FreeBSD/Linux Kernel Cross Reference
sys/vm/uma_core.c
1 /*-
2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org>
3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
4 * Copyright (c) 2004-2006 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
12 * disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * uma_core.c Implementation of the Universal Memory allocator
31 *
32 * This allocator is intended to replace the multitude of similar object caches
33 * in the standard FreeBSD kernel. The intent is to be flexible as well as
34 * efficient. A primary design goal is to return unused memory to the rest of
35 * the system. This will make the system as a whole more flexible due to the
36 * ability to move memory to subsystems which most need it instead of leaving
37 * pools of reserved memory unused.
38 *
39 * The basic ideas stem from similar slab/zone based allocators whose algorithms
40 * are well known.
41 *
42 */
43
44 /*
45 * TODO:
46 * - Improve memory usage for large allocations
47 * - Investigate cache size adjustments
48 */
49
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52
53 /* I should really use ktr.. */
54 /*
55 #define UMA_DEBUG 1
56 #define UMA_DEBUG_ALLOC 1
57 #define UMA_DEBUG_ALLOC_1 1
58 */
59
60 #include "opt_ddb.h"
61 #include "opt_param.h"
62 #include "opt_vm.h"
63
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/bitset.h>
67 #include <sys/eventhandler.h>
68 #include <sys/kernel.h>
69 #include <sys/types.h>
70 #include <sys/queue.h>
71 #include <sys/malloc.h>
72 #include <sys/ktr.h>
73 #include <sys/lock.h>
74 #include <sys/sysctl.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/random.h>
78 #include <sys/rwlock.h>
79 #include <sys/sbuf.h>
80 #include <sys/sched.h>
81 #include <sys/smp.h>
82 #include <sys/taskqueue.h>
83 #include <sys/vmmeter.h>
84
85 #include <vm/vm.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_param.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/uma.h>
94 #include <vm/uma_int.h>
95 #include <vm/uma_dbg.h>
96
97 #include <ddb/ddb.h>
98
99 #ifdef DEBUG_MEMGUARD
100 #include <vm/memguard.h>
101 #endif
102
103 /*
104 * This is the zone and keg from which all zones are spawned. The idea is that
105 * even the zone & keg heads are allocated from the allocator, so we use the
106 * bss section to bootstrap us.
107 */
108 static struct uma_keg masterkeg;
109 static struct uma_zone masterzone_k;
110 static struct uma_zone masterzone_z;
111 static uma_zone_t kegs = &masterzone_k;
112 static uma_zone_t zones = &masterzone_z;
113
114 /* This is the zone from which all of uma_slab_t's are allocated. */
115 static uma_zone_t slabzone;
116
117 /*
118 * The initial hash tables come out of this zone so they can be allocated
119 * prior to malloc coming up.
120 */
121 static uma_zone_t hashzone;
122
123 /* The boot-time adjusted value for cache line alignment. */
124 int uma_align_cache = 64 - 1;
125
126 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
127
128 /*
129 * Are we allowed to allocate buckets?
130 */
131 static int bucketdisable = 1;
132
133 /* Linked list of all kegs in the system */
134 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
135
136 /* Linked list of all cache-only zones in the system */
137 static LIST_HEAD(,uma_zone) uma_cachezones =
138 LIST_HEAD_INITIALIZER(uma_cachezones);
139
140 /* This RW lock protects the keg list */
141 static struct rwlock_padalign __exclusive_cache_line uma_rwlock;
142
143 /* Linked list of boot time pages */
144 static LIST_HEAD(,uma_slab) uma_boot_pages =
145 LIST_HEAD_INITIALIZER(uma_boot_pages);
146
147 /* This mutex protects the boot time pages list */
148 static struct mtx_padalign uma_boot_pages_mtx;
149
150 static struct sx uma_drain_lock;
151
152 /* Is the VM done starting up? */
153 static int booted = 0;
154 #define UMA_STARTUP 1
155 #define UMA_STARTUP2 2
156 #define UMA_SHUTDOWN 3
157
158 /*
159 * This is the handle used to schedule events that need to happen
160 * outside of the allocation fast path.
161 */
162 static struct callout uma_callout;
163 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */
164
165 /*
166 * This structure is passed as the zone ctor arg so that I don't have to create
167 * a special allocation function just for zones.
168 */
169 struct uma_zctor_args {
170 const char *name;
171 size_t size;
172 uma_ctor ctor;
173 uma_dtor dtor;
174 uma_init uminit;
175 uma_fini fini;
176 uma_import import;
177 uma_release release;
178 void *arg;
179 uma_keg_t keg;
180 int align;
181 uint32_t flags;
182 };
183
184 struct uma_kctor_args {
185 uma_zone_t zone;
186 size_t size;
187 uma_init uminit;
188 uma_fini fini;
189 int align;
190 uint32_t flags;
191 };
192
193 struct uma_bucket_zone {
194 uma_zone_t ubz_zone;
195 char *ubz_name;
196 int ubz_entries; /* Number of items it can hold. */
197 int ubz_maxsize; /* Maximum allocation size per-item. */
198 };
199
200 /*
201 * Compute the actual number of bucket entries to pack them in power
202 * of two sizes for more efficient space utilization.
203 */
204 #define BUCKET_SIZE(n) \
205 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))
206
207 #define BUCKET_MAX BUCKET_SIZE(256)
208
209 struct uma_bucket_zone bucket_zones[] = {
210 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 },
211 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 },
212 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 },
213 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 },
214 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 },
215 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
216 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
217 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
218 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 },
219 { NULL, NULL, 0}
220 };
221
222 /*
223 * Flags and enumerations to be passed to internal functions.
224 */
225 enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI };
226
227 /* Prototypes.. */
228
229 static void *noobj_alloc(uma_zone_t, vm_size_t, uint8_t *, int);
230 static void *page_alloc(uma_zone_t, vm_size_t, uint8_t *, int);
231 static void *startup_alloc(uma_zone_t, vm_size_t, uint8_t *, int);
232 static void page_free(void *, vm_size_t, uint8_t);
233 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int);
234 static void cache_drain(uma_zone_t);
235 static void bucket_drain(uma_zone_t, uma_bucket_t);
236 static void bucket_cache_drain(uma_zone_t zone);
237 static int keg_ctor(void *, int, void *, int);
238 static void keg_dtor(void *, int, void *);
239 static int zone_ctor(void *, int, void *, int);
240 static void zone_dtor(void *, int, void *);
241 static int zero_init(void *, int, int);
242 static void keg_small_init(uma_keg_t keg);
243 static void keg_large_init(uma_keg_t keg);
244 static void zone_foreach(void (*zfunc)(uma_zone_t));
245 static void zone_timeout(uma_zone_t zone);
246 static int hash_alloc(struct uma_hash *, u_int);
247 static int hash_expand(struct uma_hash *, struct uma_hash *);
248 static void hash_free(struct uma_hash *hash);
249 static void uma_timeout(void *);
250 static void uma_startup3(void);
251 static void uma_shutdown(void);
252 static void *zone_alloc_item(uma_zone_t, void *, int);
253 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
254 static void bucket_enable(void);
255 static void bucket_init(void);
256 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
257 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
258 static void bucket_zone_drain(void);
259 static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags);
260 static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags);
261 static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags);
262 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
263 static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item);
264 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
265 uma_fini fini, int align, uint32_t flags);
266 static int zone_import(uma_zone_t zone, void **bucket, int max, int flags);
267 static void zone_release(uma_zone_t zone, void **bucket, int cnt);
268 static void uma_zero_item(void *item, uma_zone_t zone);
269
270 void uma_print_zone(uma_zone_t);
271 void uma_print_stats(void);
272 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
273 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
274
275 #ifdef INVARIANTS
276 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item);
277 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item);
278 #endif
279
280 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
281
282 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT,
283 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
284
285 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
286 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
287
288 static int zone_warnings = 1;
289 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0,
290 "Warn when UMA zones becomes full");
291
292 /*
293 * This routine checks to see whether or not it's safe to enable buckets.
294 */
295 static void
296 bucket_enable(void)
297 {
298 bucketdisable = vm_page_count_min();
299 }
300
301 /*
302 * Initialize bucket_zones, the array of zones of buckets of various sizes.
303 *
304 * For each zone, calculate the memory required for each bucket, consisting
305 * of the header and an array of pointers.
306 */
307 static void
308 bucket_init(void)
309 {
310 struct uma_bucket_zone *ubz;
311 int size;
312
313 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
314 size = roundup(sizeof(struct uma_bucket), sizeof(void *));
315 size += sizeof(void *) * ubz->ubz_entries;
316 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
317 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
318 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET);
319 }
320 }
321
322 /*
323 * Given a desired number of entries for a bucket, return the zone from which
324 * to allocate the bucket.
325 */
326 static struct uma_bucket_zone *
327 bucket_zone_lookup(int entries)
328 {
329 struct uma_bucket_zone *ubz;
330
331 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
332 if (ubz->ubz_entries >= entries)
333 return (ubz);
334 ubz--;
335 return (ubz);
336 }
337
338 static int
339 bucket_select(int size)
340 {
341 struct uma_bucket_zone *ubz;
342
343 ubz = &bucket_zones[0];
344 if (size > ubz->ubz_maxsize)
345 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);
346
347 for (; ubz->ubz_entries != 0; ubz++)
348 if (ubz->ubz_maxsize < size)
349 break;
350 ubz--;
351 return (ubz->ubz_entries);
352 }
353
354 static uma_bucket_t
355 bucket_alloc(uma_zone_t zone, void *udata, int flags)
356 {
357 struct uma_bucket_zone *ubz;
358 uma_bucket_t bucket;
359
360 /*
361 * This is to stop us from allocating per cpu buckets while we're
362 * running out of vm.boot_pages. Otherwise, we would exhaust the
363 * boot pages. This also prevents us from allocating buckets in
364 * low memory situations.
365 */
366 if (bucketdisable)
367 return (NULL);
368 /*
369 * To limit bucket recursion we store the original zone flags
370 * in a cookie passed via zalloc_arg/zfree_arg. This allows the
371 * NOVM flag to persist even through deep recursions. We also
372 * store ZFLAG_BUCKET once we have recursed attempting to allocate
373 * a bucket for a bucket zone so we do not allow infinite bucket
374 * recursion. This cookie will even persist to frees of unused
375 * buckets via the allocation path or bucket allocations in the
376 * free path.
377 */
378 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
379 udata = (void *)(uintptr_t)zone->uz_flags;
380 else {
381 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
382 return (NULL);
383 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
384 }
385 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY)
386 flags |= M_NOVM;
387 ubz = bucket_zone_lookup(zone->uz_count);
388 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0)
389 ubz++;
390 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
391 if (bucket) {
392 #ifdef INVARIANTS
393 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
394 #endif
395 bucket->ub_cnt = 0;
396 bucket->ub_entries = ubz->ubz_entries;
397 }
398
399 return (bucket);
400 }
401
402 static void
403 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
404 {
405 struct uma_bucket_zone *ubz;
406
407 KASSERT(bucket->ub_cnt == 0,
408 ("bucket_free: Freeing a non free bucket."));
409 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
410 udata = (void *)(uintptr_t)zone->uz_flags;
411 ubz = bucket_zone_lookup(bucket->ub_entries);
412 uma_zfree_arg(ubz->ubz_zone, bucket, udata);
413 }
414
415 static void
416 bucket_zone_drain(void)
417 {
418 struct uma_bucket_zone *ubz;
419
420 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
421 zone_drain(ubz->ubz_zone);
422 }
423
424 static void
425 zone_log_warning(uma_zone_t zone)
426 {
427 static const struct timeval warninterval = { 300, 0 };
428
429 if (!zone_warnings || zone->uz_warning == NULL)
430 return;
431
432 if (ratecheck(&zone->uz_ratecheck, &warninterval))
433 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
434 }
435
436 static inline void
437 zone_maxaction(uma_zone_t zone)
438 {
439
440 if (zone->uz_maxaction.ta_func != NULL)
441 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction);
442 }
443
444 static void
445 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t))
446 {
447 uma_klink_t klink;
448
449 LIST_FOREACH(klink, &zone->uz_kegs, kl_link)
450 kegfn(klink->kl_keg);
451 }
452
453 /*
454 * Routine called by timeout which is used to fire off some time interval
455 * based calculations. (stats, hash size, etc.)
456 *
457 * Arguments:
458 * arg Unused
459 *
460 * Returns:
461 * Nothing
462 */
463 static void
464 uma_timeout(void *unused)
465 {
466 bucket_enable();
467 zone_foreach(zone_timeout);
468
469 /* Reschedule this event */
470 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
471 }
472
473 /*
474 * Routine to perform timeout driven calculations. This expands the
475 * hashes and does per cpu statistics aggregation.
476 *
477 * Returns nothing.
478 */
479 static void
480 keg_timeout(uma_keg_t keg)
481 {
482 u_int slabs;
483
484 KEG_LOCK(keg);
485 /*
486 * Expand the keg hash table.
487 *
488 * This is done if the number of slabs is larger than the hash size.
489 * What I'm trying to do here is completely reduce collisions. This
490 * may be a little aggressive. Should I allow for two collisions max?
491 */
492 if (keg->uk_flags & UMA_ZONE_HASH &&
493 (slabs = keg->uk_pages / keg->uk_ppera) >
494 keg->uk_hash.uh_hashsize) {
495 struct uma_hash newhash;
496 struct uma_hash oldhash;
497 int ret;
498
499 /*
500 * This is so involved because allocating and freeing
501 * while the keg lock is held will lead to deadlock.
502 * I have to do everything in stages and check for
503 * races.
504 */
505 KEG_UNLOCK(keg);
506 ret = hash_alloc(&newhash, 1 << fls(slabs));
507 KEG_LOCK(keg);
508 if (ret) {
509 if (hash_expand(&keg->uk_hash, &newhash)) {
510 oldhash = keg->uk_hash;
511 keg->uk_hash = newhash;
512 } else
513 oldhash = newhash;
514
515 KEG_UNLOCK(keg);
516 hash_free(&oldhash);
517 return;
518 }
519 }
520 KEG_UNLOCK(keg);
521 }
522
523 static void
524 zone_timeout(uma_zone_t zone)
525 {
526
527 zone_foreach_keg(zone, &keg_timeout);
528 }
529
530 /*
531 * Allocate and zero fill the next sized hash table from the appropriate
532 * backing store.
533 *
534 * Arguments:
535 * hash A new hash structure with the old hash size in uh_hashsize
536 *
537 * Returns:
538 * 1 on success and 0 on failure.
539 */
540 static int
541 hash_alloc(struct uma_hash *hash, u_int size)
542 {
543 size_t alloc;
544
545 KASSERT(powerof2(size), ("hash size must be power of 2"));
546 if (size > UMA_HASH_SIZE_INIT) {
547 hash->uh_hashsize = size;
548 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
549 hash->uh_slab_hash = (struct slabhead *)malloc(alloc,
550 M_UMAHASH, M_NOWAIT);
551 } else {
552 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
553 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
554 M_WAITOK);
555 hash->uh_hashsize = UMA_HASH_SIZE_INIT;
556 }
557 if (hash->uh_slab_hash) {
558 bzero(hash->uh_slab_hash, alloc);
559 hash->uh_hashmask = hash->uh_hashsize - 1;
560 return (1);
561 }
562
563 return (0);
564 }
565
566 /*
567 * Expands the hash table for HASH zones. This is done from zone_timeout
568 * to reduce collisions. This must not be done in the regular allocation
569 * path, otherwise, we can recurse on the vm while allocating pages.
570 *
571 * Arguments:
572 * oldhash The hash you want to expand
573 * newhash The hash structure for the new table
574 *
575 * Returns:
576 * Nothing
577 *
578 * Discussion:
579 */
580 static int
581 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
582 {
583 uma_slab_t slab;
584 u_int hval;
585 u_int idx;
586
587 if (!newhash->uh_slab_hash)
588 return (0);
589
590 if (oldhash->uh_hashsize >= newhash->uh_hashsize)
591 return (0);
592
593 /*
594 * I need to investigate hash algorithms for resizing without a
595 * full rehash.
596 */
597
598 for (idx = 0; idx < oldhash->uh_hashsize; idx++)
599 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[idx])) {
600 slab = SLIST_FIRST(&oldhash->uh_slab_hash[idx]);
601 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[idx], us_hlink);
602 hval = UMA_HASH(newhash, slab->us_data);
603 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
604 slab, us_hlink);
605 }
606
607 return (1);
608 }
609
610 /*
611 * Free the hash bucket to the appropriate backing store.
612 *
613 * Arguments:
614 * slab_hash The hash bucket we're freeing
615 * hashsize The number of entries in that hash bucket
616 *
617 * Returns:
618 * Nothing
619 */
620 static void
621 hash_free(struct uma_hash *hash)
622 {
623 if (hash->uh_slab_hash == NULL)
624 return;
625 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
626 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
627 else
628 free(hash->uh_slab_hash, M_UMAHASH);
629 }
630
631 /*
632 * Frees all outstanding items in a bucket
633 *
634 * Arguments:
635 * zone The zone to free to, must be unlocked.
636 * bucket The free/alloc bucket with items, cpu queue must be locked.
637 *
638 * Returns:
639 * Nothing
640 */
641
642 static void
643 bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
644 {
645 int i;
646
647 if (bucket == NULL)
648 return;
649
650 if (zone->uz_fini)
651 for (i = 0; i < bucket->ub_cnt; i++)
652 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
653 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
654 bucket->ub_cnt = 0;
655 }
656
657 /*
658 * Drains the per cpu caches for a zone.
659 *
660 * NOTE: This may only be called while the zone is being turn down, and not
661 * during normal operation. This is necessary in order that we do not have
662 * to migrate CPUs to drain the per-CPU caches.
663 *
664 * Arguments:
665 * zone The zone to drain, must be unlocked.
666 *
667 * Returns:
668 * Nothing
669 */
670 static void
671 cache_drain(uma_zone_t zone)
672 {
673 uma_cache_t cache;
674 int cpu;
675
676 /*
677 * XXX: It is safe to not lock the per-CPU caches, because we're
678 * tearing down the zone anyway. I.e., there will be no further use
679 * of the caches at this point.
680 *
681 * XXX: It would good to be able to assert that the zone is being
682 * torn down to prevent improper use of cache_drain().
683 *
684 * XXX: We lock the zone before passing into bucket_cache_drain() as
685 * it is used elsewhere. Should the tear-down path be made special
686 * there in some form?
687 */
688 CPU_FOREACH(cpu) {
689 cache = &zone->uz_cpu[cpu];
690 bucket_drain(zone, cache->uc_allocbucket);
691 bucket_drain(zone, cache->uc_freebucket);
692 if (cache->uc_allocbucket != NULL)
693 bucket_free(zone, cache->uc_allocbucket, NULL);
694 if (cache->uc_freebucket != NULL)
695 bucket_free(zone, cache->uc_freebucket, NULL);
696 cache->uc_allocbucket = cache->uc_freebucket = NULL;
697 }
698 ZONE_LOCK(zone);
699 bucket_cache_drain(zone);
700 ZONE_UNLOCK(zone);
701 }
702
703 static void
704 cache_shrink(uma_zone_t zone)
705 {
706
707 if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
708 return;
709
710 ZONE_LOCK(zone);
711 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2;
712 ZONE_UNLOCK(zone);
713 }
714
715 static void
716 cache_drain_safe_cpu(uma_zone_t zone)
717 {
718 uma_cache_t cache;
719 uma_bucket_t b1, b2;
720
721 if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
722 return;
723
724 b1 = b2 = NULL;
725 ZONE_LOCK(zone);
726 critical_enter();
727 cache = &zone->uz_cpu[curcpu];
728 if (cache->uc_allocbucket) {
729 if (cache->uc_allocbucket->ub_cnt != 0)
730 LIST_INSERT_HEAD(&zone->uz_buckets,
731 cache->uc_allocbucket, ub_link);
732 else
733 b1 = cache->uc_allocbucket;
734 cache->uc_allocbucket = NULL;
735 }
736 if (cache->uc_freebucket) {
737 if (cache->uc_freebucket->ub_cnt != 0)
738 LIST_INSERT_HEAD(&zone->uz_buckets,
739 cache->uc_freebucket, ub_link);
740 else
741 b2 = cache->uc_freebucket;
742 cache->uc_freebucket = NULL;
743 }
744 critical_exit();
745 ZONE_UNLOCK(zone);
746 if (b1)
747 bucket_free(zone, b1, NULL);
748 if (b2)
749 bucket_free(zone, b2, NULL);
750 }
751
752 /*
753 * Safely drain per-CPU caches of a zone(s) to alloc bucket.
754 * This is an expensive call because it needs to bind to all CPUs
755 * one by one and enter a critical section on each of them in order
756 * to safely access their cache buckets.
757 * Zone lock must not be held on call this function.
758 */
759 static void
760 cache_drain_safe(uma_zone_t zone)
761 {
762 int cpu;
763
764 /*
765 * Polite bucket sizes shrinking was not enouth, shrink aggressively.
766 */
767 if (zone)
768 cache_shrink(zone);
769 else
770 zone_foreach(cache_shrink);
771
772 CPU_FOREACH(cpu) {
773 thread_lock(curthread);
774 sched_bind(curthread, cpu);
775 thread_unlock(curthread);
776
777 if (zone)
778 cache_drain_safe_cpu(zone);
779 else
780 zone_foreach(cache_drain_safe_cpu);
781 }
782 thread_lock(curthread);
783 sched_unbind(curthread);
784 thread_unlock(curthread);
785 }
786
787 /*
788 * Drain the cached buckets from a zone. Expects a locked zone on entry.
789 */
790 static void
791 bucket_cache_drain(uma_zone_t zone)
792 {
793 uma_bucket_t bucket;
794
795 /*
796 * Drain the bucket queues and free the buckets, we just keep two per
797 * cpu (alloc/free).
798 */
799 while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
800 LIST_REMOVE(bucket, ub_link);
801 ZONE_UNLOCK(zone);
802 bucket_drain(zone, bucket);
803 bucket_free(zone, bucket, NULL);
804 ZONE_LOCK(zone);
805 }
806
807 /*
808 * Shrink further bucket sizes. Price of single zone lock collision
809 * is probably lower then price of global cache drain.
810 */
811 if (zone->uz_count > zone->uz_count_min)
812 zone->uz_count--;
813 }
814
815 static void
816 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
817 {
818 uint8_t *mem;
819 int i;
820 uint8_t flags;
821
822 mem = slab->us_data;
823 flags = slab->us_flags;
824 i = start;
825 if (keg->uk_fini != NULL) {
826 for (i--; i > -1; i--)
827 keg->uk_fini(slab->us_data + (keg->uk_rsize * i),
828 keg->uk_size);
829 }
830 if (keg->uk_flags & UMA_ZONE_OFFPAGE)
831 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
832 #ifdef UMA_DEBUG
833 printf("%s: Returning %d bytes.\n", keg->uk_name,
834 PAGE_SIZE * keg->uk_ppera);
835 #endif
836 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags);
837 }
838
839 /*
840 * Frees pages from a keg back to the system. This is done on demand from
841 * the pageout daemon.
842 *
843 * Returns nothing.
844 */
845 static void
846 keg_drain(uma_keg_t keg)
847 {
848 struct slabhead freeslabs = { 0 };
849 uma_slab_t slab, tmp;
850
851 /*
852 * We don't want to take pages from statically allocated kegs at this
853 * time
854 */
855 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
856 return;
857
858 #ifdef UMA_DEBUG
859 printf("%s free items: %u\n", keg->uk_name, keg->uk_free);
860 #endif
861 KEG_LOCK(keg);
862 if (keg->uk_free == 0)
863 goto finished;
864
865 LIST_FOREACH_SAFE(slab, &keg->uk_free_slab, us_link, tmp) {
866 /* We have nowhere to free these to. */
867 if (slab->us_flags & UMA_SLAB_BOOT)
868 continue;
869
870 LIST_REMOVE(slab, us_link);
871 keg->uk_pages -= keg->uk_ppera;
872 keg->uk_free -= keg->uk_ipers;
873
874 if (keg->uk_flags & UMA_ZONE_HASH)
875 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data);
876
877 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink);
878 }
879 finished:
880 KEG_UNLOCK(keg);
881
882 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) {
883 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink);
884 keg_free_slab(keg, slab, keg->uk_ipers);
885 }
886 }
887
888 static void
889 zone_drain_wait(uma_zone_t zone, int waitok)
890 {
891
892 /*
893 * Set draining to interlock with zone_dtor() so we can release our
894 * locks as we go. Only dtor() should do a WAITOK call since it
895 * is the only call that knows the structure will still be available
896 * when it wakes up.
897 */
898 ZONE_LOCK(zone);
899 while (zone->uz_flags & UMA_ZFLAG_DRAINING) {
900 if (waitok == M_NOWAIT)
901 goto out;
902 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1);
903 }
904 zone->uz_flags |= UMA_ZFLAG_DRAINING;
905 bucket_cache_drain(zone);
906 ZONE_UNLOCK(zone);
907 /*
908 * The DRAINING flag protects us from being freed while
909 * we're running. Normally the uma_rwlock would protect us but we
910 * must be able to release and acquire the right lock for each keg.
911 */
912 zone_foreach_keg(zone, &keg_drain);
913 ZONE_LOCK(zone);
914 zone->uz_flags &= ~UMA_ZFLAG_DRAINING;
915 wakeup(zone);
916 out:
917 ZONE_UNLOCK(zone);
918 }
919
920 void
921 zone_drain(uma_zone_t zone)
922 {
923
924 zone_drain_wait(zone, M_NOWAIT);
925 }
926
927 /*
928 * Allocate a new slab for a keg. This does not insert the slab onto a list.
929 *
930 * Arguments:
931 * wait Shall we wait?
932 *
933 * Returns:
934 * The slab that was allocated or NULL if there is no memory and the
935 * caller specified M_NOWAIT.
936 */
937 static uma_slab_t
938 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait)
939 {
940 uma_alloc allocf;
941 uma_slab_t slab;
942 uint8_t *mem;
943 uint8_t flags;
944 int i;
945
946 mtx_assert(&keg->uk_lock, MA_OWNED);
947 slab = NULL;
948 mem = NULL;
949
950 #ifdef UMA_DEBUG
951 printf("alloc_slab: Allocating a new slab for %s\n", keg->uk_name);
952 #endif
953 allocf = keg->uk_allocf;
954 KEG_UNLOCK(keg);
955
956 if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
957 slab = zone_alloc_item(keg->uk_slabzone, NULL, wait);
958 if (slab == NULL)
959 goto out;
960 }
961
962 /*
963 * This reproduces the old vm_zone behavior of zero filling pages the
964 * first time they are added to a zone.
965 *
966 * Malloced items are zeroed in uma_zalloc.
967 */
968
969 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
970 wait |= M_ZERO;
971 else
972 wait &= ~M_ZERO;
973
974 if (keg->uk_flags & UMA_ZONE_NODUMP)
975 wait |= M_NODUMP;
976
977 /* zone is passed for legacy reasons. */
978 mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait);
979 if (mem == NULL) {
980 if (keg->uk_flags & UMA_ZONE_OFFPAGE)
981 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
982 slab = NULL;
983 goto out;
984 }
985
986 /* Point the slab into the allocated memory */
987 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE))
988 slab = (uma_slab_t )(mem + keg->uk_pgoff);
989
990 if (keg->uk_flags & UMA_ZONE_VTOSLAB)
991 for (i = 0; i < keg->uk_ppera; i++)
992 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab);
993
994 slab->us_keg = keg;
995 slab->us_data = mem;
996 slab->us_freecount = keg->uk_ipers;
997 slab->us_flags = flags;
998 BIT_FILL(SLAB_SETSIZE, &slab->us_free);
999 #ifdef INVARIANTS
1000 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree);
1001 #endif
1002
1003 if (keg->uk_init != NULL) {
1004 for (i = 0; i < keg->uk_ipers; i++)
1005 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i),
1006 keg->uk_size, wait) != 0)
1007 break;
1008 if (i != keg->uk_ipers) {
1009 keg_free_slab(keg, slab, i);
1010 slab = NULL;
1011 goto out;
1012 }
1013 }
1014 out:
1015 KEG_LOCK(keg);
1016
1017 if (slab != NULL) {
1018 if (keg->uk_flags & UMA_ZONE_HASH)
1019 UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
1020
1021 keg->uk_pages += keg->uk_ppera;
1022 keg->uk_free += keg->uk_ipers;
1023 }
1024
1025 return (slab);
1026 }
1027
1028 /*
1029 * This function is intended to be used early on in place of page_alloc() so
1030 * that we may use the boot time page cache to satisfy allocations before
1031 * the VM is ready.
1032 */
1033 static void *
1034 startup_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait)
1035 {
1036 uma_keg_t keg;
1037 uma_slab_t tmps;
1038 int pages, check_pages;
1039
1040 keg = zone_first_keg(zone);
1041 pages = howmany(bytes, PAGE_SIZE);
1042 check_pages = pages - 1;
1043 KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n"));
1044
1045 /*
1046 * Check our small startup cache to see if it has pages remaining.
1047 */
1048 mtx_lock(&uma_boot_pages_mtx);
1049
1050 /* First check if we have enough room. */
1051 tmps = LIST_FIRST(&uma_boot_pages);
1052 while (tmps != NULL && check_pages-- > 0)
1053 tmps = LIST_NEXT(tmps, us_link);
1054 if (tmps != NULL) {
1055 /*
1056 * It's ok to lose tmps references. The last one will
1057 * have tmps->us_data pointing to the start address of
1058 * "pages" contiguous pages of memory.
1059 */
1060 while (pages-- > 0) {
1061 tmps = LIST_FIRST(&uma_boot_pages);
1062 LIST_REMOVE(tmps, us_link);
1063 }
1064 mtx_unlock(&uma_boot_pages_mtx);
1065 *pflag = tmps->us_flags;
1066 return (tmps->us_data);
1067 }
1068 mtx_unlock(&uma_boot_pages_mtx);
1069 if (booted < UMA_STARTUP2)
1070 panic("UMA: Increase vm.boot_pages");
1071 /*
1072 * Now that we've booted reset these users to their real allocator.
1073 */
1074 #ifdef UMA_MD_SMALL_ALLOC
1075 keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc;
1076 #else
1077 keg->uk_allocf = page_alloc;
1078 #endif
1079 return keg->uk_allocf(zone, bytes, pflag, wait);
1080 }
1081
1082 /*
1083 * Allocates a number of pages from the system
1084 *
1085 * Arguments:
1086 * bytes The number of bytes requested
1087 * wait Shall we wait?
1088 *
1089 * Returns:
1090 * A pointer to the alloced memory or possibly
1091 * NULL if M_NOWAIT is set.
1092 */
1093 static void *
1094 page_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait)
1095 {
1096 void *p; /* Returned page */
1097
1098 *pflag = UMA_SLAB_KMEM;
1099 p = (void *) kmem_malloc(kmem_arena, bytes, wait);
1100
1101 return (p);
1102 }
1103
1104 /*
1105 * Allocates a number of pages from within an object
1106 *
1107 * Arguments:
1108 * bytes The number of bytes requested
1109 * wait Shall we wait?
1110 *
1111 * Returns:
1112 * A pointer to the alloced memory or possibly
1113 * NULL if M_NOWAIT is set.
1114 */
1115 static void *
1116 noobj_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *flags, int wait)
1117 {
1118 TAILQ_HEAD(, vm_page) alloctail;
1119 u_long npages;
1120 vm_offset_t retkva, zkva;
1121 vm_page_t p, p_next;
1122 uma_keg_t keg;
1123
1124 TAILQ_INIT(&alloctail);
1125 keg = zone_first_keg(zone);
1126
1127 npages = howmany(bytes, PAGE_SIZE);
1128 while (npages > 0) {
1129 p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT |
1130 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ |
1131 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK :
1132 VM_ALLOC_NOWAIT));
1133 if (p != NULL) {
1134 /*
1135 * Since the page does not belong to an object, its
1136 * listq is unused.
1137 */
1138 TAILQ_INSERT_TAIL(&alloctail, p, listq);
1139 npages--;
1140 continue;
1141 }
1142 /*
1143 * Page allocation failed, free intermediate pages and
1144 * exit.
1145 */
1146 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1147 vm_page_unwire(p, PQ_NONE);
1148 vm_page_free(p);
1149 }
1150 return (NULL);
1151 }
1152 *flags = UMA_SLAB_PRIV;
1153 zkva = keg->uk_kva +
1154 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
1155 retkva = zkva;
1156 TAILQ_FOREACH(p, &alloctail, listq) {
1157 pmap_qenter(zkva, &p, 1);
1158 zkva += PAGE_SIZE;
1159 }
1160
1161 return ((void *)retkva);
1162 }
1163
1164 /*
1165 * Frees a number of pages to the system
1166 *
1167 * Arguments:
1168 * mem A pointer to the memory to be freed
1169 * size The size of the memory being freed
1170 * flags The original p->us_flags field
1171 *
1172 * Returns:
1173 * Nothing
1174 */
1175 static void
1176 page_free(void *mem, vm_size_t size, uint8_t flags)
1177 {
1178 struct vmem *vmem;
1179
1180 if (flags & UMA_SLAB_KMEM)
1181 vmem = kmem_arena;
1182 else if (flags & UMA_SLAB_KERNEL)
1183 vmem = kernel_arena;
1184 else
1185 panic("UMA: page_free used with invalid flags %d", flags);
1186
1187 kmem_free(vmem, (vm_offset_t)mem, size);
1188 }
1189
1190 /*
1191 * Zero fill initializer
1192 *
1193 * Arguments/Returns follow uma_init specifications
1194 */
1195 static int
1196 zero_init(void *mem, int size, int flags)
1197 {
1198 bzero(mem, size);
1199 return (0);
1200 }
1201
1202 /*
1203 * Finish creating a small uma keg. This calculates ipers, and the keg size.
1204 *
1205 * Arguments
1206 * keg The zone we should initialize
1207 *
1208 * Returns
1209 * Nothing
1210 */
1211 static void
1212 keg_small_init(uma_keg_t keg)
1213 {
1214 u_int rsize;
1215 u_int memused;
1216 u_int wastedspace;
1217 u_int shsize;
1218 u_int slabsize;
1219
1220 if (keg->uk_flags & UMA_ZONE_PCPU) {
1221 u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU;
1222
1223 slabsize = sizeof(struct pcpu);
1224 keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu),
1225 PAGE_SIZE);
1226 } else {
1227 slabsize = UMA_SLAB_SIZE;
1228 keg->uk_ppera = 1;
1229 }
1230
1231 /*
1232 * Calculate the size of each allocation (rsize) according to
1233 * alignment. If the requested size is smaller than we have
1234 * allocation bits for we round it up.
1235 */
1236 rsize = keg->uk_size;
1237 if (rsize < slabsize / SLAB_SETSIZE)
1238 rsize = slabsize / SLAB_SETSIZE;
1239 if (rsize & keg->uk_align)
1240 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1);
1241 keg->uk_rsize = rsize;
1242
1243 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
1244 keg->uk_rsize < sizeof(struct pcpu),
1245 ("%s: size %u too large", __func__, keg->uk_rsize));
1246
1247 if (keg->uk_flags & UMA_ZONE_OFFPAGE)
1248 shsize = 0;
1249 else
1250 shsize = sizeof(struct uma_slab);
1251
1252 if (rsize <= slabsize - shsize)
1253 keg->uk_ipers = (slabsize - shsize) / rsize;
1254 else {
1255 /* Handle special case when we have 1 item per slab, so
1256 * alignment requirement can be relaxed. */
1257 KASSERT(keg->uk_size <= slabsize - shsize,
1258 ("%s: size %u greater than slab", __func__, keg->uk_size));
1259 keg->uk_ipers = 1;
1260 }
1261 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1262 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1263
1264 memused = keg->uk_ipers * rsize + shsize;
1265 wastedspace = slabsize - memused;
1266
1267 /*
1268 * We can't do OFFPAGE if we're internal or if we've been
1269 * asked to not go to the VM for buckets. If we do this we
1270 * may end up going to the VM for slabs which we do not
1271 * want to do if we're UMA_ZFLAG_CACHEONLY as a result
1272 * of UMA_ZONE_VM, which clearly forbids it.
1273 */
1274 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) ||
1275 (keg->uk_flags & UMA_ZFLAG_CACHEONLY))
1276 return;
1277
1278 /*
1279 * See if using an OFFPAGE slab will limit our waste. Only do
1280 * this if it permits more items per-slab.
1281 *
1282 * XXX We could try growing slabsize to limit max waste as well.
1283 * Historically this was not done because the VM could not
1284 * efficiently handle contiguous allocations.
1285 */
1286 if ((wastedspace >= slabsize / UMA_MAX_WASTE) &&
1287 (keg->uk_ipers < (slabsize / keg->uk_rsize))) {
1288 keg->uk_ipers = slabsize / keg->uk_rsize;
1289 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1290 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1291 #ifdef UMA_DEBUG
1292 printf("UMA decided we need offpage slab headers for "
1293 "keg: %s, calculated wastedspace = %d, "
1294 "maximum wasted space allowed = %d, "
1295 "calculated ipers = %d, "
1296 "new wasted space = %d\n", keg->uk_name, wastedspace,
1297 slabsize / UMA_MAX_WASTE, keg->uk_ipers,
1298 slabsize - keg->uk_ipers * keg->uk_rsize);
1299 #endif
1300 keg->uk_flags |= UMA_ZONE_OFFPAGE;
1301 }
1302
1303 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1304 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1305 keg->uk_flags |= UMA_ZONE_HASH;
1306 }
1307
1308 /*
1309 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do
1310 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be
1311 * more complicated.
1312 *
1313 * Arguments
1314 * keg The keg we should initialize
1315 *
1316 * Returns
1317 * Nothing
1318 */
1319 static void
1320 keg_large_init(uma_keg_t keg)
1321 {
1322 u_int shsize;
1323
1324 KASSERT(keg != NULL, ("Keg is null in keg_large_init"));
1325 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0,
1326 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg"));
1327 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1328 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__));
1329
1330 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE);
1331 keg->uk_ipers = 1;
1332 keg->uk_rsize = keg->uk_size;
1333
1334 /* Check whether we have enough space to not do OFFPAGE. */
1335 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) {
1336 shsize = sizeof(struct uma_slab);
1337 if (shsize & UMA_ALIGN_PTR)
1338 shsize = (shsize & ~UMA_ALIGN_PTR) +
1339 (UMA_ALIGN_PTR + 1);
1340
1341 if (PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < shsize) {
1342 /*
1343 * We can't do OFFPAGE if we're internal, in which case
1344 * we need an extra page per allocation to contain the
1345 * slab header.
1346 */
1347 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0)
1348 keg->uk_flags |= UMA_ZONE_OFFPAGE;
1349 else
1350 keg->uk_ppera++;
1351 }
1352 }
1353
1354 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1355 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1356 keg->uk_flags |= UMA_ZONE_HASH;
1357 }
1358
1359 static void
1360 keg_cachespread_init(uma_keg_t keg)
1361 {
1362 int alignsize;
1363 int trailer;
1364 int pages;
1365 int rsize;
1366
1367 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1368 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__));
1369
1370 alignsize = keg->uk_align + 1;
1371 rsize = keg->uk_size;
1372 /*
1373 * We want one item to start on every align boundary in a page. To
1374 * do this we will span pages. We will also extend the item by the
1375 * size of align if it is an even multiple of align. Otherwise, it
1376 * would fall on the same boundary every time.
1377 */
1378 if (rsize & keg->uk_align)
1379 rsize = (rsize & ~keg->uk_align) + alignsize;
1380 if ((rsize & alignsize) == 0)
1381 rsize += alignsize;
1382 trailer = rsize - keg->uk_size;
1383 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE;
1384 pages = MIN(pages, (128 * 1024) / PAGE_SIZE);
1385 keg->uk_rsize = rsize;
1386 keg->uk_ppera = pages;
1387 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize;
1388 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB;
1389 KASSERT(keg->uk_ipers <= SLAB_SETSIZE,
1390 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__,
1391 keg->uk_ipers));
1392 }
1393
1394 /*
1395 * Keg header ctor. This initializes all fields, locks, etc. And inserts
1396 * the keg onto the global keg list.
1397 *
1398 * Arguments/Returns follow uma_ctor specifications
1399 * udata Actually uma_kctor_args
1400 */
1401 static int
1402 keg_ctor(void *mem, int size, void *udata, int flags)
1403 {
1404 struct uma_kctor_args *arg = udata;
1405 uma_keg_t keg = mem;
1406 uma_zone_t zone;
1407
1408 bzero(keg, size);
1409 keg->uk_size = arg->size;
1410 keg->uk_init = arg->uminit;
1411 keg->uk_fini = arg->fini;
1412 keg->uk_align = arg->align;
1413 keg->uk_free = 0;
1414 keg->uk_reserve = 0;
1415 keg->uk_pages = 0;
1416 keg->uk_flags = arg->flags;
1417 keg->uk_allocf = page_alloc;
1418 keg->uk_freef = page_free;
1419 keg->uk_slabzone = NULL;
1420
1421 /*
1422 * The master zone is passed to us at keg-creation time.
1423 */
1424 zone = arg->zone;
1425 keg->uk_name = zone->uz_name;
1426
1427 if (arg->flags & UMA_ZONE_VM)
1428 keg->uk_flags |= UMA_ZFLAG_CACHEONLY;
1429
1430 if (arg->flags & UMA_ZONE_ZINIT)
1431 keg->uk_init = zero_init;
1432
1433 if (arg->flags & UMA_ZONE_MALLOC)
1434 keg->uk_flags |= UMA_ZONE_VTOSLAB;
1435
1436 if (arg->flags & UMA_ZONE_PCPU)
1437 #ifdef SMP
1438 keg->uk_flags |= UMA_ZONE_OFFPAGE;
1439 #else
1440 keg->uk_flags &= ~UMA_ZONE_PCPU;
1441 #endif
1442
1443 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) {
1444 keg_cachespread_init(keg);
1445 } else {
1446 if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab)))
1447 keg_large_init(keg);
1448 else
1449 keg_small_init(keg);
1450 }
1451
1452 if (keg->uk_flags & UMA_ZONE_OFFPAGE)
1453 keg->uk_slabzone = slabzone;
1454
1455 /*
1456 * If we haven't booted yet we need allocations to go through the
1457 * startup cache until the vm is ready.
1458 */
1459 if (keg->uk_ppera == 1) {
1460 #ifdef UMA_MD_SMALL_ALLOC
1461 keg->uk_allocf = uma_small_alloc;
1462 keg->uk_freef = uma_small_free;
1463
1464 if (booted < UMA_STARTUP)
1465 keg->uk_allocf = startup_alloc;
1466 #else
1467 if (booted < UMA_STARTUP2)
1468 keg->uk_allocf = startup_alloc;
1469 #endif
1470 } else if (booted < UMA_STARTUP2 &&
1471 (keg->uk_flags & UMA_ZFLAG_INTERNAL))
1472 keg->uk_allocf = startup_alloc;
1473
1474 /*
1475 * Initialize keg's lock
1476 */
1477 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS));
1478
1479 /*
1480 * If we're putting the slab header in the actual page we need to
1481 * figure out where in each page it goes. This calculates a right
1482 * justified offset into the memory on an ALIGN_PTR boundary.
1483 */
1484 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) {
1485 u_int totsize;
1486
1487 /* Size of the slab struct and free list */
1488 totsize = sizeof(struct uma_slab);
1489
1490 if (totsize & UMA_ALIGN_PTR)
1491 totsize = (totsize & ~UMA_ALIGN_PTR) +
1492 (UMA_ALIGN_PTR + 1);
1493 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize;
1494
1495 /*
1496 * The only way the following is possible is if with our
1497 * UMA_ALIGN_PTR adjustments we are now bigger than
1498 * UMA_SLAB_SIZE. I haven't checked whether this is
1499 * mathematically possible for all cases, so we make
1500 * sure here anyway.
1501 */
1502 totsize = keg->uk_pgoff + sizeof(struct uma_slab);
1503 if (totsize > PAGE_SIZE * keg->uk_ppera) {
1504 printf("zone %s ipers %d rsize %d size %d\n",
1505 zone->uz_name, keg->uk_ipers, keg->uk_rsize,
1506 keg->uk_size);
1507 panic("UMA slab won't fit.");
1508 }
1509 }
1510
1511 if (keg->uk_flags & UMA_ZONE_HASH)
1512 hash_alloc(&keg->uk_hash, 0);
1513
1514 #ifdef UMA_DEBUG
1515 printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n",
1516 zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags,
1517 keg->uk_ipers, keg->uk_ppera,
1518 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free,
1519 keg->uk_free);
1520 #endif
1521
1522 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
1523
1524 rw_wlock(&uma_rwlock);
1525 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
1526 rw_wunlock(&uma_rwlock);
1527 return (0);
1528 }
1529
1530 /*
1531 * Zone header ctor. This initializes all fields, locks, etc.
1532 *
1533 * Arguments/Returns follow uma_ctor specifications
1534 * udata Actually uma_zctor_args
1535 */
1536 static int
1537 zone_ctor(void *mem, int size, void *udata, int flags)
1538 {
1539 struct uma_zctor_args *arg = udata;
1540 uma_zone_t zone = mem;
1541 uma_zone_t z;
1542 uma_keg_t keg;
1543
1544 bzero(zone, size);
1545 zone->uz_name = arg->name;
1546 zone->uz_ctor = arg->ctor;
1547 zone->uz_dtor = arg->dtor;
1548 zone->uz_slab = zone_fetch_slab;
1549 zone->uz_init = NULL;
1550 zone->uz_fini = NULL;
1551 zone->uz_allocs = 0;
1552 zone->uz_frees = 0;
1553 zone->uz_fails = 0;
1554 zone->uz_sleeps = 0;
1555 zone->uz_count = 0;
1556 zone->uz_count_min = 0;
1557 zone->uz_flags = 0;
1558 zone->uz_warning = NULL;
1559 timevalclear(&zone->uz_ratecheck);
1560 keg = arg->keg;
1561
1562 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS));
1563
1564 /*
1565 * This is a pure cache zone, no kegs.
1566 */
1567 if (arg->import) {
1568 if (arg->flags & UMA_ZONE_VM)
1569 arg->flags |= UMA_ZFLAG_CACHEONLY;
1570 zone->uz_flags = arg->flags;
1571 zone->uz_size = arg->size;
1572 zone->uz_import = arg->import;
1573 zone->uz_release = arg->release;
1574 zone->uz_arg = arg->arg;
1575 zone->uz_lockptr = &zone->uz_lock;
1576 rw_wlock(&uma_rwlock);
1577 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link);
1578 rw_wunlock(&uma_rwlock);
1579 goto out;
1580 }
1581
1582 /*
1583 * Use the regular zone/keg/slab allocator.
1584 */
1585 zone->uz_import = (uma_import)zone_import;
1586 zone->uz_release = (uma_release)zone_release;
1587 zone->uz_arg = zone;
1588
1589 if (arg->flags & UMA_ZONE_SECONDARY) {
1590 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
1591 zone->uz_init = arg->uminit;
1592 zone->uz_fini = arg->fini;
1593 zone->uz_lockptr = &keg->uk_lock;
1594 zone->uz_flags |= UMA_ZONE_SECONDARY;
1595 rw_wlock(&uma_rwlock);
1596 ZONE_LOCK(zone);
1597 LIST_FOREACH(z, &keg->uk_zones, uz_link) {
1598 if (LIST_NEXT(z, uz_link) == NULL) {
1599 LIST_INSERT_AFTER(z, zone, uz_link);
1600 break;
1601 }
1602 }
1603 ZONE_UNLOCK(zone);
1604 rw_wunlock(&uma_rwlock);
1605 } else if (keg == NULL) {
1606 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
1607 arg->align, arg->flags)) == NULL)
1608 return (ENOMEM);
1609 } else {
1610 struct uma_kctor_args karg;
1611 int error;
1612
1613 /* We should only be here from uma_startup() */
1614 karg.size = arg->size;
1615 karg.uminit = arg->uminit;
1616 karg.fini = arg->fini;
1617 karg.align = arg->align;
1618 karg.flags = arg->flags;
1619 karg.zone = zone;
1620 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
1621 flags);
1622 if (error)
1623 return (error);
1624 }
1625
1626 /*
1627 * Link in the first keg.
1628 */
1629 zone->uz_klink.kl_keg = keg;
1630 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link);
1631 zone->uz_lockptr = &keg->uk_lock;
1632 zone->uz_size = keg->uk_size;
1633 zone->uz_flags |= (keg->uk_flags &
1634 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
1635
1636 /*
1637 * Some internal zones don't have room allocated for the per cpu
1638 * caches. If we're internal, bail out here.
1639 */
1640 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) {
1641 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
1642 ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
1643 return (0);
1644 }
1645
1646 out:
1647 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) !=
1648 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET),
1649 ("Invalid zone flag combination"));
1650 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0)
1651 zone->uz_count = BUCKET_MAX;
1652 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0)
1653 zone->uz_count = 0;
1654 else
1655 zone->uz_count = bucket_select(zone->uz_size);
1656 zone->uz_count_min = zone->uz_count;
1657
1658 return (0);
1659 }
1660
1661 /*
1662 * Keg header dtor. This frees all data, destroys locks, frees the hash
1663 * table and removes the keg from the global list.
1664 *
1665 * Arguments/Returns follow uma_dtor specifications
1666 * udata unused
1667 */
1668 static void
1669 keg_dtor(void *arg, int size, void *udata)
1670 {
1671 uma_keg_t keg;
1672
1673 keg = (uma_keg_t)arg;
1674 KEG_LOCK(keg);
1675 if (keg->uk_free != 0) {
1676 printf("Freed UMA keg (%s) was not empty (%d items). "
1677 " Lost %d pages of memory.\n",
1678 keg->uk_name ? keg->uk_name : "",
1679 keg->uk_free, keg->uk_pages);
1680 }
1681 KEG_UNLOCK(keg);
1682
1683 hash_free(&keg->uk_hash);
1684
1685 KEG_LOCK_FINI(keg);
1686 }
1687
1688 /*
1689 * Zone header dtor.
1690 *
1691 * Arguments/Returns follow uma_dtor specifications
1692 * udata unused
1693 */
1694 static void
1695 zone_dtor(void *arg, int size, void *udata)
1696 {
1697 uma_klink_t klink;
1698 uma_zone_t zone;
1699 uma_keg_t keg;
1700
1701 zone = (uma_zone_t)arg;
1702 keg = zone_first_keg(zone);
1703
1704 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
1705 cache_drain(zone);
1706
1707 rw_wlock(&uma_rwlock);
1708 LIST_REMOVE(zone, uz_link);
1709 rw_wunlock(&uma_rwlock);
1710 /*
1711 * XXX there are some races here where
1712 * the zone can be drained but zone lock
1713 * released and then refilled before we
1714 * remove it... we dont care for now
1715 */
1716 zone_drain_wait(zone, M_WAITOK);
1717 /*
1718 * Unlink all of our kegs.
1719 */
1720 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) {
1721 klink->kl_keg = NULL;
1722 LIST_REMOVE(klink, kl_link);
1723 if (klink == &zone->uz_klink)
1724 continue;
1725 free(klink, M_TEMP);
1726 }
1727 /*
1728 * We only destroy kegs from non secondary zones.
1729 */
1730 if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) {
1731 rw_wlock(&uma_rwlock);
1732 LIST_REMOVE(keg, uk_link);
1733 rw_wunlock(&uma_rwlock);
1734 zone_free_item(kegs, keg, NULL, SKIP_NONE);
1735 }
1736 ZONE_LOCK_FINI(zone);
1737 }
1738
1739 /*
1740 * Traverses every zone in the system and calls a callback
1741 *
1742 * Arguments:
1743 * zfunc A pointer to a function which accepts a zone
1744 * as an argument.
1745 *
1746 * Returns:
1747 * Nothing
1748 */
1749 static void
1750 zone_foreach(void (*zfunc)(uma_zone_t))
1751 {
1752 uma_keg_t keg;
1753 uma_zone_t zone;
1754
1755 rw_rlock(&uma_rwlock);
1756 LIST_FOREACH(keg, &uma_kegs, uk_link) {
1757 LIST_FOREACH(zone, &keg->uk_zones, uz_link)
1758 zfunc(zone);
1759 }
1760 rw_runlock(&uma_rwlock);
1761 }
1762
1763 /* Public functions */
1764 /* See uma.h */
1765 void
1766 uma_startup(void *bootmem, int boot_pages)
1767 {
1768 struct uma_zctor_args args;
1769 uma_slab_t slab;
1770 int i;
1771
1772 #ifdef UMA_DEBUG
1773 printf("Creating uma keg headers zone and keg.\n");
1774 #endif
1775 rw_init(&uma_rwlock, "UMA lock");
1776
1777 /* "manually" create the initial zone */
1778 memset(&args, 0, sizeof(args));
1779 args.name = "UMA Kegs";
1780 args.size = sizeof(struct uma_keg);
1781 args.ctor = keg_ctor;
1782 args.dtor = keg_dtor;
1783 args.uminit = zero_init;
1784 args.fini = NULL;
1785 args.keg = &masterkeg;
1786 args.align = 32 - 1;
1787 args.flags = UMA_ZFLAG_INTERNAL;
1788 /* The initial zone has no Per cpu queues so it's smaller */
1789 zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK);
1790
1791 #ifdef UMA_DEBUG
1792 printf("Filling boot free list.\n");
1793 #endif
1794 for (i = 0; i < boot_pages; i++) {
1795 slab = (uma_slab_t)((uint8_t *)bootmem + (i * UMA_SLAB_SIZE));
1796 slab->us_data = (uint8_t *)slab;
1797 slab->us_flags = UMA_SLAB_BOOT;
1798 LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link);
1799 }
1800 mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF);
1801
1802 #ifdef UMA_DEBUG
1803 printf("Creating uma zone headers zone and keg.\n");
1804 #endif
1805 args.name = "UMA Zones";
1806 args.size = sizeof(struct uma_zone) +
1807 (sizeof(struct uma_cache) * (mp_maxid + 1));
1808 args.ctor = zone_ctor;
1809 args.dtor = zone_dtor;
1810 args.uminit = zero_init;
1811 args.fini = NULL;
1812 args.keg = NULL;
1813 args.align = 32 - 1;
1814 args.flags = UMA_ZFLAG_INTERNAL;
1815 /* The initial zone has no Per cpu queues so it's smaller */
1816 zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK);
1817
1818 #ifdef UMA_DEBUG
1819 printf("Creating slab and hash zones.\n");
1820 #endif
1821
1822 /* Now make a zone for slab headers */
1823 slabzone = uma_zcreate("UMA Slabs",
1824 sizeof(struct uma_slab),
1825 NULL, NULL, NULL, NULL,
1826 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1827
1828 hashzone = uma_zcreate("UMA Hash",
1829 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
1830 NULL, NULL, NULL, NULL,
1831 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1832
1833 bucket_init();
1834
1835 booted = UMA_STARTUP;
1836
1837 #ifdef UMA_DEBUG
1838 printf("UMA startup complete.\n");
1839 #endif
1840 }
1841
1842 /* see uma.h */
1843 void
1844 uma_startup2(void)
1845 {
1846 booted = UMA_STARTUP2;
1847 bucket_enable();
1848 sx_init(&uma_drain_lock, "umadrain");
1849 #ifdef UMA_DEBUG
1850 printf("UMA startup2 complete.\n");
1851 #endif
1852 }
1853
1854
1855 static void
1856 uma_startup3(void)
1857 {
1858 #ifdef UMA_DEBUG
1859 printf("Starting callout.\n");
1860 #endif
1861 callout_init(&uma_callout, 1);
1862 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
1863 #ifdef UMA_DEBUG
1864 printf("UMA startup3 complete.\n");
1865 #endif
1866
1867 EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL,
1868 EVENTHANDLER_PRI_FIRST);
1869 }
1870
1871 static void
1872 uma_shutdown(void)
1873 {
1874
1875 booted = UMA_SHUTDOWN;
1876 }
1877
1878 static uma_keg_t
1879 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
1880 int align, uint32_t flags)
1881 {
1882 struct uma_kctor_args args;
1883
1884 args.size = size;
1885 args.uminit = uminit;
1886 args.fini = fini;
1887 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
1888 args.flags = flags;
1889 args.zone = zone;
1890 return (zone_alloc_item(kegs, &args, M_WAITOK));
1891 }
1892
1893 /* See uma.h */
1894 void
1895 uma_set_align(int align)
1896 {
1897
1898 if (align != UMA_ALIGN_CACHE)
1899 uma_align_cache = align;
1900 }
1901
1902 /* See uma.h */
1903 uma_zone_t
1904 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
1905 uma_init uminit, uma_fini fini, int align, uint32_t flags)
1906
1907 {
1908 struct uma_zctor_args args;
1909 uma_zone_t res;
1910 bool locked;
1911
1912 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"",
1913 align, name));
1914
1915 /* This stuff is essential for the zone ctor */
1916 memset(&args, 0, sizeof(args));
1917 args.name = name;
1918 args.size = size;
1919 args.ctor = ctor;
1920 args.dtor = dtor;
1921 args.uminit = uminit;
1922 args.fini = fini;
1923 #ifdef INVARIANTS
1924 /*
1925 * If a zone is being created with an empty constructor and
1926 * destructor, pass UMA constructor/destructor which checks for
1927 * memory use after free.
1928 */
1929 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) &&
1930 ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) {
1931 args.ctor = trash_ctor;
1932 args.dtor = trash_dtor;
1933 args.uminit = trash_init;
1934 args.fini = trash_fini;
1935 }
1936 #endif
1937 args.align = align;
1938 args.flags = flags;
1939 args.keg = NULL;
1940
1941 if (booted < UMA_STARTUP2) {
1942 locked = false;
1943 } else {
1944 sx_slock(&uma_drain_lock);
1945 locked = true;
1946 }
1947 res = zone_alloc_item(zones, &args, M_WAITOK);
1948 if (locked)
1949 sx_sunlock(&uma_drain_lock);
1950 return (res);
1951 }
1952
1953 /* See uma.h */
1954 uma_zone_t
1955 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
1956 uma_init zinit, uma_fini zfini, uma_zone_t master)
1957 {
1958 struct uma_zctor_args args;
1959 uma_keg_t keg;
1960 uma_zone_t res;
1961 bool locked;
1962
1963 keg = zone_first_keg(master);
1964 memset(&args, 0, sizeof(args));
1965 args.name = name;
1966 args.size = keg->uk_size;
1967 args.ctor = ctor;
1968 args.dtor = dtor;
1969 args.uminit = zinit;
1970 args.fini = zfini;
1971 args.align = keg->uk_align;
1972 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
1973 args.keg = keg;
1974
1975 if (booted < UMA_STARTUP2) {
1976 locked = false;
1977 } else {
1978 sx_slock(&uma_drain_lock);
1979 locked = true;
1980 }
1981 /* XXX Attaches only one keg of potentially many. */
1982 res = zone_alloc_item(zones, &args, M_WAITOK);
1983 if (locked)
1984 sx_sunlock(&uma_drain_lock);
1985 return (res);
1986 }
1987
1988 /* See uma.h */
1989 uma_zone_t
1990 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor,
1991 uma_init zinit, uma_fini zfini, uma_import zimport,
1992 uma_release zrelease, void *arg, int flags)
1993 {
1994 struct uma_zctor_args args;
1995
1996 memset(&args, 0, sizeof(args));
1997 args.name = name;
1998 args.size = size;
1999 args.ctor = ctor;
2000 args.dtor = dtor;
2001 args.uminit = zinit;
2002 args.fini = zfini;
2003 args.import = zimport;
2004 args.release = zrelease;
2005 args.arg = arg;
2006 args.align = 0;
2007 args.flags = flags;
2008
2009 return (zone_alloc_item(zones, &args, M_WAITOK));
2010 }
2011
2012 static void
2013 zone_lock_pair(uma_zone_t a, uma_zone_t b)
2014 {
2015 if (a < b) {
2016 ZONE_LOCK(a);
2017 mtx_lock_flags(b->uz_lockptr, MTX_DUPOK);
2018 } else {
2019 ZONE_LOCK(b);
2020 mtx_lock_flags(a->uz_lockptr, MTX_DUPOK);
2021 }
2022 }
2023
2024 static void
2025 zone_unlock_pair(uma_zone_t a, uma_zone_t b)
2026 {
2027
2028 ZONE_UNLOCK(a);
2029 ZONE_UNLOCK(b);
2030 }
2031
2032 int
2033 uma_zsecond_add(uma_zone_t zone, uma_zone_t master)
2034 {
2035 uma_klink_t klink;
2036 uma_klink_t kl;
2037 int error;
2038
2039 error = 0;
2040 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO);
2041
2042 zone_lock_pair(zone, master);
2043 /*
2044 * zone must use vtoslab() to resolve objects and must already be
2045 * a secondary.
2046 */
2047 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY))
2048 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) {
2049 error = EINVAL;
2050 goto out;
2051 }
2052 /*
2053 * The new master must also use vtoslab().
2054 */
2055 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) {
2056 error = EINVAL;
2057 goto out;
2058 }
2059
2060 /*
2061 * The underlying object must be the same size. rsize
2062 * may be different.
2063 */
2064 if (master->uz_size != zone->uz_size) {
2065 error = E2BIG;
2066 goto out;
2067 }
2068 /*
2069 * Put it at the end of the list.
2070 */
2071 klink->kl_keg = zone_first_keg(master);
2072 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) {
2073 if (LIST_NEXT(kl, kl_link) == NULL) {
2074 LIST_INSERT_AFTER(kl, klink, kl_link);
2075 break;
2076 }
2077 }
2078 klink = NULL;
2079 zone->uz_flags |= UMA_ZFLAG_MULTI;
2080 zone->uz_slab = zone_fetch_slab_multi;
2081
2082 out:
2083 zone_unlock_pair(zone, master);
2084 if (klink != NULL)
2085 free(klink, M_TEMP);
2086
2087 return (error);
2088 }
2089
2090
2091 /* See uma.h */
2092 void
2093 uma_zdestroy(uma_zone_t zone)
2094 {
2095
2096 /*
2097 * Large slabs are expensive to reclaim, so don't bother doing
2098 * unnecessary work if we're shutting down.
2099 */
2100 if (booted == UMA_SHUTDOWN &&
2101 zone->uz_fini == NULL &&
2102 zone->uz_release == (uma_release)zone_release)
2103 return;
2104 sx_slock(&uma_drain_lock);
2105 zone_free_item(zones, zone, NULL, SKIP_NONE);
2106 sx_sunlock(&uma_drain_lock);
2107 }
2108
2109 void
2110 uma_zwait(uma_zone_t zone)
2111 {
2112 void *item;
2113
2114 item = uma_zalloc_arg(zone, NULL, M_WAITOK);
2115 uma_zfree(zone, item);
2116 }
2117
2118 /* See uma.h */
2119 void *
2120 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
2121 {
2122 void *item;
2123 uma_cache_t cache;
2124 uma_bucket_t bucket;
2125 int lockfail;
2126 int cpu;
2127
2128 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
2129 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA);
2130
2131 /* This is the fast path allocation */
2132 #ifdef UMA_DEBUG_ALLOC_1
2133 printf("Allocating one item from %s(%p)\n", zone->uz_name, zone);
2134 #endif
2135 CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread,
2136 zone->uz_name, flags);
2137
2138 if (flags & M_WAITOK) {
2139 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2140 "uma_zalloc_arg: zone \"%s\"", zone->uz_name);
2141 }
2142 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
2143 ("uma_zalloc_arg: called with spinlock or critical section held"));
2144
2145 #ifdef DEBUG_MEMGUARD
2146 if (memguard_cmp_zone(zone)) {
2147 item = memguard_alloc(zone->uz_size, flags);
2148 if (item != NULL) {
2149 if (zone->uz_init != NULL &&
2150 zone->uz_init(item, zone->uz_size, flags) != 0)
2151 return (NULL);
2152 if (zone->uz_ctor != NULL &&
2153 zone->uz_ctor(item, zone->uz_size, udata,
2154 flags) != 0) {
2155 zone->uz_fini(item, zone->uz_size);
2156 return (NULL);
2157 }
2158 return (item);
2159 }
2160 /* This is unfortunate but should not be fatal. */
2161 }
2162 #endif
2163 /*
2164 * If possible, allocate from the per-CPU cache. There are two
2165 * requirements for safe access to the per-CPU cache: (1) the thread
2166 * accessing the cache must not be preempted or yield during access,
2167 * and (2) the thread must not migrate CPUs without switching which
2168 * cache it accesses. We rely on a critical section to prevent
2169 * preemption and migration. We release the critical section in
2170 * order to acquire the zone mutex if we are unable to allocate from
2171 * the current cache; when we re-acquire the critical section, we
2172 * must detect and handle migration if it has occurred.
2173 */
2174 critical_enter();
2175 cpu = curcpu;
2176 cache = &zone->uz_cpu[cpu];
2177
2178 zalloc_start:
2179 bucket = cache->uc_allocbucket;
2180 if (bucket != NULL && bucket->ub_cnt > 0) {
2181 bucket->ub_cnt--;
2182 item = bucket->ub_bucket[bucket->ub_cnt];
2183 #ifdef INVARIANTS
2184 bucket->ub_bucket[bucket->ub_cnt] = NULL;
2185 #endif
2186 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
2187 cache->uc_allocs++;
2188 critical_exit();
2189 if (zone->uz_ctor != NULL &&
2190 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2191 atomic_add_long(&zone->uz_fails, 1);
2192 zone_free_item(zone, item, udata, SKIP_DTOR);
2193 return (NULL);
2194 }
2195 #ifdef INVARIANTS
2196 uma_dbg_alloc(zone, NULL, item);
2197 #endif
2198 if (flags & M_ZERO)
2199 uma_zero_item(item, zone);
2200 return (item);
2201 }
2202
2203 /*
2204 * We have run out of items in our alloc bucket.
2205 * See if we can switch with our free bucket.
2206 */
2207 bucket = cache->uc_freebucket;
2208 if (bucket != NULL && bucket->ub_cnt > 0) {
2209 #ifdef UMA_DEBUG_ALLOC
2210 printf("uma_zalloc: Swapping empty with alloc.\n");
2211 #endif
2212 cache->uc_freebucket = cache->uc_allocbucket;
2213 cache->uc_allocbucket = bucket;
2214 goto zalloc_start;
2215 }
2216
2217 /*
2218 * Discard any empty allocation bucket while we hold no locks.
2219 */
2220 bucket = cache->uc_allocbucket;
2221 cache->uc_allocbucket = NULL;
2222 critical_exit();
2223 if (bucket != NULL)
2224 bucket_free(zone, bucket, udata);
2225
2226 /* Short-circuit for zones without buckets and low memory. */
2227 if (zone->uz_count == 0 || bucketdisable)
2228 goto zalloc_item;
2229
2230 /*
2231 * Attempt to retrieve the item from the per-CPU cache has failed, so
2232 * we must go back to the zone. This requires the zone lock, so we
2233 * must drop the critical section, then re-acquire it when we go back
2234 * to the cache. Since the critical section is released, we may be
2235 * preempted or migrate. As such, make sure not to maintain any
2236 * thread-local state specific to the cache from prior to releasing
2237 * the critical section.
2238 */
2239 lockfail = 0;
2240 if (ZONE_TRYLOCK(zone) == 0) {
2241 /* Record contention to size the buckets. */
2242 ZONE_LOCK(zone);
2243 lockfail = 1;
2244 }
2245 critical_enter();
2246 cpu = curcpu;
2247 cache = &zone->uz_cpu[cpu];
2248
2249 /*
2250 * Since we have locked the zone we may as well send back our stats.
2251 */
2252 atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
2253 atomic_add_long(&zone->uz_frees, cache->uc_frees);
2254 cache->uc_allocs = 0;
2255 cache->uc_frees = 0;
2256
2257 /* See if we lost the race to fill the cache. */
2258 if (cache->uc_allocbucket != NULL) {
2259 ZONE_UNLOCK(zone);
2260 goto zalloc_start;
2261 }
2262
2263 /*
2264 * Check the zone's cache of buckets.
2265 */
2266 if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
2267 KASSERT(bucket->ub_cnt != 0,
2268 ("uma_zalloc_arg: Returning an empty bucket."));
2269
2270 LIST_REMOVE(bucket, ub_link);
2271 cache->uc_allocbucket = bucket;
2272 ZONE_UNLOCK(zone);
2273 goto zalloc_start;
2274 }
2275 /* We are no longer associated with this CPU. */
2276 critical_exit();
2277
2278 /*
2279 * We bump the uz count when the cache size is insufficient to
2280 * handle the working set.
2281 */
2282 if (lockfail && zone->uz_count < BUCKET_MAX)
2283 zone->uz_count++;
2284 ZONE_UNLOCK(zone);
2285
2286 /*
2287 * Now lets just fill a bucket and put it on the free list. If that
2288 * works we'll restart the allocation from the beginning and it
2289 * will use the just filled bucket.
2290 */
2291 bucket = zone_alloc_bucket(zone, udata, flags);
2292 if (bucket != NULL) {
2293 ZONE_LOCK(zone);
2294 critical_enter();
2295 cpu = curcpu;
2296 cache = &zone->uz_cpu[cpu];
2297 /*
2298 * See if we lost the race or were migrated. Cache the
2299 * initialized bucket to make this less likely or claim
2300 * the memory directly.
2301 */
2302 if (cache->uc_allocbucket == NULL)
2303 cache->uc_allocbucket = bucket;
2304 else
2305 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
2306 ZONE_UNLOCK(zone);
2307 goto zalloc_start;
2308 }
2309
2310 /*
2311 * We may not be able to get a bucket so return an actual item.
2312 */
2313 #ifdef UMA_DEBUG
2314 printf("uma_zalloc_arg: Bucketzone returned NULL\n");
2315 #endif
2316
2317 zalloc_item:
2318 item = zone_alloc_item(zone, udata, flags);
2319
2320 return (item);
2321 }
2322
2323 static uma_slab_t
2324 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags)
2325 {
2326 uma_slab_t slab;
2327 int reserve;
2328
2329 mtx_assert(&keg->uk_lock, MA_OWNED);
2330 slab = NULL;
2331 reserve = 0;
2332 if ((flags & M_USE_RESERVE) == 0)
2333 reserve = keg->uk_reserve;
2334
2335 for (;;) {
2336 /*
2337 * Find a slab with some space. Prefer slabs that are partially
2338 * used over those that are totally full. This helps to reduce
2339 * fragmentation.
2340 */
2341 if (keg->uk_free > reserve) {
2342 if (!LIST_EMPTY(&keg->uk_part_slab)) {
2343 slab = LIST_FIRST(&keg->uk_part_slab);
2344 } else {
2345 slab = LIST_FIRST(&keg->uk_free_slab);
2346 LIST_REMOVE(slab, us_link);
2347 LIST_INSERT_HEAD(&keg->uk_part_slab, slab,
2348 us_link);
2349 }
2350 MPASS(slab->us_keg == keg);
2351 return (slab);
2352 }
2353
2354 /*
2355 * M_NOVM means don't ask at all!
2356 */
2357 if (flags & M_NOVM)
2358 break;
2359
2360 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) {
2361 keg->uk_flags |= UMA_ZFLAG_FULL;
2362 /*
2363 * If this is not a multi-zone, set the FULL bit.
2364 * Otherwise slab_multi() takes care of it.
2365 */
2366 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) {
2367 zone->uz_flags |= UMA_ZFLAG_FULL;
2368 zone_log_warning(zone);
2369 zone_maxaction(zone);
2370 }
2371 if (flags & M_NOWAIT)
2372 break;
2373 zone->uz_sleeps++;
2374 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0);
2375 continue;
2376 }
2377 slab = keg_alloc_slab(keg, zone, flags);
2378 /*
2379 * If we got a slab here it's safe to mark it partially used
2380 * and return. We assume that the caller is going to remove
2381 * at least one item.
2382 */
2383 if (slab) {
2384 MPASS(slab->us_keg == keg);
2385 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2386 return (slab);
2387 }
2388 /*
2389 * We might not have been able to get a slab but another cpu
2390 * could have while we were unlocked. Check again before we
2391 * fail.
2392 */
2393 flags |= M_NOVM;
2394 }
2395 return (slab);
2396 }
2397
2398 static uma_slab_t
2399 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags)
2400 {
2401 uma_slab_t slab;
2402
2403 if (keg == NULL) {
2404 keg = zone_first_keg(zone);
2405 KEG_LOCK(keg);
2406 }
2407
2408 for (;;) {
2409 slab = keg_fetch_slab(keg, zone, flags);
2410 if (slab)
2411 return (slab);
2412 if (flags & (M_NOWAIT | M_NOVM))
2413 break;
2414 }
2415 KEG_UNLOCK(keg);
2416 return (NULL);
2417 }
2418
2419 /*
2420 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns
2421 * with the keg locked. On NULL no lock is held.
2422 *
2423 * The last pointer is used to seed the search. It is not required.
2424 */
2425 static uma_slab_t
2426 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags)
2427 {
2428 uma_klink_t klink;
2429 uma_slab_t slab;
2430 uma_keg_t keg;
2431 int flags;
2432 int empty;
2433 int full;
2434
2435 /*
2436 * Don't wait on the first pass. This will skip limit tests
2437 * as well. We don't want to block if we can find a provider
2438 * without blocking.
2439 */
2440 flags = (rflags & ~M_WAITOK) | M_NOWAIT;
2441 /*
2442 * Use the last slab allocated as a hint for where to start
2443 * the search.
2444 */
2445 if (last != NULL) {
2446 slab = keg_fetch_slab(last, zone, flags);
2447 if (slab)
2448 return (slab);
2449 KEG_UNLOCK(last);
2450 }
2451 /*
2452 * Loop until we have a slab incase of transient failures
2453 * while M_WAITOK is specified. I'm not sure this is 100%
2454 * required but we've done it for so long now.
2455 */
2456 for (;;) {
2457 empty = 0;
2458 full = 0;
2459 /*
2460 * Search the available kegs for slabs. Be careful to hold the
2461 * correct lock while calling into the keg layer.
2462 */
2463 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) {
2464 keg = klink->kl_keg;
2465 KEG_LOCK(keg);
2466 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) {
2467 slab = keg_fetch_slab(keg, zone, flags);
2468 if (slab)
2469 return (slab);
2470 }
2471 if (keg->uk_flags & UMA_ZFLAG_FULL)
2472 full++;
2473 else
2474 empty++;
2475 KEG_UNLOCK(keg);
2476 }
2477 if (rflags & (M_NOWAIT | M_NOVM))
2478 break;
2479 flags = rflags;
2480 /*
2481 * All kegs are full. XXX We can't atomically check all kegs
2482 * and sleep so just sleep for a short period and retry.
2483 */
2484 if (full && !empty) {
2485 ZONE_LOCK(zone);
2486 zone->uz_flags |= UMA_ZFLAG_FULL;
2487 zone->uz_sleeps++;
2488 zone_log_warning(zone);
2489 zone_maxaction(zone);
2490 msleep(zone, zone->uz_lockptr, PVM,
2491 "zonelimit", hz/100);
2492 zone->uz_flags &= ~UMA_ZFLAG_FULL;
2493 ZONE_UNLOCK(zone);
2494 continue;
2495 }
2496 }
2497 return (NULL);
2498 }
2499
2500 static void *
2501 slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
2502 {
2503 void *item;
2504 uint8_t freei;
2505
2506 MPASS(keg == slab->us_keg);
2507 mtx_assert(&keg->uk_lock, MA_OWNED);
2508
2509 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1;
2510 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free);
2511 item = slab->us_data + (keg->uk_rsize * freei);
2512 slab->us_freecount--;
2513 keg->uk_free--;
2514
2515 /* Move this slab to the full list */
2516 if (slab->us_freecount == 0) {
2517 LIST_REMOVE(slab, us_link);
2518 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link);
2519 }
2520
2521 return (item);
2522 }
2523
2524 static int
2525 zone_import(uma_zone_t zone, void **bucket, int max, int flags)
2526 {
2527 uma_slab_t slab;
2528 uma_keg_t keg;
2529 int i;
2530
2531 slab = NULL;
2532 keg = NULL;
2533 /* Try to keep the buckets totally full */
2534 for (i = 0; i < max; ) {
2535 if ((slab = zone->uz_slab(zone, keg, flags)) == NULL)
2536 break;
2537 keg = slab->us_keg;
2538 while (slab->us_freecount && i < max) {
2539 bucket[i++] = slab_alloc_item(keg, slab);
2540 if (keg->uk_free <= keg->uk_reserve)
2541 break;
2542 }
2543 /* Don't grab more than one slab at a time. */
2544 flags &= ~M_WAITOK;
2545 flags |= M_NOWAIT;
2546 }
2547 if (slab != NULL)
2548 KEG_UNLOCK(keg);
2549
2550 return i;
2551 }
2552
2553 static uma_bucket_t
2554 zone_alloc_bucket(uma_zone_t zone, void *udata, int flags)
2555 {
2556 uma_bucket_t bucket;
2557 int max;
2558
2559 /* Don't wait for buckets, preserve caller's NOVM setting. */
2560 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
2561 if (bucket == NULL)
2562 return (NULL);
2563
2564 max = MIN(bucket->ub_entries, zone->uz_count);
2565 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
2566 max, flags);
2567
2568 /*
2569 * Initialize the memory if necessary.
2570 */
2571 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
2572 int i;
2573
2574 for (i = 0; i < bucket->ub_cnt; i++)
2575 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
2576 flags) != 0)
2577 break;
2578 /*
2579 * If we couldn't initialize the whole bucket, put the
2580 * rest back onto the freelist.
2581 */
2582 if (i != bucket->ub_cnt) {
2583 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
2584 bucket->ub_cnt - i);
2585 #ifdef INVARIANTS
2586 bzero(&bucket->ub_bucket[i],
2587 sizeof(void *) * (bucket->ub_cnt - i));
2588 #endif
2589 bucket->ub_cnt = i;
2590 }
2591 }
2592
2593 if (bucket->ub_cnt == 0) {
2594 bucket_free(zone, bucket, udata);
2595 atomic_add_long(&zone->uz_fails, 1);
2596 return (NULL);
2597 }
2598
2599 return (bucket);
2600 }
2601
2602 /*
2603 * Allocates a single item from a zone.
2604 *
2605 * Arguments
2606 * zone The zone to alloc for.
2607 * udata The data to be passed to the constructor.
2608 * flags M_WAITOK, M_NOWAIT, M_ZERO.
2609 *
2610 * Returns
2611 * NULL if there is no memory and M_NOWAIT is set
2612 * An item if successful
2613 */
2614
2615 static void *
2616 zone_alloc_item(uma_zone_t zone, void *udata, int flags)
2617 {
2618 void *item;
2619
2620 item = NULL;
2621
2622 #ifdef UMA_DEBUG_ALLOC
2623 printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone);
2624 #endif
2625 if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1)
2626 goto fail;
2627 atomic_add_long(&zone->uz_allocs, 1);
2628
2629 /*
2630 * We have to call both the zone's init (not the keg's init)
2631 * and the zone's ctor. This is because the item is going from
2632 * a keg slab directly to the user, and the user is expecting it
2633 * to be both zone-init'd as well as zone-ctor'd.
2634 */
2635 if (zone->uz_init != NULL) {
2636 if (zone->uz_init(item, zone->uz_size, flags) != 0) {
2637 zone_free_item(zone, item, udata, SKIP_FINI);
2638 goto fail;
2639 }
2640 }
2641 if (zone->uz_ctor != NULL) {
2642 if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2643 zone_free_item(zone, item, udata, SKIP_DTOR);
2644 goto fail;
2645 }
2646 }
2647 #ifdef INVARIANTS
2648 uma_dbg_alloc(zone, NULL, item);
2649 #endif
2650 if (flags & M_ZERO)
2651 uma_zero_item(item, zone);
2652
2653 return (item);
2654
2655 fail:
2656 atomic_add_long(&zone->uz_fails, 1);
2657 return (NULL);
2658 }
2659
2660 /* See uma.h */
2661 void
2662 uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
2663 {
2664 uma_cache_t cache;
2665 uma_bucket_t bucket;
2666 int lockfail;
2667 int cpu;
2668
2669 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
2670 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA);
2671
2672 #ifdef UMA_DEBUG_ALLOC_1
2673 printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone);
2674 #endif
2675 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread,
2676 zone->uz_name);
2677
2678 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
2679 ("uma_zfree_arg: called with spinlock or critical section held"));
2680
2681 /* uma_zfree(..., NULL) does nothing, to match free(9). */
2682 if (item == NULL)
2683 return;
2684 #ifdef DEBUG_MEMGUARD
2685 if (is_memguard_addr(item)) {
2686 if (zone->uz_dtor != NULL)
2687 zone->uz_dtor(item, zone->uz_size, udata);
2688 if (zone->uz_fini != NULL)
2689 zone->uz_fini(item, zone->uz_size);
2690 memguard_free(item);
2691 return;
2692 }
2693 #endif
2694 #ifdef INVARIANTS
2695 if (zone->uz_flags & UMA_ZONE_MALLOC)
2696 uma_dbg_free(zone, udata, item);
2697 else
2698 uma_dbg_free(zone, NULL, item);
2699 #endif
2700 if (zone->uz_dtor != NULL)
2701 zone->uz_dtor(item, zone->uz_size, udata);
2702
2703 /*
2704 * The race here is acceptable. If we miss it we'll just have to wait
2705 * a little longer for the limits to be reset.
2706 */
2707 if (zone->uz_flags & UMA_ZFLAG_FULL)
2708 goto zfree_item;
2709
2710 /*
2711 * If possible, free to the per-CPU cache. There are two
2712 * requirements for safe access to the per-CPU cache: (1) the thread
2713 * accessing the cache must not be preempted or yield during access,
2714 * and (2) the thread must not migrate CPUs without switching which
2715 * cache it accesses. We rely on a critical section to prevent
2716 * preemption and migration. We release the critical section in
2717 * order to acquire the zone mutex if we are unable to free to the
2718 * current cache; when we re-acquire the critical section, we must
2719 * detect and handle migration if it has occurred.
2720 */
2721 zfree_restart:
2722 critical_enter();
2723 cpu = curcpu;
2724 cache = &zone->uz_cpu[cpu];
2725
2726 zfree_start:
2727 /*
2728 * Try to free into the allocbucket first to give LIFO ordering
2729 * for cache-hot datastructures. Spill over into the freebucket
2730 * if necessary. Alloc will swap them if one runs dry.
2731 */
2732 bucket = cache->uc_allocbucket;
2733 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries)
2734 bucket = cache->uc_freebucket;
2735 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
2736 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL,
2737 ("uma_zfree: Freeing to non free bucket index."));
2738 bucket->ub_bucket[bucket->ub_cnt] = item;
2739 bucket->ub_cnt++;
2740 cache->uc_frees++;
2741 critical_exit();
2742 return;
2743 }
2744
2745 /*
2746 * We must go back the zone, which requires acquiring the zone lock,
2747 * which in turn means we must release and re-acquire the critical
2748 * section. Since the critical section is released, we may be
2749 * preempted or migrate. As such, make sure not to maintain any
2750 * thread-local state specific to the cache from prior to releasing
2751 * the critical section.
2752 */
2753 critical_exit();
2754 if (zone->uz_count == 0 || bucketdisable)
2755 goto zfree_item;
2756
2757 lockfail = 0;
2758 if (ZONE_TRYLOCK(zone) == 0) {
2759 /* Record contention to size the buckets. */
2760 ZONE_LOCK(zone);
2761 lockfail = 1;
2762 }
2763 critical_enter();
2764 cpu = curcpu;
2765 cache = &zone->uz_cpu[cpu];
2766
2767 /*
2768 * Since we have locked the zone we may as well send back our stats.
2769 */
2770 atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
2771 atomic_add_long(&zone->uz_frees, cache->uc_frees);
2772 cache->uc_allocs = 0;
2773 cache->uc_frees = 0;
2774
2775 bucket = cache->uc_freebucket;
2776 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
2777 ZONE_UNLOCK(zone);
2778 goto zfree_start;
2779 }
2780 cache->uc_freebucket = NULL;
2781 /* We are no longer associated with this CPU. */
2782 critical_exit();
2783
2784 /* Can we throw this on the zone full list? */
2785 if (bucket != NULL) {
2786 #ifdef UMA_DEBUG_ALLOC
2787 printf("uma_zfree: Putting old bucket on the free list.\n");
2788 #endif
2789 /* ub_cnt is pointing to the last free item */
2790 KASSERT(bucket->ub_cnt != 0,
2791 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
2792 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
2793 }
2794
2795 /*
2796 * We bump the uz count when the cache size is insufficient to
2797 * handle the working set.
2798 */
2799 if (lockfail && zone->uz_count < BUCKET_MAX)
2800 zone->uz_count++;
2801 ZONE_UNLOCK(zone);
2802
2803 #ifdef UMA_DEBUG_ALLOC
2804 printf("uma_zfree: Allocating new free bucket.\n");
2805 #endif
2806 bucket = bucket_alloc(zone, udata, M_NOWAIT);
2807 if (bucket) {
2808 critical_enter();
2809 cpu = curcpu;
2810 cache = &zone->uz_cpu[cpu];
2811 if (cache->uc_freebucket == NULL) {
2812 cache->uc_freebucket = bucket;
2813 goto zfree_start;
2814 }
2815 /*
2816 * We lost the race, start over. We have to drop our
2817 * critical section to free the bucket.
2818 */
2819 critical_exit();
2820 bucket_free(zone, bucket, udata);
2821 goto zfree_restart;
2822 }
2823
2824 /*
2825 * If nothing else caught this, we'll just do an internal free.
2826 */
2827 zfree_item:
2828 zone_free_item(zone, item, udata, SKIP_DTOR);
2829
2830 return;
2831 }
2832
2833 static void
2834 slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item)
2835 {
2836 uint8_t freei;
2837
2838 mtx_assert(&keg->uk_lock, MA_OWNED);
2839 MPASS(keg == slab->us_keg);
2840
2841 /* Do we need to remove from any lists? */
2842 if (slab->us_freecount+1 == keg->uk_ipers) {
2843 LIST_REMOVE(slab, us_link);
2844 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
2845 } else if (slab->us_freecount == 0) {
2846 LIST_REMOVE(slab, us_link);
2847 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2848 }
2849
2850 /* Slab management. */
2851 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
2852 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free);
2853 slab->us_freecount++;
2854
2855 /* Keg statistics. */
2856 keg->uk_free++;
2857 }
2858
2859 static void
2860 zone_release(uma_zone_t zone, void **bucket, int cnt)
2861 {
2862 void *item;
2863 uma_slab_t slab;
2864 uma_keg_t keg;
2865 uint8_t *mem;
2866 int clearfull;
2867 int i;
2868
2869 clearfull = 0;
2870 keg = zone_first_keg(zone);
2871 KEG_LOCK(keg);
2872 for (i = 0; i < cnt; i++) {
2873 item = bucket[i];
2874 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) {
2875 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
2876 if (zone->uz_flags & UMA_ZONE_HASH) {
2877 slab = hash_sfind(&keg->uk_hash, mem);
2878 } else {
2879 mem += keg->uk_pgoff;
2880 slab = (uma_slab_t)mem;
2881 }
2882 } else {
2883 slab = vtoslab((vm_offset_t)item);
2884 if (slab->us_keg != keg) {
2885 KEG_UNLOCK(keg);
2886 keg = slab->us_keg;
2887 KEG_LOCK(keg);
2888 }
2889 }
2890 slab_free_item(keg, slab, item);
2891 if (keg->uk_flags & UMA_ZFLAG_FULL) {
2892 if (keg->uk_pages < keg->uk_maxpages) {
2893 keg->uk_flags &= ~UMA_ZFLAG_FULL;
2894 clearfull = 1;
2895 }
2896
2897 /*
2898 * We can handle one more allocation. Since we're
2899 * clearing ZFLAG_FULL, wake up all procs blocked
2900 * on pages. This should be uncommon, so keeping this
2901 * simple for now (rather than adding count of blocked
2902 * threads etc).
2903 */
2904 wakeup(keg);
2905 }
2906 }
2907 KEG_UNLOCK(keg);
2908 if (clearfull) {
2909 ZONE_LOCK(zone);
2910 zone->uz_flags &= ~UMA_ZFLAG_FULL;
2911 wakeup(zone);
2912 ZONE_UNLOCK(zone);
2913 }
2914
2915 }
2916
2917 /*
2918 * Frees a single item to any zone.
2919 *
2920 * Arguments:
2921 * zone The zone to free to
2922 * item The item we're freeing
2923 * udata User supplied data for the dtor
2924 * skip Skip dtors and finis
2925 */
2926 static void
2927 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
2928 {
2929
2930 #ifdef INVARIANTS
2931 if (skip == SKIP_NONE) {
2932 if (zone->uz_flags & UMA_ZONE_MALLOC)
2933 uma_dbg_free(zone, udata, item);
2934 else
2935 uma_dbg_free(zone, NULL, item);
2936 }
2937 #endif
2938 if (skip < SKIP_DTOR && zone->uz_dtor)
2939 zone->uz_dtor(item, zone->uz_size, udata);
2940
2941 if (skip < SKIP_FINI && zone->uz_fini)
2942 zone->uz_fini(item, zone->uz_size);
2943
2944 atomic_add_long(&zone->uz_frees, 1);
2945 zone->uz_release(zone->uz_arg, &item, 1);
2946 }
2947
2948 /* See uma.h */
2949 int
2950 uma_zone_set_max(uma_zone_t zone, int nitems)
2951 {
2952 uma_keg_t keg;
2953
2954 keg = zone_first_keg(zone);
2955 if (keg == NULL)
2956 return (0);
2957 KEG_LOCK(keg);
2958 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera;
2959 if (keg->uk_maxpages * keg->uk_ipers < nitems)
2960 keg->uk_maxpages += keg->uk_ppera;
2961 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers;
2962 KEG_UNLOCK(keg);
2963
2964 return (nitems);
2965 }
2966
2967 /* See uma.h */
2968 int
2969 uma_zone_get_max(uma_zone_t zone)
2970 {
2971 int nitems;
2972 uma_keg_t keg;
2973
2974 keg = zone_first_keg(zone);
2975 if (keg == NULL)
2976 return (0);
2977 KEG_LOCK(keg);
2978 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers;
2979 KEG_UNLOCK(keg);
2980
2981 return (nitems);
2982 }
2983
2984 /* See uma.h */
2985 void
2986 uma_zone_set_warning(uma_zone_t zone, const char *warning)
2987 {
2988
2989 ZONE_LOCK(zone);
2990 zone->uz_warning = warning;
2991 ZONE_UNLOCK(zone);
2992 }
2993
2994 /* See uma.h */
2995 void
2996 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction)
2997 {
2998
2999 ZONE_LOCK(zone);
3000 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone);
3001 ZONE_UNLOCK(zone);
3002 }
3003
3004 /* See uma.h */
3005 int
3006 uma_zone_get_cur(uma_zone_t zone)
3007 {
3008 int64_t nitems;
3009 u_int i;
3010
3011 ZONE_LOCK(zone);
3012 nitems = zone->uz_allocs - zone->uz_frees;
3013 CPU_FOREACH(i) {
3014 /*
3015 * See the comment in sysctl_vm_zone_stats() regarding the
3016 * safety of accessing the per-cpu caches. With the zone lock
3017 * held, it is safe, but can potentially result in stale data.
3018 */
3019 nitems += zone->uz_cpu[i].uc_allocs -
3020 zone->uz_cpu[i].uc_frees;
3021 }
3022 ZONE_UNLOCK(zone);
3023
3024 return (nitems < 0 ? 0 : nitems);
3025 }
3026
3027 /* See uma.h */
3028 void
3029 uma_zone_set_init(uma_zone_t zone, uma_init uminit)
3030 {
3031 uma_keg_t keg;
3032
3033 keg = zone_first_keg(zone);
3034 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type"));
3035 KEG_LOCK(keg);
3036 KASSERT(keg->uk_pages == 0,
3037 ("uma_zone_set_init on non-empty keg"));
3038 keg->uk_init = uminit;
3039 KEG_UNLOCK(keg);
3040 }
3041
3042 /* See uma.h */
3043 void
3044 uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
3045 {
3046 uma_keg_t keg;
3047
3048 keg = zone_first_keg(zone);
3049 KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type"));
3050 KEG_LOCK(keg);
3051 KASSERT(keg->uk_pages == 0,
3052 ("uma_zone_set_fini on non-empty keg"));
3053 keg->uk_fini = fini;
3054 KEG_UNLOCK(keg);
3055 }
3056
3057 /* See uma.h */
3058 void
3059 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
3060 {
3061
3062 ZONE_LOCK(zone);
3063 KASSERT(zone_first_keg(zone)->uk_pages == 0,
3064 ("uma_zone_set_zinit on non-empty keg"));
3065 zone->uz_init = zinit;
3066 ZONE_UNLOCK(zone);
3067 }
3068
3069 /* See uma.h */
3070 void
3071 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
3072 {
3073
3074 ZONE_LOCK(zone);
3075 KASSERT(zone_first_keg(zone)->uk_pages == 0,
3076 ("uma_zone_set_zfini on non-empty keg"));
3077 zone->uz_fini = zfini;
3078 ZONE_UNLOCK(zone);
3079 }
3080
3081 /* See uma.h */
3082 /* XXX uk_freef is not actually used with the zone locked */
3083 void
3084 uma_zone_set_freef(uma_zone_t zone, uma_free freef)
3085 {
3086 uma_keg_t keg;
3087
3088 keg = zone_first_keg(zone);
3089 KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type"));
3090 KEG_LOCK(keg);
3091 keg->uk_freef = freef;
3092 KEG_UNLOCK(keg);
3093 }
3094
3095 /* See uma.h */
3096 /* XXX uk_allocf is not actually used with the zone locked */
3097 void
3098 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
3099 {
3100 uma_keg_t keg;
3101
3102 keg = zone_first_keg(zone);
3103 KEG_LOCK(keg);
3104 keg->uk_allocf = allocf;
3105 KEG_UNLOCK(keg);
3106 }
3107
3108 /* See uma.h */
3109 void
3110 uma_zone_reserve(uma_zone_t zone, int items)
3111 {
3112 uma_keg_t keg;
3113
3114 keg = zone_first_keg(zone);
3115 if (keg == NULL)
3116 return;
3117 KEG_LOCK(keg);
3118 keg->uk_reserve = items;
3119 KEG_UNLOCK(keg);
3120
3121 return;
3122 }
3123
3124 /* See uma.h */
3125 int
3126 uma_zone_reserve_kva(uma_zone_t zone, int count)
3127 {
3128 uma_keg_t keg;
3129 vm_offset_t kva;
3130 u_int pages;
3131
3132 keg = zone_first_keg(zone);
3133 if (keg == NULL)
3134 return (0);
3135 pages = count / keg->uk_ipers;
3136
3137 if (pages * keg->uk_ipers < count)
3138 pages++;
3139 pages *= keg->uk_ppera;
3140
3141 #ifdef UMA_MD_SMALL_ALLOC
3142 if (keg->uk_ppera > 1) {
3143 #else
3144 if (1) {
3145 #endif
3146 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE);
3147 if (kva == 0)
3148 return (0);
3149 } else
3150 kva = 0;
3151 KEG_LOCK(keg);
3152 keg->uk_kva = kva;
3153 keg->uk_offset = 0;
3154 keg->uk_maxpages = pages;
3155 #ifdef UMA_MD_SMALL_ALLOC
3156 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
3157 #else
3158 keg->uk_allocf = noobj_alloc;
3159 #endif
3160 keg->uk_flags |= UMA_ZONE_NOFREE;
3161 KEG_UNLOCK(keg);
3162
3163 return (1);
3164 }
3165
3166 /* See uma.h */
3167 void
3168 uma_prealloc(uma_zone_t zone, int items)
3169 {
3170 int slabs;
3171 uma_slab_t slab;
3172 uma_keg_t keg;
3173
3174 keg = zone_first_keg(zone);
3175 if (keg == NULL)
3176 return;
3177 KEG_LOCK(keg);
3178 slabs = items / keg->uk_ipers;
3179 if (slabs * keg->uk_ipers < items)
3180 slabs++;
3181 while (slabs > 0) {
3182 slab = keg_alloc_slab(keg, zone, M_WAITOK);
3183 if (slab == NULL)
3184 break;
3185 MPASS(slab->us_keg == keg);
3186 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
3187 slabs--;
3188 }
3189 KEG_UNLOCK(keg);
3190 }
3191
3192 /* See uma.h */
3193 static void
3194 uma_reclaim_locked(bool kmem_danger)
3195 {
3196
3197 #ifdef UMA_DEBUG
3198 printf("UMA: vm asked us to release pages!\n");
3199 #endif
3200 sx_assert(&uma_drain_lock, SA_XLOCKED);
3201 bucket_enable();
3202 zone_foreach(zone_drain);
3203 if (vm_page_count_min() || kmem_danger) {
3204 cache_drain_safe(NULL);
3205 zone_foreach(zone_drain);
3206 }
3207 /*
3208 * Some slabs may have been freed but this zone will be visited early
3209 * we visit again so that we can free pages that are empty once other
3210 * zones are drained. We have to do the same for buckets.
3211 */
3212 zone_drain(slabzone);
3213 bucket_zone_drain();
3214 }
3215
3216 void
3217 uma_reclaim(void)
3218 {
3219
3220 sx_xlock(&uma_drain_lock);
3221 uma_reclaim_locked(false);
3222 sx_xunlock(&uma_drain_lock);
3223 }
3224
3225 static int uma_reclaim_needed;
3226
3227 void
3228 uma_reclaim_wakeup(void)
3229 {
3230
3231 uma_reclaim_needed = 1;
3232 wakeup(&uma_reclaim_needed);
3233 }
3234
3235 void
3236 uma_reclaim_worker(void *arg __unused)
3237 {
3238
3239 sx_xlock(&uma_drain_lock);
3240 for (;;) {
3241 sx_sleep(&uma_reclaim_needed, &uma_drain_lock, PVM,
3242 "umarcl", 0);
3243 if (uma_reclaim_needed) {
3244 uma_reclaim_needed = 0;
3245 sx_xunlock(&uma_drain_lock);
3246 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM);
3247 sx_xlock(&uma_drain_lock);
3248 uma_reclaim_locked(true);
3249 }
3250 }
3251 }
3252
3253 /* See uma.h */
3254 int
3255 uma_zone_exhausted(uma_zone_t zone)
3256 {
3257 int full;
3258
3259 ZONE_LOCK(zone);
3260 full = (zone->uz_flags & UMA_ZFLAG_FULL);
3261 ZONE_UNLOCK(zone);
3262 return (full);
3263 }
3264
3265 int
3266 uma_zone_exhausted_nolock(uma_zone_t zone)
3267 {
3268 return (zone->uz_flags & UMA_ZFLAG_FULL);
3269 }
3270
3271 void *
3272 uma_large_malloc(vm_size_t size, int wait)
3273 {
3274 void *mem;
3275 uma_slab_t slab;
3276 uint8_t flags;
3277
3278 slab = zone_alloc_item(slabzone, NULL, wait);
3279 if (slab == NULL)
3280 return (NULL);
3281 mem = page_alloc(NULL, size, &flags, wait);
3282 if (mem) {
3283 vsetslab((vm_offset_t)mem, slab);
3284 slab->us_data = mem;
3285 slab->us_flags = flags | UMA_SLAB_MALLOC;
3286 slab->us_size = size;
3287 } else {
3288 zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3289 }
3290
3291 return (mem);
3292 }
3293
3294 void
3295 uma_large_free(uma_slab_t slab)
3296 {
3297
3298 page_free(slab->us_data, slab->us_size, slab->us_flags);
3299 zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3300 }
3301
3302 static void
3303 uma_zero_item(void *item, uma_zone_t zone)
3304 {
3305 int i;
3306
3307 if (zone->uz_flags & UMA_ZONE_PCPU) {
3308 CPU_FOREACH(i)
3309 bzero(zpcpu_get_cpu(item, i), zone->uz_size);
3310 } else
3311 bzero(item, zone->uz_size);
3312 }
3313
3314 void
3315 uma_print_stats(void)
3316 {
3317 zone_foreach(uma_print_zone);
3318 }
3319
3320 static void
3321 slab_print(uma_slab_t slab)
3322 {
3323 printf("slab: keg %p, data %p, freecount %d\n",
3324 slab->us_keg, slab->us_data, slab->us_freecount);
3325 }
3326
3327 static void
3328 cache_print(uma_cache_t cache)
3329 {
3330 printf("alloc: %p(%d), free: %p(%d)\n",
3331 cache->uc_allocbucket,
3332 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0,
3333 cache->uc_freebucket,
3334 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0);
3335 }
3336
3337 static void
3338 uma_print_keg(uma_keg_t keg)
3339 {
3340 uma_slab_t slab;
3341
3342 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d "
3343 "out %d free %d limit %d\n",
3344 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags,
3345 keg->uk_ipers, keg->uk_ppera,
3346 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free,
3347 keg->uk_free, (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers);
3348 printf("Part slabs:\n");
3349 LIST_FOREACH(slab, &keg->uk_part_slab, us_link)
3350 slab_print(slab);
3351 printf("Free slabs:\n");
3352 LIST_FOREACH(slab, &keg->uk_free_slab, us_link)
3353 slab_print(slab);
3354 printf("Full slabs:\n");
3355 LIST_FOREACH(slab, &keg->uk_full_slab, us_link)
3356 slab_print(slab);
3357 }
3358
3359 void
3360 uma_print_zone(uma_zone_t zone)
3361 {
3362 uma_cache_t cache;
3363 uma_klink_t kl;
3364 int i;
3365
3366 printf("zone: %s(%p) size %d flags %#x\n",
3367 zone->uz_name, zone, zone->uz_size, zone->uz_flags);
3368 LIST_FOREACH(kl, &zone->uz_kegs, kl_link)
3369 uma_print_keg(kl->kl_keg);
3370 CPU_FOREACH(i) {
3371 cache = &zone->uz_cpu[i];
3372 printf("CPU %d Cache:\n", i);
3373 cache_print(cache);
3374 }
3375 }
3376
3377 #ifdef DDB
3378 /*
3379 * Generate statistics across both the zone and its per-cpu cache's. Return
3380 * desired statistics if the pointer is non-NULL for that statistic.
3381 *
3382 * Note: does not update the zone statistics, as it can't safely clear the
3383 * per-CPU cache statistic.
3384 *
3385 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't
3386 * safe from off-CPU; we should modify the caches to track this information
3387 * directly so that we don't have to.
3388 */
3389 static void
3390 uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp,
3391 uint64_t *freesp, uint64_t *sleepsp)
3392 {
3393 uma_cache_t cache;
3394 uint64_t allocs, frees, sleeps;
3395 int cachefree, cpu;
3396
3397 allocs = frees = sleeps = 0;
3398 cachefree = 0;
3399 CPU_FOREACH(cpu) {
3400 cache = &z->uz_cpu[cpu];
3401 if (cache->uc_allocbucket != NULL)
3402 cachefree += cache->uc_allocbucket->ub_cnt;
3403 if (cache->uc_freebucket != NULL)
3404 cachefree += cache->uc_freebucket->ub_cnt;
3405 allocs += cache->uc_allocs;
3406 frees += cache->uc_frees;
3407 }
3408 allocs += z->uz_allocs;
3409 frees += z->uz_frees;
3410 sleeps += z->uz_sleeps;
3411 if (cachefreep != NULL)
3412 *cachefreep = cachefree;
3413 if (allocsp != NULL)
3414 *allocsp = allocs;
3415 if (freesp != NULL)
3416 *freesp = frees;
3417 if (sleepsp != NULL)
3418 *sleepsp = sleeps;
3419 }
3420 #endif /* DDB */
3421
3422 static int
3423 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
3424 {
3425 uma_keg_t kz;
3426 uma_zone_t z;
3427 int count;
3428
3429 count = 0;
3430 rw_rlock(&uma_rwlock);
3431 LIST_FOREACH(kz, &uma_kegs, uk_link) {
3432 LIST_FOREACH(z, &kz->uk_zones, uz_link)
3433 count++;
3434 }
3435 rw_runlock(&uma_rwlock);
3436 return (sysctl_handle_int(oidp, &count, 0, req));
3437 }
3438
3439 static int
3440 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
3441 {
3442 struct uma_stream_header ush;
3443 struct uma_type_header uth;
3444 struct uma_percpu_stat *ups;
3445 uma_bucket_t bucket;
3446 struct sbuf sbuf;
3447 uma_cache_t cache;
3448 uma_klink_t kl;
3449 uma_keg_t kz;
3450 uma_zone_t z;
3451 uma_keg_t k;
3452 int count, error, i;
3453
3454 error = sysctl_wire_old_buffer(req, 0);
3455 if (error != 0)
3456 return (error);
3457 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
3458 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
3459 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK);
3460
3461 count = 0;
3462 rw_rlock(&uma_rwlock);
3463 LIST_FOREACH(kz, &uma_kegs, uk_link) {
3464 LIST_FOREACH(z, &kz->uk_zones, uz_link)
3465 count++;
3466 }
3467
3468 /*
3469 * Insert stream header.
3470 */
3471 bzero(&ush, sizeof(ush));
3472 ush.ush_version = UMA_STREAM_VERSION;
3473 ush.ush_maxcpus = (mp_maxid + 1);
3474 ush.ush_count = count;
3475 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
3476
3477 LIST_FOREACH(kz, &uma_kegs, uk_link) {
3478 LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3479 bzero(&uth, sizeof(uth));
3480 ZONE_LOCK(z);
3481 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
3482 uth.uth_align = kz->uk_align;
3483 uth.uth_size = kz->uk_size;
3484 uth.uth_rsize = kz->uk_rsize;
3485 LIST_FOREACH(kl, &z->uz_kegs, kl_link) {
3486 k = kl->kl_keg;
3487 uth.uth_maxpages += k->uk_maxpages;
3488 uth.uth_pages += k->uk_pages;
3489 uth.uth_keg_free += k->uk_free;
3490 uth.uth_limit = (k->uk_maxpages / k->uk_ppera)
3491 * k->uk_ipers;
3492 }
3493
3494 /*
3495 * A zone is secondary is it is not the first entry
3496 * on the keg's zone list.
3497 */
3498 if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
3499 (LIST_FIRST(&kz->uk_zones) != z))
3500 uth.uth_zone_flags = UTH_ZONE_SECONDARY;
3501
3502 LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3503 uth.uth_zone_free += bucket->ub_cnt;
3504 uth.uth_allocs = z->uz_allocs;
3505 uth.uth_frees = z->uz_frees;
3506 uth.uth_fails = z->uz_fails;
3507 uth.uth_sleeps = z->uz_sleeps;
3508 /*
3509 * While it is not normally safe to access the cache
3510 * bucket pointers while not on the CPU that owns the
3511 * cache, we only allow the pointers to be exchanged
3512 * without the zone lock held, not invalidated, so
3513 * accept the possible race associated with bucket
3514 * exchange during monitoring.
3515 */
3516 for (i = 0; i < mp_maxid + 1; i++) {
3517 bzero(&ups[i], sizeof(*ups));
3518 if (kz->uk_flags & UMA_ZFLAG_INTERNAL ||
3519 CPU_ABSENT(i))
3520 continue;
3521 cache = &z->uz_cpu[i];
3522 if (cache->uc_allocbucket != NULL)
3523 ups[i].ups_cache_free +=
3524 cache->uc_allocbucket->ub_cnt;
3525 if (cache->uc_freebucket != NULL)
3526 ups[i].ups_cache_free +=
3527 cache->uc_freebucket->ub_cnt;
3528 ups[i].ups_allocs = cache->uc_allocs;
3529 ups[i].ups_frees = cache->uc_frees;
3530 }
3531 ZONE_UNLOCK(z);
3532 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
3533 for (i = 0; i < mp_maxid + 1; i++)
3534 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
3535 }
3536 }
3537 rw_runlock(&uma_rwlock);
3538 error = sbuf_finish(&sbuf);
3539 sbuf_delete(&sbuf);
3540 free(ups, M_TEMP);
3541 return (error);
3542 }
3543
3544 int
3545 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS)
3546 {
3547 uma_zone_t zone = *(uma_zone_t *)arg1;
3548 int error, max;
3549
3550 max = uma_zone_get_max(zone);
3551 error = sysctl_handle_int(oidp, &max, 0, req);
3552 if (error || !req->newptr)
3553 return (error);
3554
3555 uma_zone_set_max(zone, max);
3556
3557 return (0);
3558 }
3559
3560 int
3561 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS)
3562 {
3563 uma_zone_t zone = *(uma_zone_t *)arg1;
3564 int cur;
3565
3566 cur = uma_zone_get_cur(zone);
3567 return (sysctl_handle_int(oidp, &cur, 0, req));
3568 }
3569
3570 #ifdef INVARIANTS
3571 static uma_slab_t
3572 uma_dbg_getslab(uma_zone_t zone, void *item)
3573 {
3574 uma_slab_t slab;
3575 uma_keg_t keg;
3576 uint8_t *mem;
3577
3578 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
3579 if (zone->uz_flags & UMA_ZONE_VTOSLAB) {
3580 slab = vtoslab((vm_offset_t)mem);
3581 } else {
3582 /*
3583 * It is safe to return the slab here even though the
3584 * zone is unlocked because the item's allocation state
3585 * essentially holds a reference.
3586 */
3587 ZONE_LOCK(zone);
3588 keg = LIST_FIRST(&zone->uz_kegs)->kl_keg;
3589 if (keg->uk_flags & UMA_ZONE_HASH)
3590 slab = hash_sfind(&keg->uk_hash, mem);
3591 else
3592 slab = (uma_slab_t)(mem + keg->uk_pgoff);
3593 ZONE_UNLOCK(zone);
3594 }
3595
3596 return (slab);
3597 }
3598
3599 /*
3600 * Set up the slab's freei data such that uma_dbg_free can function.
3601 *
3602 */
3603 static void
3604 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item)
3605 {
3606 uma_keg_t keg;
3607 int freei;
3608
3609 if (zone_first_keg(zone) == NULL)
3610 return;
3611 if (slab == NULL) {
3612 slab = uma_dbg_getslab(zone, item);
3613 if (slab == NULL)
3614 panic("uma: item %p did not belong to zone %s\n",
3615 item, zone->uz_name);
3616 }
3617 keg = slab->us_keg;
3618 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
3619
3620 if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree))
3621 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n",
3622 item, zone, zone->uz_name, slab, freei);
3623 BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree);
3624
3625 return;
3626 }
3627
3628 /*
3629 * Verifies freed addresses. Checks for alignment, valid slab membership
3630 * and duplicate frees.
3631 *
3632 */
3633 static void
3634 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item)
3635 {
3636 uma_keg_t keg;
3637 int freei;
3638
3639 if (zone_first_keg(zone) == NULL)
3640 return;
3641 if (slab == NULL) {
3642 slab = uma_dbg_getslab(zone, item);
3643 if (slab == NULL)
3644 panic("uma: Freed item %p did not belong to zone %s\n",
3645 item, zone->uz_name);
3646 }
3647 keg = slab->us_keg;
3648 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
3649
3650 if (freei >= keg->uk_ipers)
3651 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n",
3652 item, zone, zone->uz_name, slab, freei);
3653
3654 if (((freei * keg->uk_rsize) + slab->us_data) != item)
3655 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n",
3656 item, zone, zone->uz_name, slab, freei);
3657
3658 if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree))
3659 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n",
3660 item, zone, zone->uz_name, slab, freei);
3661
3662 BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree);
3663 }
3664 #endif /* INVARIANTS */
3665
3666 #ifdef DDB
3667 DB_SHOW_COMMAND(uma, db_show_uma)
3668 {
3669 uint64_t allocs, frees, sleeps;
3670 uma_bucket_t bucket;
3671 uma_keg_t kz;
3672 uma_zone_t z;
3673 int cachefree;
3674
3675 db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used",
3676 "Free", "Requests", "Sleeps", "Bucket");
3677 LIST_FOREACH(kz, &uma_kegs, uk_link) {
3678 LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3679 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
3680 allocs = z->uz_allocs;
3681 frees = z->uz_frees;
3682 sleeps = z->uz_sleeps;
3683 cachefree = 0;
3684 } else
3685 uma_zone_sumstat(z, &cachefree, &allocs,
3686 &frees, &sleeps);
3687 if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
3688 (LIST_FIRST(&kz->uk_zones) != z)))
3689 cachefree += kz->uk_free;
3690 LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3691 cachefree += bucket->ub_cnt;
3692 db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n",
3693 z->uz_name, (uintmax_t)kz->uk_size,
3694 (intmax_t)(allocs - frees), cachefree,
3695 (uintmax_t)allocs, sleeps, z->uz_count);
3696 if (db_pager_quit)
3697 return;
3698 }
3699 }
3700 }
3701
3702 DB_SHOW_COMMAND(umacache, db_show_umacache)
3703 {
3704 uint64_t allocs, frees;
3705 uma_bucket_t bucket;
3706 uma_zone_t z;
3707 int cachefree;
3708
3709 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
3710 "Requests", "Bucket");
3711 LIST_FOREACH(z, &uma_cachezones, uz_link) {
3712 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL);
3713 LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3714 cachefree += bucket->ub_cnt;
3715 db_printf("%18s %8ju %8jd %8d %12ju %8u\n",
3716 z->uz_name, (uintmax_t)z->uz_size,
3717 (intmax_t)(allocs - frees), cachefree,
3718 (uintmax_t)allocs, z->uz_count);
3719 if (db_pager_quit)
3720 return;
3721 }
3722 }
3723 #endif /* DDB */
Cache object: c629105776739d1aaf5d10265a332faf
|