
 2747          */
 2748         oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
 2749             "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
 2750         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2751             "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE,
 2752             zone, 1, sysctl_handle_uma_zone_cur, "I",
 2753             "Current number of allocated items");
 2754         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2755             "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
 2756             zone, 0, sysctl_handle_uma_zone_allocs, "QU",
 2757             "Total allocation calls");
 2758         SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2759             "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
 2760             zone, 0, sysctl_handle_uma_zone_frees, "QU",
 2761             "Total free calls");
 2762         SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2763             "fails", CTLFLAG_RD, &zone->uz_fails,
 2764             "Number of allocation failures");
 2765         SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
 2766             "xdomain", CTLFLAG_RD, &zone->uz_xdomain,
 2767             "Free calls from the wrong domain");
 2768 }
 2769 
 2770 struct uma_zone_count {
 2771         const char      *name;
 2772         int             count;
 2773 };
 2774 
 2775 static void
 2776 zone_count(uma_zone_t zone, void *arg)
 2777 {
 2778         struct uma_zone_count *cnt;
 2779 
 2780         cnt = arg;
 2781         /*
 2782          * Some zones are rapidly created with identical names and
 2783          * destroyed out of order.  This can lead to gaps in the count.
 2784          * Use one greater than the maximum observed for this name.
 2785          */
 2786         if (strcmp(zone->uz_name, cnt->name) == 0)
 2787                 cnt->count = MAX(cnt->count,
 2788                     zone->uz_namecnt + 1);
 2789 }
 2790 
 2791 static void
 2792 zone_update_caches(uma_zone_t zone)
 2793 {
 2794         int i;
 2795 
 2796         for (i = 0; i <= mp_maxid; i++) {
 2797                 cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size);
 2798                 cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags);
 2799         }
 2800 }
 2801 
 2802 /*
 2803  * Zone header ctor.  This initializes all fields, locks, etc.
 2804  *
 2805  * Arguments/Returns follow uma_ctor specifications
 2806  *      udata  Actually uma_zctor_args
 2807  */
 2808 static int
 2809 zone_ctor(void *mem, int size, void *udata, int flags)
 2810 {
 2811         struct uma_zone_count cnt;
 2812         struct uma_zctor_args *arg = udata;
 2813         uma_zone_domain_t zdom;
 2814         uma_zone_t zone = mem;
 2815         uma_zone_t z;
 2816         uma_keg_t keg;
 2817         int i;
 2818 
 2819         bzero(zone, size);
 2820         zone->uz_name = arg->name;
 2821         zone->uz_ctor = arg->ctor;
 2822         zone->uz_dtor = arg->dtor;
 2823         zone->uz_init = NULL;
 2824         zone->uz_fini = NULL;
 2825         zone->uz_sleeps = 0;
 2826         zone->uz_bucket_size = 0;
 2827         zone->uz_bucket_size_min = 0;
 2828         zone->uz_bucket_size_max = BUCKET_MAX;
 2829         zone->uz_flags = (arg->flags & UMA_ZONE_SMR);
 2830         zone->uz_warning = NULL;
 2831         /* The domain structures follow the cpu structures. */
 2832         zone->uz_bucket_max = ULONG_MAX;
 2833         timevalclear(&zone->uz_ratecheck);
 2834 
 2835         /* Count the number of duplicate names. */
 2836         cnt.name = arg->name;
 2837         cnt.count = 0;
 2838         zone_foreach(zone_count, &cnt);
 2839         zone->uz_namecnt = cnt.count;
 2840         ZONE_CROSS_LOCK_INIT(zone);
 2841 
 2842         for (i = 0; i < vm_ndomains; i++) {
 2843                 zdom = ZDOM_GET(zone, i);
 2844                 ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS));
 2845                 STAILQ_INIT(&zdom->uzd_buckets);
 2846         }
 2847 
 2848 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN)
 2849         if (arg->uminit == trash_init && arg->fini == trash_fini)
 2850                 zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR;
 2851 #elif defined(KASAN)
 2852         if ((arg->flags & (UMA_ZONE_NOFREE | UMA_ZFLAG_CACHE)) != 0)
 2853                 arg->flags |= UMA_ZONE_NOKASAN;
 2854 #endif
 2855 
 2856         /*
 2857          * This is a pure cache zone, no kegs.
 2858          */
 2859         if (arg->import) {
 2860                 KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0,
 2861                     ("zone_ctor: Import specified for non-cache zone."));
 2862                 zone->uz_flags = arg->flags;
 2863                 zone->uz_size = arg->size;
 2864                 zone->uz_import = arg->import;
 2865                 zone->uz_release = arg->release;
 2866                 zone->uz_arg = arg->arg;
 2867 #ifdef NUMA
 2868                 /*
 2869                  * Cache zones are round-robin unless a policy is
 2870                  * specified because they may have incompatible
 2871                  * constraints.
 2872                  */
 2873                 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0)
 2874                         zone->uz_flags |= UMA_ZONE_ROUNDROBIN;
 2875 #endif
 2876                 rw_wlock(&uma_rwlock);
 2877                 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link);
 2878                 rw_wunlock(&uma_rwlock);
 2879                 goto out;
 2880         }
 2881 
 2882         /*
 2883          * Use the regular zone/keg/slab allocator.
 2884          */
 2885         zone->uz_import = zone_import;
 2886         zone->uz_release = zone_release;
 2887         zone->uz_arg = zone; 
 2888         keg = arg->keg;
 2889 
 2890         if (arg->flags & UMA_ZONE_SECONDARY) {
 2891                 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
 2892                     ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
 2893                 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
 2894                 zone->uz_init = arg->uminit;
 2895                 zone->uz_fini = arg->fini;
 2896                 zone->uz_flags |= UMA_ZONE_SECONDARY;
 2897                 rw_wlock(&uma_rwlock);
 2898                 ZONE_LOCK(zone);
 2899                 LIST_FOREACH(z, &keg->uk_zones, uz_link) {
 2900                         if (LIST_NEXT(z, uz_link) == NULL) {
 2901                                 LIST_INSERT_AFTER(z, zone, uz_link);
 2902                                 break;
 2903                         }
 2904                 }
 2905                 ZONE_UNLOCK(zone);
 2906                 rw_wunlock(&uma_rwlock);
 2907         } else if (keg == NULL) {
 2908                 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
 2909                     arg->align, arg->flags)) == NULL)
 2910                         return (ENOMEM);
 2911         } else {
 2912                 struct uma_kctor_args karg;
 2913                 int error;
 2914 
 2915                 /* We should only be here from uma_startup() */
 2916                 karg.size = arg->size;
 2917                 karg.uminit = arg->uminit;
 2918                 karg.fini = arg->fini;
 2919                 karg.align = arg->align;
 2920                 karg.flags = (arg->flags & ~UMA_ZONE_SMR);
 2921                 karg.zone = zone;
 2922                 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
 2923                     flags);
 2924                 if (error)
 2925                         return (error);
 2926         }
 2927 
 2928         /* Inherit properties from the keg. */
 2929         zone->uz_keg = keg;
 2930         zone->uz_size = keg->uk_size;
 2931         zone->uz_flags |= (keg->uk_flags &
 2932             (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
 2933 
 2934 out:
 2935         if (booted >= BOOT_PCPU) {
 2936                 zone_alloc_counters(zone, NULL);
 2937                 if (booted >= BOOT_RUNNING)
 2938                         zone_alloc_sysctl(zone, NULL);
 2939         } else {
 2940                 zone->uz_allocs = EARLY_COUNTER;
 2941                 zone->uz_frees = EARLY_COUNTER;
 2942                 zone->uz_fails = EARLY_COUNTER;
 2943         }
 2944 
 2945         /* Caller requests a private SMR context. */
 2946         if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
 2947                 zone->uz_smr = smr_create(zone->uz_name, 0, 0);
 2948 
 2949         KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) !=
 2950             (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET),
 2951             ("Invalid zone flag combination"));
 2952         if (arg->flags & UMA_ZFLAG_INTERNAL)
 2953                 zone->uz_bucket_size_max = zone->uz_bucket_size = 0;
 2954         if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0)
 2955                 zone->uz_bucket_size = BUCKET_MAX;
 2956         else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0)
 2957                 zone->uz_bucket_size = 0;
 2958         else
 2959                 zone->uz_bucket_size = bucket_select(zone->uz_size);
 2960         zone->uz_bucket_size_min = zone->uz_bucket_size;
 2961         if (zone->uz_dtor != NULL || zone->uz_ctor != NULL)
 2962                 zone->uz_flags |= UMA_ZFLAG_CTORDTOR;
 2963         zone_update_caches(zone);
 2964 
 2965         return (0);
 2966 }
 2967 
 2968 /*
 2969  * Keg header dtor.  This frees all data, destroys locks, frees the hash
 2970  * table and removes the keg from the global list.
 2971  *
 2972  * Arguments/Returns follow uma_dtor specifications
 2973  *      udata  unused
 2974  */
 2975 static void
 2976 keg_dtor(void *arg, int size, void *udata)
 2977 {
 2978         uma_keg_t keg;
 2979         uint32_t free, pages;
 2980         int i;
 2981 
 2982         keg = (uma_keg_t)arg;
 2983         free = pages = 0;
 2984         for (i = 0; i < vm_ndomains; i++) {
 2985                 free += keg->uk_domain[i].ud_free_items;
 2986                 pages += keg->uk_domain[i].ud_pages;
 2987                 KEG_LOCK_FINI(keg, i);
 2988         }
 2989         if (pages != 0)
 2990                 printf("Freed UMA keg (%s) was not empty (%u items). "
 2991                     " Lost %u pages of memory.\n",
 2992                     keg->uk_name ? keg->uk_name : "",
 2993                     pages / keg->uk_ppera * keg->uk_ipers - free, pages);
 2994 
 2995         hash_free(&keg->uk_hash);
 2996 }
 2997 
 2998 /*
 2999  * Zone header dtor.
 3000  *
 3001  * Arguments/Returns follow uma_dtor specifications
 3002  *      udata  unused
 3003  */
 3004 static void
 3005 zone_dtor(void *arg, int size, void *udata)
 3006 {
 3007         uma_zone_t zone;
 3008         uma_keg_t keg;
 3009         int i;
 3010 
 3011         zone = (uma_zone_t)arg;
 3012 
 3013         sysctl_remove_oid(zone->uz_oid, 1, 1);
 3014 
 3015         if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
 3016                 cache_drain(zone);
 3017 
 3018         rw_wlock(&uma_rwlock);
 3019         LIST_REMOVE(zone, uz_link);
 3020         rw_wunlock(&uma_rwlock);
 3021         if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) {
 3022                 keg = zone->uz_keg;
 3023                 keg->uk_reserve = 0;
 3024         }
 3025         zone_reclaim(zone, UMA_ANYDOMAIN, M_WAITOK, true);
 3026 
 3027         /*
 3028          * We only destroy kegs from non secondary/non cache zones.
 3029          */
 3030         if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) {
 3031                 keg = zone->uz_keg;
 3032                 rw_wlock(&uma_rwlock);
 3033                 LIST_REMOVE(keg, uk_link);
 3034                 rw_wunlock(&uma_rwlock);
 3035                 zone_free_item(kegs, keg, NULL, SKIP_NONE);
 3036         }
 3037         counter_u64_free(zone->uz_allocs);
 3038         counter_u64_free(zone->uz_frees);
 3039         counter_u64_free(zone->uz_fails);
 3040         counter_u64_free(zone->uz_xdomain);
 3041         free(zone->uz_ctlname, M_UMA);
 3042         for (i = 0; i < vm_ndomains; i++)
 3043                 ZDOM_LOCK_FINI(ZDOM_GET(zone, i));
 3044         ZONE_CROSS_LOCK_FINI(zone);
 3045 }
 3046 
 3047 static void
 3048 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg)
 3049 {
 3050         uma_keg_t keg;
 3051         uma_zone_t zone;
 3052 
 3053         LIST_FOREACH(keg, &uma_kegs, uk_link) {
 3054                 LIST_FOREACH(zone, &keg->uk_zones, uz_link)
 3055                         zfunc(zone, arg);
 3056         }
 3057         LIST_FOREACH(zone, &uma_cachezones, uz_link)
 3058                 zfunc(zone, arg);
 3059 }
 3060 
 3061 /*
 3062  * Traverses every zone in the system and calls a callback
 3063  *
 3064  * Arguments:
 3065  *      zfunc  A pointer to a function which accepts a zone
 3066  *              as an argument.
 3067  *
 3068  * Returns:
 3069  *      Nothing
 3070  */
 3071 static void
 3072 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg)
 3073 {
 3074 
 3075         rw_rlock(&uma_rwlock);
 3076         zone_foreach_unlocked(zfunc, arg);
 3077         rw_runlock(&uma_rwlock);
 3078 }
 3079 
 3080 /*
 3081  * Initialize the kernel memory allocator.  This is done after pages can be
 3082  * allocated but before general KVA is available.
 3083  */
 3084 void
 3085 uma_startup1(vm_offset_t virtual_avail)
 3086 {
 3087         struct uma_zctor_args args;
 3088         size_t ksize, zsize, size;
 3089         uma_keg_t primarykeg;
 3090         uintptr_t m;
 3091         int domain;
 3092         uint8_t pflag;
 3093 
 3094         bootstart = bootmem = virtual_avail;
 3095 
 3096         rw_init(&uma_rwlock, "UMA lock");
 3097         sx_init(&uma_reclaim_lock, "umareclaim");
 3098 
 3099         ksize = sizeof(struct uma_keg) +
 3100             (sizeof(struct uma_domain) * vm_ndomains);
 3101         ksize = roundup(ksize, UMA_SUPER_ALIGN);
 3102         zsize = sizeof(struct uma_zone) +
 3103             (sizeof(struct uma_cache) * (mp_maxid + 1)) +
 3104             (sizeof(struct uma_zone_domain) * vm_ndomains);
 3105         zsize = roundup(zsize, UMA_SUPER_ALIGN);
 3106 
 3107         /* Allocate the zone of zones, zone of kegs, and zone of zones keg. */
 3108         size = (zsize * 2) + ksize;
 3109         for (domain = 0; domain < vm_ndomains; domain++) {
 3110                 m = (uintptr_t)startup_alloc(NULL, size, domain, &pflag,
 3111                     M_NOWAIT | M_ZERO);
 3112                 if (m != 0)
 3113                         break;
 3114         }
 3115         zones = (uma_zone_t)m;
 3116         m += zsize;
 3117         kegs = (uma_zone_t)m;
 3118         m += zsize;
 3119         primarykeg = (uma_keg_t)m;
 3120 
 3121         /* "manually" create the initial zone */
 3122         memset(&args, 0, sizeof(args));
 3123         args.name = "UMA Kegs";
 3124         args.size = ksize;
 3125         args.ctor = keg_ctor;
 3126         args.dtor = keg_dtor;
 3127         args.uminit = zero_init;
 3128         args.fini = NULL;
 3129         args.keg = primarykeg;
 3130         args.align = UMA_SUPER_ALIGN - 1;
 3131         args.flags = UMA_ZFLAG_INTERNAL;
 3132         zone_ctor(kegs, zsize, &args, M_WAITOK);
 3133 
 3134         args.name = "UMA Zones";
 3135         args.size = zsize;
 3136         args.ctor = zone_ctor;
 3137         args.dtor = zone_dtor;
 3138         args.uminit = zero_init;
 3139         args.fini = NULL;
 3140         args.keg = NULL;
 3141         args.align = UMA_SUPER_ALIGN - 1;
 3142         args.flags = UMA_ZFLAG_INTERNAL;
 3143         zone_ctor(zones, zsize, &args, M_WAITOK);
 3144 
 3145         /* Now make zones for slab headers */
 3146         slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE,
 3147             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
 3148         slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE,
 3149             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
 3150 
 3151         hashzone = uma_zcreate("UMA Hash",
 3152             sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
 3153             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
 3154 
 3155         bucket_init();
 3156         smr_init();
 3157 }
 3158 
 3159 #ifndef UMA_MD_SMALL_ALLOC
 3160 extern void vm_radix_reserve_kva(void);
 3161 #endif
 3162 
 3163 /*
 3164  * Advertise the availability of normal kva allocations and switch to
 3165  * the default back-end allocator.  Marks the KVA we consumed on startup
 3166  * as used in the map.
 3167  */
 3168 void
 3169 uma_startup2(void)
 3170 {
 3171 
 3172         if (bootstart != bootmem) {
 3173                 vm_map_lock(kernel_map);
 3174                 (void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem,
 3175                     VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
 3176                 vm_map_unlock(kernel_map);
 3177         }
 3178 
 3179 #ifndef UMA_MD_SMALL_ALLOC
 3180         /* Set up radix zone to use noobj_alloc. */
 3181         vm_radix_reserve_kva();
 3182 #endif
 3183 
 3184         booted = BOOT_KVA;
 3185         zone_foreach_unlocked(zone_kva_available, NULL);
 3186         bucket_enable();
 3187 }
 3188 
 3189 /*
 3190  * Allocate counters as early as possible so that boot-time allocations are
 3191  * accounted more precisely.
 3192  */
 3193 static void
 3194 uma_startup_pcpu(void *arg __unused)
 3195 {
 3196 
 3197         zone_foreach_unlocked(zone_alloc_counters, NULL);
 3198         booted = BOOT_PCPU;
 3199 }
 3200 SYSINIT(uma_startup_pcpu, SI_SUB_COUNTER, SI_ORDER_ANY, uma_startup_pcpu, NULL);
 3201 
 3202 /*
 3203  * Finish our initialization steps.
 3204  */
 3205 static void
 3206 uma_startup3(void *arg __unused)
 3207 {
 3208 
 3209 #ifdef INVARIANTS
 3210         TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor);
 3211         uma_dbg_cnt = counter_u64_alloc(M_WAITOK);
 3212         uma_skip_cnt = counter_u64_alloc(M_WAITOK);
 3213 #endif
 3214         zone_foreach_unlocked(zone_alloc_sysctl, NULL);
 3215         booted = BOOT_RUNNING;
 3216 
 3217         EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL,
 3218             EVENTHANDLER_PRI_FIRST);
 3219 }
 3220 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
 3221 
 3222 static void
 3223 uma_startup4(void *arg __unused)
 3224 {
 3225         TIMEOUT_TASK_INIT(taskqueue_thread, &uma_timeout_task, 0, uma_timeout,
 3226             NULL);
 3227         taskqueue_enqueue_timeout(taskqueue_thread, &uma_timeout_task,
 3228             UMA_TIMEOUT * hz);
 3229 }
 3230 SYSINIT(uma_startup4, SI_SUB_TASKQ, SI_ORDER_ANY, uma_startup4, NULL);
 3231 
 3232 static void
 3233 uma_shutdown(void)
 3234 {
 3235 
 3236         booted = BOOT_SHUTDOWN;
 3237 }
 3238 
 3239 static uma_keg_t
 3240 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
 3241                 int align, uint32_t flags)
 3242 {
 3243         struct uma_kctor_args args;
 3244 
 3245         args.size = size;
 3246         args.uminit = uminit;
 3247         args.fini = fini;
 3248         args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
 3249         args.flags = flags;
 3250         args.zone = zone;
 3251         return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK));
 3252 }
 3253 
 3254 /* Public functions */
 3255 /* See uma.h */
 3256 void
 3257 uma_set_align(int align)
 3258 {
 3259 
 3260         if (align != UMA_ALIGN_CACHE)
 3261                 uma_align_cache = align;
 3262 }
 3263 
 3264 /* See uma.h */
 3265 uma_zone_t
 3266 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
 3267                 uma_init uminit, uma_fini fini, int align, uint32_t flags)
 3268 
 3269 {
 3270         struct uma_zctor_args args;
 3271         uma_zone_t res;
 3272 
 3273         KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"",
 3274             align, name));
 3275 
 3276         /* This stuff is essential for the zone ctor */
 3277         memset(&args, 0, sizeof(args));
 3278         args.name = name;
 3279         args.size = size;
 3280         args.ctor = ctor;
 3281         args.dtor = dtor;
 3282         args.uminit = uminit;
 3283         args.fini = fini;
 3284 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN)
 3285         /*
 3286          * Inject procedures which check for memory use after free if we are
 3287          * allowed to scramble the memory while it is not allocated.  This
 3288          * requires that: UMA is actually able to access the memory, no init
 3289          * or fini procedures, no dependency on the initial value of the
 3290          * memory, and no (legitimate) use of the memory after free.  Note,
 3291          * the ctor and dtor do not need to be empty.
 3292          */
 3293         if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH |
 3294             UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) {
 3295                 args.uminit = trash_init;
 3296                 args.fini = trash_fini;
 3297         }
 3298 #endif
 3299         args.align = align;
 3300         args.flags = flags;
 3301         args.keg = NULL;
 3302 
 3303         sx_xlock(&uma_reclaim_lock);
 3304         res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
 3305         sx_xunlock(&uma_reclaim_lock);
 3306 
 3307         return (res);
 3308 }
 3309 
 3310 /* See uma.h */
 3311 uma_zone_t
 3312 uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor,
 3313     uma_init zinit, uma_fini zfini, uma_zone_t primary)
 3314 {
 3315         struct uma_zctor_args args;
 3316         uma_keg_t keg;
 3317         uma_zone_t res;
 3318 
 3319         keg = primary->uz_keg;
 3320         memset(&args, 0, sizeof(args));
 3321         args.name = name;
 3322         args.size = keg->uk_size;
 3323         args.ctor = ctor;
 3324         args.dtor = dtor;
 3325         args.uminit = zinit;
 3326         args.fini = zfini;
 3327         args.align = keg->uk_align;
 3328         args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
 3329         args.keg = keg;
 3330 
 3331         sx_xlock(&uma_reclaim_lock);
 3332         res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
 3333         sx_xunlock(&uma_reclaim_lock);
 3334 
 3335         return (res);
 3336 }
 3337 
 3338 /* See uma.h */
 3339 uma_zone_t
 3340 uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor,
 3341     uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease,
 3342     void *arg, int flags)
 3343 {
 3344         struct uma_zctor_args args;
 3345 
 3346         memset(&args, 0, sizeof(args));
 3347         args.name = name;
 3348         args.size = size;
 3349         args.ctor = ctor;
 3350         args.dtor = dtor;
 3351         args.uminit = zinit;
 3352         args.fini = zfini;
 3353         args.import = zimport;
 3354         args.release = zrelease;
 3355         args.arg = arg;
 3356         args.align = 0;
 3357         args.flags = flags | UMA_ZFLAG_CACHE;
 3358 
 3359         return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK));
 3360 }
 3361 
 3362 /* See uma.h */
 3363 void
 3364 uma_zdestroy(uma_zone_t zone)
 3365 {
 3366 
 3367         /*
 3368          * Large slabs are expensive to reclaim, so don't bother doing
 3369          * unnecessary work if we're shutting down.
 3370          */
 3371         if (booted == BOOT_SHUTDOWN &&
 3372             zone->uz_fini == NULL && zone->uz_release == zone_release)
 3373                 return;
 3374         sx_xlock(&uma_reclaim_lock);
 3375         zone_free_item(zones, zone, NULL, SKIP_NONE);
 3376         sx_xunlock(&uma_reclaim_lock);
 3377 }
 3378 
 3379 void
 3380 uma_zwait(uma_zone_t zone)
 3381 {
 3382 
 3383         if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
 3384                 uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK));
 3385         else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0)
 3386                 uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK));
 3387         else
 3388                 uma_zfree(zone, uma_zalloc(zone, M_WAITOK));
 3389 }
 3390 
 3391 void *
 3392 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags)
 3393 {
 3394         void *item, *pcpu_item;
 3395 #ifdef SMP
 3396         int i;
 3397 
 3398         MPASS(zone->uz_flags & UMA_ZONE_PCPU);
 3399 #endif
 3400         item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO);
 3401         if (item == NULL)
 3402                 return (NULL);
 3403         pcpu_item = zpcpu_base_to_offset(item);
 3404         if (flags & M_ZERO) {
 3405 #ifdef SMP
 3406                 for (i = 0; i <= mp_maxid; i++)
 3407                         bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size);
 3408 #else
 3409                 bzero(item, zone->uz_size);
 3410 #endif
 3411         }
 3412         return (pcpu_item);
 3413 }
 3414 
 3415 /*
 3416  * A stub while both regular and pcpu cases are identical.
 3417  */
 3418 void
 3419 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata)
 3420 {
 3421         void *item;
 3422 
 3423 #ifdef SMP
 3424         MPASS(zone->uz_flags & UMA_ZONE_PCPU);
 3425 #endif
 3426 
 3427         /* uma_zfree_pcu_*(..., NULL) does nothing, to match free(9). */
 3428         if (pcpu_item == NULL)
 3429                 return;
 3430 
 3431         item = zpcpu_offset_to_base(pcpu_item);
 3432         uma_zfree_arg(zone, item, udata);
 3433 }
 3434 
 3435 static inline void *
 3436 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags,
 3437     void *item)
 3438 {
 3439 #ifdef INVARIANTS
 3440         bool skipdbg;
 3441 #endif
 3442 
 3443         kasan_mark_item_valid(zone, item);
 3444         kmsan_mark_item_uninitialized(zone, item);
 3445 
 3446 #ifdef INVARIANTS
 3447         skipdbg = uma_dbg_zskip(zone, item);
 3448         if (!skipdbg && (uz_flags & UMA_ZFLAG_TRASH) != 0 &&
 3449             zone->uz_ctor != trash_ctor)
 3450                 trash_ctor(item, size, udata, flags);
 3451 #endif
 3452 
 3453         /* Check flags before loading ctor pointer. */
 3454         if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) &&
 3455             __predict_false(zone->uz_ctor != NULL) &&
 3456             zone->uz_ctor(item, size, udata, flags) != 0) {
 3457                 counter_u64_add(zone->uz_fails, 1);
 3458                 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT);
 3459                 return (NULL);
 3460         }
 3461 #ifdef INVARIANTS
 3462         if (!skipdbg)
 3463                 uma_dbg_alloc(zone, NULL, item);
 3464 #endif
 3465         if (__predict_false(flags & M_ZERO))
 3466                 return (memset(item, 0, size));
 3467 
 3468         return (item);
 3469 }
 3470 
 3471 static inline void
 3472 item_dtor(uma_zone_t zone, void *item, int size, void *udata,
 3473     enum zfreeskip skip)
 3474 {
 3475 #ifdef INVARIANTS
 3476         bool skipdbg;
 3477 
 3478         skipdbg = uma_dbg_zskip(zone, item);
 3479         if (skip == SKIP_NONE && !skipdbg) {
 3480                 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0)
 3481                         uma_dbg_free(zone, udata, item);
 3482                 else
 3483                         uma_dbg_free(zone, NULL, item);
 3484         }
 3485 #endif
 3486         if (__predict_true(skip < SKIP_DTOR)) {
 3487                 if (zone->uz_dtor != NULL)
 3488                         zone->uz_dtor(item, size, udata);
 3489 #ifdef INVARIANTS
 3490                 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 &&
 3491                     zone->uz_dtor != trash_dtor)
 3492                         trash_dtor(item, size, udata);
 3493 #endif
 3494         }
 3495         kasan_mark_item_invalid(zone, item);
 3496 }
 3497 
 3498 #ifdef NUMA
 3499 static int
 3500 item_domain(void *item)
 3501 {
 3502         int domain;
 3503 
 3504         domain = vm_phys_domain(vtophys(item));
 3505         KASSERT(domain >= 0 && domain < vm_ndomains,
 3506             ("%s: unknown domain for item %p", __func__, item));
 3507         return (domain);
 3508 }
 3509 #endif
 3510 
 3511 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS)
 3512 #if defined(INVARIANTS) && (defined(DDB) || defined(STACK))
 3513 #include <sys/stack.h>
 3514 #endif
 3515 #define UMA_ZALLOC_DEBUG
 3516 static int
 3517 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags)
 3518 {
 3519         int error;
 3520 
 3521         error = 0;
 3522 #ifdef WITNESS
 3523         if (flags & M_WAITOK) {
 3524                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
 3525                     "uma_zalloc_debug: zone \"%s\"", zone->uz_name);
 3526         }
 3527 #endif
 3528 
 3529 #ifdef INVARIANTS
 3530         KASSERT((flags & M_EXEC) == 0,
 3531             ("uma_zalloc_debug: called with M_EXEC"));
 3532         KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
 3533             ("uma_zalloc_debug: called within spinlock or critical section"));
 3534         KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0,
 3535             ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO"));
 3536 
 3537         _Static_assert(M_NOWAIT != 0 && M_WAITOK != 0,
 3538             "M_NOWAIT and M_WAITOK must be non-zero for this assertion:");
 3539 #if 0
 3540         /*
 3541          * Give the #elif clause time to find problems, then remove it
 3542          * and enable this.  (Remove <sys/stack.h> above, too.)
 3543          */
 3544         KASSERT((flags & (M_NOWAIT|M_WAITOK)) == M_NOWAIT ||
 3545             (flags & (M_NOWAIT|M_WAITOK)) == M_WAITOK,
 3546             ("uma_zalloc_debug: must pass one of M_NOWAIT or M_WAITOK"));
 3547 #elif defined(DDB) || defined(STACK)
 3548         if (__predict_false((flags & (M_NOWAIT|M_WAITOK)) != M_NOWAIT &&
 3549             (flags & (M_NOWAIT|M_WAITOK)) != M_WAITOK)) {
 3550                 static int stack_count;
 3551                 struct stack st;
 3552 
 3553                 if (stack_count < 10) {
 3554                         ++stack_count;
 3555                         printf("uma_zalloc* called with bad WAIT flags:\n");
 3556                         stack_save(&st);
 3557                         stack_print(&st);
 3558                 }
 3559         }
 3560 #endif
 3561 #endif
 3562 
 3563 #ifdef DEBUG_MEMGUARD
 3564         if ((zone->uz_flags & (UMA_ZONE_SMR | UMA_ZFLAG_CACHE)) == 0 &&
 3565             memguard_cmp_zone(zone)) {
 3566                 void *item;
 3567                 item = memguard_alloc(zone->uz_size, flags);
 3568                 if (item != NULL) {
 3569                         error = EJUSTRETURN;
 3570                         if (zone->uz_init != NULL &&
 3571                             zone->uz_init(item, zone->uz_size, flags) != 0) {
 3572                                 *itemp = NULL;
 3573                                 return (error);
 3574                         }
 3575                         if (zone->uz_ctor != NULL &&
 3576                             zone->uz_ctor(item, zone->uz_size, udata,
 3577                             flags) != 0) {
 3578                                 counter_u64_add(zone->uz_fails, 1);
 3579                                 if (zone->uz_fini != NULL)
 3580                                         zone->uz_fini(item, zone->uz_size);
 3581                                 *itemp = NULL;
 3582                                 return (error);
 3583                         }
 3584                         *itemp = item;
 3585                         return (error);
 3586                 }
 3587                 /* This is unfortunate but should not be fatal. */
 3588         }
 3589 #endif
 3590         return (error);
 3591 }
 3592 
 3593 static int
 3594 uma_zfree_debug(uma_zone_t zone, void *item, void *udata)
 3595 {
 3596         KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
 3597             ("uma_zfree_debug: called with spinlock or critical section held"));
 3598 
 3599 #ifdef DEBUG_MEMGUARD
 3600         if ((zone->uz_flags & (UMA_ZONE_SMR | UMA_ZFLAG_CACHE)) == 0 &&
 3601             is_memguard_addr(item)) {
 3602                 if (zone->uz_dtor != NULL)
 3603                         zone->uz_dtor(item, zone->uz_size, udata);
 3604                 if (zone->uz_fini != NULL)
 3605                         zone->uz_fini(item, zone->uz_size);
 3606                 memguard_free(item);
 3607                 return (EJUSTRETURN);
 3608         }
 3609 #endif
 3610         return (0);
 3611 }
 3612 #endif
 3613 
 3614 static inline void *
 3615 cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket,
 3616     void *udata, int flags)
 3617 {
 3618         void *item;
 3619         int size, uz_flags;
 3620 
 3621         item = cache_bucket_pop(cache, bucket);
 3622         size = cache_uz_size(cache);
 3623         uz_flags = cache_uz_flags(cache);
 3624         critical_exit();
 3625         return (item_ctor(zone, uz_flags, size, udata, flags, item));
 3626 }
 3627 
 3628 static __noinline void *
 3629 cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags)
 3630 {
 3631         uma_cache_bucket_t bucket;
 3632         int domain;
 3633 
 3634         while (cache_alloc(zone, cache, udata, flags)) {
 3635                 cache = &zone->uz_cpu[curcpu];
 3636                 bucket = &cache->uc_allocbucket;
 3637                 if (__predict_false(bucket->ucb_cnt == 0))
 3638                         continue;
 3639                 return (cache_alloc_item(zone, cache, bucket, udata, flags));
 3640         }
 3641         critical_exit();
 3642 
 3643         /*
 3644          * We can not get a bucket so try to return a single item.
 3645          */
 3646         if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH)
 3647                 domain = PCPU_GET(domain);
 3648         else
 3649                 domain = UMA_ANYDOMAIN;
 3650         return (zone_alloc_item(zone, udata, domain, flags));
 3651 }
 3652 
 3653 /* See uma.h */
 3654 void *
 3655 uma_zalloc_smr(uma_zone_t zone, int flags)
 3656 {
 3657         uma_cache_bucket_t bucket;
 3658         uma_cache_t cache;
 3659 
 3660         CTR3(KTR_UMA, "uma_zalloc_smr zone %s(%p) flags %d", zone->uz_name,
 3661             zone, flags);
 3662 
 3663 #ifdef UMA_ZALLOC_DEBUG
 3664         void *item;
 3665 
 3666         KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0,
 3667             ("uma_zalloc_arg: called with non-SMR zone."));
 3668         if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN)
 3669                 return (item);
 3670 #endif
 3671 
 3672         critical_enter();
 3673         cache = &zone->uz_cpu[curcpu];
 3674         bucket = &cache->uc_allocbucket;
 3675         if (__predict_false(bucket->ucb_cnt == 0))
 3676                 return (cache_alloc_retry(zone, cache, NULL, flags));
 3677         return (cache_alloc_item(zone, cache, bucket, NULL, flags));
 3678 }
 3679 
 3680 /* See uma.h */
 3681 void *
 3682 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
 3683 {
 3684         uma_cache_bucket_t bucket;
 3685         uma_cache_t cache;
 3686 
 3687         /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
 3688         random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
 3689 
 3690         /* This is the fast path allocation */
 3691         CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name,
 3692             zone, flags);
 3693 
 3694 #ifdef UMA_ZALLOC_DEBUG
 3695         void *item;
 3696 
 3697         KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
 3698             ("uma_zalloc_arg: called with SMR zone."));
 3699         if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN)
 3700                 return (item);
 3701 #endif
 3702 
 3703         /*
 3704          * If possible, allocate from the per-CPU cache.  There are two
 3705          * requirements for safe access to the per-CPU cache: (1) the thread
 3706          * accessing the cache must not be preempted or yield during access,
 3707          * and (2) the thread must not migrate CPUs without switching which
 3708          * cache it accesses.  We rely on a critical section to prevent
 3709          * preemption and migration.  We release the critical section in
 3710          * order to acquire the zone mutex if we are unable to allocate from
 3711          * the current cache; when we re-acquire the critical section, we
 3712          * must detect and handle migration if it has occurred.
 3713          */
 3714         critical_enter();
 3715         cache = &zone->uz_cpu[curcpu];
 3716         bucket = &cache->uc_allocbucket;
 3717         if (__predict_false(bucket->ucb_cnt == 0))
 3718                 return (cache_alloc_retry(zone, cache, udata, flags));
 3719         return (cache_alloc_item(zone, cache, bucket, udata, flags));
 3720 }
 3721 
 3722 /*
 3723  * Replenish an alloc bucket and possibly restore an old one.  Called in
 3724  * a critical section.  Returns in a critical section.
 3725  *
 3726  * A false return value indicates an allocation failure.
 3727  * A true return value indicates success and the caller should retry.
 3728  */
 3729 static __noinline bool
 3730 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags)
 3731 {
 3732         uma_bucket_t bucket;
 3733         int curdomain, domain;
 3734         bool new;
 3735 
 3736         CRITICAL_ASSERT(curthread);
 3737 
 3738         /*
 3739          * If we have run out of items in our alloc bucket see
 3740          * if we can switch with the free bucket.
 3741          *
 3742          * SMR Zones can't re-use the free bucket until the sequence has
 3743          * expired.
 3744          */
 3745         if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 &&
 3746             cache->uc_freebucket.ucb_cnt != 0) {
 3747                 cache_bucket_swap(&cache->uc_freebucket,
 3748                     &cache->uc_allocbucket);
 3749                 return (true);
 3750         }
 3751 
 3752         /*
 3753          * Discard any empty allocation bucket while we hold no locks.
 3754          */
 3755         bucket = cache_bucket_unload_alloc(cache);
 3756         critical_exit();
 3757 
 3758         if (bucket != NULL) {
 3759                 KASSERT(bucket->ub_cnt == 0,
 3760                     ("cache_alloc: Entered with non-empty alloc bucket."));
 3761                 bucket_free(zone, bucket, udata);
 3762         }
 3763 
 3764         /*
 3765          * Attempt to retrieve the item from the per-CPU cache has failed, so
 3766          * we must go back to the zone.  This requires the zdom lock, so we
 3767          * must drop the critical section, then re-acquire it when we go back
 3768          * to the cache.  Since the critical section is released, we may be
 3769          * preempted or migrate.  As such, make sure not to maintain any
 3770          * thread-local state specific to the cache from prior to releasing
 3771          * the critical section.
 3772          */
 3773         domain = PCPU_GET(domain);
 3774         if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0 ||
 3775             VM_DOMAIN_EMPTY(domain))
 3776                 domain = zone_domain_highest(zone, domain);
 3777         bucket = cache_fetch_bucket(zone, cache, domain);
 3778         if (bucket == NULL && zone->uz_bucket_size != 0 && !bucketdisable) {
 3779                 bucket = zone_alloc_bucket(zone, udata, domain, flags);
 3780                 new = true;
 3781         } else {
 3782                 new = false;
 3783         }
 3784 
 3785         CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p",
 3786             zone->uz_name, zone, bucket);
 3787         if (bucket == NULL) {
 3788                 critical_enter();
 3789                 return (false);
 3790         }
 3791 
 3792         /*
 3793          * See if we lost the race or were migrated.  Cache the
 3794          * initialized bucket to make this less likely or claim
 3795          * the memory directly.
 3796          */
 3797         critical_enter();
 3798         cache = &zone->uz_cpu[curcpu];
 3799         if (cache->uc_allocbucket.ucb_bucket == NULL &&
 3800             ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 ||
 3801             (curdomain = PCPU_GET(domain)) == domain ||
 3802             VM_DOMAIN_EMPTY(curdomain))) {
 3803                 if (new)
 3804                         atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax,
 3805                             bucket->ub_cnt);
 3806                 cache_bucket_load_alloc(cache, bucket);
 3807                 return (true);
 3808         }
 3809 
 3810         /*
 3811          * We lost the race, release this bucket and start over.
 3812          */
 3813         critical_exit();
 3814         zone_put_bucket(zone, domain, bucket, udata, !new);
 3815         critical_enter();
 3816 
 3817         return (true);
 3818 }
 3819 
 3820 void *
 3821 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags)
 3822 {
 3823 #ifdef NUMA
 3824         uma_bucket_t bucket;
 3825         uma_zone_domain_t zdom;
 3826         void *item;
 3827 #endif
 3828 
 3829         /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
 3830         random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
 3831 
 3832         /* This is the fast path allocation */
 3833         CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d",
 3834             zone->uz_name, zone, domain, flags);
 3835 
 3836         KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
 3837             ("uma_zalloc_domain: called with SMR zone."));
 3838 #ifdef NUMA
 3839         KASSERT((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0,
 3840             ("uma_zalloc_domain: called with non-FIRSTTOUCH zone."));
 3841 
 3842         if (vm_ndomains == 1)
 3843                 return (uma_zalloc_arg(zone, udata, flags));
 3844 
 3845 #ifdef UMA_ZALLOC_DEBUG
 3846         if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN)
 3847                 return (item);
 3848 #endif
 3849 
 3850         /*
 3851          * Try to allocate from the bucket cache before falling back to the keg.
 3852          * We could try harder and attempt to allocate from per-CPU caches or
 3853          * the per-domain cross-domain buckets, but the complexity is probably
 3854          * not worth it.  It is more important that frees of previous
 3855          * cross-domain allocations do not blow up the cache.
 3856          */
 3857         zdom = zone_domain_lock(zone, domain);
 3858         if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) {
 3859                 item = bucket->ub_bucket[bucket->ub_cnt - 1];
 3860 #ifdef INVARIANTS
 3861                 bucket->ub_bucket[bucket->ub_cnt - 1] = NULL;
 3862 #endif
 3863                 bucket->ub_cnt--;
 3864                 zone_put_bucket(zone, domain, bucket, udata, true);
 3865                 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata,
 3866                     flags, item);
 3867                 if (item != NULL) {
 3868                         KASSERT(item_domain(item) == domain,
 3869                             ("%s: bucket cache item %p from wrong domain",
 3870                             __func__, item));
 3871                         counter_u64_add(zone->uz_allocs, 1);
 3872                 }
 3873                 return (item);
 3874         }
 3875         ZDOM_UNLOCK(zdom);
 3876         return (zone_alloc_item(zone, udata, domain, flags));
 3877 #else
 3878         return (uma_zalloc_arg(zone, udata, flags));
 3879 #endif
 3880 }
 3881 
 3882 /*
 3883  * Find a slab with some space.  Prefer slabs that are partially used over those
 3884  * that are totally full.  This helps to reduce fragmentation.
 3885  *
 3886  * If 'rr' is 1, search all domains starting from 'domain'.  Otherwise check
 3887  * only 'domain'.
 3888  */
 3889 static uma_slab_t
 3890 keg_first_slab(uma_keg_t keg, int domain, bool rr)
 3891 {
 3892         uma_domain_t dom;
 3893         uma_slab_t slab;
 3894         int start;
 3895 
 3896         KASSERT(domain >= 0 && domain < vm_ndomains,
 3897             ("keg_first_slab: domain %d out of range", domain));
 3898         KEG_LOCK_ASSERT(keg, domain);
 3899 
 3900         slab = NULL;
 3901         start = domain;
 3902         do {
 3903                 dom = &keg->uk_domain[domain];
 3904                 if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL)
 3905                         return (slab);
 3906                 if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) {
 3907                         LIST_REMOVE(slab, us_link);
 3908                         dom->ud_free_slabs--;
 3909                         LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
 3910                         return (slab);
 3911                 }
 3912                 if (rr)
 3913                         domain = (domain + 1) % vm_ndomains;
 3914         } while (domain != start);
 3915 
 3916         return (NULL);
 3917 }
 3918 
 3919 /*
 3920  * Fetch an existing slab from a free or partial list.  Returns with the
 3921  * keg domain lock held if a slab was found or unlocked if not.
 3922  */
 3923 static uma_slab_t
 3924 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags)
 3925 {
 3926         uma_slab_t slab;
 3927         uint32_t reserve;
 3928 
 3929         /* HASH has a single free list. */
 3930         if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0)
 3931                 domain = 0;
 3932 
 3933         KEG_LOCK(keg, domain);
 3934         reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve;
 3935         if (keg->uk_domain[domain].ud_free_items <= reserve ||
 3936             (slab = keg_first_slab(keg, domain, rr)) == NULL) {
 3937                 KEG_UNLOCK(keg, domain);
 3938                 return (NULL);
 3939         }
 3940         return (slab);
 3941 }
 3942 
 3943 static uma_slab_t
 3944 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags)
 3945 {
 3946         struct vm_domainset_iter di;
 3947         uma_slab_t slab;
 3948         int aflags, domain;
 3949         bool rr;
 3950 
 3951         KASSERT((flags & (M_WAITOK | M_NOVM)) != (M_WAITOK | M_NOVM),
 3952             ("%s: invalid flags %#x", __func__, flags));
 3953 
 3954 restart:
 3955         /*
 3956          * Use the keg's policy if upper layers haven't already specified a
 3957          * domain (as happens with first-touch zones).
 3958          *
 3959          * To avoid races we run the iterator with the keg lock held, but that
 3960          * means that we cannot allow the vm_domainset layer to sleep.  Thus,
 3961          * clear M_WAITOK and handle low memory conditions locally.
 3962          */
 3963         rr = rdomain == UMA_ANYDOMAIN;
 3964         if (rr) {
 3965                 aflags = (flags & ~M_WAITOK) | M_NOWAIT;
 3966                 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain,
 3967                     &aflags);
 3968         } else {
 3969                 aflags = flags;
 3970                 domain = rdomain;
 3971         }
 3972 
 3973         for (;;) {
 3974                 slab = keg_fetch_free_slab(keg, domain, rr, flags);
 3975                 if (slab != NULL)
 3976                         return (slab);
 3977 
 3978                 /*
 3979                  * M_NOVM is used to break the recursion that can otherwise
 3980                  * occur if low-level memory management routines use UMA.
 3981                  */
 3982                 if ((flags & M_NOVM) == 0) {
 3983                         slab = keg_alloc_slab(keg, zone, domain, flags, aflags);
 3984                         if (slab != NULL)
 3985                                 return (slab);
 3986                 }
 3987 
 3988                 if (!rr) {
 3989                         if ((flags & M_USE_RESERVE) != 0) {
 3990                                 /*
 3991                                  * Drain reserves from other domains before
 3992                                  * giving up or sleeping.  It may be useful to
 3993                                  * support per-domain reserves eventually.
 3994                                  */
 3995                                 rdomain = UMA_ANYDOMAIN;
 3996                                 goto restart;
 3997                         }
 3998                         if ((flags & M_WAITOK) == 0)
 3999                                 break;
 4000                         vm_wait_domain(domain);
 4001                 } else if (vm_domainset_iter_policy(&di, &domain) != 0) {
 4002                         if ((flags & M_WAITOK) != 0) {
 4003                                 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0);
 4004                                 goto restart;
 4005                         }
 4006                         break;
 4007                 }
 4008         }
 4009 
 4010         /*
 4011          * We might not have been able to get a slab but another cpu
 4012          * could have while we were unlocked.  Check again before we
 4013          * fail.
 4014          */
 4015         if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL)
 4016                 return (slab);
 4017 
 4018         return (NULL);
 4019 }
 4020 
 4021 static void *
 4022 slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
 4023 {
 4024         uma_domain_t dom;
 4025         void *item;
 4026         int freei;
 4027 
 4028         KEG_LOCK_ASSERT(keg, slab->us_domain);
 4029 
 4030         dom = &keg->uk_domain[slab->us_domain];
 4031         freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1;
 4032         BIT_CLR(keg->uk_ipers, freei, &slab->us_free);
 4033         item = slab_item(slab, keg, freei);
 4034         slab->us_freecount--;
 4035         dom->ud_free_items--;
 4036 
 4037         /*
 4038          * Move this slab to the full list.  It must be on the partial list, so
 4039          * we do not need to update the free slab count.  In particular,
 4040          * keg_fetch_slab() always returns slabs on the partial list.
 4041          */
 4042         if (slab->us_freecount == 0) {
 4043                 LIST_REMOVE(slab, us_link);
 4044                 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link);
 4045         }
 4046 
 4047         return (item);
 4048 }
 4049 
 4050 static int
 4051 zone_import(void *arg, void **bucket, int max, int domain, int flags)
 4052 {
 4053         uma_domain_t dom;
 4054         uma_zone_t zone;
 4055         uma_slab_t slab;
 4056         uma_keg_t keg;
 4057 #ifdef NUMA
 4058         int stripe;
 4059 #endif
 4060         int i;
 4061 
 4062         zone = arg;
 4063         slab = NULL;
 4064         keg = zone->uz_keg;
 4065         /* Try to keep the buckets totally full */
 4066         for (i = 0; i < max; ) {
 4067                 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL)
 4068                         break;
 4069 #ifdef NUMA
 4070                 stripe = howmany(max, vm_ndomains);
 4071 #endif
 4072                 dom = &keg->uk_domain[slab->us_domain];
 4073                 do {
 4074                         bucket[i++] = slab_alloc_item(keg, slab);
 4075                         if (keg->uk_reserve > 0 &&
 4076                             dom->ud_free_items <= keg->uk_reserve) {
 4077                                 /*
 4078                                  * Avoid depleting the reserve after a
 4079                                  * successful item allocation, even if
 4080                                  * M_USE_RESERVE is specified.
 4081                                  */
 4082                                 KEG_UNLOCK(keg, slab->us_domain);
 4083                                 goto out;
 4084                         }
 4085 #ifdef NUMA
 4086                         /*
 4087                          * If the zone is striped we pick a new slab for every
 4088                          * N allocations.  Eliminating this conditional will
 4089                          * instead pick a new domain for each bucket rather
 4090                          * than stripe within each bucket.  The current option
 4091                          * produces more fragmentation and requires more cpu
 4092                          * time but yields better distribution.
 4093                          */
 4094                         if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 &&
 4095                             vm_ndomains > 1 && --stripe == 0)
 4096                                 break;
 4097 #endif
 4098                 } while (slab->us_freecount != 0 && i < max);
 4099                 KEG_UNLOCK(keg, slab->us_domain);
 4100 
 4101                 /* Don't block if we allocated any successfully. */
 4102                 flags &= ~M_WAITOK;
 4103                 flags |= M_NOWAIT;
 4104         }
 4105 out:
 4106         return i;
 4107 }
 4108 
 4109 static int
 4110 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags)
 4111 {
 4112         uint64_t old, new, total, max;
 4113 
 4114         /*
 4115          * The hard case.  We're going to sleep because there were existing
 4116          * sleepers or because we ran out of items.  This routine enforces
 4117          * fairness by keeping fifo order.
 4118          *
 4119          * First release our ill gotten gains and make some noise.
 4120          */
 4121         for (;;) {
 4122                 zone_free_limit(zone, count);
 4123                 zone_log_warning(zone);
 4124                 zone_maxaction(zone);
 4125                 if (flags & M_NOWAIT)
 4126                         return (0);
 4127 
 4128                 /*
 4129                  * We need to allocate an item or set ourself as a sleeper
 4130                  * while the sleepq lock is held to avoid wakeup races.  This
 4131                  * is essentially a home rolled semaphore.
 4132                  */
 4133                 sleepq_lock(&zone->uz_max_items);
 4134                 old = zone->uz_items;
 4135                 do {
 4136                         MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX);
 4137                         /* Cache the max since we will evaluate twice. */
 4138                         max = zone->uz_max_items;
 4139                         if (UZ_ITEMS_SLEEPERS(old) != 0 ||
 4140                             UZ_ITEMS_COUNT(old) >= max)
 4141                                 new = old + UZ_ITEMS_SLEEPER;
 4142                         else
 4143                                 new = old + MIN(count, max - old);
 4144                 } while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0);
 4145 
 4146                 /* We may have successfully allocated under the sleepq lock. */
 4147                 if (UZ_ITEMS_SLEEPERS(new) == 0) {
 4148                         sleepq_release(&zone->uz_max_items);
 4149                         return (new - old);
 4150                 }
 4151 
 4152                 /*
 4153                  * This is in a different cacheline from uz_items so that we
 4154                  * don't constantly invalidate the fastpath cacheline when we
 4155                  * adjust item counts.  This could be limited to toggling on
 4156                  * transitions.
 4157                  */
 4158                 atomic_add_32(&zone->uz_sleepers, 1);
 4159                 atomic_add_64(&zone->uz_sleeps, 1);
 4160 
 4161                 /*
 4162                  * We have added ourselves as a sleeper.  The sleepq lock
 4163                  * protects us from wakeup races.  Sleep now and then retry.
 4164                  */
 4165                 sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0);
 4166                 sleepq_wait(&zone->uz_max_items, PVM);
 4167 
 4168                 /*
 4169                  * After wakeup, remove ourselves as a sleeper and try
 4170                  * again.  We no longer have the sleepq lock for protection.
 4171                  *
 4172                  * Subract ourselves as a sleeper while attempting to add
 4173                  * our count.
 4174                  */
 4175                 atomic_subtract_32(&zone->uz_sleepers, 1);
 4176                 old = atomic_fetchadd_64(&zone->uz_items,
 4177                     -(UZ_ITEMS_SLEEPER - count));
 4178                 /* We're no longer a sleeper. */
 4179                 old -= UZ_ITEMS_SLEEPER;
 4180 
 4181                 /*
 4182                  * If we're still at the limit, restart.  Notably do not
 4183                  * block on other sleepers.  Cache the max value to protect
 4184                  * against changes via sysctl.
 4185                  */
 4186                 total = UZ_ITEMS_COUNT(old);
 4187                 max = zone->uz_max_items;
 4188                 if (total >= max)
 4189                         continue;
 4190                 /* Truncate if necessary, otherwise wake other sleepers. */
 4191                 if (total + count > max) {
 4192                         zone_free_limit(zone, total + count - max);
 4193                         count = max - total;
 4194                 } else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0)
 4195                         wakeup_one(&zone->uz_max_items);
 4196 
 4197                 return (count);
 4198         }
 4199 }
 4200 
 4201 /*
 4202  * Allocate 'count' items from our max_items limit.  Returns the number
 4203  * available.  If M_NOWAIT is not specified it will sleep until at least
 4204  * one item can be allocated.
 4205  */
 4206 static int
 4207 zone_alloc_limit(uma_zone_t zone, int count, int flags)
 4208 {
 4209         uint64_t old;
 4210         uint64_t max;
 4211 
 4212         max = zone->uz_max_items;
 4213         MPASS(max > 0);
 4214 
 4215         /*
 4216          * We expect normal allocations to succeed with a simple
 4217          * fetchadd.
 4218          */
 4219         old = atomic_fetchadd_64(&zone->uz_items, count);
 4220         if (__predict_true(old + count <= max))
 4221                 return (count);
 4222 
 4223         /*
 4224          * If we had some items and no sleepers just return the
 4225          * truncated value.  We have to release the excess space
 4226          * though because that may wake sleepers who weren't woken
 4227          * because we were temporarily over the limit.
 4228          */
 4229         if (old < max) {
 4230                 zone_free_limit(zone, (old + count) - max);
 4231                 return (max - old);
 4232         }
 4233         return (zone_alloc_limit_hard(zone, count, flags));
 4234 }
 4235 
 4236 /*
 4237  * Free a number of items back to the limit.
 4238  */
 4239 static void
 4240 zone_free_limit(uma_zone_t zone, int count)
 4241 {
 4242         uint64_t old;
 4243 
 4244         MPASS(count > 0);
 4245 
 4246         /*
 4247          * In the common case we either have no sleepers or
 4248          * are still over the limit and can just return.
 4249          */
 4250         old = atomic_fetchadd_64(&zone->uz_items, -count);
 4251         if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 ||
 4252            UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items))
 4253                 return;
 4254 
 4255         /*
 4256          * Moderate the rate of wakeups.  Sleepers will continue
 4257          * to generate wakeups if necessary.
 4258          */
 4259         wakeup_one(&zone->uz_max_items);
 4260 }
 4261 
 4262 static uma_bucket_t
 4263 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags)
 4264 {
 4265         uma_bucket_t bucket;
 4266         int error, maxbucket, cnt;
 4267 
 4268         CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name,
 4269             zone, domain);
 4270 
 4271         /* Avoid allocs targeting empty domains. */
 4272         if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain))
 4273                 domain = UMA_ANYDOMAIN;
 4274         else if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0)
 4275                 domain = UMA_ANYDOMAIN;
 4276 
 4277         if (zone->uz_max_items > 0)
 4278                 maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size,
 4279                     M_NOWAIT);
 4280         else
 4281                 maxbucket = zone->uz_bucket_size;
 4282         if (maxbucket == 0)
 4283                 return (NULL);
 4284 
 4285         /* Don't wait for buckets, preserve caller's NOVM setting. */
 4286         bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
 4287         if (bucket == NULL) {
 4288                 cnt = 0;
 4289                 goto out;
 4290         }
 4291 
 4292         bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
 4293             MIN(maxbucket, bucket->ub_entries), domain, flags);
 4294 
 4295         /*
 4296          * Initialize the memory if necessary.
 4297          */
 4298         if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
 4299                 int i;
 4300 
 4301                 for (i = 0; i < bucket->ub_cnt; i++) {
 4302                         kasan_mark_item_valid(zone, bucket->ub_bucket[i]);
 4303                         error = zone->uz_init(bucket->ub_bucket[i],
 4304                             zone->uz_size, flags);
 4305                         kasan_mark_item_invalid(zone, bucket->ub_bucket[i]);
 4306                         if (error != 0)
 4307                                 break;
 4308                 }
 4309 
 4310                 /*
 4311                  * If we couldn't initialize the whole bucket, put the
 4312                  * rest back onto the freelist.
 4313                  */
 4314                 if (i != bucket->ub_cnt) {
 4315                         zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
 4316                             bucket->ub_cnt - i);
 4317 #ifdef INVARIANTS
 4318                         bzero(&bucket->ub_bucket[i],
 4319                             sizeof(void *) * (bucket->ub_cnt - i));
 4320 #endif
 4321                         bucket->ub_cnt = i;
 4322                 }
 4323         }
 4324 
 4325         cnt = bucket->ub_cnt;
 4326         if (bucket->ub_cnt == 0) {
 4327                 bucket_free(zone, bucket, udata);
 4328                 counter_u64_add(zone->uz_fails, 1);
 4329                 bucket = NULL;
 4330         }
 4331 out:
 4332         if (zone->uz_max_items > 0 && cnt < maxbucket)
 4333                 zone_free_limit(zone, maxbucket - cnt);
 4334 
 4335         return (bucket);
 4336 }
 4337 
 4338 /*
 4339  * Allocates a single item from a zone.
 4340  *
 4341  * Arguments
 4342  *      zone   The zone to alloc for.
 4343  *      udata  The data to be passed to the constructor.
 4344  *      domain The domain to allocate from or UMA_ANYDOMAIN.
 4345  *      flags  M_WAITOK, M_NOWAIT, M_ZERO.
 4346  *
 4347  * Returns
 4348  *      NULL if there is no memory and M_NOWAIT is set
 4349  *      An item if successful
 4350  */
 4351 
 4352 static void *
 4353 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags)
 4354 {
 4355         void *item;
 4356 
 4357         if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) {
 4358                 counter_u64_add(zone->uz_fails, 1);
 4359                 return (NULL);
 4360         }
 4361 
 4362         /* Avoid allocs targeting empty domains. */
 4363         if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain))
 4364                 domain = UMA_ANYDOMAIN;
 4365 
 4366         if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1)
 4367                 goto fail_cnt;
 4368 
 4369         /*
 4370          * We have to call both the zone's init (not the keg's init)
 4371          * and the zone's ctor.  This is because the item is going from
 4372          * a keg slab directly to the user, and the user is expecting it
 4373          * to be both zone-init'd as well as zone-ctor'd.
 4374          */
 4375         if (zone->uz_init != NULL) {
 4376                 int error;
 4377 
 4378                 kasan_mark_item_valid(zone, item);
 4379                 error = zone->uz_init(item, zone->uz_size, flags);
 4380                 kasan_mark_item_invalid(zone, item);
 4381                 if (error != 0) {
 4382                         zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT);
 4383                         goto fail_cnt;
 4384                 }
 4385         }
 4386         item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags,
 4387             item);
 4388         if (item == NULL)
 4389                 goto fail;
 4390 
 4391         counter_u64_add(zone->uz_allocs, 1);
 4392         CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item,
 4393             zone->uz_name, zone);
 4394 
 4395         return (item);
 4396 
 4397 fail_cnt:
 4398         counter_u64_add(zone->uz_fails, 1);
 4399 fail:
 4400         if (zone->uz_max_items > 0)
 4401                 zone_free_limit(zone, 1);
 4402         CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)",
 4403             zone->uz_name, zone);
 4404 
 4405         return (NULL);
 4406 }
 4407 
 4408 /* See uma.h */
 4409 void
 4410 uma_zfree_smr(uma_zone_t zone, void *item)
 4411 {
 4412         uma_cache_t cache;
 4413         uma_cache_bucket_t bucket;
 4414         int itemdomain;
 4415 #ifdef NUMA
 4416         int uz_flags;
 4417 #endif
 4418 
 4419         CTR3(KTR_UMA, "uma_zfree_smr zone %s(%p) item %p",
 4420             zone->uz_name, zone, item);
 4421 
 4422 #ifdef UMA_ZALLOC_DEBUG
 4423         KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0,
 4424             ("uma_zfree_smr: called with non-SMR zone."));
 4425         KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer."));
 4426         SMR_ASSERT_NOT_ENTERED(zone->uz_smr);
 4427         if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN)
 4428                 return;
 4429 #endif
 4430         cache = &zone->uz_cpu[curcpu];
 4431         itemdomain = 0;
 4432 #ifdef NUMA
 4433         uz_flags = cache_uz_flags(cache);
 4434         if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
 4435                 itemdomain = item_domain(item);
 4436 #endif
 4437         critical_enter();
 4438         do {
 4439                 cache = &zone->uz_cpu[curcpu];
 4440                 /* SMR Zones must free to the free bucket. */
 4441                 bucket = &cache->uc_freebucket;
 4442 #ifdef NUMA
 4443                 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
 4444                     PCPU_GET(domain) != itemdomain) {
 4445                         bucket = &cache->uc_crossbucket;
 4446                 }
 4447 #endif
 4448                 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) {
 4449                         cache_bucket_push(cache, bucket, item);
 4450                         critical_exit();
 4451                         return;
 4452                 }
 4453         } while (cache_free(zone, cache, NULL, itemdomain));
 4454         critical_exit();
 4455 
 4456         /*
 4457          * If nothing else caught this, we'll just do an internal free.
 4458          */
 4459         zone_free_item(zone, item, NULL, SKIP_NONE);
 4460 }
 4461 
 4462 /* See uma.h */
 4463 void
 4464 uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
 4465 {
 4466         uma_cache_t cache;
 4467         uma_cache_bucket_t bucket;
 4468         int itemdomain, uz_flags;
 4469 
 4470         /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
 4471         random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
 4472 
 4473         CTR3(KTR_UMA, "uma_zfree_arg zone %s(%p) item %p",
 4474             zone->uz_name, zone, item);
 4475 
 4476 #ifdef UMA_ZALLOC_DEBUG
 4477         KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
 4478             ("uma_zfree_arg: called with SMR zone."));
 4479         if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN)
 4480                 return;
 4481 #endif
 4482         /* uma_zfree(..., NULL) does nothing, to match free(9). */
 4483         if (item == NULL)
 4484                 return;
 4485 
 4486         /*
 4487          * We are accessing the per-cpu cache without a critical section to
 4488          * fetch size and flags.  This is acceptable, if we are preempted we
 4489          * will simply read another cpu's line.
 4490          */
 4491         cache = &zone->uz_cpu[curcpu];
 4492         uz_flags = cache_uz_flags(cache);
 4493         if (UMA_ALWAYS_CTORDTOR ||
 4494             __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0))
 4495                 item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE);
 4496 
 4497         /*
 4498          * The race here is acceptable.  If we miss it we'll just have to wait
 4499          * a little longer for the limits to be reset.
 4500          */
 4501         if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) {
 4502                 if (atomic_load_32(&zone->uz_sleepers) > 0)
 4503                         goto zfree_item;
 4504         }
 4505 
 4506         /*
 4507          * If possible, free to the per-CPU cache.  There are two
 4508          * requirements for safe access to the per-CPU cache: (1) the thread
 4509          * accessing the cache must not be preempted or yield during access,
 4510          * and (2) the thread must not migrate CPUs without switching which
 4511          * cache it accesses.  We rely on a critical section to prevent
 4512          * preemption and migration.  We release the critical section in
 4513          * order to acquire the zone mutex if we are unable to free to the
 4514          * current cache; when we re-acquire the critical section, we must
 4515          * detect and handle migration if it has occurred.
 4516          */
 4517         itemdomain = 0;
 4518 #ifdef NUMA
 4519         if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
 4520                 itemdomain = item_domain(item);
 4521 #endif
 4522         critical_enter();
 4523         do {
 4524                 cache = &zone->uz_cpu[curcpu];
 4525                 /*
 4526                  * Try to free into the allocbucket first to give LIFO
 4527                  * ordering for cache-hot datastructures.  Spill over
 4528                  * into the freebucket if necessary.  Alloc will swap
 4529                  * them if one runs dry.
 4530                  */
 4531                 bucket = &cache->uc_allocbucket;
 4532 #ifdef NUMA
 4533                 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
 4534                     PCPU_GET(domain) != itemdomain) {
 4535                         bucket = &cache->uc_crossbucket;
 4536                 } else
 4537 #endif
 4538                 if (bucket->ucb_cnt == bucket->ucb_entries &&
 4539                    cache->uc_freebucket.ucb_cnt <
 4540                    cache->uc_freebucket.ucb_entries)
 4541                         cache_bucket_swap(&cache->uc_freebucket,
 4542                             &cache->uc_allocbucket);
 4543                 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) {
 4544                         cache_bucket_push(cache, bucket, item);
 4545                         critical_exit();
 4546                         return;
 4547                 }
 4548         } while (cache_free(zone, cache, udata, itemdomain));
 4549         critical_exit();
 4550 
 4551         /*
 4552          * If nothing else caught this, we'll just do an internal free.
 4553          */
 4554 zfree_item:
 4555         zone_free_item(zone, item, udata, SKIP_DTOR);
 4556 }
 4557 
 4558 #ifdef NUMA
 4559 /*
 4560  * sort crossdomain free buckets to domain correct buckets and cache
 4561  * them.
 4562  */
 4563 static void
 4564 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata)
 4565 {
 4566         struct uma_bucketlist emptybuckets, fullbuckets;
 4567         uma_zone_domain_t zdom;
 4568         uma_bucket_t b;
 4569         smr_seq_t seq;
 4570         void *item;
 4571         int domain;
 4572 
 4573         CTR3(KTR_UMA,
 4574             "uma_zfree: zone %s(%p) draining cross bucket %p",
 4575             zone->uz_name, zone, bucket);
 4576 
 4577         /*
 4578          * It is possible for buckets to arrive here out of order so we fetch
 4579          * the current smr seq rather than accepting the bucket's.
 4580          */
 4581         seq = SMR_SEQ_INVALID;
 4582         if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
 4583                 seq = smr_advance(zone->uz_smr);
 4584 
 4585         /*
 4586          * To avoid having ndomain * ndomain buckets for sorting we have a
 4587          * lock on the current crossfree bucket.  A full matrix with
 4588          * per-domain locking could be used if necessary.
 4589          */
 4590         STAILQ_INIT(&emptybuckets);
 4591         STAILQ_INIT(&fullbuckets);
 4592         ZONE_CROSS_LOCK(zone);
 4593         for (; bucket->ub_cnt > 0; bucket->ub_cnt--) {
 4594                 item = bucket->ub_bucket[bucket->ub_cnt - 1];
 4595                 domain = item_domain(item);
 4596                 zdom = ZDOM_GET(zone, domain);
 4597                 if (zdom->uzd_cross == NULL) {
 4598                         if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) {
 4599                                 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
 4600                                 zdom->uzd_cross = b;
 4601                         } else {
 4602                                 /*
 4603                                  * Avoid allocating a bucket with the cross lock
 4604                                  * held, since allocation can trigger a
 4605                                  * cross-domain free and bucket zones may
 4606                                  * allocate from each other.
 4607                                  */
 4608                                 ZONE_CROSS_UNLOCK(zone);
 4609                                 b = bucket_alloc(zone, udata, M_NOWAIT);
 4610                                 if (b == NULL)
 4611                                         goto out;
 4612                                 ZONE_CROSS_LOCK(zone);
 4613                                 if (zdom->uzd_cross != NULL) {
 4614                                         STAILQ_INSERT_HEAD(&emptybuckets, b,
 4615                                             ub_link);
 4616                                 } else {
 4617                                         zdom->uzd_cross = b;
 4618                                 }
 4619                         }
 4620                 }
 4621                 b = zdom->uzd_cross;
 4622                 b->ub_bucket[b->ub_cnt++] = item;
 4623                 b->ub_seq = seq;
 4624                 if (b->ub_cnt == b->ub_entries) {
 4625                         STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link);
 4626                         if ((b = STAILQ_FIRST(&emptybuckets)) != NULL)
 4627                                 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
 4628                         zdom->uzd_cross = b;
 4629                 }
 4630         }
 4631         ZONE_CROSS_UNLOCK(zone);
 4632 out:
 4633         if (bucket->ub_cnt == 0)
 4634                 bucket->ub_seq = SMR_SEQ_INVALID;
 4635         bucket_free(zone, bucket, udata);
 4636 
 4637         while ((b = STAILQ_FIRST(&emptybuckets)) != NULL) {
 4638                 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
 4639                 bucket_free(zone, b, udata);
 4640         }
 4641         while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) {
 4642                 STAILQ_REMOVE_HEAD(&fullbuckets, ub_link);
 4643                 domain = item_domain(b->ub_bucket[0]);
 4644                 zone_put_bucket(zone, domain, b, udata, true);
 4645         }
 4646 }
 4647 #endif
 4648 
 4649 static void
 4650 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata,
 4651     int itemdomain, bool ws)
 4652 {
 4653 
 4654 #ifdef NUMA
 4655         /*
 4656          * Buckets coming from the wrong domain will be entirely for the
 4657          * only other domain on two domain systems.  In this case we can
 4658          * simply cache them.  Otherwise we need to sort them back to
 4659          * correct domains.
 4660          */
 4661         if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
 4662             vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) {
 4663                 zone_free_cross(zone, bucket, udata);
 4664                 return;
 4665         }
 4666 #endif
 4667 
 4668         /*
 4669          * Attempt to save the bucket in the zone's domain bucket cache.
 4670          */
 4671         CTR3(KTR_UMA,
 4672             "uma_zfree: zone %s(%p) putting bucket %p on free list",
 4673             zone->uz_name, zone, bucket);
 4674         /* ub_cnt is pointing to the last free item */
 4675         if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0)
 4676                 itemdomain = zone_domain_lowest(zone, itemdomain);
 4677         zone_put_bucket(zone, itemdomain, bucket, udata, ws);
 4678 }
 4679 
 4680 /*
 4681  * Populate a free or cross bucket for the current cpu cache.  Free any
 4682  * existing full bucket either to the zone cache or back to the slab layer.
 4683  *
 4684  * Enters and returns in a critical section.  false return indicates that
 4685  * we can not satisfy this free in the cache layer.  true indicates that
 4686  * the caller should retry.
 4687  */
 4688 static __noinline bool
 4689 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, int itemdomain)
 4690 {
 4691         uma_cache_bucket_t cbucket;
 4692         uma_bucket_t newbucket, bucket;
 4693 
 4694         CRITICAL_ASSERT(curthread);
 4695 
 4696         if (zone->uz_bucket_size == 0)
 4697                 return false;
 4698 
 4699         cache = &zone->uz_cpu[curcpu];
 4700         newbucket = NULL;
 4701 
 4702         /*
 4703          * FIRSTTOUCH domains need to free to the correct zdom.  When
 4704          * enabled this is the zdom of the item.   The bucket is the
 4705          * cross bucket if the current domain and itemdomain do not match.
 4706          */
 4707         cbucket = &cache->uc_freebucket;
 4708 #ifdef NUMA
 4709         if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) {
 4710                 if (PCPU_GET(domain) != itemdomain) {
 4711                         cbucket = &cache->uc_crossbucket;
 4712                         if (cbucket->ucb_cnt != 0)
 4713                                 counter_u64_add(zone->uz_xdomain,
 4714                                     cbucket->ucb_cnt);
 4715                 }
 4716         }
 4717 #endif
 4718         bucket = cache_bucket_unload(cbucket);
 4719         KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries,
 4720             ("cache_free: Entered with non-full free bucket."));
 4721 
 4722         /* We are no longer associated with this CPU. */
 4723         critical_exit();
 4724 
 4725         /*
 4726          * Don't let SMR zones operate without a free bucket.  Force
 4727          * a synchronize and re-use this one.  We will only degrade
 4728          * to a synchronize every bucket_size items rather than every
 4729          * item if we fail to allocate a bucket.
 4730          */
 4731         if ((zone->uz_flags & UMA_ZONE_SMR) != 0) {
 4732                 if (bucket != NULL)
 4733                         bucket->ub_seq = smr_advance(zone->uz_smr);
 4734                 newbucket = bucket_alloc(zone, udata, M_NOWAIT);
 4735                 if (newbucket == NULL && bucket != NULL) {
 4736                         bucket_drain(zone, bucket);
 4737                         newbucket = bucket;
 4738                         bucket = NULL;
 4739                 }
 4740         } else if (!bucketdisable)
 4741                 newbucket = bucket_alloc(zone, udata, M_NOWAIT);
 4742 
 4743         if (bucket != NULL)
 4744                 zone_free_bucket(zone, bucket, udata, itemdomain, true);
 4745 
 4746         critical_enter();
 4747         if ((bucket = newbucket) == NULL)
 4748                 return (false);
 4749         cache = &zone->uz_cpu[curcpu];
 4750 #ifdef NUMA
 4751         /*
 4752          * Check to see if we should be populating the cross bucket.  If it
 4753          * is already populated we will fall through and attempt to populate
 4754          * the free bucket.
 4755          */
 4756         if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) {
 4757                 if (PCPU_GET(domain) != itemdomain &&
 4758                     cache->uc_crossbucket.ucb_bucket == NULL) {
 4759                         cache_bucket_load_cross(cache, bucket);
 4760                         return (true);
 4761                 }
 4762         }
 4763 #endif
 4764         /*
 4765          * We may have lost the race to fill the bucket or switched CPUs.
 4766          */
 4767         if (cache->uc_freebucket.ucb_bucket != NULL) {
 4768                 critical_exit();
 4769                 bucket_free(zone, bucket, udata);
 4770                 critical_enter();
 4771         } else
 4772                 cache_bucket_load_free(cache, bucket);
 4773 
 4774         return (true);
 4775 }
 4776 
 4777 static void
 4778 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item)
 4779 {
 4780         uma_keg_t keg;
 4781         uma_domain_t dom;
 4782         int freei;
 4783 
 4784         keg = zone->uz_keg;
 4785         KEG_LOCK_ASSERT(keg, slab->us_domain);
 4786 
 4787         /* Do we need to remove from any lists? */
 4788         dom = &keg->uk_domain[slab->us_domain];
 4789         if (slab->us_freecount + 1 == keg->uk_ipers) {
 4790                 LIST_REMOVE(slab, us_link);
 4791                 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link);
 4792                 dom->ud_free_slabs++;
 4793         } else if (slab->us_freecount == 0) {
 4794                 LIST_REMOVE(slab, us_link);
 4795                 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
 4796         }
 4797 
 4798         /* Slab management. */
 4799         freei = slab_item_index(slab, keg, item);
 4800         BIT_SET(keg->uk_ipers, freei, &slab->us_free);
 4801         slab->us_freecount++;
 4802 
 4803         /* Keg statistics. */
 4804         dom->ud_free_items++;
 4805 }
 4806 
 4807 static void
 4808 zone_release(void *arg, void **bucket, int cnt)
 4809 {
 4810         struct mtx *lock;
 4811         uma_zone_t zone;
 4812         uma_slab_t slab;
 4813         uma_keg_t keg;
 4814         uint8_t *mem;
 4815         void *item;
 4816         int i;
 4817 
 4818         zone = arg;
 4819         keg = zone->uz_keg;
 4820         lock = NULL;
 4821         if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0))
 4822                 lock = KEG_LOCK(keg, 0);
 4823         for (i = 0; i < cnt; i++) {
 4824                 item = bucket[i];
 4825                 if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) {
 4826                         slab = vtoslab((vm_offset_t)item);
 4827                 } else {
 4828                         mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
 4829                         if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0)
 4830                                 slab = hash_sfind(&keg->uk_hash, mem);
 4831                         else
 4832                                 slab = (uma_slab_t)(mem + keg->uk_pgoff);
 4833                 }
 4834                 if (lock != KEG_LOCKPTR(keg, slab->us_domain)) {
 4835                         if (lock != NULL)
 4836                                 mtx_unlock(lock);
 4837                         lock = KEG_LOCK(keg, slab->us_domain);
 4838                 }
 4839                 slab_free_item(zone, slab, item);
 4840         }
 4841         if (lock != NULL)
 4842                 mtx_unlock(lock);
 4843 }
 4844 
 4845 /*
 4846  * Frees a single item to any zone.
 4847  *
 4848  * Arguments:
 4849  *      zone   The zone to free to
 4850  *      item   The item we're freeing
 4851  *      udata  User supplied data for the dtor
 4852  *      skip   Skip dtors and finis
 4853  */
 4854 static __noinline void
 4855 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
 4856 {
 4857 
 4858         /*
 4859          * If a free is sent directly to an SMR zone we have to
 4860          * synchronize immediately because the item can instantly
 4861          * be reallocated. This should only happen in degenerate
 4862          * cases when no memory is available for per-cpu caches.
 4863          */
 4864         if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE)
 4865                 smr_synchronize(zone->uz_smr);
 4866 
 4867         item_dtor(zone, item, zone->uz_size, udata, skip);
 4868 
 4869         if (skip < SKIP_FINI && zone->uz_fini) {
 4870                 kasan_mark_item_valid(zone, item);
 4871                 zone->uz_fini(item, zone->uz_size);
 4872                 kasan_mark_item_invalid(zone, item);
 4873         }
 4874 
 4875         zone->uz_release(zone->uz_arg, &item, 1);
 4876 
 4877         if (skip & SKIP_CNT)
 4878                 return;
 4879 
 4880         counter_u64_add(zone->uz_frees, 1);
 4881 
 4882         if (zone->uz_max_items > 0)
 4883                 zone_free_limit(zone, 1);
 4884 }
 4885 
 4886 /* See uma.h */
 4887 int
 4888 uma_zone_set_max(uma_zone_t zone, int nitems)
 4889 {
 4890 
 4891         /*
 4892          * If the limit is small, we may need to constrain the maximum per-CPU
 4893          * cache size, or disable caching entirely.
 4894          */
 4895         uma_zone_set_maxcache(zone, nitems);
 4896 
 4897         /*
 4898          * XXX This can misbehave if the zone has any allocations with
 4899          * no limit and a limit is imposed.  There is currently no
 4900          * way to clear a limit.
 4901          */
 4902         ZONE_LOCK(zone);
 4903         if (zone->uz_max_items == 0)
 4904                 ZONE_ASSERT_COLD(zone);
 4905         zone->uz_max_items = nitems;
 4906         zone->uz_flags |= UMA_ZFLAG_LIMIT;
 4907         zone_update_caches(zone);
 4908         /* We may need to wake waiters. */
 4909         wakeup(&zone->uz_max_items);
 4910         ZONE_UNLOCK(zone);
 4911 
 4912         return (nitems);
 4913 }
 4914 
 4915 /* See uma.h */
 4916 void
 4917 uma_zone_set_maxcache(uma_zone_t zone, int nitems)
 4918 {
 4919         int bpcpu, bpdom, bsize, nb;
 4920 
 4921         ZONE_LOCK(zone);
 4922 
 4923         /*
 4924          * Compute a lower bound on the number of items that may be cached in
 4925          * the zone.  Each CPU gets at least two buckets, and for cross-domain
 4926          * frees we use an additional bucket per CPU and per domain.  Select the
 4927          * largest bucket size that does not exceed half of the requested limit,
 4928          * with the left over space given to the full bucket cache.
 4929          */
 4930         bpdom = 0;
 4931         bpcpu = 2;
 4932 #ifdef NUMA
 4933         if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && vm_ndomains > 1) {
 4934                 bpcpu++;
 4935                 bpdom++;
 4936         }
 4937 #endif
 4938         nb = bpcpu * mp_ncpus + bpdom * vm_ndomains;
 4939         bsize = nitems / nb / 2;
 4940         if (bsize > BUCKET_MAX)
 4941                 bsize = BUCKET_MAX;
 4942         else if (bsize == 0 && nitems / nb > 0)
 4943                 bsize = 1;
 4944         zone->uz_bucket_size_max = zone->uz_bucket_size = bsize;
 4945         if (zone->uz_bucket_size_min > zone->uz_bucket_size_max)
 4946                 zone->uz_bucket_size_min = zone->uz_bucket_size_max;
 4947         zone->uz_bucket_max = nitems - nb * bsize;
 4948         ZONE_UNLOCK(zone);
 4949 }
 4950 
 4951 /* See uma.h */
 4952 int
 4953 uma_zone_get_max(uma_zone_t zone)
 4954 {
 4955         int nitems;
 4956 
 4957         nitems = atomic_load_64(&zone->uz_max_items);
 4958 
 4959         return (nitems);
 4960 }
 4961 
 4962 /* See uma.h */
 4963 void
 4964 uma_zone_set_warning(uma_zone_t zone, const char *warning)
 4965 {
 4966 
 4967         ZONE_ASSERT_COLD(zone);
 4968         zone->uz_warning = warning;
 4969 }
 4970 
 4971 /* See uma.h */
 4972 void
 4973 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction)
 4974 {
 4975 
 4976         ZONE_ASSERT_COLD(zone);
 4977         TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone);
 4978 }
 4979 
 4980 /* See uma.h */
 4981 int
 4982 uma_zone_get_cur(uma_zone_t zone)
 4983 {
 4984         int64_t nitems;
 4985         u_int i;
 4986 
 4987         nitems = 0;
 4988         if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER)
 4989                 nitems = counter_u64_fetch(zone->uz_allocs) -
 4990                     counter_u64_fetch(zone->uz_frees);
 4991         CPU_FOREACH(i)
 4992                 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) -
 4993                     atomic_load_64(&zone->uz_cpu[i].uc_frees);
 4994 
 4995         return (nitems < 0 ? 0 : nitems);
 4996 }
 4997 
 4998 static uint64_t
 4999 uma_zone_get_allocs(uma_zone_t zone)
 5000 {
 5001         uint64_t nitems;
 5002         u_int i;
 5003 
 5004         nitems = 0;
 5005         if (zone->uz_allocs != EARLY_COUNTER)
 5006                 nitems = counter_u64_fetch(zone->uz_allocs);
 5007         CPU_FOREACH(i)
 5008                 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs);
 5009 
 5010         return (nitems);
 5011 }
 5012 
 5013 static uint64_t
 5014 uma_zone_get_frees(uma_zone_t zone)
 5015 {
 5016         uint64_t nitems;
 5017         u_int i;
 5018 
 5019         nitems = 0;
 5020         if (zone->uz_frees != EARLY_COUNTER)
 5021                 nitems = counter_u64_fetch(zone->uz_frees);
 5022         CPU_FOREACH(i)
 5023                 nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees);
 5024 
 5025         return (nitems);
 5026 }
 5027 
 5028 #ifdef INVARIANTS
 5029 /* Used only for KEG_ASSERT_COLD(). */
 5030 static uint64_t
 5031 uma_keg_get_allocs(uma_keg_t keg)
 5032 {
 5033         uma_zone_t z;
 5034         uint64_t nitems;
 5035 
 5036         nitems = 0;
 5037         LIST_FOREACH(z, &keg->uk_zones, uz_link)
 5038                 nitems += uma_zone_get_allocs(z);
 5039 
 5040         return (nitems);
 5041 }
 5042 #endif
 5043 
 5044 /* See uma.h */
 5045 void
 5046 uma_zone_set_init(uma_zone_t zone, uma_init uminit)
 5047 {
 5048         uma_keg_t keg;
 5049 
 5050         KEG_GET(zone, keg);
 5051         KEG_ASSERT_COLD(keg);
 5052         keg->uk_init = uminit;
 5053 }
 5054 
 5055 /* See uma.h */
 5056 void
 5057 uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
 5058 {
 5059         uma_keg_t keg;
 5060 
 5061         KEG_GET(zone, keg);
 5062         KEG_ASSERT_COLD(keg);
 5063         keg->uk_fini = fini;
 5064 }
 5065 
 5066 /* See uma.h */
 5067 void
 5068 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
 5069 {
 5070 
 5071         ZONE_ASSERT_COLD(zone);
 5072         zone->uz_init = zinit;
 5073 }
 5074 
 5075 /* See uma.h */
 5076 void
 5077 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
 5078 {
 5079 
 5080         ZONE_ASSERT_COLD(zone);
 5081         zone->uz_fini = zfini;
 5082 }
 5083 
 5084 /* See uma.h */
 5085 void
 5086 uma_zone_set_freef(uma_zone_t zone, uma_free freef)
 5087 {
 5088         uma_keg_t keg;
 5089 
 5090         KEG_GET(zone, keg);
 5091         KEG_ASSERT_COLD(keg);
 5092         keg->uk_freef = freef;
 5093 }
 5094 
 5095 /* See uma.h */
 5096 void
 5097 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
 5098 {
 5099         uma_keg_t keg;
 5100 
 5101         KEG_GET(zone, keg);
 5102         KEG_ASSERT_COLD(keg);
 5103         keg->uk_allocf = allocf;
 5104 }
 5105 
 5106 /* See uma.h */
 5107 void
 5108 uma_zone_set_smr(uma_zone_t zone, smr_t smr)
 5109 {
 5110 
 5111         ZONE_ASSERT_COLD(zone);
 5112 
 5113         KASSERT(smr != NULL, ("Got NULL smr"));
 5114         KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
 5115             ("zone %p (%s) already uses SMR", zone, zone->uz_name));
 5116         zone->uz_flags |= UMA_ZONE_SMR;
 5117         zone->uz_smr = smr;
 5118         zone_update_caches(zone);
 5119 }
 5120 
 5121 smr_t
 5122 uma_zone_get_smr(uma_zone_t zone)
 5123 {
 5124 
 5125         return (zone->uz_smr);
 5126 }
 5127 
 5128 /* See uma.h */
 5129 void
 5130 uma_zone_reserve(uma_zone_t zone, int items)
 5131 {
 5132         uma_keg_t keg;
 5133 
 5134         KEG_GET(zone, keg);
 5135         KEG_ASSERT_COLD(keg);
 5136         keg->uk_reserve = items;
 5137 }
 5138 
 5139 /* See uma.h */
 5140 int
 5141 uma_zone_reserve_kva(uma_zone_t zone, int count)
 5142 {
 5143         uma_keg_t keg;
 5144         vm_offset_t kva;
 5145         u_int pages;
 5146 
 5147         KEG_GET(zone, keg);
 5148         KEG_ASSERT_COLD(keg);
 5149         ZONE_ASSERT_COLD(zone);
 5150 
 5151         pages = howmany(count, keg->uk_ipers) * keg->uk_ppera;
 5152 
 5153 #ifdef UMA_MD_SMALL_ALLOC
 5154         if (keg->uk_ppera > 1) {
 5155 #else
 5156         if (1) {
 5157 #endif
 5158                 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE);
 5159                 if (kva == 0)
 5160                         return (0);
 5161         } else
 5162                 kva = 0;
 5163 
 5164         MPASS(keg->uk_kva == 0);
 5165         keg->uk_kva = kva;
 5166         keg->uk_offset = 0;
 5167         zone->uz_max_items = pages * keg->uk_ipers;
 5168 #ifdef UMA_MD_SMALL_ALLOC
 5169         keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
 5170 #else
 5171         keg->uk_allocf = noobj_alloc;
 5172 #endif
 5173         keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE;
 5174         zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE;
 5175         zone_update_caches(zone);
 5176 
 5177         return (1);
 5178 }
 5179 
 5180 /* See uma.h */
 5181 void
 5182 uma_prealloc(uma_zone_t zone, int items)
 5183 {
 5184         struct vm_domainset_iter di;
 5185         uma_domain_t dom;
 5186         uma_slab_t slab;
 5187         uma_keg_t keg;
 5188         int aflags, domain, slabs;
 5189 
 5190         KEG_GET(zone, keg);
 5191         slabs = howmany(items, keg->uk_ipers);
 5192         while (slabs-- > 0) {
 5193                 aflags = M_NOWAIT;
 5194                 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain,
 5195                     &aflags);
 5196                 for (;;) {
 5197                         slab = keg_alloc_slab(keg, zone, domain, M_WAITOK,
 5198                             aflags);
 5199                         if (slab != NULL) {
 5200                                 dom = &keg->uk_domain[slab->us_domain];
 5201                                 /*
 5202                                  * keg_alloc_slab() always returns a slab on the
 5203                                  * partial list.
 5204                                  */
 5205                                 LIST_REMOVE(slab, us_link);
 5206                                 LIST_INSERT_HEAD(&dom->ud_free_slab, slab,
 5207                                     us_link);
 5208                                 dom->ud_free_slabs++;
 5209                                 KEG_UNLOCK(keg, slab->us_domain);
 5210                                 break;
 5211                         }
 5212                         if (vm_domainset_iter_policy(&di, &domain) != 0)
 5213                                 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0);
 5214                 }
 5215         }
 5216 }
 5217 
 5218 /*
 5219  * Returns a snapshot of memory consumption in bytes.
 5220  */
 5221 size_t
 5222 uma_zone_memory(uma_zone_t zone)
 5223 {
 5224         size_t sz;
 5225         int i;
 5226 
 5227         sz = 0;
 5228         if (zone->uz_flags & UMA_ZFLAG_CACHE) {
 5229                 for (i = 0; i < vm_ndomains; i++)
 5230                         sz += ZDOM_GET(zone, i)->uzd_nitems;
 5231                 return (sz * zone->uz_size);
 5232         }
 5233         for (i = 0; i < vm_ndomains; i++)
 5234                 sz += zone->uz_keg->uk_domain[i].ud_pages;
 5235 
 5236         return (sz * PAGE_SIZE);
 5237 }
 5238 
 5239 struct uma_reclaim_args {
 5240         int     domain;
 5241         int     req;
 5242 };
 5243 
 5244 static void
 5245 uma_reclaim_domain_cb(uma_zone_t zone, void *arg)
 5246 {
 5247         struct uma_reclaim_args *args;
 5248 
 5249         args = arg;
 5250         if ((zone->uz_flags & UMA_ZONE_UNMANAGED) == 0)
 5251                 uma_zone_reclaim_domain(zone, args->req, args->domain);
 5252 }
 5253 
 5254 /* See uma.h */
 5255 void
 5256 uma_reclaim(int req)
 5257 {
 5258         uma_reclaim_domain(req, UMA_ANYDOMAIN);
 5259 }
 5260 
 5261 void
 5262 uma_reclaim_domain(int req, int domain)
 5263 {
 5264         struct uma_reclaim_args args;
 5265 
 5266         bucket_enable();
 5267 
 5268         args.domain = domain;
 5269         args.req = req;
 5270 
 5271         sx_slock(&uma_reclaim_lock);
 5272         switch (req) {
 5273         case UMA_RECLAIM_TRIM:
 5274         case UMA_RECLAIM_DRAIN:
 5275                 zone_foreach(uma_reclaim_domain_cb, &args);
 5276                 break;
 5277         case UMA_RECLAIM_DRAIN_CPU:
 5278                 zone_foreach(uma_reclaim_domain_cb, &args);
 5279                 pcpu_cache_drain_safe(NULL);
 5280                 zone_foreach(uma_reclaim_domain_cb, &args);
 5281                 break;
 5282         default:
 5283                 panic("unhandled reclamation request %d", req);
 5284         }
 5285 
 5286         /*
 5287          * Some slabs may have been freed but this zone will be visited early
 5288          * we visit again so that we can free pages that are empty once other
 5289          * zones are drained.  We have to do the same for buckets.
 5290          */
 5291         uma_zone_reclaim_domain(slabzones[0], UMA_RECLAIM_DRAIN, domain);
 5292         uma_zone_reclaim_domain(slabzones[1], UMA_RECLAIM_DRAIN, domain);
 5293         bucket_zone_drain(domain);
 5294         sx_sunlock(&uma_reclaim_lock);
 5295 }
 5296 
 5297 static volatile int uma_reclaim_needed;
 5298 
 5299 void
 5300 uma_reclaim_wakeup(void)
 5301 {
 5302 
 5303         if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0)
 5304                 wakeup(uma_reclaim);
 5305 }
 5306 
 5307 void
 5308 uma_reclaim_worker(void *arg __unused)
 5309 {
 5310 
 5311         for (;;) {
 5312                 sx_xlock(&uma_reclaim_lock);
 5313                 while (atomic_load_int(&uma_reclaim_needed) == 0)
 5314                         sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl",
 5315                             hz);
 5316                 sx_xunlock(&uma_reclaim_lock);
 5317                 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM);
 5318                 uma_reclaim(UMA_RECLAIM_DRAIN_CPU);
 5319                 atomic_store_int(&uma_reclaim_needed, 0);
 5320                 /* Don't fire more than once per-second. */
 5321                 pause("umarclslp", hz);
 5322         }
 5323 }
 5324 
 5325 /* See uma.h */
 5326 void
 5327 uma_zone_reclaim(uma_zone_t zone, int req)
 5328 {
 5329         uma_zone_reclaim_domain(zone, req, UMA_ANYDOMAIN);
 5330 }
 5331 
 5332 void
 5333 uma_zone_reclaim_domain(uma_zone_t zone, int req, int domain)
 5334 {
 5335         switch (req) {
 5336         case UMA_RECLAIM_TRIM:
 5337                 zone_reclaim(zone, domain, M_NOWAIT, false);
 5338                 break;
 5339         case UMA_RECLAIM_DRAIN:
 5340                 zone_reclaim(zone, domain, M_NOWAIT, true);
 5341                 break;
 5342         case UMA_RECLAIM_DRAIN_CPU:
 5343                 pcpu_cache_drain_safe(zone);
 5344                 zone_reclaim(zone, domain, M_NOWAIT, true);
 5345                 break;
 5346         default:
 5347                 panic("unhandled reclamation request %d", req);
 5348         }
 5349 }
 5350 
 5351 /* See uma.h */
 5352 int
 5353 uma_zone_exhausted(uma_zone_t zone)
 5354 {
 5355 
 5356         return (atomic_load_32(&zone->uz_sleepers) > 0);
 5357 }
 5358 
 5359 unsigned long
 5360 uma_limit(void)
 5361 {
 5362 
 5363         return (uma_kmem_limit);
 5364 }
 5365 
 5366 void
 5367 uma_set_limit(unsigned long limit)
 5368 {
 5369 
 5370         uma_kmem_limit = limit;
 5371 }
 5372 
 5373 unsigned long
 5374 uma_size(void)
 5375 {
 5376 
 5377         return (atomic_load_long(&uma_kmem_total));
 5378 }
 5379 
 5380 long
 5381 uma_avail(void)
 5382 {
 5383 
 5384         return (uma_kmem_limit - uma_size());
 5385 }
 5386 
 5387 #ifdef DDB
 5388 /*
 5389  * Generate statistics across both the zone and its per-cpu cache's.  Return
 5390  * desired statistics if the pointer is non-NULL for that statistic.
 5391  *
 5392  * Note: does not update the zone statistics, as it can't safely clear the
 5393  * per-CPU cache statistic.
 5394  *
 5395  */
 5396 static void
 5397 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp,
 5398     uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp)
 5399 {
 5400         uma_cache_t cache;
 5401         uint64_t allocs, frees, sleeps, xdomain;
 5402         int cachefree, cpu;
 5403 
 5404         allocs = frees = sleeps = xdomain = 0;
 5405         cachefree = 0;
 5406         CPU_FOREACH(cpu) {
 5407                 cache = &z->uz_cpu[cpu];
 5408                 cachefree += cache->uc_allocbucket.ucb_cnt;
 5409                 cachefree += cache->uc_freebucket.ucb_cnt;
 5410                 xdomain += cache->uc_crossbucket.ucb_cnt;
 5411                 cachefree += cache->uc_crossbucket.ucb_cnt;
 5412                 allocs += cache->uc_allocs;
 5413                 frees += cache->uc_frees;
 5414         }
 5415         allocs += counter_u64_fetch(z->uz_allocs);
 5416         frees += counter_u64_fetch(z->uz_frees);
 5417         xdomain += counter_u64_fetch(z->uz_xdomain);
 5418         sleeps += z->uz_sleeps;
 5419         if (cachefreep != NULL)
 5420                 *cachefreep = cachefree;
 5421         if (allocsp != NULL)
 5422                 *allocsp = allocs;
 5423         if (freesp != NULL)
 5424                 *freesp = frees;
 5425         if (sleepsp != NULL)
 5426                 *sleepsp = sleeps;
 5427         if (xdomainp != NULL)
 5428                 *xdomainp = xdomain;
 5429 }
 5430 #endif /* DDB */
 5431 
 5432 static int
 5433 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
 5434 {
 5435         uma_keg_t kz;
 5436         uma_zone_t z;
 5437         int count;
 5438 
 5439         count = 0;
 5440         rw_rlock(&uma_rwlock);
 5441         LIST_FOREACH(kz, &uma_kegs, uk_link) {
 5442                 LIST_FOREACH(z, &kz->uk_zones, uz_link)
 5443                         count++;
 5444         }
 5445         LIST_FOREACH(z, &uma_cachezones, uz_link)
 5446                 count++;
 5447 
 5448         rw_runlock(&uma_rwlock);
 5449         return (sysctl_handle_int(oidp, &count, 0, req));
 5450 }
 5451 
 5452 static void
 5453 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf,
 5454     struct uma_percpu_stat *ups, bool internal)
 5455 {
 5456         uma_zone_domain_t zdom;
 5457         uma_cache_t cache;
 5458         int i;
 5459 
 5460         for (i = 0; i < vm_ndomains; i++) {
 5461                 zdom = ZDOM_GET(z, i);
 5462                 uth->uth_zone_free += zdom->uzd_nitems;
 5463         }
 5464         uth->uth_allocs = counter_u64_fetch(z->uz_allocs);
 5465         uth->uth_frees = counter_u64_fetch(z->uz_frees);
 5466         uth->uth_fails = counter_u64_fetch(z->uz_fails);
 5467         uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain);
 5468         uth->uth_sleeps = z->uz_sleeps;
 5469 
 5470         for (i = 0; i < mp_maxid + 1; i++) {
 5471                 bzero(&ups[i], sizeof(*ups));
 5472                 if (internal || CPU_ABSENT(i))
 5473                         continue;
 5474                 cache = &z->uz_cpu[i];
 5475                 ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt;
 5476                 ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt;
 5477                 ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt;
 5478                 ups[i].ups_allocs = cache->uc_allocs;
 5479                 ups[i].ups_frees = cache->uc_frees;
 5480         }
 5481 }
 5482 
 5483 static int
 5484 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
 5485 {
 5486         struct uma_stream_header ush;
 5487         struct uma_type_header uth;
 5488         struct uma_percpu_stat *ups;
 5489         struct sbuf sbuf;
 5490         uma_keg_t kz;
 5491         uma_zone_t z;
 5492         uint64_t items;
 5493         uint32_t kfree, pages;
 5494         int count, error, i;
 5495 
 5496         error = sysctl_wire_old_buffer(req, 0);
 5497         if (error != 0)
 5498                 return (error);
 5499         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
 5500         sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
 5501         ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK);
 5502 
 5503         count = 0;
 5504         rw_rlock(&uma_rwlock);
 5505         LIST_FOREACH(kz, &uma_kegs, uk_link) {
 5506                 LIST_FOREACH(z, &kz->uk_zones, uz_link)
 5507                         count++;
 5508         }
 5509 
 5510         LIST_FOREACH(z, &uma_cachezones, uz_link)
 5511                 count++;
 5512 
 5513         /*
 5514          * Insert stream header.
 5515          */
 5516         bzero(&ush, sizeof(ush));
 5517         ush.ush_version = UMA_STREAM_VERSION;
 5518         ush.ush_maxcpus = (mp_maxid + 1);
 5519         ush.ush_count = count;
 5520         (void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
 5521 
 5522         LIST_FOREACH(kz, &uma_kegs, uk_link) {
 5523                 kfree = pages = 0;
 5524                 for (i = 0; i < vm_ndomains; i++) {
 5525                         kfree += kz->uk_domain[i].ud_free_items;
 5526                         pages += kz->uk_domain[i].ud_pages;
 5527                 }
 5528                 LIST_FOREACH(z, &kz->uk_zones, uz_link) {
 5529                         bzero(&uth, sizeof(uth));
 5530                         strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
 5531                         uth.uth_align = kz->uk_align;
 5532                         uth.uth_size = kz->uk_size;
 5533                         uth.uth_rsize = kz->uk_rsize;
 5534                         if (z->uz_max_items > 0) {
 5535                                 items = UZ_ITEMS_COUNT(z->uz_items);
 5536                                 uth.uth_pages = (items / kz->uk_ipers) *
 5537                                         kz->uk_ppera;
 5538                         } else
 5539                                 uth.uth_pages = pages;
 5540                         uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) *
 5541                             kz->uk_ppera;
 5542                         uth.uth_limit = z->uz_max_items;
 5543                         uth.uth_keg_free = kfree;
 5544 
 5545                         /*
 5546                          * A zone is secondary is it is not the first entry
 5547                          * on the keg's zone list.
 5548                          */
 5549                         if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
 5550                             (LIST_FIRST(&kz->uk_zones) != z))
 5551                                 uth.uth_zone_flags = UTH_ZONE_SECONDARY;
 5552                         uma_vm_zone_stats(&uth, z, &sbuf, ups,
 5553                             kz->uk_flags & UMA_ZFLAG_INTERNAL);
 5554                         (void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
 5555                         for (i = 0; i < mp_maxid + 1; i++)
 5556                                 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
 5557                 }
 5558         }
 5559         LIST_FOREACH(z, &uma_cachezones, uz_link) {
 5560                 bzero(&uth, sizeof(uth));
 5561                 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
 5562                 uth.uth_size = z->uz_size;
 5563                 uma_vm_zone_stats(&uth, z, &sbuf, ups, false);
 5564                 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
 5565                 for (i = 0; i < mp_maxid + 1; i++)
 5566                         (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
 5567         }
 5568 
 5569         rw_runlock(&uma_rwlock);
 5570         error = sbuf_finish(&sbuf);
 5571         sbuf_delete(&sbuf);
 5572         free(ups, M_TEMP);
 5573         return (error);
 5574 }
 5575 
 5576 int
 5577 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS)
 5578 {
 5579         uma_zone_t zone = *(uma_zone_t *)arg1;
 5580         int error, max;
 5581 
 5582         max = uma_zone_get_max(zone);
 5583         error = sysctl_handle_int(oidp, &max, 0, req);
 5584         if (error || !req->newptr)
 5585                 return (error);
 5586 
 5587         uma_zone_set_max(zone, max);
 5588 
 5589         return (0);
 5590 }
 5591 
 5592 int
 5593 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS)
 5594 {
 5595         uma_zone_t zone;
 5596         int cur;
 5597 
 5598         /*
 5599          * Some callers want to add sysctls for global zones that
 5600          * may not yet exist so they pass a pointer to a pointer.
 5601          */
 5602         if (arg2 == 0)
 5603                 zone = *(uma_zone_t *)arg1;
 5604         else
 5605                 zone = arg1;
 5606         cur = uma_zone_get_cur(zone);
 5607         return (sysctl_handle_int(oidp, &cur, 0, req));
 5608 }
 5609 
 5610 static int
 5611 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS)
 5612 {
 5613         uma_zone_t zone = arg1;
 5614         uint64_t cur;
 5615 
 5616         cur = uma_zone_get_allocs(zone);
 5617         return (sysctl_handle_64(oidp, &cur, 0, req));
 5618 }
 5619 
 5620 static int
 5621 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS)
 5622 {
 5623         uma_zone_t zone = arg1;
 5624         uint64_t cur;
 5625 
 5626         cur = uma_zone_get_frees(zone);
 5627         return (sysctl_handle_64(oidp, &cur, 0, req));
 5628 }
 5629 
 5630 static int
 5631 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS)
 5632 {
 5633         struct sbuf sbuf;
 5634         uma_zone_t zone = arg1;
 5635         int error;
 5636 
 5637         sbuf_new_for_sysctl(&sbuf, NULL, 0, req);
 5638         if (zone->uz_flags != 0)
 5639                 sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS);
 5640         else
 5641                 sbuf_printf(&sbuf, "");
 5642         error = sbuf_finish(&sbuf);
 5643         sbuf_delete(&sbuf);
 5644 
 5645         return (error);
 5646 }
 5647 
 5648 static int
 5649 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS)
 5650 {
 5651         uma_keg_t keg = arg1;
 5652         int avail, effpct, total;
 5653 
 5654         total = keg->uk_ppera * PAGE_SIZE;
 5655         if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0)
 5656                 total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize;
 5657         /*
 5658          * We consider the client's requested size and alignment here, not the
 5659          * real size determination uk_rsize, because we also adjust the real
 5660          * size for internal implementation reasons (max bitset size).
 5661          */
 5662         avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1);
 5663         if ((keg->uk_flags & UMA_ZONE_PCPU) != 0)
 5664                 avail *= mp_maxid + 1;
 5665         effpct = 100 * avail / total;
 5666         return (sysctl_handle_int(oidp, &effpct, 0, req));
 5667 }
 5668 
 5669 static int
 5670 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS)
 5671 {
 5672         uma_zone_t zone = arg1;
 5673         uint64_t cur;
 5674 
 5675         cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items));
 5676         return (sysctl_handle_64(oidp, &cur, 0, req));
 5677 }
 5678 
 5679 #ifdef INVARIANTS
 5680 static uma_slab_t
 5681 uma_dbg_getslab(uma_zone_t zone, void *item)
 5682 {
 5683         uma_slab_t slab;
 5684         uma_keg_t keg;
 5685         uint8_t *mem;
 5686 
 5687         /*
 5688          * It is safe to return the slab here even though the
 5689          * zone is unlocked because the item's allocation state
 5690          * essentially holds a reference.
 5691          */
 5692         mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
 5693         if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
 5694                 return (NULL);
 5695         if (zone->uz_flags & UMA_ZFLAG_VTOSLAB)
 5696                 return (vtoslab((vm_offset_t)mem));
 5697         keg = zone->uz_keg;
 5698         if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0)
 5699                 return ((uma_slab_t)(mem + keg->uk_pgoff));
 5700         KEG_LOCK(keg, 0);
 5701         slab = hash_sfind(&keg->uk_hash, mem);
 5702         KEG_UNLOCK(keg, 0);
 5703 
 5704         return (slab);
 5705 }
 5706 
 5707 static bool
 5708 uma_dbg_zskip(uma_zone_t zone, void *mem)
 5709 {
 5710 
 5711         if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
 5712                 return (true);
 5713 
 5714         return (uma_dbg_kskip(zone->uz_keg, mem));
 5715 }
 5716 
 5717 static bool
 5718 uma_dbg_kskip(uma_keg_t keg, void *mem)
 5719 {
 5720         uintptr_t idx;
 5721 
 5722         if (dbg_divisor == 0)
 5723                 return (true);
 5724 
 5725         if (dbg_divisor == 1)
 5726                 return (false);
 5727 
 5728         idx = (uintptr_t)mem >> PAGE_SHIFT;
 5729         if (keg->uk_ipers > 1) {
 5730                 idx *= keg->uk_ipers;
 5731                 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize;
 5732         }
 5733 
 5734         if ((idx / dbg_divisor) * dbg_divisor != idx) {
 5735                 counter_u64_add(uma_skip_cnt, 1);
 5736                 return (true);
 5737         }
 5738         counter_u64_add(uma_dbg_cnt, 1);
 5739 
 5740         return (false);
 5741 }
 5742 
 5743 /*
 5744  * Set up the slab's freei data such that uma_dbg_free can function.
 5745  *
 5746  */
 5747 static void
 5748 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item)
 5749 {
 5750         uma_keg_t keg;
 5751         int freei;
 5752 
 5753         if (slab == NULL) {
 5754                 slab = uma_dbg_getslab(zone, item);
 5755                 if (slab == NULL) 
 5756                         panic("uma: item %p did not belong to zone %s",
 5757                             item, zone->uz_name);
 5758         }
 5759         keg = zone->uz_keg;
 5760         freei = slab_item_index(slab, keg, item);
 5761 
 5762         if (BIT_TEST_SET_ATOMIC(keg->uk_ipers, freei,
 5763             slab_dbg_bits(slab, keg)))
 5764                 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)",
 5765                     item, zone, zone->uz_name, slab, freei);
 5766 }
 5767 
 5768 /*
 5769  * Verifies freed addresses.  Checks for alignment, valid slab membership
 5770  * and duplicate frees.
 5771  *
 5772  */
 5773 static void
 5774 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item)
 5775 {
 5776         uma_keg_t keg;
 5777         int freei;
 5778 
 5779         if (slab == NULL) {
 5780                 slab = uma_dbg_getslab(zone, item);
 5781                 if (slab == NULL) 
 5782                         panic("uma: Freed item %p did not belong to zone %s",
 5783                             item, zone->uz_name);
 5784         }
 5785         keg = zone->uz_keg;
 5786         freei = slab_item_index(slab, keg, item);
 5787 
 5788         if (freei >= keg->uk_ipers)
 5789                 panic("Invalid free of %p from zone %p(%s) slab %p(%d)",
 5790                     item, zone, zone->uz_name, slab, freei);
 5791 
 5792         if (slab_item(slab, keg, freei) != item)
 5793                 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)",
 5794                     item, zone, zone->uz_name, slab, freei);
 5795 
 5796         if (!BIT_TEST_CLR_ATOMIC(keg->uk_ipers, freei,
 5797             slab_dbg_bits(slab, keg)))
 5798                 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)",
 5799                     item, zone, zone->uz_name, slab, freei);
 5800 }
 5801 #endif /* INVARIANTS */
 5802 
 5803 #ifdef DDB
 5804 static int64_t
 5805 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used,
 5806     uint64_t *sleeps, long *cachefree, uint64_t *xdomain)
 5807 {
 5808         uint64_t frees;
 5809         int i;
 5810 
 5811         if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
 5812                 *allocs = counter_u64_fetch(z->uz_allocs);
 5813                 frees = counter_u64_fetch(z->uz_frees);
 5814                 *sleeps = z->uz_sleeps;
 5815                 *cachefree = 0;
 5816                 *xdomain = 0;
 5817         } else
 5818                 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps,
 5819                     xdomain);
 5820         for (i = 0; i < vm_ndomains; i++) {
 5821                 *cachefree += ZDOM_GET(z, i)->uzd_nitems;
 5822                 if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
 5823                     (LIST_FIRST(&kz->uk_zones) != z)))
 5824                         *cachefree += kz->uk_domain[i].ud_free_items;
 5825         }
 5826         *used = *allocs - frees;
 5827         return (((int64_t)*used + *cachefree) * kz->uk_size);
 5828 }
 5829 
 5830 DB_SHOW_COMMAND_FLAGS(uma, db_show_uma, DB_CMD_MEMSAFE)
 5831 {
 5832         const char *fmt_hdr, *fmt_entry;
 5833         uma_keg_t kz;
 5834         uma_zone_t z;
 5835         uint64_t allocs, used, sleeps, xdomain;
 5836         long cachefree;
 5837         /* variables for sorting */
 5838         uma_keg_t cur_keg;
 5839         uma_zone_t cur_zone, last_zone;
 5840         int64_t cur_size, last_size, size;
 5841         int ties;
 5842 
 5843         /* /i option produces machine-parseable CSV output */
 5844         if (modif[0] == 'i') {
 5845                 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n";
 5846                 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n";
 5847         } else {
 5848                 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n";
 5849                 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n";
 5850         }
 5851 
 5852         db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests",
 5853             "Sleeps", "Bucket", "Total Mem", "XFree");
 5854 
 5855         /* Sort the zones with largest size first. */
 5856         last_zone = NULL;
 5857         last_size = INT64_MAX;
 5858         for (;;) {
 5859                 cur_zone = NULL;
 5860                 cur_size = -1;
 5861                 ties = 0;
 5862                 LIST_FOREACH(kz, &uma_kegs, uk_link) {
 5863                         LIST_FOREACH(z, &kz->uk_zones, uz_link) {
 5864                                 /*
 5865                                  * In the case of size ties, print out zones
 5866                                  * in the order they are encountered.  That is,
 5867                                  * when we encounter the most recently output
 5868                                  * zone, we have already printed all preceding
 5869                                  * ties, and we must print all following ties.
 5870                                  */
 5871                                 if (z == last_zone) {
 5872                                         ties = 1;
 5873                                         continue;
 5874                                 }
 5875                                 size = get_uma_stats(kz, z, &allocs, &used,
 5876                                     &sleeps, &cachefree, &xdomain);
 5877                                 if (size > cur_size && size < last_size + ties)
 5878                                 {
 5879                                         cur_size = size;
 5880                                         cur_zone = z;
 5881                                         cur_keg = kz;
 5882                                 }
 5883                         }
 5884                 }
 5885                 if (cur_zone == NULL)
 5886                         break;
 5887 
 5888                 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used,
 5889                     &sleeps, &cachefree, &xdomain);
 5890                 db_printf(fmt_entry, cur_zone->uz_name,
 5891                     (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree,
 5892                     (uintmax_t)allocs, (uintmax_t)sleeps,
 5893                     (unsigned)cur_zone->uz_bucket_size, (intmax_t)size,
 5894                     xdomain);
 5895 
 5896                 if (db_pager_quit)
 5897                         return;
 5898                 last_zone = cur_zone;
 5899                 last_size = cur_size;
 5900         }
 5901 }
 5902 
 5903 DB_SHOW_COMMAND_FLAGS(umacache, db_show_umacache, DB_CMD_MEMSAFE)
 5904 {
 5905         uma_zone_t z;
 5906         uint64_t allocs, frees;
 5907         long cachefree;
 5908         int i;
 5909 
 5910         db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
 5911             "Requests", "Bucket");
 5912         LIST_FOREACH(z, &uma_cachezones, uz_link) {
 5913                 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL);
 5914                 for (i = 0; i < vm_ndomains; i++)
 5915                         cachefree += ZDOM_GET(z, i)->uzd_nitems;
 5916                 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n",
 5917                     z->uz_name, (uintmax_t)z->uz_size,
 5918                     (intmax_t)(allocs - frees), cachefree,
 5919                     (uintmax_t)allocs, z->uz_bucket_size);
 5920                 if (db_pager_quit)
 5921                         return;
 5922         }
 5923 }
 5924 #endif  /* DDB */

Cache object: db9cefd64b122ef88eccb15bc874f16b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.