FreeBSD/Linux Kernel Cross Reference
sys/vm/uma_core.c
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org>
5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
6 * Copyright (c) 2004-2006 Robert N. M. Watson
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice unmodified, this list of conditions, and the following
14 * disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 /*
32 * uma_core.c Implementation of the Universal Memory allocator
33 *
34 * This allocator is intended to replace the multitude of similar object caches
35 * in the standard FreeBSD kernel. The intent is to be flexible as well as
36 * efficient. A primary design goal is to return unused memory to the rest of
37 * the system. This will make the system as a whole more flexible due to the
38 * ability to move memory to subsystems which most need it instead of leaving
39 * pools of reserved memory unused.
40 *
41 * The basic ideas stem from similar slab/zone based allocators whose algorithms
42 * are well known.
43 *
44 */
45
46 /*
47 * TODO:
48 * - Improve memory usage for large allocations
49 * - Investigate cache size adjustments
50 */
51
52 #include <sys/cdefs.h>
53 __FBSDID("$FreeBSD: releng/12.0/sys/vm/uma_core.c 340401 2018-11-13 18:21:47Z markj $");
54
55 #include "opt_ddb.h"
56 #include "opt_param.h"
57 #include "opt_vm.h"
58
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/bitset.h>
62 #include <sys/domainset.h>
63 #include <sys/eventhandler.h>
64 #include <sys/kernel.h>
65 #include <sys/types.h>
66 #include <sys/limits.h>
67 #include <sys/queue.h>
68 #include <sys/malloc.h>
69 #include <sys/ktr.h>
70 #include <sys/lock.h>
71 #include <sys/sysctl.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/random.h>
75 #include <sys/rwlock.h>
76 #include <sys/sbuf.h>
77 #include <sys/sched.h>
78 #include <sys/smp.h>
79 #include <sys/taskqueue.h>
80 #include <sys/vmmeter.h>
81
82 #include <vm/vm.h>
83 #include <vm/vm_domainset.h>
84 #include <vm/vm_object.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_pageout.h>
87 #include <vm/vm_param.h>
88 #include <vm/vm_phys.h>
89 #include <vm/vm_pagequeue.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/uma.h>
94 #include <vm/uma_int.h>
95 #include <vm/uma_dbg.h>
96
97 #include <ddb/ddb.h>
98
99 #ifdef DEBUG_MEMGUARD
100 #include <vm/memguard.h>
101 #endif
102
103 /*
104 * This is the zone and keg from which all zones are spawned.
105 */
106 static uma_zone_t kegs;
107 static uma_zone_t zones;
108
109 /* This is the zone from which all offpage uma_slab_ts are allocated. */
110 static uma_zone_t slabzone;
111
112 /*
113 * The initial hash tables come out of this zone so they can be allocated
114 * prior to malloc coming up.
115 */
116 static uma_zone_t hashzone;
117
118 /* The boot-time adjusted value for cache line alignment. */
119 int uma_align_cache = 64 - 1;
120
121 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
122
123 /*
124 * Are we allowed to allocate buckets?
125 */
126 static int bucketdisable = 1;
127
128 /* Linked list of all kegs in the system */
129 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
130
131 /* Linked list of all cache-only zones in the system */
132 static LIST_HEAD(,uma_zone) uma_cachezones =
133 LIST_HEAD_INITIALIZER(uma_cachezones);
134
135 /* This RW lock protects the keg list */
136 static struct rwlock_padalign __exclusive_cache_line uma_rwlock;
137
138 /*
139 * Pointer and counter to pool of pages, that is preallocated at
140 * startup to bootstrap UMA.
141 */
142 static char *bootmem;
143 static int boot_pages;
144
145 static struct sx uma_drain_lock;
146
147 /* kmem soft limit. */
148 static unsigned long uma_kmem_limit = LONG_MAX;
149 static volatile unsigned long uma_kmem_total;
150
151 /* Is the VM done starting up? */
152 static enum { BOOT_COLD = 0, BOOT_STRAPPED, BOOT_PAGEALLOC, BOOT_BUCKETS,
153 BOOT_RUNNING } booted = BOOT_COLD;
154
155 /*
156 * This is the handle used to schedule events that need to happen
157 * outside of the allocation fast path.
158 */
159 static struct callout uma_callout;
160 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */
161
162 /*
163 * This structure is passed as the zone ctor arg so that I don't have to create
164 * a special allocation function just for zones.
165 */
166 struct uma_zctor_args {
167 const char *name;
168 size_t size;
169 uma_ctor ctor;
170 uma_dtor dtor;
171 uma_init uminit;
172 uma_fini fini;
173 uma_import import;
174 uma_release release;
175 void *arg;
176 uma_keg_t keg;
177 int align;
178 uint32_t flags;
179 };
180
181 struct uma_kctor_args {
182 uma_zone_t zone;
183 size_t size;
184 uma_init uminit;
185 uma_fini fini;
186 int align;
187 uint32_t flags;
188 };
189
190 struct uma_bucket_zone {
191 uma_zone_t ubz_zone;
192 char *ubz_name;
193 int ubz_entries; /* Number of items it can hold. */
194 int ubz_maxsize; /* Maximum allocation size per-item. */
195 };
196
197 /*
198 * Compute the actual number of bucket entries to pack them in power
199 * of two sizes for more efficient space utilization.
200 */
201 #define BUCKET_SIZE(n) \
202 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))
203
204 #define BUCKET_MAX BUCKET_SIZE(256)
205
206 struct uma_bucket_zone bucket_zones[] = {
207 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 },
208 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 },
209 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 },
210 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 },
211 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 },
212 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
213 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
214 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
215 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 },
216 { NULL, NULL, 0}
217 };
218
219 /*
220 * Flags and enumerations to be passed to internal functions.
221 */
222 enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI };
223
224 #define UMA_ANYDOMAIN -1 /* Special value for domain search. */
225
226 /* Prototypes.. */
227
228 int uma_startup_count(int);
229 void uma_startup(void *, int);
230 void uma_startup1(void);
231 void uma_startup2(void);
232
233 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
234 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
235 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
236 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
237 static void page_free(void *, vm_size_t, uint8_t);
238 static void pcpu_page_free(void *, vm_size_t, uint8_t);
239 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int);
240 static void cache_drain(uma_zone_t);
241 static void bucket_drain(uma_zone_t, uma_bucket_t);
242 static void bucket_cache_drain(uma_zone_t zone);
243 static int keg_ctor(void *, int, void *, int);
244 static void keg_dtor(void *, int, void *);
245 static int zone_ctor(void *, int, void *, int);
246 static void zone_dtor(void *, int, void *);
247 static int zero_init(void *, int, int);
248 static void keg_small_init(uma_keg_t keg);
249 static void keg_large_init(uma_keg_t keg);
250 static void zone_foreach(void (*zfunc)(uma_zone_t));
251 static void zone_timeout(uma_zone_t zone);
252 static int hash_alloc(struct uma_hash *);
253 static int hash_expand(struct uma_hash *, struct uma_hash *);
254 static void hash_free(struct uma_hash *hash);
255 static void uma_timeout(void *);
256 static void uma_startup3(void);
257 static void *zone_alloc_item(uma_zone_t, void *, int, int);
258 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
259 static void bucket_enable(void);
260 static void bucket_init(void);
261 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
262 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
263 static void bucket_zone_drain(void);
264 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int);
265 static uma_slab_t zone_fetch_slab(uma_zone_t, uma_keg_t, int, int);
266 static uma_slab_t zone_fetch_slab_multi(uma_zone_t, uma_keg_t, int, int);
267 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
268 static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item);
269 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
270 uma_fini fini, int align, uint32_t flags);
271 static int zone_import(uma_zone_t, void **, int, int, int);
272 static void zone_release(uma_zone_t, void **, int);
273 static void uma_zero_item(void *, uma_zone_t);
274
275 void uma_print_zone(uma_zone_t);
276 void uma_print_stats(void);
277 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
278 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
279
280 #ifdef INVARIANTS
281 static bool uma_dbg_kskip(uma_keg_t keg, void *mem);
282 static bool uma_dbg_zskip(uma_zone_t zone, void *mem);
283 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item);
284 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item);
285
286 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD, 0,
287 "Memory allocation debugging");
288
289 static u_int dbg_divisor = 1;
290 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor,
291 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0,
292 "Debug & thrash every this item in memory allocator");
293
294 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER;
295 static counter_u64_t uma_skip_cnt = EARLY_COUNTER;
296 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD,
297 &uma_dbg_cnt, "memory items debugged");
298 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD,
299 &uma_skip_cnt, "memory items skipped, not debugged");
300 #endif
301
302 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
303
304 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT,
305 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
306
307 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
308 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
309
310 static int zone_warnings = 1;
311 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0,
312 "Warn when UMA zones becomes full");
313
314 /* Adjust bytes under management by UMA. */
315 static inline void
316 uma_total_dec(unsigned long size)
317 {
318
319 atomic_subtract_long(&uma_kmem_total, size);
320 }
321
322 static inline void
323 uma_total_inc(unsigned long size)
324 {
325
326 if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit)
327 uma_reclaim_wakeup();
328 }
329
330 /*
331 * This routine checks to see whether or not it's safe to enable buckets.
332 */
333 static void
334 bucket_enable(void)
335 {
336 bucketdisable = vm_page_count_min();
337 }
338
339 /*
340 * Initialize bucket_zones, the array of zones of buckets of various sizes.
341 *
342 * For each zone, calculate the memory required for each bucket, consisting
343 * of the header and an array of pointers.
344 */
345 static void
346 bucket_init(void)
347 {
348 struct uma_bucket_zone *ubz;
349 int size;
350
351 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
352 size = roundup(sizeof(struct uma_bucket), sizeof(void *));
353 size += sizeof(void *) * ubz->ubz_entries;
354 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
355 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
356 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | UMA_ZONE_NUMA);
357 }
358 }
359
360 /*
361 * Given a desired number of entries for a bucket, return the zone from which
362 * to allocate the bucket.
363 */
364 static struct uma_bucket_zone *
365 bucket_zone_lookup(int entries)
366 {
367 struct uma_bucket_zone *ubz;
368
369 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
370 if (ubz->ubz_entries >= entries)
371 return (ubz);
372 ubz--;
373 return (ubz);
374 }
375
376 static int
377 bucket_select(int size)
378 {
379 struct uma_bucket_zone *ubz;
380
381 ubz = &bucket_zones[0];
382 if (size > ubz->ubz_maxsize)
383 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);
384
385 for (; ubz->ubz_entries != 0; ubz++)
386 if (ubz->ubz_maxsize < size)
387 break;
388 ubz--;
389 return (ubz->ubz_entries);
390 }
391
392 static uma_bucket_t
393 bucket_alloc(uma_zone_t zone, void *udata, int flags)
394 {
395 struct uma_bucket_zone *ubz;
396 uma_bucket_t bucket;
397
398 /*
399 * This is to stop us from allocating per cpu buckets while we're
400 * running out of vm.boot_pages. Otherwise, we would exhaust the
401 * boot pages. This also prevents us from allocating buckets in
402 * low memory situations.
403 */
404 if (bucketdisable)
405 return (NULL);
406 /*
407 * To limit bucket recursion we store the original zone flags
408 * in a cookie passed via zalloc_arg/zfree_arg. This allows the
409 * NOVM flag to persist even through deep recursions. We also
410 * store ZFLAG_BUCKET once we have recursed attempting to allocate
411 * a bucket for a bucket zone so we do not allow infinite bucket
412 * recursion. This cookie will even persist to frees of unused
413 * buckets via the allocation path or bucket allocations in the
414 * free path.
415 */
416 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
417 udata = (void *)(uintptr_t)zone->uz_flags;
418 else {
419 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
420 return (NULL);
421 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
422 }
423 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY)
424 flags |= M_NOVM;
425 ubz = bucket_zone_lookup(zone->uz_count);
426 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0)
427 ubz++;
428 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
429 if (bucket) {
430 #ifdef INVARIANTS
431 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
432 #endif
433 bucket->ub_cnt = 0;
434 bucket->ub_entries = ubz->ubz_entries;
435 }
436
437 return (bucket);
438 }
439
440 static void
441 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
442 {
443 struct uma_bucket_zone *ubz;
444
445 KASSERT(bucket->ub_cnt == 0,
446 ("bucket_free: Freeing a non free bucket."));
447 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
448 udata = (void *)(uintptr_t)zone->uz_flags;
449 ubz = bucket_zone_lookup(bucket->ub_entries);
450 uma_zfree_arg(ubz->ubz_zone, bucket, udata);
451 }
452
453 static void
454 bucket_zone_drain(void)
455 {
456 struct uma_bucket_zone *ubz;
457
458 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
459 zone_drain(ubz->ubz_zone);
460 }
461
462 static void
463 zone_log_warning(uma_zone_t zone)
464 {
465 static const struct timeval warninterval = { 300, 0 };
466
467 if (!zone_warnings || zone->uz_warning == NULL)
468 return;
469
470 if (ratecheck(&zone->uz_ratecheck, &warninterval))
471 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
472 }
473
474 static inline void
475 zone_maxaction(uma_zone_t zone)
476 {
477
478 if (zone->uz_maxaction.ta_func != NULL)
479 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction);
480 }
481
482 static void
483 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t))
484 {
485 uma_klink_t klink;
486
487 LIST_FOREACH(klink, &zone->uz_kegs, kl_link)
488 kegfn(klink->kl_keg);
489 }
490
491 /*
492 * Routine called by timeout which is used to fire off some time interval
493 * based calculations. (stats, hash size, etc.)
494 *
495 * Arguments:
496 * arg Unused
497 *
498 * Returns:
499 * Nothing
500 */
501 static void
502 uma_timeout(void *unused)
503 {
504 bucket_enable();
505 zone_foreach(zone_timeout);
506
507 /* Reschedule this event */
508 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
509 }
510
511 /*
512 * Routine to perform timeout driven calculations. This expands the
513 * hashes and does per cpu statistics aggregation.
514 *
515 * Returns nothing.
516 */
517 static void
518 keg_timeout(uma_keg_t keg)
519 {
520
521 KEG_LOCK(keg);
522 /*
523 * Expand the keg hash table.
524 *
525 * This is done if the number of slabs is larger than the hash size.
526 * What I'm trying to do here is completely reduce collisions. This
527 * may be a little aggressive. Should I allow for two collisions max?
528 */
529 if (keg->uk_flags & UMA_ZONE_HASH &&
530 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) {
531 struct uma_hash newhash;
532 struct uma_hash oldhash;
533 int ret;
534
535 /*
536 * This is so involved because allocating and freeing
537 * while the keg lock is held will lead to deadlock.
538 * I have to do everything in stages and check for
539 * races.
540 */
541 newhash = keg->uk_hash;
542 KEG_UNLOCK(keg);
543 ret = hash_alloc(&newhash);
544 KEG_LOCK(keg);
545 if (ret) {
546 if (hash_expand(&keg->uk_hash, &newhash)) {
547 oldhash = keg->uk_hash;
548 keg->uk_hash = newhash;
549 } else
550 oldhash = newhash;
551
552 KEG_UNLOCK(keg);
553 hash_free(&oldhash);
554 return;
555 }
556 }
557 KEG_UNLOCK(keg);
558 }
559
560 static void
561 zone_timeout(uma_zone_t zone)
562 {
563
564 zone_foreach_keg(zone, &keg_timeout);
565 }
566
567 /*
568 * Allocate and zero fill the next sized hash table from the appropriate
569 * backing store.
570 *
571 * Arguments:
572 * hash A new hash structure with the old hash size in uh_hashsize
573 *
574 * Returns:
575 * 1 on success and 0 on failure.
576 */
577 static int
578 hash_alloc(struct uma_hash *hash)
579 {
580 int oldsize;
581 int alloc;
582
583 oldsize = hash->uh_hashsize;
584
585 /* We're just going to go to a power of two greater */
586 if (oldsize) {
587 hash->uh_hashsize = oldsize * 2;
588 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
589 hash->uh_slab_hash = (struct slabhead *)malloc(alloc,
590 M_UMAHASH, M_NOWAIT);
591 } else {
592 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
593 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
594 UMA_ANYDOMAIN, M_WAITOK);
595 hash->uh_hashsize = UMA_HASH_SIZE_INIT;
596 }
597 if (hash->uh_slab_hash) {
598 bzero(hash->uh_slab_hash, alloc);
599 hash->uh_hashmask = hash->uh_hashsize - 1;
600 return (1);
601 }
602
603 return (0);
604 }
605
606 /*
607 * Expands the hash table for HASH zones. This is done from zone_timeout
608 * to reduce collisions. This must not be done in the regular allocation
609 * path, otherwise, we can recurse on the vm while allocating pages.
610 *
611 * Arguments:
612 * oldhash The hash you want to expand
613 * newhash The hash structure for the new table
614 *
615 * Returns:
616 * Nothing
617 *
618 * Discussion:
619 */
620 static int
621 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
622 {
623 uma_slab_t slab;
624 int hval;
625 int i;
626
627 if (!newhash->uh_slab_hash)
628 return (0);
629
630 if (oldhash->uh_hashsize >= newhash->uh_hashsize)
631 return (0);
632
633 /*
634 * I need to investigate hash algorithms for resizing without a
635 * full rehash.
636 */
637
638 for (i = 0; i < oldhash->uh_hashsize; i++)
639 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) {
640 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]);
641 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink);
642 hval = UMA_HASH(newhash, slab->us_data);
643 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
644 slab, us_hlink);
645 }
646
647 return (1);
648 }
649
650 /*
651 * Free the hash bucket to the appropriate backing store.
652 *
653 * Arguments:
654 * slab_hash The hash bucket we're freeing
655 * hashsize The number of entries in that hash bucket
656 *
657 * Returns:
658 * Nothing
659 */
660 static void
661 hash_free(struct uma_hash *hash)
662 {
663 if (hash->uh_slab_hash == NULL)
664 return;
665 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
666 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
667 else
668 free(hash->uh_slab_hash, M_UMAHASH);
669 }
670
671 /*
672 * Frees all outstanding items in a bucket
673 *
674 * Arguments:
675 * zone The zone to free to, must be unlocked.
676 * bucket The free/alloc bucket with items, cpu queue must be locked.
677 *
678 * Returns:
679 * Nothing
680 */
681
682 static void
683 bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
684 {
685 int i;
686
687 if (bucket == NULL)
688 return;
689
690 if (zone->uz_fini)
691 for (i = 0; i < bucket->ub_cnt; i++)
692 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
693 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
694 bucket->ub_cnt = 0;
695 }
696
697 /*
698 * Drains the per cpu caches for a zone.
699 *
700 * NOTE: This may only be called while the zone is being turn down, and not
701 * during normal operation. This is necessary in order that we do not have
702 * to migrate CPUs to drain the per-CPU caches.
703 *
704 * Arguments:
705 * zone The zone to drain, must be unlocked.
706 *
707 * Returns:
708 * Nothing
709 */
710 static void
711 cache_drain(uma_zone_t zone)
712 {
713 uma_cache_t cache;
714 int cpu;
715
716 /*
717 * XXX: It is safe to not lock the per-CPU caches, because we're
718 * tearing down the zone anyway. I.e., there will be no further use
719 * of the caches at this point.
720 *
721 * XXX: It would good to be able to assert that the zone is being
722 * torn down to prevent improper use of cache_drain().
723 *
724 * XXX: We lock the zone before passing into bucket_cache_drain() as
725 * it is used elsewhere. Should the tear-down path be made special
726 * there in some form?
727 */
728 CPU_FOREACH(cpu) {
729 cache = &zone->uz_cpu[cpu];
730 bucket_drain(zone, cache->uc_allocbucket);
731 bucket_drain(zone, cache->uc_freebucket);
732 if (cache->uc_allocbucket != NULL)
733 bucket_free(zone, cache->uc_allocbucket, NULL);
734 if (cache->uc_freebucket != NULL)
735 bucket_free(zone, cache->uc_freebucket, NULL);
736 cache->uc_allocbucket = cache->uc_freebucket = NULL;
737 }
738 ZONE_LOCK(zone);
739 bucket_cache_drain(zone);
740 ZONE_UNLOCK(zone);
741 }
742
743 static void
744 cache_shrink(uma_zone_t zone)
745 {
746
747 if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
748 return;
749
750 ZONE_LOCK(zone);
751 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2;
752 ZONE_UNLOCK(zone);
753 }
754
755 static void
756 cache_drain_safe_cpu(uma_zone_t zone)
757 {
758 uma_cache_t cache;
759 uma_bucket_t b1, b2;
760 int domain;
761
762 if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
763 return;
764
765 b1 = b2 = NULL;
766 ZONE_LOCK(zone);
767 critical_enter();
768 if (zone->uz_flags & UMA_ZONE_NUMA)
769 domain = PCPU_GET(domain);
770 else
771 domain = 0;
772 cache = &zone->uz_cpu[curcpu];
773 if (cache->uc_allocbucket) {
774 if (cache->uc_allocbucket->ub_cnt != 0)
775 LIST_INSERT_HEAD(&zone->uz_domain[domain].uzd_buckets,
776 cache->uc_allocbucket, ub_link);
777 else
778 b1 = cache->uc_allocbucket;
779 cache->uc_allocbucket = NULL;
780 }
781 if (cache->uc_freebucket) {
782 if (cache->uc_freebucket->ub_cnt != 0)
783 LIST_INSERT_HEAD(&zone->uz_domain[domain].uzd_buckets,
784 cache->uc_freebucket, ub_link);
785 else
786 b2 = cache->uc_freebucket;
787 cache->uc_freebucket = NULL;
788 }
789 critical_exit();
790 ZONE_UNLOCK(zone);
791 if (b1)
792 bucket_free(zone, b1, NULL);
793 if (b2)
794 bucket_free(zone, b2, NULL);
795 }
796
797 /*
798 * Safely drain per-CPU caches of a zone(s) to alloc bucket.
799 * This is an expensive call because it needs to bind to all CPUs
800 * one by one and enter a critical section on each of them in order
801 * to safely access their cache buckets.
802 * Zone lock must not be held on call this function.
803 */
804 static void
805 cache_drain_safe(uma_zone_t zone)
806 {
807 int cpu;
808
809 /*
810 * Polite bucket sizes shrinking was not enouth, shrink aggressively.
811 */
812 if (zone)
813 cache_shrink(zone);
814 else
815 zone_foreach(cache_shrink);
816
817 CPU_FOREACH(cpu) {
818 thread_lock(curthread);
819 sched_bind(curthread, cpu);
820 thread_unlock(curthread);
821
822 if (zone)
823 cache_drain_safe_cpu(zone);
824 else
825 zone_foreach(cache_drain_safe_cpu);
826 }
827 thread_lock(curthread);
828 sched_unbind(curthread);
829 thread_unlock(curthread);
830 }
831
832 /*
833 * Drain the cached buckets from a zone. Expects a locked zone on entry.
834 */
835 static void
836 bucket_cache_drain(uma_zone_t zone)
837 {
838 uma_zone_domain_t zdom;
839 uma_bucket_t bucket;
840 int i;
841
842 /*
843 * Drain the bucket queues and free the buckets.
844 */
845 for (i = 0; i < vm_ndomains; i++) {
846 zdom = &zone->uz_domain[i];
847 while ((bucket = LIST_FIRST(&zdom->uzd_buckets)) != NULL) {
848 LIST_REMOVE(bucket, ub_link);
849 ZONE_UNLOCK(zone);
850 bucket_drain(zone, bucket);
851 bucket_free(zone, bucket, NULL);
852 ZONE_LOCK(zone);
853 }
854 }
855
856 /*
857 * Shrink further bucket sizes. Price of single zone lock collision
858 * is probably lower then price of global cache drain.
859 */
860 if (zone->uz_count > zone->uz_count_min)
861 zone->uz_count--;
862 }
863
864 static void
865 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
866 {
867 uint8_t *mem;
868 int i;
869 uint8_t flags;
870
871 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes",
872 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera);
873
874 mem = slab->us_data;
875 flags = slab->us_flags;
876 i = start;
877 if (keg->uk_fini != NULL) {
878 for (i--; i > -1; i--)
879 #ifdef INVARIANTS
880 /*
881 * trash_fini implies that dtor was trash_dtor. trash_fini
882 * would check that memory hasn't been modified since free,
883 * which executed trash_dtor.
884 * That's why we need to run uma_dbg_kskip() check here,
885 * albeit we don't make skip check for other init/fini
886 * invocations.
887 */
888 if (!uma_dbg_kskip(keg, slab->us_data + (keg->uk_rsize * i)) ||
889 keg->uk_fini != trash_fini)
890 #endif
891 keg->uk_fini(slab->us_data + (keg->uk_rsize * i),
892 keg->uk_size);
893 }
894 if (keg->uk_flags & UMA_ZONE_OFFPAGE)
895 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
896 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags);
897 uma_total_dec(PAGE_SIZE * keg->uk_ppera);
898 }
899
900 /*
901 * Frees pages from a keg back to the system. This is done on demand from
902 * the pageout daemon.
903 *
904 * Returns nothing.
905 */
906 static void
907 keg_drain(uma_keg_t keg)
908 {
909 struct slabhead freeslabs = { 0 };
910 uma_domain_t dom;
911 uma_slab_t slab, tmp;
912 int i;
913
914 /*
915 * We don't want to take pages from statically allocated kegs at this
916 * time
917 */
918 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
919 return;
920
921 CTR3(KTR_UMA, "keg_drain %s(%p) free items: %u",
922 keg->uk_name, keg, keg->uk_free);
923 KEG_LOCK(keg);
924 if (keg->uk_free == 0)
925 goto finished;
926
927 for (i = 0; i < vm_ndomains; i++) {
928 dom = &keg->uk_domain[i];
929 LIST_FOREACH_SAFE(slab, &dom->ud_free_slab, us_link, tmp) {
930 /* We have nowhere to free these to. */
931 if (slab->us_flags & UMA_SLAB_BOOT)
932 continue;
933
934 LIST_REMOVE(slab, us_link);
935 keg->uk_pages -= keg->uk_ppera;
936 keg->uk_free -= keg->uk_ipers;
937
938 if (keg->uk_flags & UMA_ZONE_HASH)
939 UMA_HASH_REMOVE(&keg->uk_hash, slab,
940 slab->us_data);
941
942 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink);
943 }
944 }
945
946 finished:
947 KEG_UNLOCK(keg);
948
949 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) {
950 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink);
951 keg_free_slab(keg, slab, keg->uk_ipers);
952 }
953 }
954
955 static void
956 zone_drain_wait(uma_zone_t zone, int waitok)
957 {
958
959 /*
960 * Set draining to interlock with zone_dtor() so we can release our
961 * locks as we go. Only dtor() should do a WAITOK call since it
962 * is the only call that knows the structure will still be available
963 * when it wakes up.
964 */
965 ZONE_LOCK(zone);
966 while (zone->uz_flags & UMA_ZFLAG_DRAINING) {
967 if (waitok == M_NOWAIT)
968 goto out;
969 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1);
970 }
971 zone->uz_flags |= UMA_ZFLAG_DRAINING;
972 bucket_cache_drain(zone);
973 ZONE_UNLOCK(zone);
974 /*
975 * The DRAINING flag protects us from being freed while
976 * we're running. Normally the uma_rwlock would protect us but we
977 * must be able to release and acquire the right lock for each keg.
978 */
979 zone_foreach_keg(zone, &keg_drain);
980 ZONE_LOCK(zone);
981 zone->uz_flags &= ~UMA_ZFLAG_DRAINING;
982 wakeup(zone);
983 out:
984 ZONE_UNLOCK(zone);
985 }
986
987 void
988 zone_drain(uma_zone_t zone)
989 {
990
991 zone_drain_wait(zone, M_NOWAIT);
992 }
993
994 /*
995 * Allocate a new slab for a keg. This does not insert the slab onto a list.
996 * If the allocation was successful, the keg lock will be held upon return,
997 * otherwise the keg will be left unlocked.
998 *
999 * Arguments:
1000 * wait Shall we wait?
1001 *
1002 * Returns:
1003 * The slab that was allocated or NULL if there is no memory and the
1004 * caller specified M_NOWAIT.
1005 */
1006 static uma_slab_t
1007 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int wait)
1008 {
1009 uma_alloc allocf;
1010 uma_slab_t slab;
1011 unsigned long size;
1012 uint8_t *mem;
1013 uint8_t flags;
1014 int i;
1015
1016 KASSERT(domain >= 0 && domain < vm_ndomains,
1017 ("keg_alloc_slab: domain %d out of range", domain));
1018 mtx_assert(&keg->uk_lock, MA_OWNED);
1019
1020 allocf = keg->uk_allocf;
1021 KEG_UNLOCK(keg);
1022
1023 slab = NULL;
1024 mem = NULL;
1025 if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
1026 slab = zone_alloc_item(keg->uk_slabzone, NULL, domain, wait);
1027 if (slab == NULL)
1028 goto out;
1029 }
1030
1031 /*
1032 * This reproduces the old vm_zone behavior of zero filling pages the
1033 * first time they are added to a zone.
1034 *
1035 * Malloced items are zeroed in uma_zalloc.
1036 */
1037
1038 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
1039 wait |= M_ZERO;
1040 else
1041 wait &= ~M_ZERO;
1042
1043 if (keg->uk_flags & UMA_ZONE_NODUMP)
1044 wait |= M_NODUMP;
1045
1046 /* zone is passed for legacy reasons. */
1047 size = keg->uk_ppera * PAGE_SIZE;
1048 mem = allocf(zone, size, domain, &flags, wait);
1049 if (mem == NULL) {
1050 if (keg->uk_flags & UMA_ZONE_OFFPAGE)
1051 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
1052 slab = NULL;
1053 goto out;
1054 }
1055 uma_total_inc(size);
1056
1057 /* Point the slab into the allocated memory */
1058 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE))
1059 slab = (uma_slab_t )(mem + keg->uk_pgoff);
1060
1061 if (keg->uk_flags & UMA_ZONE_VTOSLAB)
1062 for (i = 0; i < keg->uk_ppera; i++)
1063 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab);
1064
1065 slab->us_keg = keg;
1066 slab->us_data = mem;
1067 slab->us_freecount = keg->uk_ipers;
1068 slab->us_flags = flags;
1069 slab->us_domain = domain;
1070 BIT_FILL(SLAB_SETSIZE, &slab->us_free);
1071 #ifdef INVARIANTS
1072 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree);
1073 #endif
1074
1075 if (keg->uk_init != NULL) {
1076 for (i = 0; i < keg->uk_ipers; i++)
1077 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i),
1078 keg->uk_size, wait) != 0)
1079 break;
1080 if (i != keg->uk_ipers) {
1081 keg_free_slab(keg, slab, i);
1082 slab = NULL;
1083 goto out;
1084 }
1085 }
1086 KEG_LOCK(keg);
1087
1088 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)",
1089 slab, keg->uk_name, keg);
1090
1091 if (keg->uk_flags & UMA_ZONE_HASH)
1092 UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
1093
1094 keg->uk_pages += keg->uk_ppera;
1095 keg->uk_free += keg->uk_ipers;
1096
1097 out:
1098 return (slab);
1099 }
1100
1101 /*
1102 * This function is intended to be used early on in place of page_alloc() so
1103 * that we may use the boot time page cache to satisfy allocations before
1104 * the VM is ready.
1105 */
1106 static void *
1107 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1108 int wait)
1109 {
1110 uma_keg_t keg;
1111 void *mem;
1112 int pages;
1113
1114 keg = zone_first_keg(zone);
1115
1116 /*
1117 * If we are in BOOT_BUCKETS or higher, than switch to real
1118 * allocator. Zones with page sized slabs switch at BOOT_PAGEALLOC.
1119 */
1120 switch (booted) {
1121 case BOOT_COLD:
1122 case BOOT_STRAPPED:
1123 break;
1124 case BOOT_PAGEALLOC:
1125 if (keg->uk_ppera > 1)
1126 break;
1127 case BOOT_BUCKETS:
1128 case BOOT_RUNNING:
1129 #ifdef UMA_MD_SMALL_ALLOC
1130 keg->uk_allocf = (keg->uk_ppera > 1) ?
1131 page_alloc : uma_small_alloc;
1132 #else
1133 keg->uk_allocf = page_alloc;
1134 #endif
1135 return keg->uk_allocf(zone, bytes, domain, pflag, wait);
1136 }
1137
1138 /*
1139 * Check our small startup cache to see if it has pages remaining.
1140 */
1141 pages = howmany(bytes, PAGE_SIZE);
1142 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__));
1143 if (pages > boot_pages)
1144 panic("UMA zone \"%s\": Increase vm.boot_pages", zone->uz_name);
1145 #ifdef DIAGNOSTIC
1146 printf("%s from \"%s\", %d boot pages left\n", __func__, zone->uz_name,
1147 boot_pages);
1148 #endif
1149 mem = bootmem;
1150 boot_pages -= pages;
1151 bootmem += pages * PAGE_SIZE;
1152 *pflag = UMA_SLAB_BOOT;
1153
1154 return (mem);
1155 }
1156
1157 /*
1158 * Allocates a number of pages from the system
1159 *
1160 * Arguments:
1161 * bytes The number of bytes requested
1162 * wait Shall we wait?
1163 *
1164 * Returns:
1165 * A pointer to the alloced memory or possibly
1166 * NULL if M_NOWAIT is set.
1167 */
1168 static void *
1169 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1170 int wait)
1171 {
1172 void *p; /* Returned page */
1173
1174 *pflag = UMA_SLAB_KERNEL;
1175 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait);
1176
1177 return (p);
1178 }
1179
1180 static void *
1181 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1182 int wait)
1183 {
1184 struct pglist alloctail;
1185 vm_offset_t addr, zkva;
1186 int cpu, flags;
1187 vm_page_t p, p_next;
1188 #ifdef NUMA
1189 struct pcpu *pc;
1190 #endif
1191
1192 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE);
1193
1194 TAILQ_INIT(&alloctail);
1195 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ |
1196 malloc2vm_flags(wait);
1197 *pflag = UMA_SLAB_KERNEL;
1198 for (cpu = 0; cpu <= mp_maxid; cpu++) {
1199 if (CPU_ABSENT(cpu)) {
1200 p = vm_page_alloc(NULL, 0, flags);
1201 } else {
1202 #ifndef NUMA
1203 p = vm_page_alloc(NULL, 0, flags);
1204 #else
1205 pc = pcpu_find(cpu);
1206 p = vm_page_alloc_domain(NULL, 0, pc->pc_domain, flags);
1207 if (__predict_false(p == NULL))
1208 p = vm_page_alloc(NULL, 0, flags);
1209 #endif
1210 }
1211 if (__predict_false(p == NULL))
1212 goto fail;
1213 TAILQ_INSERT_TAIL(&alloctail, p, listq);
1214 }
1215 if ((addr = kva_alloc(bytes)) == 0)
1216 goto fail;
1217 zkva = addr;
1218 TAILQ_FOREACH(p, &alloctail, listq) {
1219 pmap_qenter(zkva, &p, 1);
1220 zkva += PAGE_SIZE;
1221 }
1222 return ((void*)addr);
1223 fail:
1224 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1225 vm_page_unwire(p, PQ_NONE);
1226 vm_page_free(p);
1227 }
1228 return (NULL);
1229 }
1230
1231 /*
1232 * Allocates a number of pages from within an object
1233 *
1234 * Arguments:
1235 * bytes The number of bytes requested
1236 * wait Shall we wait?
1237 *
1238 * Returns:
1239 * A pointer to the alloced memory or possibly
1240 * NULL if M_NOWAIT is set.
1241 */
1242 static void *
1243 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
1244 int wait)
1245 {
1246 TAILQ_HEAD(, vm_page) alloctail;
1247 u_long npages;
1248 vm_offset_t retkva, zkva;
1249 vm_page_t p, p_next;
1250 uma_keg_t keg;
1251
1252 TAILQ_INIT(&alloctail);
1253 keg = zone_first_keg(zone);
1254
1255 npages = howmany(bytes, PAGE_SIZE);
1256 while (npages > 0) {
1257 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT |
1258 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ |
1259 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK :
1260 VM_ALLOC_NOWAIT));
1261 if (p != NULL) {
1262 /*
1263 * Since the page does not belong to an object, its
1264 * listq is unused.
1265 */
1266 TAILQ_INSERT_TAIL(&alloctail, p, listq);
1267 npages--;
1268 continue;
1269 }
1270 /*
1271 * Page allocation failed, free intermediate pages and
1272 * exit.
1273 */
1274 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1275 vm_page_unwire(p, PQ_NONE);
1276 vm_page_free(p);
1277 }
1278 return (NULL);
1279 }
1280 *flags = UMA_SLAB_PRIV;
1281 zkva = keg->uk_kva +
1282 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
1283 retkva = zkva;
1284 TAILQ_FOREACH(p, &alloctail, listq) {
1285 pmap_qenter(zkva, &p, 1);
1286 zkva += PAGE_SIZE;
1287 }
1288
1289 return ((void *)retkva);
1290 }
1291
1292 /*
1293 * Frees a number of pages to the system
1294 *
1295 * Arguments:
1296 * mem A pointer to the memory to be freed
1297 * size The size of the memory being freed
1298 * flags The original p->us_flags field
1299 *
1300 * Returns:
1301 * Nothing
1302 */
1303 static void
1304 page_free(void *mem, vm_size_t size, uint8_t flags)
1305 {
1306
1307 if ((flags & UMA_SLAB_KERNEL) == 0)
1308 panic("UMA: page_free used with invalid flags %x", flags);
1309
1310 kmem_free((vm_offset_t)mem, size);
1311 }
1312
1313 /*
1314 * Frees pcpu zone allocations
1315 *
1316 * Arguments:
1317 * mem A pointer to the memory to be freed
1318 * size The size of the memory being freed
1319 * flags The original p->us_flags field
1320 *
1321 * Returns:
1322 * Nothing
1323 */
1324 static void
1325 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags)
1326 {
1327 vm_offset_t sva, curva;
1328 vm_paddr_t paddr;
1329 vm_page_t m;
1330
1331 MPASS(size == (mp_maxid+1)*PAGE_SIZE);
1332 sva = (vm_offset_t)mem;
1333 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) {
1334 paddr = pmap_kextract(curva);
1335 m = PHYS_TO_VM_PAGE(paddr);
1336 vm_page_unwire(m, PQ_NONE);
1337 vm_page_free(m);
1338 }
1339 pmap_qremove(sva, size >> PAGE_SHIFT);
1340 kva_free(sva, size);
1341 }
1342
1343
1344 /*
1345 * Zero fill initializer
1346 *
1347 * Arguments/Returns follow uma_init specifications
1348 */
1349 static int
1350 zero_init(void *mem, int size, int flags)
1351 {
1352 bzero(mem, size);
1353 return (0);
1354 }
1355
1356 /*
1357 * Finish creating a small uma keg. This calculates ipers, and the keg size.
1358 *
1359 * Arguments
1360 * keg The zone we should initialize
1361 *
1362 * Returns
1363 * Nothing
1364 */
1365 static void
1366 keg_small_init(uma_keg_t keg)
1367 {
1368 u_int rsize;
1369 u_int memused;
1370 u_int wastedspace;
1371 u_int shsize;
1372 u_int slabsize;
1373
1374 if (keg->uk_flags & UMA_ZONE_PCPU) {
1375 u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU;
1376
1377 slabsize = UMA_PCPU_ALLOC_SIZE;
1378 keg->uk_ppera = ncpus;
1379 } else {
1380 slabsize = UMA_SLAB_SIZE;
1381 keg->uk_ppera = 1;
1382 }
1383
1384 /*
1385 * Calculate the size of each allocation (rsize) according to
1386 * alignment. If the requested size is smaller than we have
1387 * allocation bits for we round it up.
1388 */
1389 rsize = keg->uk_size;
1390 if (rsize < slabsize / SLAB_SETSIZE)
1391 rsize = slabsize / SLAB_SETSIZE;
1392 if (rsize & keg->uk_align)
1393 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1);
1394 keg->uk_rsize = rsize;
1395
1396 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
1397 keg->uk_rsize < UMA_PCPU_ALLOC_SIZE,
1398 ("%s: size %u too large", __func__, keg->uk_rsize));
1399
1400 if (keg->uk_flags & UMA_ZONE_OFFPAGE)
1401 shsize = 0;
1402 else
1403 shsize = sizeof(struct uma_slab);
1404
1405 if (rsize <= slabsize - shsize)
1406 keg->uk_ipers = (slabsize - shsize) / rsize;
1407 else {
1408 /* Handle special case when we have 1 item per slab, so
1409 * alignment requirement can be relaxed. */
1410 KASSERT(keg->uk_size <= slabsize - shsize,
1411 ("%s: size %u greater than slab", __func__, keg->uk_size));
1412 keg->uk_ipers = 1;
1413 }
1414 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1415 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1416
1417 memused = keg->uk_ipers * rsize + shsize;
1418 wastedspace = slabsize - memused;
1419
1420 /*
1421 * We can't do OFFPAGE if we're internal or if we've been
1422 * asked to not go to the VM for buckets. If we do this we
1423 * may end up going to the VM for slabs which we do not
1424 * want to do if we're UMA_ZFLAG_CACHEONLY as a result
1425 * of UMA_ZONE_VM, which clearly forbids it.
1426 */
1427 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) ||
1428 (keg->uk_flags & UMA_ZFLAG_CACHEONLY))
1429 return;
1430
1431 /*
1432 * See if using an OFFPAGE slab will limit our waste. Only do
1433 * this if it permits more items per-slab.
1434 *
1435 * XXX We could try growing slabsize to limit max waste as well.
1436 * Historically this was not done because the VM could not
1437 * efficiently handle contiguous allocations.
1438 */
1439 if ((wastedspace >= slabsize / UMA_MAX_WASTE) &&
1440 (keg->uk_ipers < (slabsize / keg->uk_rsize))) {
1441 keg->uk_ipers = slabsize / keg->uk_rsize;
1442 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1443 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1444 CTR6(KTR_UMA, "UMA decided we need offpage slab headers for "
1445 "keg: %s(%p), calculated wastedspace = %d, "
1446 "maximum wasted space allowed = %d, "
1447 "calculated ipers = %d, "
1448 "new wasted space = %d\n", keg->uk_name, keg, wastedspace,
1449 slabsize / UMA_MAX_WASTE, keg->uk_ipers,
1450 slabsize - keg->uk_ipers * keg->uk_rsize);
1451 keg->uk_flags |= UMA_ZONE_OFFPAGE;
1452 }
1453
1454 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1455 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1456 keg->uk_flags |= UMA_ZONE_HASH;
1457 }
1458
1459 /*
1460 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do
1461 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be
1462 * more complicated.
1463 *
1464 * Arguments
1465 * keg The keg we should initialize
1466 *
1467 * Returns
1468 * Nothing
1469 */
1470 static void
1471 keg_large_init(uma_keg_t keg)
1472 {
1473 u_int shsize;
1474
1475 KASSERT(keg != NULL, ("Keg is null in keg_large_init"));
1476 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0,
1477 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg"));
1478 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1479 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__));
1480
1481 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE);
1482 keg->uk_ipers = 1;
1483 keg->uk_rsize = keg->uk_size;
1484
1485 /* Check whether we have enough space to not do OFFPAGE. */
1486 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) {
1487 shsize = sizeof(struct uma_slab);
1488 if (shsize & UMA_ALIGN_PTR)
1489 shsize = (shsize & ~UMA_ALIGN_PTR) +
1490 (UMA_ALIGN_PTR + 1);
1491
1492 if (PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < shsize) {
1493 /*
1494 * We can't do OFFPAGE if we're internal, in which case
1495 * we need an extra page per allocation to contain the
1496 * slab header.
1497 */
1498 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0)
1499 keg->uk_flags |= UMA_ZONE_OFFPAGE;
1500 else
1501 keg->uk_ppera++;
1502 }
1503 }
1504
1505 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1506 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1507 keg->uk_flags |= UMA_ZONE_HASH;
1508 }
1509
1510 static void
1511 keg_cachespread_init(uma_keg_t keg)
1512 {
1513 int alignsize;
1514 int trailer;
1515 int pages;
1516 int rsize;
1517
1518 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1519 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__));
1520
1521 alignsize = keg->uk_align + 1;
1522 rsize = keg->uk_size;
1523 /*
1524 * We want one item to start on every align boundary in a page. To
1525 * do this we will span pages. We will also extend the item by the
1526 * size of align if it is an even multiple of align. Otherwise, it
1527 * would fall on the same boundary every time.
1528 */
1529 if (rsize & keg->uk_align)
1530 rsize = (rsize & ~keg->uk_align) + alignsize;
1531 if ((rsize & alignsize) == 0)
1532 rsize += alignsize;
1533 trailer = rsize - keg->uk_size;
1534 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE;
1535 pages = MIN(pages, (128 * 1024) / PAGE_SIZE);
1536 keg->uk_rsize = rsize;
1537 keg->uk_ppera = pages;
1538 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize;
1539 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB;
1540 KASSERT(keg->uk_ipers <= SLAB_SETSIZE,
1541 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__,
1542 keg->uk_ipers));
1543 }
1544
1545 /*
1546 * Keg header ctor. This initializes all fields, locks, etc. And inserts
1547 * the keg onto the global keg list.
1548 *
1549 * Arguments/Returns follow uma_ctor specifications
1550 * udata Actually uma_kctor_args
1551 */
1552 static int
1553 keg_ctor(void *mem, int size, void *udata, int flags)
1554 {
1555 struct uma_kctor_args *arg = udata;
1556 uma_keg_t keg = mem;
1557 uma_zone_t zone;
1558
1559 bzero(keg, size);
1560 keg->uk_size = arg->size;
1561 keg->uk_init = arg->uminit;
1562 keg->uk_fini = arg->fini;
1563 keg->uk_align = arg->align;
1564 keg->uk_free = 0;
1565 keg->uk_reserve = 0;
1566 keg->uk_pages = 0;
1567 keg->uk_flags = arg->flags;
1568 keg->uk_slabzone = NULL;
1569
1570 /*
1571 * We use a global round-robin policy by default. Zones with
1572 * UMA_ZONE_NUMA set will use first-touch instead, in which case the
1573 * iterator is never run.
1574 */
1575 keg->uk_dr.dr_policy = DOMAINSET_RR();
1576 keg->uk_dr.dr_iter = 0;
1577
1578 /*
1579 * The master zone is passed to us at keg-creation time.
1580 */
1581 zone = arg->zone;
1582 keg->uk_name = zone->uz_name;
1583
1584 if (arg->flags & UMA_ZONE_VM)
1585 keg->uk_flags |= UMA_ZFLAG_CACHEONLY;
1586
1587 if (arg->flags & UMA_ZONE_ZINIT)
1588 keg->uk_init = zero_init;
1589
1590 if (arg->flags & UMA_ZONE_MALLOC)
1591 keg->uk_flags |= UMA_ZONE_VTOSLAB;
1592
1593 if (arg->flags & UMA_ZONE_PCPU)
1594 #ifdef SMP
1595 keg->uk_flags |= UMA_ZONE_OFFPAGE;
1596 #else
1597 keg->uk_flags &= ~UMA_ZONE_PCPU;
1598 #endif
1599
1600 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) {
1601 keg_cachespread_init(keg);
1602 } else {
1603 if (keg->uk_size > UMA_SLAB_SPACE)
1604 keg_large_init(keg);
1605 else
1606 keg_small_init(keg);
1607 }
1608
1609 if (keg->uk_flags & UMA_ZONE_OFFPAGE)
1610 keg->uk_slabzone = slabzone;
1611
1612 /*
1613 * If we haven't booted yet we need allocations to go through the
1614 * startup cache until the vm is ready.
1615 */
1616 if (booted < BOOT_PAGEALLOC)
1617 keg->uk_allocf = startup_alloc;
1618 #ifdef UMA_MD_SMALL_ALLOC
1619 else if (keg->uk_ppera == 1)
1620 keg->uk_allocf = uma_small_alloc;
1621 #endif
1622 else if (keg->uk_flags & UMA_ZONE_PCPU)
1623 keg->uk_allocf = pcpu_page_alloc;
1624 else
1625 keg->uk_allocf = page_alloc;
1626 #ifdef UMA_MD_SMALL_ALLOC
1627 if (keg->uk_ppera == 1)
1628 keg->uk_freef = uma_small_free;
1629 else
1630 #endif
1631 if (keg->uk_flags & UMA_ZONE_PCPU)
1632 keg->uk_freef = pcpu_page_free;
1633 else
1634 keg->uk_freef = page_free;
1635
1636 /*
1637 * Initialize keg's lock
1638 */
1639 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS));
1640
1641 /*
1642 * If we're putting the slab header in the actual page we need to
1643 * figure out where in each page it goes. This calculates a right
1644 * justified offset into the memory on an ALIGN_PTR boundary.
1645 */
1646 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) {
1647 u_int totsize;
1648
1649 /* Size of the slab struct and free list */
1650 totsize = sizeof(struct uma_slab);
1651
1652 if (totsize & UMA_ALIGN_PTR)
1653 totsize = (totsize & ~UMA_ALIGN_PTR) +
1654 (UMA_ALIGN_PTR + 1);
1655 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize;
1656
1657 /*
1658 * The only way the following is possible is if with our
1659 * UMA_ALIGN_PTR adjustments we are now bigger than
1660 * UMA_SLAB_SIZE. I haven't checked whether this is
1661 * mathematically possible for all cases, so we make
1662 * sure here anyway.
1663 */
1664 totsize = keg->uk_pgoff + sizeof(struct uma_slab);
1665 if (totsize > PAGE_SIZE * keg->uk_ppera) {
1666 printf("zone %s ipers %d rsize %d size %d\n",
1667 zone->uz_name, keg->uk_ipers, keg->uk_rsize,
1668 keg->uk_size);
1669 panic("UMA slab won't fit.");
1670 }
1671 }
1672
1673 if (keg->uk_flags & UMA_ZONE_HASH)
1674 hash_alloc(&keg->uk_hash);
1675
1676 CTR5(KTR_UMA, "keg_ctor %p zone %s(%p) out %d free %d\n",
1677 keg, zone->uz_name, zone,
1678 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free,
1679 keg->uk_free);
1680
1681 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
1682
1683 rw_wlock(&uma_rwlock);
1684 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
1685 rw_wunlock(&uma_rwlock);
1686 return (0);
1687 }
1688
1689 /*
1690 * Zone header ctor. This initializes all fields, locks, etc.
1691 *
1692 * Arguments/Returns follow uma_ctor specifications
1693 * udata Actually uma_zctor_args
1694 */
1695 static int
1696 zone_ctor(void *mem, int size, void *udata, int flags)
1697 {
1698 struct uma_zctor_args *arg = udata;
1699 uma_zone_t zone = mem;
1700 uma_zone_t z;
1701 uma_keg_t keg;
1702
1703 bzero(zone, size);
1704 zone->uz_name = arg->name;
1705 zone->uz_ctor = arg->ctor;
1706 zone->uz_dtor = arg->dtor;
1707 zone->uz_slab = zone_fetch_slab;
1708 zone->uz_init = NULL;
1709 zone->uz_fini = NULL;
1710 zone->uz_allocs = 0;
1711 zone->uz_frees = 0;
1712 zone->uz_fails = 0;
1713 zone->uz_sleeps = 0;
1714 zone->uz_count = 0;
1715 zone->uz_count_min = 0;
1716 zone->uz_flags = 0;
1717 zone->uz_warning = NULL;
1718 /* The domain structures follow the cpu structures. */
1719 zone->uz_domain = (struct uma_zone_domain *)&zone->uz_cpu[mp_ncpus];
1720 timevalclear(&zone->uz_ratecheck);
1721 keg = arg->keg;
1722
1723 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS));
1724
1725 /*
1726 * This is a pure cache zone, no kegs.
1727 */
1728 if (arg->import) {
1729 if (arg->flags & UMA_ZONE_VM)
1730 arg->flags |= UMA_ZFLAG_CACHEONLY;
1731 zone->uz_flags = arg->flags;
1732 zone->uz_size = arg->size;
1733 zone->uz_import = arg->import;
1734 zone->uz_release = arg->release;
1735 zone->uz_arg = arg->arg;
1736 zone->uz_lockptr = &zone->uz_lock;
1737 rw_wlock(&uma_rwlock);
1738 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link);
1739 rw_wunlock(&uma_rwlock);
1740 goto out;
1741 }
1742
1743 /*
1744 * Use the regular zone/keg/slab allocator.
1745 */
1746 zone->uz_import = (uma_import)zone_import;
1747 zone->uz_release = (uma_release)zone_release;
1748 zone->uz_arg = zone;
1749
1750 if (arg->flags & UMA_ZONE_SECONDARY) {
1751 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
1752 zone->uz_init = arg->uminit;
1753 zone->uz_fini = arg->fini;
1754 zone->uz_lockptr = &keg->uk_lock;
1755 zone->uz_flags |= UMA_ZONE_SECONDARY;
1756 rw_wlock(&uma_rwlock);
1757 ZONE_LOCK(zone);
1758 LIST_FOREACH(z, &keg->uk_zones, uz_link) {
1759 if (LIST_NEXT(z, uz_link) == NULL) {
1760 LIST_INSERT_AFTER(z, zone, uz_link);
1761 break;
1762 }
1763 }
1764 ZONE_UNLOCK(zone);
1765 rw_wunlock(&uma_rwlock);
1766 } else if (keg == NULL) {
1767 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
1768 arg->align, arg->flags)) == NULL)
1769 return (ENOMEM);
1770 } else {
1771 struct uma_kctor_args karg;
1772 int error;
1773
1774 /* We should only be here from uma_startup() */
1775 karg.size = arg->size;
1776 karg.uminit = arg->uminit;
1777 karg.fini = arg->fini;
1778 karg.align = arg->align;
1779 karg.flags = arg->flags;
1780 karg.zone = zone;
1781 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
1782 flags);
1783 if (error)
1784 return (error);
1785 }
1786
1787 /*
1788 * Link in the first keg.
1789 */
1790 zone->uz_klink.kl_keg = keg;
1791 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link);
1792 zone->uz_lockptr = &keg->uk_lock;
1793 zone->uz_size = keg->uk_size;
1794 zone->uz_flags |= (keg->uk_flags &
1795 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
1796
1797 /*
1798 * Some internal zones don't have room allocated for the per cpu
1799 * caches. If we're internal, bail out here.
1800 */
1801 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) {
1802 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
1803 ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
1804 return (0);
1805 }
1806
1807 out:
1808 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) !=
1809 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET),
1810 ("Invalid zone flag combination"));
1811 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0)
1812 zone->uz_count = BUCKET_MAX;
1813 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0)
1814 zone->uz_count = 0;
1815 else
1816 zone->uz_count = bucket_select(zone->uz_size);
1817 zone->uz_count_min = zone->uz_count;
1818
1819 return (0);
1820 }
1821
1822 /*
1823 * Keg header dtor. This frees all data, destroys locks, frees the hash
1824 * table and removes the keg from the global list.
1825 *
1826 * Arguments/Returns follow uma_dtor specifications
1827 * udata unused
1828 */
1829 static void
1830 keg_dtor(void *arg, int size, void *udata)
1831 {
1832 uma_keg_t keg;
1833
1834 keg = (uma_keg_t)arg;
1835 KEG_LOCK(keg);
1836 if (keg->uk_free != 0) {
1837 printf("Freed UMA keg (%s) was not empty (%d items). "
1838 " Lost %d pages of memory.\n",
1839 keg->uk_name ? keg->uk_name : "",
1840 keg->uk_free, keg->uk_pages);
1841 }
1842 KEG_UNLOCK(keg);
1843
1844 hash_free(&keg->uk_hash);
1845
1846 KEG_LOCK_FINI(keg);
1847 }
1848
1849 /*
1850 * Zone header dtor.
1851 *
1852 * Arguments/Returns follow uma_dtor specifications
1853 * udata unused
1854 */
1855 static void
1856 zone_dtor(void *arg, int size, void *udata)
1857 {
1858 uma_klink_t klink;
1859 uma_zone_t zone;
1860 uma_keg_t keg;
1861
1862 zone = (uma_zone_t)arg;
1863 keg = zone_first_keg(zone);
1864
1865 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
1866 cache_drain(zone);
1867
1868 rw_wlock(&uma_rwlock);
1869 LIST_REMOVE(zone, uz_link);
1870 rw_wunlock(&uma_rwlock);
1871 /*
1872 * XXX there are some races here where
1873 * the zone can be drained but zone lock
1874 * released and then refilled before we
1875 * remove it... we dont care for now
1876 */
1877 zone_drain_wait(zone, M_WAITOK);
1878 /*
1879 * Unlink all of our kegs.
1880 */
1881 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) {
1882 klink->kl_keg = NULL;
1883 LIST_REMOVE(klink, kl_link);
1884 if (klink == &zone->uz_klink)
1885 continue;
1886 free(klink, M_TEMP);
1887 }
1888 /*
1889 * We only destroy kegs from non secondary zones.
1890 */
1891 if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) {
1892 rw_wlock(&uma_rwlock);
1893 LIST_REMOVE(keg, uk_link);
1894 rw_wunlock(&uma_rwlock);
1895 zone_free_item(kegs, keg, NULL, SKIP_NONE);
1896 }
1897 ZONE_LOCK_FINI(zone);
1898 }
1899
1900 /*
1901 * Traverses every zone in the system and calls a callback
1902 *
1903 * Arguments:
1904 * zfunc A pointer to a function which accepts a zone
1905 * as an argument.
1906 *
1907 * Returns:
1908 * Nothing
1909 */
1910 static void
1911 zone_foreach(void (*zfunc)(uma_zone_t))
1912 {
1913 uma_keg_t keg;
1914 uma_zone_t zone;
1915
1916 rw_rlock(&uma_rwlock);
1917 LIST_FOREACH(keg, &uma_kegs, uk_link) {
1918 LIST_FOREACH(zone, &keg->uk_zones, uz_link)
1919 zfunc(zone);
1920 }
1921 rw_runlock(&uma_rwlock);
1922 }
1923
1924 /*
1925 * Count how many pages do we need to bootstrap. VM supplies
1926 * its need in early zones in the argument, we add up our zones,
1927 * which consist of: UMA Slabs, UMA Hash and 9 Bucket zones. The
1928 * zone of zones and zone of kegs are accounted separately.
1929 */
1930 #define UMA_BOOT_ZONES 11
1931 /* Zone of zones and zone of kegs have arbitrary alignment. */
1932 #define UMA_BOOT_ALIGN 32
1933 static int zsize, ksize;
1934 int
1935 uma_startup_count(int vm_zones)
1936 {
1937 int zones, pages;
1938
1939 ksize = sizeof(struct uma_keg) +
1940 (sizeof(struct uma_domain) * vm_ndomains);
1941 zsize = sizeof(struct uma_zone) +
1942 (sizeof(struct uma_cache) * (mp_maxid + 1)) +
1943 (sizeof(struct uma_zone_domain) * vm_ndomains);
1944
1945 /*
1946 * Memory for the zone of kegs and its keg,
1947 * and for zone of zones.
1948 */
1949 pages = howmany(roundup(zsize, CACHE_LINE_SIZE) * 2 +
1950 roundup(ksize, CACHE_LINE_SIZE), PAGE_SIZE);
1951
1952 #ifdef UMA_MD_SMALL_ALLOC
1953 zones = UMA_BOOT_ZONES;
1954 #else
1955 zones = UMA_BOOT_ZONES + vm_zones;
1956 vm_zones = 0;
1957 #endif
1958
1959 /* Memory for the rest of startup zones, UMA and VM, ... */
1960 if (zsize > UMA_SLAB_SPACE)
1961 pages += (zones + vm_zones) *
1962 howmany(roundup2(zsize, UMA_BOOT_ALIGN), UMA_SLAB_SIZE);
1963 else if (roundup2(zsize, UMA_BOOT_ALIGN) > UMA_SLAB_SPACE)
1964 pages += zones;
1965 else
1966 pages += howmany(zones,
1967 UMA_SLAB_SPACE / roundup2(zsize, UMA_BOOT_ALIGN));
1968
1969 /* ... and their kegs. Note that zone of zones allocates a keg! */
1970 pages += howmany(zones + 1,
1971 UMA_SLAB_SPACE / roundup2(ksize, UMA_BOOT_ALIGN));
1972
1973 /*
1974 * Most of startup zones are not going to be offpages, that's
1975 * why we use UMA_SLAB_SPACE instead of UMA_SLAB_SIZE in all
1976 * calculations. Some large bucket zones will be offpage, and
1977 * thus will allocate hashes. We take conservative approach
1978 * and assume that all zones may allocate hash. This may give
1979 * us some positive inaccuracy, usually an extra single page.
1980 */
1981 pages += howmany(zones, UMA_SLAB_SPACE /
1982 (sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT));
1983
1984 return (pages);
1985 }
1986
1987 void
1988 uma_startup(void *mem, int npages)
1989 {
1990 struct uma_zctor_args args;
1991 uma_keg_t masterkeg;
1992 uintptr_t m;
1993
1994 #ifdef DIAGNOSTIC
1995 printf("Entering %s with %d boot pages configured\n", __func__, npages);
1996 #endif
1997
1998 rw_init(&uma_rwlock, "UMA lock");
1999
2000 /* Use bootpages memory for the zone of zones and zone of kegs. */
2001 m = (uintptr_t)mem;
2002 zones = (uma_zone_t)m;
2003 m += roundup(zsize, CACHE_LINE_SIZE);
2004 kegs = (uma_zone_t)m;
2005 m += roundup(zsize, CACHE_LINE_SIZE);
2006 masterkeg = (uma_keg_t)m;
2007 m += roundup(ksize, CACHE_LINE_SIZE);
2008 m = roundup(m, PAGE_SIZE);
2009 npages -= (m - (uintptr_t)mem) / PAGE_SIZE;
2010 mem = (void *)m;
2011
2012 /* "manually" create the initial zone */
2013 memset(&args, 0, sizeof(args));
2014 args.name = "UMA Kegs";
2015 args.size = ksize;
2016 args.ctor = keg_ctor;
2017 args.dtor = keg_dtor;
2018 args.uminit = zero_init;
2019 args.fini = NULL;
2020 args.keg = masterkeg;
2021 args.align = UMA_BOOT_ALIGN - 1;
2022 args.flags = UMA_ZFLAG_INTERNAL;
2023 zone_ctor(kegs, zsize, &args, M_WAITOK);
2024
2025 bootmem = mem;
2026 boot_pages = npages;
2027
2028 args.name = "UMA Zones";
2029 args.size = zsize;
2030 args.ctor = zone_ctor;
2031 args.dtor = zone_dtor;
2032 args.uminit = zero_init;
2033 args.fini = NULL;
2034 args.keg = NULL;
2035 args.align = UMA_BOOT_ALIGN - 1;
2036 args.flags = UMA_ZFLAG_INTERNAL;
2037 zone_ctor(zones, zsize, &args, M_WAITOK);
2038
2039 /* Now make a zone for slab headers */
2040 slabzone = uma_zcreate("UMA Slabs",
2041 sizeof(struct uma_slab),
2042 NULL, NULL, NULL, NULL,
2043 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
2044
2045 hashzone = uma_zcreate("UMA Hash",
2046 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
2047 NULL, NULL, NULL, NULL,
2048 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
2049
2050 bucket_init();
2051
2052 booted = BOOT_STRAPPED;
2053 }
2054
2055 void
2056 uma_startup1(void)
2057 {
2058
2059 #ifdef DIAGNOSTIC
2060 printf("Entering %s with %d boot pages left\n", __func__, boot_pages);
2061 #endif
2062 booted = BOOT_PAGEALLOC;
2063 }
2064
2065 void
2066 uma_startup2(void)
2067 {
2068
2069 #ifdef DIAGNOSTIC
2070 printf("Entering %s with %d boot pages left\n", __func__, boot_pages);
2071 #endif
2072 booted = BOOT_BUCKETS;
2073 sx_init(&uma_drain_lock, "umadrain");
2074 bucket_enable();
2075 }
2076
2077 /*
2078 * Initialize our callout handle
2079 *
2080 */
2081 static void
2082 uma_startup3(void)
2083 {
2084
2085 #ifdef INVARIANTS
2086 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor);
2087 uma_dbg_cnt = counter_u64_alloc(M_WAITOK);
2088 uma_skip_cnt = counter_u64_alloc(M_WAITOK);
2089 #endif
2090 callout_init(&uma_callout, 1);
2091 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
2092 booted = BOOT_RUNNING;
2093 }
2094
2095 static uma_keg_t
2096 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
2097 int align, uint32_t flags)
2098 {
2099 struct uma_kctor_args args;
2100
2101 args.size = size;
2102 args.uminit = uminit;
2103 args.fini = fini;
2104 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
2105 args.flags = flags;
2106 args.zone = zone;
2107 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK));
2108 }
2109
2110 /* Public functions */
2111 /* See uma.h */
2112 void
2113 uma_set_align(int align)
2114 {
2115
2116 if (align != UMA_ALIGN_CACHE)
2117 uma_align_cache = align;
2118 }
2119
2120 /* See uma.h */
2121 uma_zone_t
2122 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
2123 uma_init uminit, uma_fini fini, int align, uint32_t flags)
2124
2125 {
2126 struct uma_zctor_args args;
2127 uma_zone_t res;
2128 bool locked;
2129
2130 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"",
2131 align, name));
2132
2133 /* This stuff is essential for the zone ctor */
2134 memset(&args, 0, sizeof(args));
2135 args.name = name;
2136 args.size = size;
2137 args.ctor = ctor;
2138 args.dtor = dtor;
2139 args.uminit = uminit;
2140 args.fini = fini;
2141 #ifdef INVARIANTS
2142 /*
2143 * If a zone is being created with an empty constructor and
2144 * destructor, pass UMA constructor/destructor which checks for
2145 * memory use after free.
2146 */
2147 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) &&
2148 ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) {
2149 args.ctor = trash_ctor;
2150 args.dtor = trash_dtor;
2151 args.uminit = trash_init;
2152 args.fini = trash_fini;
2153 }
2154 #endif
2155 args.align = align;
2156 args.flags = flags;
2157 args.keg = NULL;
2158
2159 if (booted < BOOT_BUCKETS) {
2160 locked = false;
2161 } else {
2162 sx_slock(&uma_drain_lock);
2163 locked = true;
2164 }
2165 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
2166 if (locked)
2167 sx_sunlock(&uma_drain_lock);
2168 return (res);
2169 }
2170
2171 /* See uma.h */
2172 uma_zone_t
2173 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
2174 uma_init zinit, uma_fini zfini, uma_zone_t master)
2175 {
2176 struct uma_zctor_args args;
2177 uma_keg_t keg;
2178 uma_zone_t res;
2179 bool locked;
2180
2181 keg = zone_first_keg(master);
2182 memset(&args, 0, sizeof(args));
2183 args.name = name;
2184 args.size = keg->uk_size;
2185 args.ctor = ctor;
2186 args.dtor = dtor;
2187 args.uminit = zinit;
2188 args.fini = zfini;
2189 args.align = keg->uk_align;
2190 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
2191 args.keg = keg;
2192
2193 if (booted < BOOT_BUCKETS) {
2194 locked = false;
2195 } else {
2196 sx_slock(&uma_drain_lock);
2197 locked = true;
2198 }
2199 /* XXX Attaches only one keg of potentially many. */
2200 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
2201 if (locked)
2202 sx_sunlock(&uma_drain_lock);
2203 return (res);
2204 }
2205
2206 /* See uma.h */
2207 uma_zone_t
2208 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor,
2209 uma_init zinit, uma_fini zfini, uma_import zimport,
2210 uma_release zrelease, void *arg, int flags)
2211 {
2212 struct uma_zctor_args args;
2213
2214 memset(&args, 0, sizeof(args));
2215 args.name = name;
2216 args.size = size;
2217 args.ctor = ctor;
2218 args.dtor = dtor;
2219 args.uminit = zinit;
2220 args.fini = zfini;
2221 args.import = zimport;
2222 args.release = zrelease;
2223 args.arg = arg;
2224 args.align = 0;
2225 args.flags = flags;
2226
2227 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK));
2228 }
2229
2230 static void
2231 zone_lock_pair(uma_zone_t a, uma_zone_t b)
2232 {
2233 if (a < b) {
2234 ZONE_LOCK(a);
2235 mtx_lock_flags(b->uz_lockptr, MTX_DUPOK);
2236 } else {
2237 ZONE_LOCK(b);
2238 mtx_lock_flags(a->uz_lockptr, MTX_DUPOK);
2239 }
2240 }
2241
2242 static void
2243 zone_unlock_pair(uma_zone_t a, uma_zone_t b)
2244 {
2245
2246 ZONE_UNLOCK(a);
2247 ZONE_UNLOCK(b);
2248 }
2249
2250 int
2251 uma_zsecond_add(uma_zone_t zone, uma_zone_t master)
2252 {
2253 uma_klink_t klink;
2254 uma_klink_t kl;
2255 int error;
2256
2257 error = 0;
2258 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO);
2259
2260 zone_lock_pair(zone, master);
2261 /*
2262 * zone must use vtoslab() to resolve objects and must already be
2263 * a secondary.
2264 */
2265 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY))
2266 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) {
2267 error = EINVAL;
2268 goto out;
2269 }
2270 /*
2271 * The new master must also use vtoslab().
2272 */
2273 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) {
2274 error = EINVAL;
2275 goto out;
2276 }
2277
2278 /*
2279 * The underlying object must be the same size. rsize
2280 * may be different.
2281 */
2282 if (master->uz_size != zone->uz_size) {
2283 error = E2BIG;
2284 goto out;
2285 }
2286 /*
2287 * Put it at the end of the list.
2288 */
2289 klink->kl_keg = zone_first_keg(master);
2290 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) {
2291 if (LIST_NEXT(kl, kl_link) == NULL) {
2292 LIST_INSERT_AFTER(kl, klink, kl_link);
2293 break;
2294 }
2295 }
2296 klink = NULL;
2297 zone->uz_flags |= UMA_ZFLAG_MULTI;
2298 zone->uz_slab = zone_fetch_slab_multi;
2299
2300 out:
2301 zone_unlock_pair(zone, master);
2302 if (klink != NULL)
2303 free(klink, M_TEMP);
2304
2305 return (error);
2306 }
2307
2308
2309 /* See uma.h */
2310 void
2311 uma_zdestroy(uma_zone_t zone)
2312 {
2313
2314 sx_slock(&uma_drain_lock);
2315 zone_free_item(zones, zone, NULL, SKIP_NONE);
2316 sx_sunlock(&uma_drain_lock);
2317 }
2318
2319 void
2320 uma_zwait(uma_zone_t zone)
2321 {
2322 void *item;
2323
2324 item = uma_zalloc_arg(zone, NULL, M_WAITOK);
2325 uma_zfree(zone, item);
2326 }
2327
2328 void *
2329 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags)
2330 {
2331 void *item;
2332 #ifdef SMP
2333 int i;
2334
2335 MPASS(zone->uz_flags & UMA_ZONE_PCPU);
2336 #endif
2337 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO);
2338 if (item != NULL && (flags & M_ZERO)) {
2339 #ifdef SMP
2340 for (i = 0; i <= mp_maxid; i++)
2341 bzero(zpcpu_get_cpu(item, i), zone->uz_size);
2342 #else
2343 bzero(item, zone->uz_size);
2344 #endif
2345 }
2346 return (item);
2347 }
2348
2349 /*
2350 * A stub while both regular and pcpu cases are identical.
2351 */
2352 void
2353 uma_zfree_pcpu_arg(uma_zone_t zone, void *item, void *udata)
2354 {
2355
2356 #ifdef SMP
2357 MPASS(zone->uz_flags & UMA_ZONE_PCPU);
2358 #endif
2359 uma_zfree_arg(zone, item, udata);
2360 }
2361
2362 /* See uma.h */
2363 void *
2364 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
2365 {
2366 uma_zone_domain_t zdom;
2367 uma_bucket_t bucket;
2368 uma_cache_t cache;
2369 void *item;
2370 int cpu, domain, lockfail;
2371 #ifdef INVARIANTS
2372 bool skipdbg;
2373 #endif
2374
2375 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
2376 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
2377
2378 /* This is the fast path allocation */
2379 CTR4(KTR_UMA, "uma_zalloc_arg thread %x zone %s(%p) flags %d",
2380 curthread, zone->uz_name, zone, flags);
2381
2382 if (flags & M_WAITOK) {
2383 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2384 "uma_zalloc_arg: zone \"%s\"", zone->uz_name);
2385 }
2386 KASSERT((flags & M_EXEC) == 0, ("uma_zalloc_arg: called with M_EXEC"));
2387 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
2388 ("uma_zalloc_arg: called with spinlock or critical section held"));
2389 if (zone->uz_flags & UMA_ZONE_PCPU)
2390 KASSERT((flags & M_ZERO) == 0, ("allocating from a pcpu zone "
2391 "with M_ZERO passed"));
2392
2393 #ifdef DEBUG_MEMGUARD
2394 if (memguard_cmp_zone(zone)) {
2395 item = memguard_alloc(zone->uz_size, flags);
2396 if (item != NULL) {
2397 if (zone->uz_init != NULL &&
2398 zone->uz_init(item, zone->uz_size, flags) != 0)
2399 return (NULL);
2400 if (zone->uz_ctor != NULL &&
2401 zone->uz_ctor(item, zone->uz_size, udata,
2402 flags) != 0) {
2403 zone->uz_fini(item, zone->uz_size);
2404 return (NULL);
2405 }
2406 return (item);
2407 }
2408 /* This is unfortunate but should not be fatal. */
2409 }
2410 #endif
2411 /*
2412 * If possible, allocate from the per-CPU cache. There are two
2413 * requirements for safe access to the per-CPU cache: (1) the thread
2414 * accessing the cache must not be preempted or yield during access,
2415 * and (2) the thread must not migrate CPUs without switching which
2416 * cache it accesses. We rely on a critical section to prevent
2417 * preemption and migration. We release the critical section in
2418 * order to acquire the zone mutex if we are unable to allocate from
2419 * the current cache; when we re-acquire the critical section, we
2420 * must detect and handle migration if it has occurred.
2421 */
2422 zalloc_restart:
2423 critical_enter();
2424 cpu = curcpu;
2425 cache = &zone->uz_cpu[cpu];
2426
2427 zalloc_start:
2428 bucket = cache->uc_allocbucket;
2429 if (bucket != NULL && bucket->ub_cnt > 0) {
2430 bucket->ub_cnt--;
2431 item = bucket->ub_bucket[bucket->ub_cnt];
2432 #ifdef INVARIANTS
2433 bucket->ub_bucket[bucket->ub_cnt] = NULL;
2434 #endif
2435 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
2436 cache->uc_allocs++;
2437 critical_exit();
2438 #ifdef INVARIANTS
2439 skipdbg = uma_dbg_zskip(zone, item);
2440 #endif
2441 if (zone->uz_ctor != NULL &&
2442 #ifdef INVARIANTS
2443 (!skipdbg || zone->uz_ctor != trash_ctor ||
2444 zone->uz_dtor != trash_dtor) &&
2445 #endif
2446 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2447 atomic_add_long(&zone->uz_fails, 1);
2448 zone_free_item(zone, item, udata, SKIP_DTOR);
2449 return (NULL);
2450 }
2451 #ifdef INVARIANTS
2452 if (!skipdbg)
2453 uma_dbg_alloc(zone, NULL, item);
2454 #endif
2455 if (flags & M_ZERO)
2456 uma_zero_item(item, zone);
2457 return (item);
2458 }
2459
2460 /*
2461 * We have run out of items in our alloc bucket.
2462 * See if we can switch with our free bucket.
2463 */
2464 bucket = cache->uc_freebucket;
2465 if (bucket != NULL && bucket->ub_cnt > 0) {
2466 CTR2(KTR_UMA,
2467 "uma_zalloc: zone %s(%p) swapping empty with alloc",
2468 zone->uz_name, zone);
2469 cache->uc_freebucket = cache->uc_allocbucket;
2470 cache->uc_allocbucket = bucket;
2471 goto zalloc_start;
2472 }
2473
2474 /*
2475 * Discard any empty allocation bucket while we hold no locks.
2476 */
2477 bucket = cache->uc_allocbucket;
2478 cache->uc_allocbucket = NULL;
2479 critical_exit();
2480 if (bucket != NULL)
2481 bucket_free(zone, bucket, udata);
2482
2483 if (zone->uz_flags & UMA_ZONE_NUMA) {
2484 domain = PCPU_GET(domain);
2485 if (VM_DOMAIN_EMPTY(domain))
2486 domain = UMA_ANYDOMAIN;
2487 } else
2488 domain = UMA_ANYDOMAIN;
2489
2490 /* Short-circuit for zones without buckets and low memory. */
2491 if (zone->uz_count == 0 || bucketdisable)
2492 goto zalloc_item;
2493
2494 /*
2495 * Attempt to retrieve the item from the per-CPU cache has failed, so
2496 * we must go back to the zone. This requires the zone lock, so we
2497 * must drop the critical section, then re-acquire it when we go back
2498 * to the cache. Since the critical section is released, we may be
2499 * preempted or migrate. As such, make sure not to maintain any
2500 * thread-local state specific to the cache from prior to releasing
2501 * the critical section.
2502 */
2503 lockfail = 0;
2504 if (ZONE_TRYLOCK(zone) == 0) {
2505 /* Record contention to size the buckets. */
2506 ZONE_LOCK(zone);
2507 lockfail = 1;
2508 }
2509 critical_enter();
2510 cpu = curcpu;
2511 cache = &zone->uz_cpu[cpu];
2512
2513 /* See if we lost the race to fill the cache. */
2514 if (cache->uc_allocbucket != NULL) {
2515 ZONE_UNLOCK(zone);
2516 goto zalloc_start;
2517 }
2518
2519 /*
2520 * Check the zone's cache of buckets.
2521 */
2522 if (domain == UMA_ANYDOMAIN)
2523 zdom = &zone->uz_domain[0];
2524 else
2525 zdom = &zone->uz_domain[domain];
2526 if ((bucket = LIST_FIRST(&zdom->uzd_buckets)) != NULL) {
2527 KASSERT(bucket->ub_cnt != 0,
2528 ("uma_zalloc_arg: Returning an empty bucket."));
2529
2530 LIST_REMOVE(bucket, ub_link);
2531 cache->uc_allocbucket = bucket;
2532 ZONE_UNLOCK(zone);
2533 goto zalloc_start;
2534 }
2535 /* We are no longer associated with this CPU. */
2536 critical_exit();
2537
2538 /*
2539 * We bump the uz count when the cache size is insufficient to
2540 * handle the working set.
2541 */
2542 if (lockfail && zone->uz_count < BUCKET_MAX)
2543 zone->uz_count++;
2544 ZONE_UNLOCK(zone);
2545
2546 /*
2547 * Now lets just fill a bucket and put it on the free list. If that
2548 * works we'll restart the allocation from the beginning and it
2549 * will use the just filled bucket.
2550 */
2551 bucket = zone_alloc_bucket(zone, udata, domain, flags);
2552 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p",
2553 zone->uz_name, zone, bucket);
2554 if (bucket != NULL) {
2555 ZONE_LOCK(zone);
2556 critical_enter();
2557 cpu = curcpu;
2558 cache = &zone->uz_cpu[cpu];
2559 /*
2560 * See if we lost the race or were migrated. Cache the
2561 * initialized bucket to make this less likely or claim
2562 * the memory directly.
2563 */
2564 if (cache->uc_allocbucket == NULL &&
2565 ((zone->uz_flags & UMA_ZONE_NUMA) == 0 ||
2566 domain == PCPU_GET(domain))) {
2567 cache->uc_allocbucket = bucket;
2568 } else if ((zone->uz_flags & UMA_ZONE_NOBUCKETCACHE) != 0) {
2569 critical_exit();
2570 ZONE_UNLOCK(zone);
2571 bucket_drain(zone, bucket);
2572 bucket_free(zone, bucket, udata);
2573 goto zalloc_restart;
2574 } else
2575 LIST_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link);
2576 ZONE_UNLOCK(zone);
2577 goto zalloc_start;
2578 }
2579
2580 /*
2581 * We may not be able to get a bucket so return an actual item.
2582 */
2583 zalloc_item:
2584 item = zone_alloc_item(zone, udata, domain, flags);
2585
2586 return (item);
2587 }
2588
2589 void *
2590 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags)
2591 {
2592
2593 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
2594 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
2595
2596 /* This is the fast path allocation */
2597 CTR5(KTR_UMA,
2598 "uma_zalloc_domain thread %x zone %s(%p) domain %d flags %d",
2599 curthread, zone->uz_name, zone, domain, flags);
2600
2601 if (flags & M_WAITOK) {
2602 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2603 "uma_zalloc_domain: zone \"%s\"", zone->uz_name);
2604 }
2605 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
2606 ("uma_zalloc_domain: called with spinlock or critical section held"));
2607
2608 return (zone_alloc_item(zone, udata, domain, flags));
2609 }
2610
2611 /*
2612 * Find a slab with some space. Prefer slabs that are partially used over those
2613 * that are totally full. This helps to reduce fragmentation.
2614 *
2615 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check
2616 * only 'domain'.
2617 */
2618 static uma_slab_t
2619 keg_first_slab(uma_keg_t keg, int domain, bool rr)
2620 {
2621 uma_domain_t dom;
2622 uma_slab_t slab;
2623 int start;
2624
2625 KASSERT(domain >= 0 && domain < vm_ndomains,
2626 ("keg_first_slab: domain %d out of range", domain));
2627
2628 slab = NULL;
2629 start = domain;
2630 do {
2631 dom = &keg->uk_domain[domain];
2632 if (!LIST_EMPTY(&dom->ud_part_slab))
2633 return (LIST_FIRST(&dom->ud_part_slab));
2634 if (!LIST_EMPTY(&dom->ud_free_slab)) {
2635 slab = LIST_FIRST(&dom->ud_free_slab);
2636 LIST_REMOVE(slab, us_link);
2637 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
2638 return (slab);
2639 }
2640 if (rr)
2641 domain = (domain + 1) % vm_ndomains;
2642 } while (domain != start);
2643
2644 return (NULL);
2645 }
2646
2647 static uma_slab_t
2648 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags)
2649 {
2650 uint32_t reserve;
2651
2652 mtx_assert(&keg->uk_lock, MA_OWNED);
2653
2654 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve;
2655 if (keg->uk_free <= reserve)
2656 return (NULL);
2657 return (keg_first_slab(keg, domain, rr));
2658 }
2659
2660 static uma_slab_t
2661 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags)
2662 {
2663 struct vm_domainset_iter di;
2664 uma_domain_t dom;
2665 uma_slab_t slab;
2666 int aflags, domain;
2667 bool rr;
2668
2669 restart:
2670 mtx_assert(&keg->uk_lock, MA_OWNED);
2671
2672 /*
2673 * Use the keg's policy if upper layers haven't already specified a
2674 * domain (as happens with first-touch zones).
2675 *
2676 * To avoid races we run the iterator with the keg lock held, but that
2677 * means that we cannot allow the vm_domainset layer to sleep. Thus,
2678 * clear M_WAITOK and handle low memory conditions locally.
2679 */
2680 rr = rdomain == UMA_ANYDOMAIN;
2681 if (rr) {
2682 aflags = (flags & ~M_WAITOK) | M_NOWAIT;
2683 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain,
2684 &aflags);
2685 } else {
2686 aflags = flags;
2687 domain = rdomain;
2688 }
2689
2690 for (;;) {
2691 slab = keg_fetch_free_slab(keg, domain, rr, flags);
2692 if (slab != NULL) {
2693 MPASS(slab->us_keg == keg);
2694 return (slab);
2695 }
2696
2697 /*
2698 * M_NOVM means don't ask at all!
2699 */
2700 if (flags & M_NOVM)
2701 break;
2702
2703 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) {
2704 keg->uk_flags |= UMA_ZFLAG_FULL;
2705 /*
2706 * If this is not a multi-zone, set the FULL bit.
2707 * Otherwise slab_multi() takes care of it.
2708 */
2709 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) {
2710 zone->uz_flags |= UMA_ZFLAG_FULL;
2711 zone_log_warning(zone);
2712 zone_maxaction(zone);
2713 }
2714 if (flags & M_NOWAIT)
2715 return (NULL);
2716 zone->uz_sleeps++;
2717 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0);
2718 continue;
2719 }
2720 slab = keg_alloc_slab(keg, zone, domain, aflags);
2721 /*
2722 * If we got a slab here it's safe to mark it partially used
2723 * and return. We assume that the caller is going to remove
2724 * at least one item.
2725 */
2726 if (slab) {
2727 MPASS(slab->us_keg == keg);
2728 dom = &keg->uk_domain[slab->us_domain];
2729 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
2730 return (slab);
2731 }
2732 KEG_LOCK(keg);
2733 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) {
2734 if ((flags & M_WAITOK) != 0) {
2735 KEG_UNLOCK(keg);
2736 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask);
2737 KEG_LOCK(keg);
2738 goto restart;
2739 }
2740 break;
2741 }
2742 }
2743
2744 /*
2745 * We might not have been able to get a slab but another cpu
2746 * could have while we were unlocked. Check again before we
2747 * fail.
2748 */
2749 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) {
2750 MPASS(slab->us_keg == keg);
2751 return (slab);
2752 }
2753 return (NULL);
2754 }
2755
2756 static uma_slab_t
2757 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int domain, int flags)
2758 {
2759 uma_slab_t slab;
2760
2761 if (keg == NULL) {
2762 keg = zone_first_keg(zone);
2763 KEG_LOCK(keg);
2764 }
2765
2766 for (;;) {
2767 slab = keg_fetch_slab(keg, zone, domain, flags);
2768 if (slab)
2769 return (slab);
2770 if (flags & (M_NOWAIT | M_NOVM))
2771 break;
2772 }
2773 KEG_UNLOCK(keg);
2774 return (NULL);
2775 }
2776
2777 /*
2778 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns
2779 * with the keg locked. On NULL no lock is held.
2780 *
2781 * The last pointer is used to seed the search. It is not required.
2782 */
2783 static uma_slab_t
2784 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int domain, int rflags)
2785 {
2786 uma_klink_t klink;
2787 uma_slab_t slab;
2788 uma_keg_t keg;
2789 int flags;
2790 int empty;
2791 int full;
2792
2793 /*
2794 * Don't wait on the first pass. This will skip limit tests
2795 * as well. We don't want to block if we can find a provider
2796 * without blocking.
2797 */
2798 flags = (rflags & ~M_WAITOK) | M_NOWAIT;
2799 /*
2800 * Use the last slab allocated as a hint for where to start
2801 * the search.
2802 */
2803 if (last != NULL) {
2804 slab = keg_fetch_slab(last, zone, domain, flags);
2805 if (slab)
2806 return (slab);
2807 KEG_UNLOCK(last);
2808 }
2809 /*
2810 * Loop until we have a slab incase of transient failures
2811 * while M_WAITOK is specified. I'm not sure this is 100%
2812 * required but we've done it for so long now.
2813 */
2814 for (;;) {
2815 empty = 0;
2816 full = 0;
2817 /*
2818 * Search the available kegs for slabs. Be careful to hold the
2819 * correct lock while calling into the keg layer.
2820 */
2821 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) {
2822 keg = klink->kl_keg;
2823 KEG_LOCK(keg);
2824 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) {
2825 slab = keg_fetch_slab(keg, zone, domain, flags);
2826 if (slab)
2827 return (slab);
2828 }
2829 if (keg->uk_flags & UMA_ZFLAG_FULL)
2830 full++;
2831 else
2832 empty++;
2833 KEG_UNLOCK(keg);
2834 }
2835 if (rflags & (M_NOWAIT | M_NOVM))
2836 break;
2837 flags = rflags;
2838 /*
2839 * All kegs are full. XXX We can't atomically check all kegs
2840 * and sleep so just sleep for a short period and retry.
2841 */
2842 if (full && !empty) {
2843 ZONE_LOCK(zone);
2844 zone->uz_flags |= UMA_ZFLAG_FULL;
2845 zone->uz_sleeps++;
2846 zone_log_warning(zone);
2847 zone_maxaction(zone);
2848 msleep(zone, zone->uz_lockptr, PVM,
2849 "zonelimit", hz/100);
2850 zone->uz_flags &= ~UMA_ZFLAG_FULL;
2851 ZONE_UNLOCK(zone);
2852 continue;
2853 }
2854 }
2855 return (NULL);
2856 }
2857
2858 static void *
2859 slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
2860 {
2861 uma_domain_t dom;
2862 void *item;
2863 uint8_t freei;
2864
2865 MPASS(keg == slab->us_keg);
2866 mtx_assert(&keg->uk_lock, MA_OWNED);
2867
2868 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1;
2869 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free);
2870 item = slab->us_data + (keg->uk_rsize * freei);
2871 slab->us_freecount--;
2872 keg->uk_free--;
2873
2874 /* Move this slab to the full list */
2875 if (slab->us_freecount == 0) {
2876 LIST_REMOVE(slab, us_link);
2877 dom = &keg->uk_domain[slab->us_domain];
2878 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link);
2879 }
2880
2881 return (item);
2882 }
2883
2884 static int
2885 zone_import(uma_zone_t zone, void **bucket, int max, int domain, int flags)
2886 {
2887 uma_slab_t slab;
2888 uma_keg_t keg;
2889 #ifdef NUMA
2890 int stripe;
2891 #endif
2892 int i;
2893
2894 slab = NULL;
2895 keg = NULL;
2896 /* Try to keep the buckets totally full */
2897 for (i = 0; i < max; ) {
2898 if ((slab = zone->uz_slab(zone, keg, domain, flags)) == NULL)
2899 break;
2900 keg = slab->us_keg;
2901 #ifdef NUMA
2902 stripe = howmany(max, vm_ndomains);
2903 #endif
2904 while (slab->us_freecount && i < max) {
2905 bucket[i++] = slab_alloc_item(keg, slab);
2906 if (keg->uk_free <= keg->uk_reserve)
2907 break;
2908 #ifdef NUMA
2909 /*
2910 * If the zone is striped we pick a new slab for every
2911 * N allocations. Eliminating this conditional will
2912 * instead pick a new domain for each bucket rather
2913 * than stripe within each bucket. The current option
2914 * produces more fragmentation and requires more cpu
2915 * time but yields better distribution.
2916 */
2917 if ((zone->uz_flags & UMA_ZONE_NUMA) == 0 &&
2918 vm_ndomains > 1 && --stripe == 0)
2919 break;
2920 #endif
2921 }
2922 /* Don't block if we allocated any successfully. */
2923 flags &= ~M_WAITOK;
2924 flags |= M_NOWAIT;
2925 }
2926 if (slab != NULL)
2927 KEG_UNLOCK(keg);
2928
2929 return i;
2930 }
2931
2932 static uma_bucket_t
2933 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags)
2934 {
2935 uma_bucket_t bucket;
2936 int max;
2937
2938 CTR1(KTR_UMA, "zone_alloc:_bucket domain %d)", domain);
2939
2940 /* Don't wait for buckets, preserve caller's NOVM setting. */
2941 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
2942 if (bucket == NULL)
2943 return (NULL);
2944
2945 max = MIN(bucket->ub_entries, zone->uz_count);
2946 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
2947 max, domain, flags);
2948
2949 /*
2950 * Initialize the memory if necessary.
2951 */
2952 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
2953 int i;
2954
2955 for (i = 0; i < bucket->ub_cnt; i++)
2956 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
2957 flags) != 0)
2958 break;
2959 /*
2960 * If we couldn't initialize the whole bucket, put the
2961 * rest back onto the freelist.
2962 */
2963 if (i != bucket->ub_cnt) {
2964 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
2965 bucket->ub_cnt - i);
2966 #ifdef INVARIANTS
2967 bzero(&bucket->ub_bucket[i],
2968 sizeof(void *) * (bucket->ub_cnt - i));
2969 #endif
2970 bucket->ub_cnt = i;
2971 }
2972 }
2973
2974 if (bucket->ub_cnt == 0) {
2975 bucket_free(zone, bucket, udata);
2976 atomic_add_long(&zone->uz_fails, 1);
2977 return (NULL);
2978 }
2979
2980 return (bucket);
2981 }
2982
2983 /*
2984 * Allocates a single item from a zone.
2985 *
2986 * Arguments
2987 * zone The zone to alloc for.
2988 * udata The data to be passed to the constructor.
2989 * domain The domain to allocate from or UMA_ANYDOMAIN.
2990 * flags M_WAITOK, M_NOWAIT, M_ZERO.
2991 *
2992 * Returns
2993 * NULL if there is no memory and M_NOWAIT is set
2994 * An item if successful
2995 */
2996
2997 static void *
2998 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags)
2999 {
3000 void *item;
3001 #ifdef INVARIANTS
3002 bool skipdbg;
3003 #endif
3004
3005 item = NULL;
3006
3007 if (domain != UMA_ANYDOMAIN) {
3008 /* avoid allocs targeting empty domains */
3009 if (VM_DOMAIN_EMPTY(domain))
3010 domain = UMA_ANYDOMAIN;
3011 }
3012 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1)
3013 goto fail;
3014 atomic_add_long(&zone->uz_allocs, 1);
3015
3016 #ifdef INVARIANTS
3017 skipdbg = uma_dbg_zskip(zone, item);
3018 #endif
3019 /*
3020 * We have to call both the zone's init (not the keg's init)
3021 * and the zone's ctor. This is because the item is going from
3022 * a keg slab directly to the user, and the user is expecting it
3023 * to be both zone-init'd as well as zone-ctor'd.
3024 */
3025 if (zone->uz_init != NULL) {
3026 if (zone->uz_init(item, zone->uz_size, flags) != 0) {
3027 zone_free_item(zone, item, udata, SKIP_FINI);
3028 goto fail;
3029 }
3030 }
3031 if (zone->uz_ctor != NULL &&
3032 #ifdef INVARIANTS
3033 (!skipdbg || zone->uz_ctor != trash_ctor ||
3034 zone->uz_dtor != trash_dtor) &&
3035 #endif
3036 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
3037 zone_free_item(zone, item, udata, SKIP_DTOR);
3038 goto fail;
3039 }
3040 #ifdef INVARIANTS
3041 if (!skipdbg)
3042 uma_dbg_alloc(zone, NULL, item);
3043 #endif
3044 if (flags & M_ZERO)
3045 uma_zero_item(item, zone);
3046
3047 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item,
3048 zone->uz_name, zone);
3049
3050 return (item);
3051
3052 fail:
3053 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)",
3054 zone->uz_name, zone);
3055 atomic_add_long(&zone->uz_fails, 1);
3056 return (NULL);
3057 }
3058
3059 /* See uma.h */
3060 void
3061 uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
3062 {
3063 uma_cache_t cache;
3064 uma_bucket_t bucket;
3065 uma_zone_domain_t zdom;
3066 int cpu, domain, lockfail;
3067 #ifdef INVARIANTS
3068 bool skipdbg;
3069 #endif
3070
3071 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
3072 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
3073
3074 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread,
3075 zone->uz_name);
3076
3077 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3078 ("uma_zfree_arg: called with spinlock or critical section held"));
3079
3080 /* uma_zfree(..., NULL) does nothing, to match free(9). */
3081 if (item == NULL)
3082 return;
3083 #ifdef DEBUG_MEMGUARD
3084 if (is_memguard_addr(item)) {
3085 if (zone->uz_dtor != NULL)
3086 zone->uz_dtor(item, zone->uz_size, udata);
3087 if (zone->uz_fini != NULL)
3088 zone->uz_fini(item, zone->uz_size);
3089 memguard_free(item);
3090 return;
3091 }
3092 #endif
3093 #ifdef INVARIANTS
3094 skipdbg = uma_dbg_zskip(zone, item);
3095 if (skipdbg == false) {
3096 if (zone->uz_flags & UMA_ZONE_MALLOC)
3097 uma_dbg_free(zone, udata, item);
3098 else
3099 uma_dbg_free(zone, NULL, item);
3100 }
3101 if (zone->uz_dtor != NULL && (!skipdbg ||
3102 zone->uz_dtor != trash_dtor || zone->uz_ctor != trash_ctor))
3103 #else
3104 if (zone->uz_dtor != NULL)
3105 #endif
3106 zone->uz_dtor(item, zone->uz_size, udata);
3107
3108 /*
3109 * The race here is acceptable. If we miss it we'll just have to wait
3110 * a little longer for the limits to be reset.
3111 */
3112 if (zone->uz_flags & UMA_ZFLAG_FULL)
3113 goto zfree_item;
3114
3115 /*
3116 * If possible, free to the per-CPU cache. There are two
3117 * requirements for safe access to the per-CPU cache: (1) the thread
3118 * accessing the cache must not be preempted or yield during access,
3119 * and (2) the thread must not migrate CPUs without switching which
3120 * cache it accesses. We rely on a critical section to prevent
3121 * preemption and migration. We release the critical section in
3122 * order to acquire the zone mutex if we are unable to free to the
3123 * current cache; when we re-acquire the critical section, we must
3124 * detect and handle migration if it has occurred.
3125 */
3126 zfree_restart:
3127 critical_enter();
3128 cpu = curcpu;
3129 cache = &zone->uz_cpu[cpu];
3130
3131 zfree_start:
3132 /*
3133 * Try to free into the allocbucket first to give LIFO ordering
3134 * for cache-hot datastructures. Spill over into the freebucket
3135 * if necessary. Alloc will swap them if one runs dry.
3136 */
3137 bucket = cache->uc_allocbucket;
3138 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries)
3139 bucket = cache->uc_freebucket;
3140 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
3141 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL,
3142 ("uma_zfree: Freeing to non free bucket index."));
3143 bucket->ub_bucket[bucket->ub_cnt] = item;
3144 bucket->ub_cnt++;
3145 cache->uc_frees++;
3146 critical_exit();
3147 return;
3148 }
3149
3150 /*
3151 * We must go back the zone, which requires acquiring the zone lock,
3152 * which in turn means we must release and re-acquire the critical
3153 * section. Since the critical section is released, we may be
3154 * preempted or migrate. As such, make sure not to maintain any
3155 * thread-local state specific to the cache from prior to releasing
3156 * the critical section.
3157 */
3158 critical_exit();
3159 if (zone->uz_count == 0 || bucketdisable)
3160 goto zfree_item;
3161
3162 lockfail = 0;
3163 if (ZONE_TRYLOCK(zone) == 0) {
3164 /* Record contention to size the buckets. */
3165 ZONE_LOCK(zone);
3166 lockfail = 1;
3167 }
3168 critical_enter();
3169 cpu = curcpu;
3170 cache = &zone->uz_cpu[cpu];
3171
3172 bucket = cache->uc_freebucket;
3173 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
3174 ZONE_UNLOCK(zone);
3175 goto zfree_start;
3176 }
3177 cache->uc_freebucket = NULL;
3178 /* We are no longer associated with this CPU. */
3179 critical_exit();
3180
3181 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) {
3182 domain = PCPU_GET(domain);
3183 if (VM_DOMAIN_EMPTY(domain))
3184 domain = UMA_ANYDOMAIN;
3185 } else
3186 domain = 0;
3187 zdom = &zone->uz_domain[0];
3188
3189 /* Can we throw this on the zone full list? */
3190 if (bucket != NULL) {
3191 CTR3(KTR_UMA,
3192 "uma_zfree: zone %s(%p) putting bucket %p on free list",
3193 zone->uz_name, zone, bucket);
3194 /* ub_cnt is pointing to the last free item */
3195 KASSERT(bucket->ub_cnt != 0,
3196 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
3197 if ((zone->uz_flags & UMA_ZONE_NOBUCKETCACHE) != 0) {
3198 ZONE_UNLOCK(zone);
3199 bucket_drain(zone, bucket);
3200 bucket_free(zone, bucket, udata);
3201 goto zfree_restart;
3202 } else
3203 LIST_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link);
3204 }
3205
3206 /*
3207 * We bump the uz count when the cache size is insufficient to
3208 * handle the working set.
3209 */
3210 if (lockfail && zone->uz_count < BUCKET_MAX)
3211 zone->uz_count++;
3212 ZONE_UNLOCK(zone);
3213
3214 bucket = bucket_alloc(zone, udata, M_NOWAIT);
3215 CTR3(KTR_UMA, "uma_zfree: zone %s(%p) allocated bucket %p",
3216 zone->uz_name, zone, bucket);
3217 if (bucket) {
3218 critical_enter();
3219 cpu = curcpu;
3220 cache = &zone->uz_cpu[cpu];
3221 if (cache->uc_freebucket == NULL &&
3222 ((zone->uz_flags & UMA_ZONE_NUMA) == 0 ||
3223 domain == PCPU_GET(domain))) {
3224 cache->uc_freebucket = bucket;
3225 goto zfree_start;
3226 }
3227 /*
3228 * We lost the race, start over. We have to drop our
3229 * critical section to free the bucket.
3230 */
3231 critical_exit();
3232 bucket_free(zone, bucket, udata);
3233 goto zfree_restart;
3234 }
3235
3236 /*
3237 * If nothing else caught this, we'll just do an internal free.
3238 */
3239 zfree_item:
3240 zone_free_item(zone, item, udata, SKIP_DTOR);
3241
3242 return;
3243 }
3244
3245 void
3246 uma_zfree_domain(uma_zone_t zone, void *item, void *udata)
3247 {
3248
3249 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
3250 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
3251
3252 CTR2(KTR_UMA, "uma_zfree_domain thread %x zone %s", curthread,
3253 zone->uz_name);
3254
3255 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3256 ("uma_zfree_domain: called with spinlock or critical section held"));
3257
3258 /* uma_zfree(..., NULL) does nothing, to match free(9). */
3259 if (item == NULL)
3260 return;
3261 zone_free_item(zone, item, udata, SKIP_NONE);
3262 }
3263
3264 static void
3265 slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item)
3266 {
3267 uma_domain_t dom;
3268 uint8_t freei;
3269
3270 mtx_assert(&keg->uk_lock, MA_OWNED);
3271 MPASS(keg == slab->us_keg);
3272
3273 dom = &keg->uk_domain[slab->us_domain];
3274
3275 /* Do we need to remove from any lists? */
3276 if (slab->us_freecount+1 == keg->uk_ipers) {
3277 LIST_REMOVE(slab, us_link);
3278 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link);
3279 } else if (slab->us_freecount == 0) {
3280 LIST_REMOVE(slab, us_link);
3281 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
3282 }
3283
3284 /* Slab management. */
3285 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
3286 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free);
3287 slab->us_freecount++;
3288
3289 /* Keg statistics. */
3290 keg->uk_free++;
3291 }
3292
3293 static void
3294 zone_release(uma_zone_t zone, void **bucket, int cnt)
3295 {
3296 void *item;
3297 uma_slab_t slab;
3298 uma_keg_t keg;
3299 uint8_t *mem;
3300 int clearfull;
3301 int i;
3302
3303 clearfull = 0;
3304 keg = zone_first_keg(zone);
3305 KEG_LOCK(keg);
3306 for (i = 0; i < cnt; i++) {
3307 item = bucket[i];
3308 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) {
3309 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
3310 if (zone->uz_flags & UMA_ZONE_HASH) {
3311 slab = hash_sfind(&keg->uk_hash, mem);
3312 } else {
3313 mem += keg->uk_pgoff;
3314 slab = (uma_slab_t)mem;
3315 }
3316 } else {
3317 slab = vtoslab((vm_offset_t)item);
3318 if (slab->us_keg != keg) {
3319 KEG_UNLOCK(keg);
3320 keg = slab->us_keg;
3321 KEG_LOCK(keg);
3322 }
3323 }
3324 slab_free_item(keg, slab, item);
3325 if (keg->uk_flags & UMA_ZFLAG_FULL) {
3326 if (keg->uk_pages < keg->uk_maxpages) {
3327 keg->uk_flags &= ~UMA_ZFLAG_FULL;
3328 clearfull = 1;
3329 }
3330
3331 /*
3332 * We can handle one more allocation. Since we're
3333 * clearing ZFLAG_FULL, wake up all procs blocked
3334 * on pages. This should be uncommon, so keeping this
3335 * simple for now (rather than adding count of blocked
3336 * threads etc).
3337 */
3338 wakeup(keg);
3339 }
3340 }
3341 KEG_UNLOCK(keg);
3342 if (clearfull) {
3343 ZONE_LOCK(zone);
3344 zone->uz_flags &= ~UMA_ZFLAG_FULL;
3345 wakeup(zone);
3346 ZONE_UNLOCK(zone);
3347 }
3348
3349 }
3350
3351 /*
3352 * Frees a single item to any zone.
3353 *
3354 * Arguments:
3355 * zone The zone to free to
3356 * item The item we're freeing
3357 * udata User supplied data for the dtor
3358 * skip Skip dtors and finis
3359 */
3360 static void
3361 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
3362 {
3363 #ifdef INVARIANTS
3364 bool skipdbg;
3365
3366 skipdbg = uma_dbg_zskip(zone, item);
3367 if (skip == SKIP_NONE && !skipdbg) {
3368 if (zone->uz_flags & UMA_ZONE_MALLOC)
3369 uma_dbg_free(zone, udata, item);
3370 else
3371 uma_dbg_free(zone, NULL, item);
3372 }
3373
3374 if (skip < SKIP_DTOR && zone->uz_dtor != NULL &&
3375 (!skipdbg || zone->uz_dtor != trash_dtor ||
3376 zone->uz_ctor != trash_ctor))
3377 #else
3378 if (skip < SKIP_DTOR && zone->uz_dtor != NULL)
3379 #endif
3380 zone->uz_dtor(item, zone->uz_size, udata);
3381
3382 if (skip < SKIP_FINI && zone->uz_fini)
3383 zone->uz_fini(item, zone->uz_size);
3384
3385 atomic_add_long(&zone->uz_frees, 1);
3386 zone->uz_release(zone->uz_arg, &item, 1);
3387 }
3388
3389 /* See uma.h */
3390 int
3391 uma_zone_set_max(uma_zone_t zone, int nitems)
3392 {
3393 uma_keg_t keg;
3394
3395 keg = zone_first_keg(zone);
3396 if (keg == NULL)
3397 return (0);
3398 KEG_LOCK(keg);
3399 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera;
3400 if (keg->uk_maxpages * keg->uk_ipers < nitems)
3401 keg->uk_maxpages += keg->uk_ppera;
3402 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers;
3403 KEG_UNLOCK(keg);
3404
3405 return (nitems);
3406 }
3407
3408 /* See uma.h */
3409 int
3410 uma_zone_get_max(uma_zone_t zone)
3411 {
3412 int nitems;
3413 uma_keg_t keg;
3414
3415 keg = zone_first_keg(zone);
3416 if (keg == NULL)
3417 return (0);
3418 KEG_LOCK(keg);
3419 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers;
3420 KEG_UNLOCK(keg);
3421
3422 return (nitems);
3423 }
3424
3425 /* See uma.h */
3426 void
3427 uma_zone_set_warning(uma_zone_t zone, const char *warning)
3428 {
3429
3430 ZONE_LOCK(zone);
3431 zone->uz_warning = warning;
3432 ZONE_UNLOCK(zone);
3433 }
3434
3435 /* See uma.h */
3436 void
3437 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction)
3438 {
3439
3440 ZONE_LOCK(zone);
3441 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone);
3442 ZONE_UNLOCK(zone);
3443 }
3444
3445 /* See uma.h */
3446 int
3447 uma_zone_get_cur(uma_zone_t zone)
3448 {
3449 int64_t nitems;
3450 u_int i;
3451
3452 ZONE_LOCK(zone);
3453 nitems = zone->uz_allocs - zone->uz_frees;
3454 CPU_FOREACH(i) {
3455 /*
3456 * See the comment in sysctl_vm_zone_stats() regarding the
3457 * safety of accessing the per-cpu caches. With the zone lock
3458 * held, it is safe, but can potentially result in stale data.
3459 */
3460 nitems += zone->uz_cpu[i].uc_allocs -
3461 zone->uz_cpu[i].uc_frees;
3462 }
3463 ZONE_UNLOCK(zone);
3464
3465 return (nitems < 0 ? 0 : nitems);
3466 }
3467
3468 /* See uma.h */
3469 void
3470 uma_zone_set_init(uma_zone_t zone, uma_init uminit)
3471 {
3472 uma_keg_t keg;
3473
3474 keg = zone_first_keg(zone);
3475 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type"));
3476 KEG_LOCK(keg);
3477 KASSERT(keg->uk_pages == 0,
3478 ("uma_zone_set_init on non-empty keg"));
3479 keg->uk_init = uminit;
3480 KEG_UNLOCK(keg);
3481 }
3482
3483 /* See uma.h */
3484 void
3485 uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
3486 {
3487 uma_keg_t keg;
3488
3489 keg = zone_first_keg(zone);
3490 KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type"));
3491 KEG_LOCK(keg);
3492 KASSERT(keg->uk_pages == 0,
3493 ("uma_zone_set_fini on non-empty keg"));
3494 keg->uk_fini = fini;
3495 KEG_UNLOCK(keg);
3496 }
3497
3498 /* See uma.h */
3499 void
3500 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
3501 {
3502
3503 ZONE_LOCK(zone);
3504 KASSERT(zone_first_keg(zone)->uk_pages == 0,
3505 ("uma_zone_set_zinit on non-empty keg"));
3506 zone->uz_init = zinit;
3507 ZONE_UNLOCK(zone);
3508 }
3509
3510 /* See uma.h */
3511 void
3512 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
3513 {
3514
3515 ZONE_LOCK(zone);
3516 KASSERT(zone_first_keg(zone)->uk_pages == 0,
3517 ("uma_zone_set_zfini on non-empty keg"));
3518 zone->uz_fini = zfini;
3519 ZONE_UNLOCK(zone);
3520 }
3521
3522 /* See uma.h */
3523 /* XXX uk_freef is not actually used with the zone locked */
3524 void
3525 uma_zone_set_freef(uma_zone_t zone, uma_free freef)
3526 {
3527 uma_keg_t keg;
3528
3529 keg = zone_first_keg(zone);
3530 KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type"));
3531 KEG_LOCK(keg);
3532 keg->uk_freef = freef;
3533 KEG_UNLOCK(keg);
3534 }
3535
3536 /* See uma.h */
3537 /* XXX uk_allocf is not actually used with the zone locked */
3538 void
3539 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
3540 {
3541 uma_keg_t keg;
3542
3543 keg = zone_first_keg(zone);
3544 KEG_LOCK(keg);
3545 keg->uk_allocf = allocf;
3546 KEG_UNLOCK(keg);
3547 }
3548
3549 /* See uma.h */
3550 void
3551 uma_zone_reserve(uma_zone_t zone, int items)
3552 {
3553 uma_keg_t keg;
3554
3555 keg = zone_first_keg(zone);
3556 if (keg == NULL)
3557 return;
3558 KEG_LOCK(keg);
3559 keg->uk_reserve = items;
3560 KEG_UNLOCK(keg);
3561
3562 return;
3563 }
3564
3565 /* See uma.h */
3566 int
3567 uma_zone_reserve_kva(uma_zone_t zone, int count)
3568 {
3569 uma_keg_t keg;
3570 vm_offset_t kva;
3571 u_int pages;
3572
3573 keg = zone_first_keg(zone);
3574 if (keg == NULL)
3575 return (0);
3576 pages = count / keg->uk_ipers;
3577
3578 if (pages * keg->uk_ipers < count)
3579 pages++;
3580 pages *= keg->uk_ppera;
3581
3582 #ifdef UMA_MD_SMALL_ALLOC
3583 if (keg->uk_ppera > 1) {
3584 #else
3585 if (1) {
3586 #endif
3587 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE);
3588 if (kva == 0)
3589 return (0);
3590 } else
3591 kva = 0;
3592 KEG_LOCK(keg);
3593 keg->uk_kva = kva;
3594 keg->uk_offset = 0;
3595 keg->uk_maxpages = pages;
3596 #ifdef UMA_MD_SMALL_ALLOC
3597 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
3598 #else
3599 keg->uk_allocf = noobj_alloc;
3600 #endif
3601 keg->uk_flags |= UMA_ZONE_NOFREE;
3602 KEG_UNLOCK(keg);
3603
3604 return (1);
3605 }
3606
3607 /* See uma.h */
3608 void
3609 uma_prealloc(uma_zone_t zone, int items)
3610 {
3611 struct vm_domainset_iter di;
3612 uma_domain_t dom;
3613 uma_slab_t slab;
3614 uma_keg_t keg;
3615 int domain, flags, slabs;
3616
3617 keg = zone_first_keg(zone);
3618 if (keg == NULL)
3619 return;
3620 KEG_LOCK(keg);
3621 slabs = items / keg->uk_ipers;
3622 if (slabs * keg->uk_ipers < items)
3623 slabs++;
3624 flags = M_WAITOK;
3625 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, &flags);
3626 while (slabs-- > 0) {
3627 slab = keg_alloc_slab(keg, zone, domain, flags);
3628 if (slab == NULL)
3629 return;
3630 MPASS(slab->us_keg == keg);
3631 dom = &keg->uk_domain[slab->us_domain];
3632 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link);
3633 if (vm_domainset_iter_policy(&di, &domain) != 0)
3634 break;
3635 }
3636 KEG_UNLOCK(keg);
3637 }
3638
3639 /* See uma.h */
3640 static void
3641 uma_reclaim_locked(bool kmem_danger)
3642 {
3643
3644 CTR0(KTR_UMA, "UMA: vm asked us to release pages!");
3645 sx_assert(&uma_drain_lock, SA_XLOCKED);
3646 bucket_enable();
3647 zone_foreach(zone_drain);
3648 if (vm_page_count_min() || kmem_danger) {
3649 cache_drain_safe(NULL);
3650 zone_foreach(zone_drain);
3651 }
3652 /*
3653 * Some slabs may have been freed but this zone will be visited early
3654 * we visit again so that we can free pages that are empty once other
3655 * zones are drained. We have to do the same for buckets.
3656 */
3657 zone_drain(slabzone);
3658 bucket_zone_drain();
3659 }
3660
3661 void
3662 uma_reclaim(void)
3663 {
3664
3665 sx_xlock(&uma_drain_lock);
3666 uma_reclaim_locked(false);
3667 sx_xunlock(&uma_drain_lock);
3668 }
3669
3670 static volatile int uma_reclaim_needed;
3671
3672 void
3673 uma_reclaim_wakeup(void)
3674 {
3675
3676 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0)
3677 wakeup(uma_reclaim);
3678 }
3679
3680 void
3681 uma_reclaim_worker(void *arg __unused)
3682 {
3683
3684 for (;;) {
3685 sx_xlock(&uma_drain_lock);
3686 while (atomic_load_int(&uma_reclaim_needed) == 0)
3687 sx_sleep(uma_reclaim, &uma_drain_lock, PVM, "umarcl",
3688 hz);
3689 sx_xunlock(&uma_drain_lock);
3690 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM);
3691 sx_xlock(&uma_drain_lock);
3692 uma_reclaim_locked(true);
3693 atomic_store_int(&uma_reclaim_needed, 0);
3694 sx_xunlock(&uma_drain_lock);
3695 /* Don't fire more than once per-second. */
3696 pause("umarclslp", hz);
3697 }
3698 }
3699
3700 /* See uma.h */
3701 int
3702 uma_zone_exhausted(uma_zone_t zone)
3703 {
3704 int full;
3705
3706 ZONE_LOCK(zone);
3707 full = (zone->uz_flags & UMA_ZFLAG_FULL);
3708 ZONE_UNLOCK(zone);
3709 return (full);
3710 }
3711
3712 int
3713 uma_zone_exhausted_nolock(uma_zone_t zone)
3714 {
3715 return (zone->uz_flags & UMA_ZFLAG_FULL);
3716 }
3717
3718 void *
3719 uma_large_malloc_domain(vm_size_t size, int domain, int wait)
3720 {
3721 struct domainset *policy;
3722 vm_offset_t addr;
3723 uma_slab_t slab;
3724
3725 if (domain != UMA_ANYDOMAIN) {
3726 /* avoid allocs targeting empty domains */
3727 if (VM_DOMAIN_EMPTY(domain))
3728 domain = UMA_ANYDOMAIN;
3729 }
3730 slab = zone_alloc_item(slabzone, NULL, domain, wait);
3731 if (slab == NULL)
3732 return (NULL);
3733 policy = (domain == UMA_ANYDOMAIN) ? DOMAINSET_RR() :
3734 DOMAINSET_FIXED(domain);
3735 addr = kmem_malloc_domainset(policy, size, wait);
3736 if (addr != 0) {
3737 vsetslab(addr, slab);
3738 slab->us_data = (void *)addr;
3739 slab->us_flags = UMA_SLAB_KERNEL | UMA_SLAB_MALLOC;
3740 slab->us_size = size;
3741 slab->us_domain = vm_phys_domain(PHYS_TO_VM_PAGE(
3742 pmap_kextract(addr)));
3743 uma_total_inc(size);
3744 } else {
3745 zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3746 }
3747
3748 return ((void *)addr);
3749 }
3750
3751 void *
3752 uma_large_malloc(vm_size_t size, int wait)
3753 {
3754
3755 return uma_large_malloc_domain(size, UMA_ANYDOMAIN, wait);
3756 }
3757
3758 void
3759 uma_large_free(uma_slab_t slab)
3760 {
3761
3762 KASSERT((slab->us_flags & UMA_SLAB_KERNEL) != 0,
3763 ("uma_large_free: Memory not allocated with uma_large_malloc."));
3764 kmem_free((vm_offset_t)slab->us_data, slab->us_size);
3765 uma_total_dec(slab->us_size);
3766 zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3767 }
3768
3769 static void
3770 uma_zero_item(void *item, uma_zone_t zone)
3771 {
3772
3773 bzero(item, zone->uz_size);
3774 }
3775
3776 unsigned long
3777 uma_limit(void)
3778 {
3779
3780 return (uma_kmem_limit);
3781 }
3782
3783 void
3784 uma_set_limit(unsigned long limit)
3785 {
3786
3787 uma_kmem_limit = limit;
3788 }
3789
3790 unsigned long
3791 uma_size(void)
3792 {
3793
3794 return (uma_kmem_total);
3795 }
3796
3797 long
3798 uma_avail(void)
3799 {
3800
3801 return (uma_kmem_limit - uma_kmem_total);
3802 }
3803
3804 void
3805 uma_print_stats(void)
3806 {
3807 zone_foreach(uma_print_zone);
3808 }
3809
3810 static void
3811 slab_print(uma_slab_t slab)
3812 {
3813 printf("slab: keg %p, data %p, freecount %d\n",
3814 slab->us_keg, slab->us_data, slab->us_freecount);
3815 }
3816
3817 static void
3818 cache_print(uma_cache_t cache)
3819 {
3820 printf("alloc: %p(%d), free: %p(%d)\n",
3821 cache->uc_allocbucket,
3822 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0,
3823 cache->uc_freebucket,
3824 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0);
3825 }
3826
3827 static void
3828 uma_print_keg(uma_keg_t keg)
3829 {
3830 uma_domain_t dom;
3831 uma_slab_t slab;
3832 int i;
3833
3834 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d "
3835 "out %d free %d limit %d\n",
3836 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags,
3837 keg->uk_ipers, keg->uk_ppera,
3838 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free,
3839 keg->uk_free, (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers);
3840 for (i = 0; i < vm_ndomains; i++) {
3841 dom = &keg->uk_domain[i];
3842 printf("Part slabs:\n");
3843 LIST_FOREACH(slab, &dom->ud_part_slab, us_link)
3844 slab_print(slab);
3845 printf("Free slabs:\n");
3846 LIST_FOREACH(slab, &dom->ud_free_slab, us_link)
3847 slab_print(slab);
3848 printf("Full slabs:\n");
3849 LIST_FOREACH(slab, &dom->ud_full_slab, us_link)
3850 slab_print(slab);
3851 }
3852 }
3853
3854 void
3855 uma_print_zone(uma_zone_t zone)
3856 {
3857 uma_cache_t cache;
3858 uma_klink_t kl;
3859 int i;
3860
3861 printf("zone: %s(%p) size %d flags %#x\n",
3862 zone->uz_name, zone, zone->uz_size, zone->uz_flags);
3863 LIST_FOREACH(kl, &zone->uz_kegs, kl_link)
3864 uma_print_keg(kl->kl_keg);
3865 CPU_FOREACH(i) {
3866 cache = &zone->uz_cpu[i];
3867 printf("CPU %d Cache:\n", i);
3868 cache_print(cache);
3869 }
3870 }
3871
3872 #ifdef DDB
3873 /*
3874 * Generate statistics across both the zone and its per-cpu cache's. Return
3875 * desired statistics if the pointer is non-NULL for that statistic.
3876 *
3877 * Note: does not update the zone statistics, as it can't safely clear the
3878 * per-CPU cache statistic.
3879 *
3880 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't
3881 * safe from off-CPU; we should modify the caches to track this information
3882 * directly so that we don't have to.
3883 */
3884 static void
3885 uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp,
3886 uint64_t *freesp, uint64_t *sleepsp)
3887 {
3888 uma_cache_t cache;
3889 uint64_t allocs, frees, sleeps;
3890 int cachefree, cpu;
3891
3892 allocs = frees = sleeps = 0;
3893 cachefree = 0;
3894 CPU_FOREACH(cpu) {
3895 cache = &z->uz_cpu[cpu];
3896 if (cache->uc_allocbucket != NULL)
3897 cachefree += cache->uc_allocbucket->ub_cnt;
3898 if (cache->uc_freebucket != NULL)
3899 cachefree += cache->uc_freebucket->ub_cnt;
3900 allocs += cache->uc_allocs;
3901 frees += cache->uc_frees;
3902 }
3903 allocs += z->uz_allocs;
3904 frees += z->uz_frees;
3905 sleeps += z->uz_sleeps;
3906 if (cachefreep != NULL)
3907 *cachefreep = cachefree;
3908 if (allocsp != NULL)
3909 *allocsp = allocs;
3910 if (freesp != NULL)
3911 *freesp = frees;
3912 if (sleepsp != NULL)
3913 *sleepsp = sleeps;
3914 }
3915 #endif /* DDB */
3916
3917 static int
3918 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
3919 {
3920 uma_keg_t kz;
3921 uma_zone_t z;
3922 int count;
3923
3924 count = 0;
3925 rw_rlock(&uma_rwlock);
3926 LIST_FOREACH(kz, &uma_kegs, uk_link) {
3927 LIST_FOREACH(z, &kz->uk_zones, uz_link)
3928 count++;
3929 }
3930 rw_runlock(&uma_rwlock);
3931 return (sysctl_handle_int(oidp, &count, 0, req));
3932 }
3933
3934 static int
3935 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
3936 {
3937 struct uma_stream_header ush;
3938 struct uma_type_header uth;
3939 struct uma_percpu_stat *ups;
3940 uma_bucket_t bucket;
3941 uma_zone_domain_t zdom;
3942 struct sbuf sbuf;
3943 uma_cache_t cache;
3944 uma_klink_t kl;
3945 uma_keg_t kz;
3946 uma_zone_t z;
3947 uma_keg_t k;
3948 int count, error, i;
3949
3950 error = sysctl_wire_old_buffer(req, 0);
3951 if (error != 0)
3952 return (error);
3953 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
3954 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
3955 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK);
3956
3957 count = 0;
3958 rw_rlock(&uma_rwlock);
3959 LIST_FOREACH(kz, &uma_kegs, uk_link) {
3960 LIST_FOREACH(z, &kz->uk_zones, uz_link)
3961 count++;
3962 }
3963
3964 /*
3965 * Insert stream header.
3966 */
3967 bzero(&ush, sizeof(ush));
3968 ush.ush_version = UMA_STREAM_VERSION;
3969 ush.ush_maxcpus = (mp_maxid + 1);
3970 ush.ush_count = count;
3971 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
3972
3973 LIST_FOREACH(kz, &uma_kegs, uk_link) {
3974 LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3975 bzero(&uth, sizeof(uth));
3976 ZONE_LOCK(z);
3977 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
3978 uth.uth_align = kz->uk_align;
3979 uth.uth_size = kz->uk_size;
3980 uth.uth_rsize = kz->uk_rsize;
3981 LIST_FOREACH(kl, &z->uz_kegs, kl_link) {
3982 k = kl->kl_keg;
3983 uth.uth_maxpages += k->uk_maxpages;
3984 uth.uth_pages += k->uk_pages;
3985 uth.uth_keg_free += k->uk_free;
3986 uth.uth_limit = (k->uk_maxpages / k->uk_ppera)
3987 * k->uk_ipers;
3988 }
3989
3990 /*
3991 * A zone is secondary is it is not the first entry
3992 * on the keg's zone list.
3993 */
3994 if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
3995 (LIST_FIRST(&kz->uk_zones) != z))
3996 uth.uth_zone_flags = UTH_ZONE_SECONDARY;
3997
3998 for (i = 0; i < vm_ndomains; i++) {
3999 zdom = &z->uz_domain[i];
4000 LIST_FOREACH(bucket, &zdom->uzd_buckets,
4001 ub_link)
4002 uth.uth_zone_free += bucket->ub_cnt;
4003 }
4004 uth.uth_allocs = z->uz_allocs;
4005 uth.uth_frees = z->uz_frees;
4006 uth.uth_fails = z->uz_fails;
4007 uth.uth_sleeps = z->uz_sleeps;
4008 /*
4009 * While it is not normally safe to access the cache
4010 * bucket pointers while not on the CPU that owns the
4011 * cache, we only allow the pointers to be exchanged
4012 * without the zone lock held, not invalidated, so
4013 * accept the possible race associated with bucket
4014 * exchange during monitoring.
4015 */
4016 for (i = 0; i < mp_maxid + 1; i++) {
4017 bzero(&ups[i], sizeof(*ups));
4018 if (kz->uk_flags & UMA_ZFLAG_INTERNAL ||
4019 CPU_ABSENT(i))
4020 continue;
4021 cache = &z->uz_cpu[i];
4022 if (cache->uc_allocbucket != NULL)
4023 ups[i].ups_cache_free +=
4024 cache->uc_allocbucket->ub_cnt;
4025 if (cache->uc_freebucket != NULL)
4026 ups[i].ups_cache_free +=
4027 cache->uc_freebucket->ub_cnt;
4028 ups[i].ups_allocs = cache->uc_allocs;
4029 ups[i].ups_frees = cache->uc_frees;
4030 }
4031 ZONE_UNLOCK(z);
4032 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
4033 for (i = 0; i < mp_maxid + 1; i++)
4034 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
4035 }
4036 }
4037 rw_runlock(&uma_rwlock);
4038 error = sbuf_finish(&sbuf);
4039 sbuf_delete(&sbuf);
4040 free(ups, M_TEMP);
4041 return (error);
4042 }
4043
4044 int
4045 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS)
4046 {
4047 uma_zone_t zone = *(uma_zone_t *)arg1;
4048 int error, max;
4049
4050 max = uma_zone_get_max(zone);
4051 error = sysctl_handle_int(oidp, &max, 0, req);
4052 if (error || !req->newptr)
4053 return (error);
4054
4055 uma_zone_set_max(zone, max);
4056
4057 return (0);
4058 }
4059
4060 int
4061 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS)
4062 {
4063 uma_zone_t zone = *(uma_zone_t *)arg1;
4064 int cur;
4065
4066 cur = uma_zone_get_cur(zone);
4067 return (sysctl_handle_int(oidp, &cur, 0, req));
4068 }
4069
4070 #ifdef INVARIANTS
4071 static uma_slab_t
4072 uma_dbg_getslab(uma_zone_t zone, void *item)
4073 {
4074 uma_slab_t slab;
4075 uma_keg_t keg;
4076 uint8_t *mem;
4077
4078 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
4079 if (zone->uz_flags & UMA_ZONE_VTOSLAB) {
4080 slab = vtoslab((vm_offset_t)mem);
4081 } else {
4082 /*
4083 * It is safe to return the slab here even though the
4084 * zone is unlocked because the item's allocation state
4085 * essentially holds a reference.
4086 */
4087 ZONE_LOCK(zone);
4088 keg = LIST_FIRST(&zone->uz_kegs)->kl_keg;
4089 if (keg->uk_flags & UMA_ZONE_HASH)
4090 slab = hash_sfind(&keg->uk_hash, mem);
4091 else
4092 slab = (uma_slab_t)(mem + keg->uk_pgoff);
4093 ZONE_UNLOCK(zone);
4094 }
4095
4096 return (slab);
4097 }
4098
4099 static bool
4100 uma_dbg_zskip(uma_zone_t zone, void *mem)
4101 {
4102 uma_keg_t keg;
4103
4104 if ((keg = zone_first_keg(zone)) == NULL)
4105 return (true);
4106
4107 return (uma_dbg_kskip(keg, mem));
4108 }
4109
4110 static bool
4111 uma_dbg_kskip(uma_keg_t keg, void *mem)
4112 {
4113 uintptr_t idx;
4114
4115 if (dbg_divisor == 0)
4116 return (true);
4117
4118 if (dbg_divisor == 1)
4119 return (false);
4120
4121 idx = (uintptr_t)mem >> PAGE_SHIFT;
4122 if (keg->uk_ipers > 1) {
4123 idx *= keg->uk_ipers;
4124 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize;
4125 }
4126
4127 if ((idx / dbg_divisor) * dbg_divisor != idx) {
4128 counter_u64_add(uma_skip_cnt, 1);
4129 return (true);
4130 }
4131 counter_u64_add(uma_dbg_cnt, 1);
4132
4133 return (false);
4134 }
4135
4136 /*
4137 * Set up the slab's freei data such that uma_dbg_free can function.
4138 *
4139 */
4140 static void
4141 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item)
4142 {
4143 uma_keg_t keg;
4144 int freei;
4145
4146 if (slab == NULL) {
4147 slab = uma_dbg_getslab(zone, item);
4148 if (slab == NULL)
4149 panic("uma: item %p did not belong to zone %s\n",
4150 item, zone->uz_name);
4151 }
4152 keg = slab->us_keg;
4153 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
4154
4155 if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree))
4156 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n",
4157 item, zone, zone->uz_name, slab, freei);
4158 BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree);
4159
4160 return;
4161 }
4162
4163 /*
4164 * Verifies freed addresses. Checks for alignment, valid slab membership
4165 * and duplicate frees.
4166 *
4167 */
4168 static void
4169 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item)
4170 {
4171 uma_keg_t keg;
4172 int freei;
4173
4174 if (slab == NULL) {
4175 slab = uma_dbg_getslab(zone, item);
4176 if (slab == NULL)
4177 panic("uma: Freed item %p did not belong to zone %s\n",
4178 item, zone->uz_name);
4179 }
4180 keg = slab->us_keg;
4181 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
4182
4183 if (freei >= keg->uk_ipers)
4184 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n",
4185 item, zone, zone->uz_name, slab, freei);
4186
4187 if (((freei * keg->uk_rsize) + slab->us_data) != item)
4188 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n",
4189 item, zone, zone->uz_name, slab, freei);
4190
4191 if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree))
4192 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n",
4193 item, zone, zone->uz_name, slab, freei);
4194
4195 BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree);
4196 }
4197 #endif /* INVARIANTS */
4198
4199 #ifdef DDB
4200 DB_SHOW_COMMAND(uma, db_show_uma)
4201 {
4202 uma_bucket_t bucket;
4203 uma_keg_t kz;
4204 uma_zone_t z;
4205 uma_zone_domain_t zdom;
4206 uint64_t allocs, frees, sleeps;
4207 int cachefree, i;
4208
4209 db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used",
4210 "Free", "Requests", "Sleeps", "Bucket");
4211 LIST_FOREACH(kz, &uma_kegs, uk_link) {
4212 LIST_FOREACH(z, &kz->uk_zones, uz_link) {
4213 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
4214 allocs = z->uz_allocs;
4215 frees = z->uz_frees;
4216 sleeps = z->uz_sleeps;
4217 cachefree = 0;
4218 } else
4219 uma_zone_sumstat(z, &cachefree, &allocs,
4220 &frees, &sleeps);
4221 if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
4222 (LIST_FIRST(&kz->uk_zones) != z)))
4223 cachefree += kz->uk_free;
4224 for (i = 0; i < vm_ndomains; i++) {
4225 zdom = &z->uz_domain[i];
4226 LIST_FOREACH(bucket, &zdom->uzd_buckets,
4227 ub_link)
4228 cachefree += bucket->ub_cnt;
4229 }
4230 db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n",
4231 z->uz_name, (uintmax_t)kz->uk_size,
4232 (intmax_t)(allocs - frees), cachefree,
4233 (uintmax_t)allocs, sleeps, z->uz_count);
4234 if (db_pager_quit)
4235 return;
4236 }
4237 }
4238 }
4239
4240 DB_SHOW_COMMAND(umacache, db_show_umacache)
4241 {
4242 uma_bucket_t bucket;
4243 uma_zone_t z;
4244 uma_zone_domain_t zdom;
4245 uint64_t allocs, frees;
4246 int cachefree, i;
4247
4248 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
4249 "Requests", "Bucket");
4250 LIST_FOREACH(z, &uma_cachezones, uz_link) {
4251 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL);
4252 for (i = 0; i < vm_ndomains; i++) {
4253 zdom = &z->uz_domain[i];
4254 LIST_FOREACH(bucket, &zdom->uzd_buckets, ub_link)
4255 cachefree += bucket->ub_cnt;
4256 }
4257 db_printf("%18s %8ju %8jd %8d %12ju %8u\n",
4258 z->uz_name, (uintmax_t)z->uz_size,
4259 (intmax_t)(allocs - frees), cachefree,
4260 (uintmax_t)allocs, z->uz_count);
4261 if (db_pager_quit)
4262 return;
4263 }
4264 }
4265 #endif /* DDB */
Cache object: fea218c8185c85cc80afe53953b51f38
|