FreeBSD/Linux Kernel Cross Reference
sys/vm/uma_core.c
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org>
5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
6 * Copyright (c) 2004-2006 Robert N. M. Watson
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice unmodified, this list of conditions, and the following
14 * disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 /*
32 * uma_core.c Implementation of the Universal Memory allocator
33 *
34 * This allocator is intended to replace the multitude of similar object caches
35 * in the standard FreeBSD kernel. The intent is to be flexible as well as
36 * efficient. A primary design goal is to return unused memory to the rest of
37 * the system. This will make the system as a whole more flexible due to the
38 * ability to move memory to subsystems which most need it instead of leaving
39 * pools of reserved memory unused.
40 *
41 * The basic ideas stem from similar slab/zone based allocators whose algorithms
42 * are well known.
43 *
44 */
45
46 /*
47 * TODO:
48 * - Improve memory usage for large allocations
49 * - Investigate cache size adjustments
50 */
51
52 #include <sys/cdefs.h>
53 __FBSDID("$FreeBSD$");
54
55 #include "opt_ddb.h"
56 #include "opt_param.h"
57 #include "opt_vm.h"
58
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/bitset.h>
62 #include <sys/domainset.h>
63 #include <sys/eventhandler.h>
64 #include <sys/kernel.h>
65 #include <sys/types.h>
66 #include <sys/limits.h>
67 #include <sys/queue.h>
68 #include <sys/malloc.h>
69 #include <sys/ktr.h>
70 #include <sys/lock.h>
71 #include <sys/sysctl.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/random.h>
75 #include <sys/rwlock.h>
76 #include <sys/sbuf.h>
77 #include <sys/sched.h>
78 #include <sys/sleepqueue.h>
79 #include <sys/smp.h>
80 #include <sys/smr.h>
81 #include <sys/taskqueue.h>
82 #include <sys/vmmeter.h>
83
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/vm_domainset.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_phys.h>
91 #include <vm/vm_pagequeue.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vm_dumpset.h>
96 #include <vm/uma.h>
97 #include <vm/uma_int.h>
98 #include <vm/uma_dbg.h>
99
100 #include <ddb/ddb.h>
101
102 #ifdef DEBUG_MEMGUARD
103 #include <vm/memguard.h>
104 #endif
105
106 #include <machine/md_var.h>
107
108 #ifdef INVARIANTS
109 #define UMA_ALWAYS_CTORDTOR 1
110 #else
111 #define UMA_ALWAYS_CTORDTOR 0
112 #endif
113
114 /*
115 * This is the zone and keg from which all zones are spawned.
116 */
117 static uma_zone_t kegs;
118 static uma_zone_t zones;
119
120 /*
121 * On INVARIANTS builds, the slab contains a second bitset of the same size,
122 * "dbg_bits", which is laid out immediately after us_free.
123 */
124 #ifdef INVARIANTS
125 #define SLAB_BITSETS 2
126 #else
127 #define SLAB_BITSETS 1
128 #endif
129
130 /*
131 * These are the two zones from which all offpage uma_slab_ts are allocated.
132 *
133 * One zone is for slab headers that can represent a larger number of items,
134 * making the slabs themselves more efficient, and the other zone is for
135 * headers that are smaller and represent fewer items, making the headers more
136 * efficient.
137 */
138 #define SLABZONE_SIZE(setsize) \
139 (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS)
140 #define SLABZONE0_SETSIZE (PAGE_SIZE / 16)
141 #define SLABZONE1_SETSIZE SLAB_MAX_SETSIZE
142 #define SLABZONE0_SIZE SLABZONE_SIZE(SLABZONE0_SETSIZE)
143 #define SLABZONE1_SIZE SLABZONE_SIZE(SLABZONE1_SETSIZE)
144 static uma_zone_t slabzones[2];
145
146 /*
147 * The initial hash tables come out of this zone so they can be allocated
148 * prior to malloc coming up.
149 */
150 static uma_zone_t hashzone;
151
152 /* The boot-time adjusted value for cache line alignment. */
153 int uma_align_cache = 64 - 1;
154
155 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
156 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc");
157
158 /*
159 * Are we allowed to allocate buckets?
160 */
161 static int bucketdisable = 1;
162
163 /* Linked list of all kegs in the system */
164 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
165
166 /* Linked list of all cache-only zones in the system */
167 static LIST_HEAD(,uma_zone) uma_cachezones =
168 LIST_HEAD_INITIALIZER(uma_cachezones);
169
170 /* This RW lock protects the keg list */
171 static struct rwlock_padalign __exclusive_cache_line uma_rwlock;
172
173 /*
174 * First available virual address for boot time allocations.
175 */
176 static vm_offset_t bootstart;
177 static vm_offset_t bootmem;
178
179 static struct sx uma_reclaim_lock;
180
181 /*
182 * kmem soft limit, initialized by uma_set_limit(). Ensure that early
183 * allocations don't trigger a wakeup of the reclaim thread.
184 */
185 unsigned long uma_kmem_limit = LONG_MAX;
186 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0,
187 "UMA kernel memory soft limit");
188 unsigned long uma_kmem_total;
189 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0,
190 "UMA kernel memory usage");
191
192 /* Is the VM done starting up? */
193 static enum {
194 BOOT_COLD,
195 BOOT_KVA,
196 BOOT_PCPU,
197 BOOT_RUNNING,
198 BOOT_SHUTDOWN,
199 } booted = BOOT_COLD;
200
201 /*
202 * This is the handle used to schedule events that need to happen
203 * outside of the allocation fast path.
204 */
205 static struct callout uma_callout;
206 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */
207
208 /*
209 * This structure is passed as the zone ctor arg so that I don't have to create
210 * a special allocation function just for zones.
211 */
212 struct uma_zctor_args {
213 const char *name;
214 size_t size;
215 uma_ctor ctor;
216 uma_dtor dtor;
217 uma_init uminit;
218 uma_fini fini;
219 uma_import import;
220 uma_release release;
221 void *arg;
222 uma_keg_t keg;
223 int align;
224 uint32_t flags;
225 };
226
227 struct uma_kctor_args {
228 uma_zone_t zone;
229 size_t size;
230 uma_init uminit;
231 uma_fini fini;
232 int align;
233 uint32_t flags;
234 };
235
236 struct uma_bucket_zone {
237 uma_zone_t ubz_zone;
238 const char *ubz_name;
239 int ubz_entries; /* Number of items it can hold. */
240 int ubz_maxsize; /* Maximum allocation size per-item. */
241 };
242
243 /*
244 * Compute the actual number of bucket entries to pack them in power
245 * of two sizes for more efficient space utilization.
246 */
247 #define BUCKET_SIZE(n) \
248 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))
249
250 #define BUCKET_MAX BUCKET_SIZE(256)
251
252 struct uma_bucket_zone bucket_zones[] = {
253 /* Literal bucket sizes. */
254 { NULL, "2 Bucket", 2, 4096 },
255 { NULL, "4 Bucket", 4, 3072 },
256 { NULL, "8 Bucket", 8, 2048 },
257 { NULL, "16 Bucket", 16, 1024 },
258 /* Rounded down power of 2 sizes for efficiency. */
259 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
260 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
261 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
262 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 },
263 { NULL, NULL, 0}
264 };
265
266 /*
267 * Flags and enumerations to be passed to internal functions.
268 */
269 enum zfreeskip {
270 SKIP_NONE = 0,
271 SKIP_CNT = 0x00000001,
272 SKIP_DTOR = 0x00010000,
273 SKIP_FINI = 0x00020000,
274 };
275
276 /* Prototypes.. */
277
278 void uma_startup1(vm_offset_t);
279 void uma_startup2(void);
280
281 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
282 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
283 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
284 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
285 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int);
286 static void page_free(void *, vm_size_t, uint8_t);
287 static void pcpu_page_free(void *, vm_size_t, uint8_t);
288 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int);
289 static void cache_drain(uma_zone_t);
290 static void bucket_drain(uma_zone_t, uma_bucket_t);
291 static void bucket_cache_reclaim(uma_zone_t zone, bool);
292 static int keg_ctor(void *, int, void *, int);
293 static void keg_dtor(void *, int, void *);
294 static int zone_ctor(void *, int, void *, int);
295 static void zone_dtor(void *, int, void *);
296 static inline void item_dtor(uma_zone_t zone, void *item, int size,
297 void *udata, enum zfreeskip skip);
298 static int zero_init(void *, int, int);
299 static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata,
300 int itemdomain, bool ws);
301 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *);
302 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *);
303 static void zone_timeout(uma_zone_t zone, void *);
304 static int hash_alloc(struct uma_hash *, u_int);
305 static int hash_expand(struct uma_hash *, struct uma_hash *);
306 static void hash_free(struct uma_hash *hash);
307 static void uma_timeout(void *);
308 static void uma_shutdown(void);
309 static void *zone_alloc_item(uma_zone_t, void *, int, int);
310 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
311 static int zone_alloc_limit(uma_zone_t zone, int count, int flags);
312 static void zone_free_limit(uma_zone_t zone, int count);
313 static void bucket_enable(void);
314 static void bucket_init(void);
315 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
316 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
317 static void bucket_zone_drain(void);
318 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int);
319 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
320 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item);
321 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
322 uma_fini fini, int align, uint32_t flags);
323 static int zone_import(void *, void **, int, int, int);
324 static void zone_release(void *, void **, int);
325 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int);
326 static bool cache_free(uma_zone_t, uma_cache_t, void *, void *, int);
327
328 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
329 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
330 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS);
331 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS);
332 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS);
333 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS);
334 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS);
335
336 static uint64_t uma_zone_get_allocs(uma_zone_t zone);
337
338 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
339 "Memory allocation debugging");
340
341 #ifdef INVARIANTS
342 static uint64_t uma_keg_get_allocs(uma_keg_t zone);
343 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg);
344
345 static bool uma_dbg_kskip(uma_keg_t keg, void *mem);
346 static bool uma_dbg_zskip(uma_zone_t zone, void *mem);
347 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item);
348 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item);
349
350 static u_int dbg_divisor = 1;
351 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor,
352 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0,
353 "Debug & thrash every this item in memory allocator");
354
355 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER;
356 static counter_u64_t uma_skip_cnt = EARLY_COUNTER;
357 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD,
358 &uma_dbg_cnt, "memory items debugged");
359 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD,
360 &uma_skip_cnt, "memory items skipped, not debugged");
361 #endif
362
363 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
364 "Universal Memory Allocator");
365
366 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT,
367 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
368
369 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT,
370 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
371
372 static int zone_warnings = 1;
373 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0,
374 "Warn when UMA zones becomes full");
375
376 static int multipage_slabs = 1;
377 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs);
378 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs,
379 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0,
380 "UMA may choose larger slab sizes for better efficiency");
381
382 /*
383 * Select the slab zone for an offpage slab with the given maximum item count.
384 */
385 static inline uma_zone_t
386 slabzone(int ipers)
387 {
388
389 return (slabzones[ipers > SLABZONE0_SETSIZE]);
390 }
391
392 /*
393 * This routine checks to see whether or not it's safe to enable buckets.
394 */
395 static void
396 bucket_enable(void)
397 {
398
399 KASSERT(booted >= BOOT_KVA, ("Bucket enable before init"));
400 bucketdisable = vm_page_count_min();
401 }
402
403 /*
404 * Initialize bucket_zones, the array of zones of buckets of various sizes.
405 *
406 * For each zone, calculate the memory required for each bucket, consisting
407 * of the header and an array of pointers.
408 */
409 static void
410 bucket_init(void)
411 {
412 struct uma_bucket_zone *ubz;
413 int size;
414
415 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
416 size = roundup(sizeof(struct uma_bucket), sizeof(void *));
417 size += sizeof(void *) * ubz->ubz_entries;
418 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
419 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
420 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET |
421 UMA_ZONE_FIRSTTOUCH);
422 }
423 }
424
425 /*
426 * Given a desired number of entries for a bucket, return the zone from which
427 * to allocate the bucket.
428 */
429 static struct uma_bucket_zone *
430 bucket_zone_lookup(int entries)
431 {
432 struct uma_bucket_zone *ubz;
433
434 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
435 if (ubz->ubz_entries >= entries)
436 return (ubz);
437 ubz--;
438 return (ubz);
439 }
440
441 static int
442 bucket_select(int size)
443 {
444 struct uma_bucket_zone *ubz;
445
446 ubz = &bucket_zones[0];
447 if (size > ubz->ubz_maxsize)
448 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);
449
450 for (; ubz->ubz_entries != 0; ubz++)
451 if (ubz->ubz_maxsize < size)
452 break;
453 ubz--;
454 return (ubz->ubz_entries);
455 }
456
457 static uma_bucket_t
458 bucket_alloc(uma_zone_t zone, void *udata, int flags)
459 {
460 struct uma_bucket_zone *ubz;
461 uma_bucket_t bucket;
462
463 /*
464 * Don't allocate buckets early in boot.
465 */
466 if (__predict_false(booted < BOOT_KVA))
467 return (NULL);
468
469 /*
470 * To limit bucket recursion we store the original zone flags
471 * in a cookie passed via zalloc_arg/zfree_arg. This allows the
472 * NOVM flag to persist even through deep recursions. We also
473 * store ZFLAG_BUCKET once we have recursed attempting to allocate
474 * a bucket for a bucket zone so we do not allow infinite bucket
475 * recursion. This cookie will even persist to frees of unused
476 * buckets via the allocation path or bucket allocations in the
477 * free path.
478 */
479 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
480 udata = (void *)(uintptr_t)zone->uz_flags;
481 else {
482 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
483 return (NULL);
484 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
485 }
486 if (((uintptr_t)udata & UMA_ZONE_VM) != 0)
487 flags |= M_NOVM;
488 ubz = bucket_zone_lookup(atomic_load_16(&zone->uz_bucket_size));
489 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0)
490 ubz++;
491 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
492 if (bucket) {
493 #ifdef INVARIANTS
494 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
495 #endif
496 bucket->ub_cnt = 0;
497 bucket->ub_entries = min(ubz->ubz_entries,
498 zone->uz_bucket_size_max);
499 bucket->ub_seq = SMR_SEQ_INVALID;
500 CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p",
501 zone->uz_name, zone, bucket);
502 }
503
504 return (bucket);
505 }
506
507 static void
508 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
509 {
510 struct uma_bucket_zone *ubz;
511
512 if (bucket->ub_cnt != 0)
513 bucket_drain(zone, bucket);
514
515 KASSERT(bucket->ub_cnt == 0,
516 ("bucket_free: Freeing a non free bucket."));
517 KASSERT(bucket->ub_seq == SMR_SEQ_INVALID,
518 ("bucket_free: Freeing an SMR bucket."));
519 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
520 udata = (void *)(uintptr_t)zone->uz_flags;
521 ubz = bucket_zone_lookup(bucket->ub_entries);
522 uma_zfree_arg(ubz->ubz_zone, bucket, udata);
523 }
524
525 static void
526 bucket_zone_drain(void)
527 {
528 struct uma_bucket_zone *ubz;
529
530 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
531 uma_zone_reclaim(ubz->ubz_zone, UMA_RECLAIM_DRAIN);
532 }
533
534 /*
535 * Acquire the domain lock and record contention.
536 */
537 static uma_zone_domain_t
538 zone_domain_lock(uma_zone_t zone, int domain)
539 {
540 uma_zone_domain_t zdom;
541 bool lockfail;
542
543 zdom = ZDOM_GET(zone, domain);
544 lockfail = false;
545 if (ZDOM_OWNED(zdom))
546 lockfail = true;
547 ZDOM_LOCK(zdom);
548 /* This is unsynchronized. The counter does not need to be precise. */
549 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max)
550 zone->uz_bucket_size++;
551 return (zdom);
552 }
553
554 /*
555 * Search for the domain with the least cached items and return it if it
556 * is out of balance with the preferred domain.
557 */
558 static __noinline int
559 zone_domain_lowest(uma_zone_t zone, int pref)
560 {
561 long least, nitems, prefitems;
562 int domain;
563 int i;
564
565 prefitems = least = LONG_MAX;
566 domain = 0;
567 for (i = 0; i < vm_ndomains; i++) {
568 nitems = ZDOM_GET(zone, i)->uzd_nitems;
569 if (nitems < least) {
570 domain = i;
571 least = nitems;
572 }
573 if (domain == pref)
574 prefitems = nitems;
575 }
576 if (prefitems < least * 2)
577 return (pref);
578
579 return (domain);
580 }
581
582 /*
583 * Search for the domain with the most cached items and return it or the
584 * preferred domain if it has enough to proceed.
585 */
586 static __noinline int
587 zone_domain_highest(uma_zone_t zone, int pref)
588 {
589 long most, nitems;
590 int domain;
591 int i;
592
593 if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX)
594 return (pref);
595
596 most = 0;
597 domain = 0;
598 for (i = 0; i < vm_ndomains; i++) {
599 nitems = ZDOM_GET(zone, i)->uzd_nitems;
600 if (nitems > most) {
601 domain = i;
602 most = nitems;
603 }
604 }
605
606 return (domain);
607 }
608
609 /*
610 * Safely subtract cnt from imax.
611 */
612 static void
613 zone_domain_imax_sub(uma_zone_domain_t zdom, int cnt)
614 {
615 long new;
616 long old;
617
618 old = zdom->uzd_imax;
619 do {
620 if (old <= cnt)
621 new = 0;
622 else
623 new = old - cnt;
624 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, new) == 0);
625 }
626
627 /*
628 * Set the maximum imax value.
629 */
630 static void
631 zone_domain_imax_set(uma_zone_domain_t zdom, int nitems)
632 {
633 long old;
634
635 old = zdom->uzd_imax;
636 do {
637 if (old >= nitems)
638 break;
639 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0);
640 }
641
642 /*
643 * Attempt to satisfy an allocation by retrieving a full bucket from one of the
644 * zone's caches. If a bucket is found the zone is not locked on return.
645 */
646 static uma_bucket_t
647 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim)
648 {
649 uma_bucket_t bucket;
650 int i;
651 bool dtor = false;
652
653 ZDOM_LOCK_ASSERT(zdom);
654
655 if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL)
656 return (NULL);
657
658 /* SMR Buckets can not be re-used until readers expire. */
659 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 &&
660 bucket->ub_seq != SMR_SEQ_INVALID) {
661 if (!smr_poll(zone->uz_smr, bucket->ub_seq, false))
662 return (NULL);
663 bucket->ub_seq = SMR_SEQ_INVALID;
664 dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR;
665 if (STAILQ_NEXT(bucket, ub_link) != NULL)
666 zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq;
667 }
668 STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link);
669
670 KASSERT(zdom->uzd_nitems >= bucket->ub_cnt,
671 ("%s: item count underflow (%ld, %d)",
672 __func__, zdom->uzd_nitems, bucket->ub_cnt));
673 KASSERT(bucket->ub_cnt > 0,
674 ("%s: empty bucket in bucket cache", __func__));
675 zdom->uzd_nitems -= bucket->ub_cnt;
676
677 /*
678 * Shift the bounds of the current WSS interval to avoid
679 * perturbing the estimate.
680 */
681 if (reclaim) {
682 zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt);
683 zone_domain_imax_sub(zdom, bucket->ub_cnt);
684 } else if (zdom->uzd_imin > zdom->uzd_nitems)
685 zdom->uzd_imin = zdom->uzd_nitems;
686
687 ZDOM_UNLOCK(zdom);
688 if (dtor)
689 for (i = 0; i < bucket->ub_cnt; i++)
690 item_dtor(zone, bucket->ub_bucket[i], zone->uz_size,
691 NULL, SKIP_NONE);
692
693 return (bucket);
694 }
695
696 /*
697 * Insert a full bucket into the specified cache. The "ws" parameter indicates
698 * whether the bucket's contents should be counted as part of the zone's working
699 * set. The bucket may be freed if it exceeds the bucket limit.
700 */
701 static void
702 zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata,
703 const bool ws)
704 {
705 uma_zone_domain_t zdom;
706
707 /* We don't cache empty buckets. This can happen after a reclaim. */
708 if (bucket->ub_cnt == 0)
709 goto out;
710 zdom = zone_domain_lock(zone, domain);
711
712 /*
713 * Conditionally set the maximum number of items.
714 */
715 zdom->uzd_nitems += bucket->ub_cnt;
716 if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) {
717 if (ws)
718 zone_domain_imax_set(zdom, zdom->uzd_nitems);
719 if (STAILQ_EMPTY(&zdom->uzd_buckets))
720 zdom->uzd_seq = bucket->ub_seq;
721
722 /*
723 * Try to promote reuse of recently used items. For items
724 * protected by SMR, try to defer reuse to minimize polling.
725 */
726 if (bucket->ub_seq == SMR_SEQ_INVALID)
727 STAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link);
728 else
729 STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link);
730 ZDOM_UNLOCK(zdom);
731 return;
732 }
733 zdom->uzd_nitems -= bucket->ub_cnt;
734 ZDOM_UNLOCK(zdom);
735 out:
736 bucket_free(zone, bucket, udata);
737 }
738
739 /* Pops an item out of a per-cpu cache bucket. */
740 static inline void *
741 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket)
742 {
743 void *item;
744
745 CRITICAL_ASSERT(curthread);
746
747 bucket->ucb_cnt--;
748 item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt];
749 #ifdef INVARIANTS
750 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL;
751 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
752 #endif
753 cache->uc_allocs++;
754
755 return (item);
756 }
757
758 /* Pushes an item into a per-cpu cache bucket. */
759 static inline void
760 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item)
761 {
762
763 CRITICAL_ASSERT(curthread);
764 KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL,
765 ("uma_zfree: Freeing to non free bucket index."));
766
767 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item;
768 bucket->ucb_cnt++;
769 cache->uc_frees++;
770 }
771
772 /*
773 * Unload a UMA bucket from a per-cpu cache.
774 */
775 static inline uma_bucket_t
776 cache_bucket_unload(uma_cache_bucket_t bucket)
777 {
778 uma_bucket_t b;
779
780 b = bucket->ucb_bucket;
781 if (b != NULL) {
782 MPASS(b->ub_entries == bucket->ucb_entries);
783 b->ub_cnt = bucket->ucb_cnt;
784 bucket->ucb_bucket = NULL;
785 bucket->ucb_entries = bucket->ucb_cnt = 0;
786 }
787
788 return (b);
789 }
790
791 static inline uma_bucket_t
792 cache_bucket_unload_alloc(uma_cache_t cache)
793 {
794
795 return (cache_bucket_unload(&cache->uc_allocbucket));
796 }
797
798 static inline uma_bucket_t
799 cache_bucket_unload_free(uma_cache_t cache)
800 {
801
802 return (cache_bucket_unload(&cache->uc_freebucket));
803 }
804
805 static inline uma_bucket_t
806 cache_bucket_unload_cross(uma_cache_t cache)
807 {
808
809 return (cache_bucket_unload(&cache->uc_crossbucket));
810 }
811
812 /*
813 * Load a bucket into a per-cpu cache bucket.
814 */
815 static inline void
816 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b)
817 {
818
819 CRITICAL_ASSERT(curthread);
820 MPASS(bucket->ucb_bucket == NULL);
821 MPASS(b->ub_seq == SMR_SEQ_INVALID);
822
823 bucket->ucb_bucket = b;
824 bucket->ucb_cnt = b->ub_cnt;
825 bucket->ucb_entries = b->ub_entries;
826 }
827
828 static inline void
829 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b)
830 {
831
832 cache_bucket_load(&cache->uc_allocbucket, b);
833 }
834
835 static inline void
836 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b)
837 {
838
839 cache_bucket_load(&cache->uc_freebucket, b);
840 }
841
842 #ifdef NUMA
843 static inline void
844 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b)
845 {
846
847 cache_bucket_load(&cache->uc_crossbucket, b);
848 }
849 #endif
850
851 /*
852 * Copy and preserve ucb_spare.
853 */
854 static inline void
855 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2)
856 {
857
858 b1->ucb_bucket = b2->ucb_bucket;
859 b1->ucb_entries = b2->ucb_entries;
860 b1->ucb_cnt = b2->ucb_cnt;
861 }
862
863 /*
864 * Swap two cache buckets.
865 */
866 static inline void
867 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2)
868 {
869 struct uma_cache_bucket b3;
870
871 CRITICAL_ASSERT(curthread);
872
873 cache_bucket_copy(&b3, b1);
874 cache_bucket_copy(b1, b2);
875 cache_bucket_copy(b2, &b3);
876 }
877
878 /*
879 * Attempt to fetch a bucket from a zone on behalf of the current cpu cache.
880 */
881 static uma_bucket_t
882 cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain)
883 {
884 uma_zone_domain_t zdom;
885 uma_bucket_t bucket;
886
887 /*
888 * Avoid the lock if possible.
889 */
890 zdom = ZDOM_GET(zone, domain);
891 if (zdom->uzd_nitems == 0)
892 return (NULL);
893
894 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 &&
895 !smr_poll(zone->uz_smr, zdom->uzd_seq, false))
896 return (NULL);
897
898 /*
899 * Check the zone's cache of buckets.
900 */
901 zdom = zone_domain_lock(zone, domain);
902 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL)
903 return (bucket);
904 ZDOM_UNLOCK(zdom);
905
906 return (NULL);
907 }
908
909 static void
910 zone_log_warning(uma_zone_t zone)
911 {
912 static const struct timeval warninterval = { 300, 0 };
913
914 if (!zone_warnings || zone->uz_warning == NULL)
915 return;
916
917 if (ratecheck(&zone->uz_ratecheck, &warninterval))
918 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
919 }
920
921 static inline void
922 zone_maxaction(uma_zone_t zone)
923 {
924
925 if (zone->uz_maxaction.ta_func != NULL)
926 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction);
927 }
928
929 /*
930 * Routine called by timeout which is used to fire off some time interval
931 * based calculations. (stats, hash size, etc.)
932 *
933 * Arguments:
934 * arg Unused
935 *
936 * Returns:
937 * Nothing
938 */
939 static void
940 uma_timeout(void *unused)
941 {
942 bucket_enable();
943 zone_foreach(zone_timeout, NULL);
944
945 /* Reschedule this event */
946 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
947 }
948
949 /*
950 * Update the working set size estimate for the zone's bucket cache.
951 * The constants chosen here are somewhat arbitrary. With an update period of
952 * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the
953 * last 100s.
954 */
955 static void
956 zone_domain_update_wss(uma_zone_domain_t zdom)
957 {
958 long wss;
959
960 ZDOM_LOCK(zdom);
961 MPASS(zdom->uzd_imax >= zdom->uzd_imin);
962 wss = zdom->uzd_imax - zdom->uzd_imin;
963 zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems;
964 zdom->uzd_wss = (4 * wss + zdom->uzd_wss) / 5;
965 ZDOM_UNLOCK(zdom);
966 }
967
968 /*
969 * Routine to perform timeout driven calculations. This expands the
970 * hashes and does per cpu statistics aggregation.
971 *
972 * Returns nothing.
973 */
974 static void
975 zone_timeout(uma_zone_t zone, void *unused)
976 {
977 uma_keg_t keg;
978 u_int slabs, pages;
979
980 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0)
981 goto update_wss;
982
983 keg = zone->uz_keg;
984
985 /*
986 * Hash zones are non-numa by definition so the first domain
987 * is the only one present.
988 */
989 KEG_LOCK(keg, 0);
990 pages = keg->uk_domain[0].ud_pages;
991
992 /*
993 * Expand the keg hash table.
994 *
995 * This is done if the number of slabs is larger than the hash size.
996 * What I'm trying to do here is completely reduce collisions. This
997 * may be a little aggressive. Should I allow for two collisions max?
998 */
999 if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) {
1000 struct uma_hash newhash;
1001 struct uma_hash oldhash;
1002 int ret;
1003
1004 /*
1005 * This is so involved because allocating and freeing
1006 * while the keg lock is held will lead to deadlock.
1007 * I have to do everything in stages and check for
1008 * races.
1009 */
1010 KEG_UNLOCK(keg, 0);
1011 ret = hash_alloc(&newhash, 1 << fls(slabs));
1012 KEG_LOCK(keg, 0);
1013 if (ret) {
1014 if (hash_expand(&keg->uk_hash, &newhash)) {
1015 oldhash = keg->uk_hash;
1016 keg->uk_hash = newhash;
1017 } else
1018 oldhash = newhash;
1019
1020 KEG_UNLOCK(keg, 0);
1021 hash_free(&oldhash);
1022 goto update_wss;
1023 }
1024 }
1025 KEG_UNLOCK(keg, 0);
1026
1027 update_wss:
1028 for (int i = 0; i < vm_ndomains; i++)
1029 zone_domain_update_wss(ZDOM_GET(zone, i));
1030 }
1031
1032 /*
1033 * Allocate and zero fill the next sized hash table from the appropriate
1034 * backing store.
1035 *
1036 * Arguments:
1037 * hash A new hash structure with the old hash size in uh_hashsize
1038 *
1039 * Returns:
1040 * 1 on success and 0 on failure.
1041 */
1042 static int
1043 hash_alloc(struct uma_hash *hash, u_int size)
1044 {
1045 size_t alloc;
1046
1047 KASSERT(powerof2(size), ("hash size must be power of 2"));
1048 if (size > UMA_HASH_SIZE_INIT) {
1049 hash->uh_hashsize = size;
1050 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
1051 hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT);
1052 } else {
1053 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
1054 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
1055 UMA_ANYDOMAIN, M_WAITOK);
1056 hash->uh_hashsize = UMA_HASH_SIZE_INIT;
1057 }
1058 if (hash->uh_slab_hash) {
1059 bzero(hash->uh_slab_hash, alloc);
1060 hash->uh_hashmask = hash->uh_hashsize - 1;
1061 return (1);
1062 }
1063
1064 return (0);
1065 }
1066
1067 /*
1068 * Expands the hash table for HASH zones. This is done from zone_timeout
1069 * to reduce collisions. This must not be done in the regular allocation
1070 * path, otherwise, we can recurse on the vm while allocating pages.
1071 *
1072 * Arguments:
1073 * oldhash The hash you want to expand
1074 * newhash The hash structure for the new table
1075 *
1076 * Returns:
1077 * Nothing
1078 *
1079 * Discussion:
1080 */
1081 static int
1082 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
1083 {
1084 uma_hash_slab_t slab;
1085 u_int hval;
1086 u_int idx;
1087
1088 if (!newhash->uh_slab_hash)
1089 return (0);
1090
1091 if (oldhash->uh_hashsize >= newhash->uh_hashsize)
1092 return (0);
1093
1094 /*
1095 * I need to investigate hash algorithms for resizing without a
1096 * full rehash.
1097 */
1098
1099 for (idx = 0; idx < oldhash->uh_hashsize; idx++)
1100 while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) {
1101 slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]);
1102 LIST_REMOVE(slab, uhs_hlink);
1103 hval = UMA_HASH(newhash, slab->uhs_data);
1104 LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
1105 slab, uhs_hlink);
1106 }
1107
1108 return (1);
1109 }
1110
1111 /*
1112 * Free the hash bucket to the appropriate backing store.
1113 *
1114 * Arguments:
1115 * slab_hash The hash bucket we're freeing
1116 * hashsize The number of entries in that hash bucket
1117 *
1118 * Returns:
1119 * Nothing
1120 */
1121 static void
1122 hash_free(struct uma_hash *hash)
1123 {
1124 if (hash->uh_slab_hash == NULL)
1125 return;
1126 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
1127 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
1128 else
1129 free(hash->uh_slab_hash, M_UMAHASH);
1130 }
1131
1132 /*
1133 * Frees all outstanding items in a bucket
1134 *
1135 * Arguments:
1136 * zone The zone to free to, must be unlocked.
1137 * bucket The free/alloc bucket with items.
1138 *
1139 * Returns:
1140 * Nothing
1141 */
1142 static void
1143 bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
1144 {
1145 int i;
1146
1147 if (bucket->ub_cnt == 0)
1148 return;
1149
1150 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 &&
1151 bucket->ub_seq != SMR_SEQ_INVALID) {
1152 smr_wait(zone->uz_smr, bucket->ub_seq);
1153 bucket->ub_seq = SMR_SEQ_INVALID;
1154 for (i = 0; i < bucket->ub_cnt; i++)
1155 item_dtor(zone, bucket->ub_bucket[i],
1156 zone->uz_size, NULL, SKIP_NONE);
1157 }
1158 if (zone->uz_fini)
1159 for (i = 0; i < bucket->ub_cnt; i++)
1160 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
1161 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
1162 if (zone->uz_max_items > 0)
1163 zone_free_limit(zone, bucket->ub_cnt);
1164 #ifdef INVARIANTS
1165 bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt);
1166 #endif
1167 bucket->ub_cnt = 0;
1168 }
1169
1170 /*
1171 * Drains the per cpu caches for a zone.
1172 *
1173 * NOTE: This may only be called while the zone is being torn down, and not
1174 * during normal operation. This is necessary in order that we do not have
1175 * to migrate CPUs to drain the per-CPU caches.
1176 *
1177 * Arguments:
1178 * zone The zone to drain, must be unlocked.
1179 *
1180 * Returns:
1181 * Nothing
1182 */
1183 static void
1184 cache_drain(uma_zone_t zone)
1185 {
1186 uma_cache_t cache;
1187 uma_bucket_t bucket;
1188 smr_seq_t seq;
1189 int cpu;
1190
1191 /*
1192 * XXX: It is safe to not lock the per-CPU caches, because we're
1193 * tearing down the zone anyway. I.e., there will be no further use
1194 * of the caches at this point.
1195 *
1196 * XXX: It would good to be able to assert that the zone is being
1197 * torn down to prevent improper use of cache_drain().
1198 */
1199 seq = SMR_SEQ_INVALID;
1200 if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
1201 seq = smr_advance(zone->uz_smr);
1202 CPU_FOREACH(cpu) {
1203 cache = &zone->uz_cpu[cpu];
1204 bucket = cache_bucket_unload_alloc(cache);
1205 if (bucket != NULL)
1206 bucket_free(zone, bucket, NULL);
1207 bucket = cache_bucket_unload_free(cache);
1208 if (bucket != NULL) {
1209 bucket->ub_seq = seq;
1210 bucket_free(zone, bucket, NULL);
1211 }
1212 bucket = cache_bucket_unload_cross(cache);
1213 if (bucket != NULL) {
1214 bucket->ub_seq = seq;
1215 bucket_free(zone, bucket, NULL);
1216 }
1217 }
1218 bucket_cache_reclaim(zone, true);
1219 }
1220
1221 static void
1222 cache_shrink(uma_zone_t zone, void *unused)
1223 {
1224
1225 if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
1226 return;
1227
1228 zone->uz_bucket_size =
1229 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2;
1230 }
1231
1232 static void
1233 cache_drain_safe_cpu(uma_zone_t zone, void *unused)
1234 {
1235 uma_cache_t cache;
1236 uma_bucket_t b1, b2, b3;
1237 int domain;
1238
1239 if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
1240 return;
1241
1242 b1 = b2 = b3 = NULL;
1243 critical_enter();
1244 cache = &zone->uz_cpu[curcpu];
1245 domain = PCPU_GET(domain);
1246 b1 = cache_bucket_unload_alloc(cache);
1247
1248 /*
1249 * Don't flush SMR zone buckets. This leaves the zone without a
1250 * bucket and forces every free to synchronize().
1251 */
1252 if ((zone->uz_flags & UMA_ZONE_SMR) == 0) {
1253 b2 = cache_bucket_unload_free(cache);
1254 b3 = cache_bucket_unload_cross(cache);
1255 }
1256 critical_exit();
1257
1258 if (b1 != NULL)
1259 zone_free_bucket(zone, b1, NULL, domain, false);
1260 if (b2 != NULL)
1261 zone_free_bucket(zone, b2, NULL, domain, false);
1262 if (b3 != NULL) {
1263 /* Adjust the domain so it goes to zone_free_cross. */
1264 domain = (domain + 1) % vm_ndomains;
1265 zone_free_bucket(zone, b3, NULL, domain, false);
1266 }
1267 }
1268
1269 /*
1270 * Safely drain per-CPU caches of a zone(s) to alloc bucket.
1271 * This is an expensive call because it needs to bind to all CPUs
1272 * one by one and enter a critical section on each of them in order
1273 * to safely access their cache buckets.
1274 * Zone lock must not be held on call this function.
1275 */
1276 static void
1277 pcpu_cache_drain_safe(uma_zone_t zone)
1278 {
1279 int cpu;
1280
1281 /*
1282 * Polite bucket sizes shrinking was not enough, shrink aggressively.
1283 */
1284 if (zone)
1285 cache_shrink(zone, NULL);
1286 else
1287 zone_foreach(cache_shrink, NULL);
1288
1289 CPU_FOREACH(cpu) {
1290 thread_lock(curthread);
1291 sched_bind(curthread, cpu);
1292 thread_unlock(curthread);
1293
1294 if (zone)
1295 cache_drain_safe_cpu(zone, NULL);
1296 else
1297 zone_foreach(cache_drain_safe_cpu, NULL);
1298 }
1299 thread_lock(curthread);
1300 sched_unbind(curthread);
1301 thread_unlock(curthread);
1302 }
1303
1304 /*
1305 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller
1306 * requested a drain, otherwise the per-domain caches are trimmed to either
1307 * estimated working set size.
1308 */
1309 static void
1310 bucket_cache_reclaim(uma_zone_t zone, bool drain)
1311 {
1312 uma_zone_domain_t zdom;
1313 uma_bucket_t bucket;
1314 long target;
1315 int i;
1316
1317 /*
1318 * Shrink the zone bucket size to ensure that the per-CPU caches
1319 * don't grow too large.
1320 */
1321 if (zone->uz_bucket_size > zone->uz_bucket_size_min)
1322 zone->uz_bucket_size--;
1323
1324 for (i = 0; i < vm_ndomains; i++) {
1325 /*
1326 * The cross bucket is partially filled and not part of
1327 * the item count. Reclaim it individually here.
1328 */
1329 zdom = ZDOM_GET(zone, i);
1330 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) {
1331 ZONE_CROSS_LOCK(zone);
1332 bucket = zdom->uzd_cross;
1333 zdom->uzd_cross = NULL;
1334 ZONE_CROSS_UNLOCK(zone);
1335 if (bucket != NULL)
1336 bucket_free(zone, bucket, NULL);
1337 }
1338
1339 /*
1340 * If we were asked to drain the zone, we are done only once
1341 * this bucket cache is empty. Otherwise, we reclaim items in
1342 * excess of the zone's estimated working set size. If the
1343 * difference nitems - imin is larger than the WSS estimate,
1344 * then the estimate will grow at the end of this interval and
1345 * we ignore the historical average.
1346 */
1347 ZDOM_LOCK(zdom);
1348 target = drain ? 0 : lmax(zdom->uzd_wss, zdom->uzd_nitems -
1349 zdom->uzd_imin);
1350 while (zdom->uzd_nitems > target) {
1351 bucket = zone_fetch_bucket(zone, zdom, true);
1352 if (bucket == NULL)
1353 break;
1354 bucket_free(zone, bucket, NULL);
1355 ZDOM_LOCK(zdom);
1356 }
1357 ZDOM_UNLOCK(zdom);
1358 }
1359 }
1360
1361 static void
1362 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
1363 {
1364 uint8_t *mem;
1365 int i;
1366 uint8_t flags;
1367
1368 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes",
1369 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera);
1370
1371 mem = slab_data(slab, keg);
1372 flags = slab->us_flags;
1373 i = start;
1374 if (keg->uk_fini != NULL) {
1375 for (i--; i > -1; i--)
1376 #ifdef INVARIANTS
1377 /*
1378 * trash_fini implies that dtor was trash_dtor. trash_fini
1379 * would check that memory hasn't been modified since free,
1380 * which executed trash_dtor.
1381 * That's why we need to run uma_dbg_kskip() check here,
1382 * albeit we don't make skip check for other init/fini
1383 * invocations.
1384 */
1385 if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) ||
1386 keg->uk_fini != trash_fini)
1387 #endif
1388 keg->uk_fini(slab_item(slab, keg, i), keg->uk_size);
1389 }
1390 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE)
1391 zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab),
1392 NULL, SKIP_NONE);
1393 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags);
1394 uma_total_dec(PAGE_SIZE * keg->uk_ppera);
1395 }
1396
1397 static void
1398 keg_drain_domain(uma_keg_t keg, int domain)
1399 {
1400 struct slabhead freeslabs;
1401 uma_domain_t dom;
1402 uma_slab_t slab, tmp;
1403 uint32_t i, stofree, stokeep, partial;
1404
1405 dom = &keg->uk_domain[domain];
1406 LIST_INIT(&freeslabs);
1407
1408 CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u",
1409 keg->uk_name, keg, domain, dom->ud_free_items);
1410
1411 KEG_LOCK(keg, domain);
1412
1413 /*
1414 * Are the free items in partially allocated slabs sufficient to meet
1415 * the reserve? If not, compute the number of fully free slabs that must
1416 * be kept.
1417 */
1418 partial = dom->ud_free_items - dom->ud_free_slabs * keg->uk_ipers;
1419 if (partial < keg->uk_reserve) {
1420 stokeep = min(dom->ud_free_slabs,
1421 howmany(keg->uk_reserve - partial, keg->uk_ipers));
1422 } else {
1423 stokeep = 0;
1424 }
1425 stofree = dom->ud_free_slabs - stokeep;
1426
1427 /*
1428 * Partition the free slabs into two sets: those that must be kept in
1429 * order to maintain the reserve, and those that may be released back to
1430 * the system. Since one set may be much larger than the other,
1431 * populate the smaller of the two sets and swap them if necessary.
1432 */
1433 for (i = min(stofree, stokeep); i > 0; i--) {
1434 slab = LIST_FIRST(&dom->ud_free_slab);
1435 LIST_REMOVE(slab, us_link);
1436 LIST_INSERT_HEAD(&freeslabs, slab, us_link);
1437 }
1438 if (stofree > stokeep)
1439 LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link);
1440
1441 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) {
1442 LIST_FOREACH(slab, &freeslabs, us_link)
1443 UMA_HASH_REMOVE(&keg->uk_hash, slab);
1444 }
1445 dom->ud_free_items -= stofree * keg->uk_ipers;
1446 dom->ud_free_slabs -= stofree;
1447 dom->ud_pages -= stofree * keg->uk_ppera;
1448 KEG_UNLOCK(keg, domain);
1449
1450 LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp)
1451 keg_free_slab(keg, slab, keg->uk_ipers);
1452 }
1453
1454 /*
1455 * Frees pages from a keg back to the system. This is done on demand from
1456 * the pageout daemon.
1457 *
1458 * Returns nothing.
1459 */
1460 static void
1461 keg_drain(uma_keg_t keg)
1462 {
1463 int i;
1464
1465 if ((keg->uk_flags & UMA_ZONE_NOFREE) != 0)
1466 return;
1467 for (i = 0; i < vm_ndomains; i++)
1468 keg_drain_domain(keg, i);
1469 }
1470
1471 static void
1472 zone_reclaim(uma_zone_t zone, int waitok, bool drain)
1473 {
1474
1475 /*
1476 * Set draining to interlock with zone_dtor() so we can release our
1477 * locks as we go. Only dtor() should do a WAITOK call since it
1478 * is the only call that knows the structure will still be available
1479 * when it wakes up.
1480 */
1481 ZONE_LOCK(zone);
1482 while (zone->uz_flags & UMA_ZFLAG_RECLAIMING) {
1483 if (waitok == M_NOWAIT)
1484 goto out;
1485 msleep(zone, &ZDOM_GET(zone, 0)->uzd_lock, PVM, "zonedrain",
1486 1);
1487 }
1488 zone->uz_flags |= UMA_ZFLAG_RECLAIMING;
1489 ZONE_UNLOCK(zone);
1490 bucket_cache_reclaim(zone, drain);
1491
1492 /*
1493 * The DRAINING flag protects us from being freed while
1494 * we're running. Normally the uma_rwlock would protect us but we
1495 * must be able to release and acquire the right lock for each keg.
1496 */
1497 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0)
1498 keg_drain(zone->uz_keg);
1499 ZONE_LOCK(zone);
1500 zone->uz_flags &= ~UMA_ZFLAG_RECLAIMING;
1501 wakeup(zone);
1502 out:
1503 ZONE_UNLOCK(zone);
1504 }
1505
1506 static void
1507 zone_drain(uma_zone_t zone, void *unused)
1508 {
1509
1510 zone_reclaim(zone, M_NOWAIT, true);
1511 }
1512
1513 static void
1514 zone_trim(uma_zone_t zone, void *unused)
1515 {
1516
1517 zone_reclaim(zone, M_NOWAIT, false);
1518 }
1519
1520 /*
1521 * Allocate a new slab for a keg and inserts it into the partial slab list.
1522 * The keg should be unlocked on entry. If the allocation succeeds it will
1523 * be locked on return.
1524 *
1525 * Arguments:
1526 * flags Wait flags for the item initialization routine
1527 * aflags Wait flags for the slab allocation
1528 *
1529 * Returns:
1530 * The slab that was allocated or NULL if there is no memory and the
1531 * caller specified M_NOWAIT.
1532 */
1533 static uma_slab_t
1534 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags,
1535 int aflags)
1536 {
1537 uma_domain_t dom;
1538 uma_alloc allocf;
1539 uma_slab_t slab;
1540 unsigned long size;
1541 uint8_t *mem;
1542 uint8_t sflags;
1543 int i;
1544
1545 KASSERT(domain >= 0 && domain < vm_ndomains,
1546 ("keg_alloc_slab: domain %d out of range", domain));
1547
1548 allocf = keg->uk_allocf;
1549 slab = NULL;
1550 mem = NULL;
1551 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) {
1552 uma_hash_slab_t hslab;
1553 hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL,
1554 domain, aflags);
1555 if (hslab == NULL)
1556 goto fail;
1557 slab = &hslab->uhs_slab;
1558 }
1559
1560 /*
1561 * This reproduces the old vm_zone behavior of zero filling pages the
1562 * first time they are added to a zone.
1563 *
1564 * Malloced items are zeroed in uma_zalloc.
1565 */
1566
1567 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
1568 aflags |= M_ZERO;
1569 else
1570 aflags &= ~M_ZERO;
1571
1572 if (keg->uk_flags & UMA_ZONE_NODUMP)
1573 aflags |= M_NODUMP;
1574
1575 /* zone is passed for legacy reasons. */
1576 size = keg->uk_ppera * PAGE_SIZE;
1577 mem = allocf(zone, size, domain, &sflags, aflags);
1578 if (mem == NULL) {
1579 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE)
1580 zone_free_item(slabzone(keg->uk_ipers),
1581 slab_tohashslab(slab), NULL, SKIP_NONE);
1582 goto fail;
1583 }
1584 uma_total_inc(size);
1585
1586 /* For HASH zones all pages go to the same uma_domain. */
1587 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0)
1588 domain = 0;
1589
1590 /* Point the slab into the allocated memory */
1591 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE))
1592 slab = (uma_slab_t )(mem + keg->uk_pgoff);
1593 else
1594 slab_tohashslab(slab)->uhs_data = mem;
1595
1596 if (keg->uk_flags & UMA_ZFLAG_VTOSLAB)
1597 for (i = 0; i < keg->uk_ppera; i++)
1598 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE),
1599 zone, slab);
1600
1601 slab->us_freecount = keg->uk_ipers;
1602 slab->us_flags = sflags;
1603 slab->us_domain = domain;
1604
1605 BIT_FILL(keg->uk_ipers, &slab->us_free);
1606 #ifdef INVARIANTS
1607 BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg));
1608 #endif
1609
1610 if (keg->uk_init != NULL) {
1611 for (i = 0; i < keg->uk_ipers; i++)
1612 if (keg->uk_init(slab_item(slab, keg, i),
1613 keg->uk_size, flags) != 0)
1614 break;
1615 if (i != keg->uk_ipers) {
1616 keg_free_slab(keg, slab, i);
1617 goto fail;
1618 }
1619 }
1620 KEG_LOCK(keg, domain);
1621
1622 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)",
1623 slab, keg->uk_name, keg);
1624
1625 if (keg->uk_flags & UMA_ZFLAG_HASH)
1626 UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
1627
1628 /*
1629 * If we got a slab here it's safe to mark it partially used
1630 * and return. We assume that the caller is going to remove
1631 * at least one item.
1632 */
1633 dom = &keg->uk_domain[domain];
1634 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
1635 dom->ud_pages += keg->uk_ppera;
1636 dom->ud_free_items += keg->uk_ipers;
1637
1638 return (slab);
1639
1640 fail:
1641 return (NULL);
1642 }
1643
1644 /*
1645 * This function is intended to be used early on in place of page_alloc() so
1646 * that we may use the boot time page cache to satisfy allocations before
1647 * the VM is ready.
1648 */
1649 static void *
1650 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1651 int wait)
1652 {
1653 vm_paddr_t pa;
1654 vm_page_t m;
1655 void *mem;
1656 int pages;
1657 int i;
1658
1659 pages = howmany(bytes, PAGE_SIZE);
1660 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__));
1661
1662 *pflag = UMA_SLAB_BOOT;
1663 m = vm_page_alloc_contig_domain(NULL, 0, domain,
1664 malloc2vm_flags(wait) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED, pages,
1665 (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT);
1666 if (m == NULL)
1667 return (NULL);
1668
1669 pa = VM_PAGE_TO_PHYS(m);
1670 for (i = 0; i < pages; i++, pa += PAGE_SIZE) {
1671 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
1672 defined(__riscv) || defined(__powerpc64__)
1673 if ((wait & M_NODUMP) == 0)
1674 dump_add_page(pa);
1675 #endif
1676 }
1677 /* Allocate KVA and indirectly advance bootmem. */
1678 mem = (void *)pmap_map(&bootmem, m->phys_addr,
1679 m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE);
1680 if ((wait & M_ZERO) != 0)
1681 bzero(mem, pages * PAGE_SIZE);
1682
1683 return (mem);
1684 }
1685
1686 static void
1687 startup_free(void *mem, vm_size_t bytes)
1688 {
1689 vm_offset_t va;
1690 vm_page_t m;
1691
1692 va = (vm_offset_t)mem;
1693 m = PHYS_TO_VM_PAGE(pmap_kextract(va));
1694
1695 /*
1696 * startup_alloc() returns direct-mapped slabs on some platforms. Avoid
1697 * unmapping ranges of the direct map.
1698 */
1699 if (va >= bootstart && va + bytes <= bootmem)
1700 pmap_remove(kernel_pmap, va, va + bytes);
1701 for (; bytes != 0; bytes -= PAGE_SIZE, m++) {
1702 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \
1703 defined(__riscv) || defined(__powerpc64__)
1704 dump_drop_page(VM_PAGE_TO_PHYS(m));
1705 #endif
1706 vm_page_unwire_noq(m);
1707 vm_page_free(m);
1708 }
1709 }
1710
1711 /*
1712 * Allocates a number of pages from the system
1713 *
1714 * Arguments:
1715 * bytes The number of bytes requested
1716 * wait Shall we wait?
1717 *
1718 * Returns:
1719 * A pointer to the alloced memory or possibly
1720 * NULL if M_NOWAIT is set.
1721 */
1722 static void *
1723 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1724 int wait)
1725 {
1726 void *p; /* Returned page */
1727
1728 *pflag = UMA_SLAB_KERNEL;
1729 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait);
1730
1731 return (p);
1732 }
1733
1734 static void *
1735 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1736 int wait)
1737 {
1738 struct pglist alloctail;
1739 vm_offset_t addr, zkva;
1740 int cpu, flags;
1741 vm_page_t p, p_next;
1742 #ifdef NUMA
1743 struct pcpu *pc;
1744 #endif
1745
1746 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE);
1747
1748 TAILQ_INIT(&alloctail);
1749 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ |
1750 malloc2vm_flags(wait);
1751 *pflag = UMA_SLAB_KERNEL;
1752 for (cpu = 0; cpu <= mp_maxid; cpu++) {
1753 if (CPU_ABSENT(cpu)) {
1754 p = vm_page_alloc(NULL, 0, flags);
1755 } else {
1756 #ifndef NUMA
1757 p = vm_page_alloc(NULL, 0, flags);
1758 #else
1759 pc = pcpu_find(cpu);
1760 if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain)))
1761 p = NULL;
1762 else
1763 p = vm_page_alloc_domain(NULL, 0,
1764 pc->pc_domain, flags);
1765 if (__predict_false(p == NULL))
1766 p = vm_page_alloc(NULL, 0, flags);
1767 #endif
1768 }
1769 if (__predict_false(p == NULL))
1770 goto fail;
1771 TAILQ_INSERT_TAIL(&alloctail, p, listq);
1772 }
1773 if ((addr = kva_alloc(bytes)) == 0)
1774 goto fail;
1775 zkva = addr;
1776 TAILQ_FOREACH(p, &alloctail, listq) {
1777 pmap_qenter(zkva, &p, 1);
1778 zkva += PAGE_SIZE;
1779 }
1780 return ((void*)addr);
1781 fail:
1782 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1783 vm_page_unwire_noq(p);
1784 vm_page_free(p);
1785 }
1786 return (NULL);
1787 }
1788
1789 /*
1790 * Allocates a number of pages from within an object
1791 *
1792 * Arguments:
1793 * bytes The number of bytes requested
1794 * wait Shall we wait?
1795 *
1796 * Returns:
1797 * A pointer to the alloced memory or possibly
1798 * NULL if M_NOWAIT is set.
1799 */
1800 static void *
1801 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags,
1802 int wait)
1803 {
1804 TAILQ_HEAD(, vm_page) alloctail;
1805 u_long npages;
1806 vm_offset_t retkva, zkva;
1807 vm_page_t p, p_next;
1808 uma_keg_t keg;
1809
1810 TAILQ_INIT(&alloctail);
1811 keg = zone->uz_keg;
1812
1813 npages = howmany(bytes, PAGE_SIZE);
1814 while (npages > 0) {
1815 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT |
1816 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ |
1817 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK :
1818 VM_ALLOC_NOWAIT));
1819 if (p != NULL) {
1820 /*
1821 * Since the page does not belong to an object, its
1822 * listq is unused.
1823 */
1824 TAILQ_INSERT_TAIL(&alloctail, p, listq);
1825 npages--;
1826 continue;
1827 }
1828 /*
1829 * Page allocation failed, free intermediate pages and
1830 * exit.
1831 */
1832 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1833 vm_page_unwire_noq(p);
1834 vm_page_free(p);
1835 }
1836 return (NULL);
1837 }
1838 *flags = UMA_SLAB_PRIV;
1839 zkva = keg->uk_kva +
1840 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
1841 retkva = zkva;
1842 TAILQ_FOREACH(p, &alloctail, listq) {
1843 pmap_qenter(zkva, &p, 1);
1844 zkva += PAGE_SIZE;
1845 }
1846
1847 return ((void *)retkva);
1848 }
1849
1850 /*
1851 * Allocate physically contiguous pages.
1852 */
1853 static void *
1854 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
1855 int wait)
1856 {
1857
1858 *pflag = UMA_SLAB_KERNEL;
1859 return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain),
1860 bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT));
1861 }
1862
1863 /*
1864 * Frees a number of pages to the system
1865 *
1866 * Arguments:
1867 * mem A pointer to the memory to be freed
1868 * size The size of the memory being freed
1869 * flags The original p->us_flags field
1870 *
1871 * Returns:
1872 * Nothing
1873 */
1874 static void
1875 page_free(void *mem, vm_size_t size, uint8_t flags)
1876 {
1877
1878 if ((flags & UMA_SLAB_BOOT) != 0) {
1879 startup_free(mem, size);
1880 return;
1881 }
1882
1883 KASSERT((flags & UMA_SLAB_KERNEL) != 0,
1884 ("UMA: page_free used with invalid flags %x", flags));
1885
1886 kmem_free((vm_offset_t)mem, size);
1887 }
1888
1889 /*
1890 * Frees pcpu zone allocations
1891 *
1892 * Arguments:
1893 * mem A pointer to the memory to be freed
1894 * size The size of the memory being freed
1895 * flags The original p->us_flags field
1896 *
1897 * Returns:
1898 * Nothing
1899 */
1900 static void
1901 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags)
1902 {
1903 vm_offset_t sva, curva;
1904 vm_paddr_t paddr;
1905 vm_page_t m;
1906
1907 MPASS(size == (mp_maxid+1)*PAGE_SIZE);
1908
1909 if ((flags & UMA_SLAB_BOOT) != 0) {
1910 startup_free(mem, size);
1911 return;
1912 }
1913
1914 sva = (vm_offset_t)mem;
1915 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) {
1916 paddr = pmap_kextract(curva);
1917 m = PHYS_TO_VM_PAGE(paddr);
1918 vm_page_unwire_noq(m);
1919 vm_page_free(m);
1920 }
1921 pmap_qremove(sva, size >> PAGE_SHIFT);
1922 kva_free(sva, size);
1923 }
1924
1925 /*
1926 * Zero fill initializer
1927 *
1928 * Arguments/Returns follow uma_init specifications
1929 */
1930 static int
1931 zero_init(void *mem, int size, int flags)
1932 {
1933 bzero(mem, size);
1934 return (0);
1935 }
1936
1937 #ifdef INVARIANTS
1938 static struct noslabbits *
1939 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg)
1940 {
1941
1942 return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers)));
1943 }
1944 #endif
1945
1946 /*
1947 * Actual size of embedded struct slab (!OFFPAGE).
1948 */
1949 static size_t
1950 slab_sizeof(int nitems)
1951 {
1952 size_t s;
1953
1954 s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS;
1955 return (roundup(s, UMA_ALIGN_PTR + 1));
1956 }
1957
1958 #define UMA_FIXPT_SHIFT 31
1959 #define UMA_FRAC_FIXPT(n, d) \
1960 ((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d)))
1961 #define UMA_FIXPT_PCT(f) \
1962 ((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT))
1963 #define UMA_PCT_FIXPT(pct) UMA_FRAC_FIXPT((pct), 100)
1964 #define UMA_MIN_EFF UMA_PCT_FIXPT(100 - UMA_MAX_WASTE)
1965
1966 /*
1967 * Compute the number of items that will fit in a slab. If hdr is true, the
1968 * item count may be limited to provide space in the slab for an inline slab
1969 * header. Otherwise, all slab space will be provided for item storage.
1970 */
1971 static u_int
1972 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr)
1973 {
1974 u_int ipers;
1975 u_int padpi;
1976
1977 /* The padding between items is not needed after the last item. */
1978 padpi = rsize - size;
1979
1980 if (hdr) {
1981 /*
1982 * Start with the maximum item count and remove items until
1983 * the slab header first alongside the allocatable memory.
1984 */
1985 for (ipers = MIN(SLAB_MAX_SETSIZE,
1986 (slabsize + padpi - slab_sizeof(1)) / rsize);
1987 ipers > 0 &&
1988 ipers * rsize - padpi + slab_sizeof(ipers) > slabsize;
1989 ipers--)
1990 continue;
1991 } else {
1992 ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE);
1993 }
1994
1995 return (ipers);
1996 }
1997
1998 struct keg_layout_result {
1999 u_int format;
2000 u_int slabsize;
2001 u_int ipers;
2002 u_int eff;
2003 };
2004
2005 static void
2006 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt,
2007 struct keg_layout_result *kl)
2008 {
2009 u_int total;
2010
2011 kl->format = fmt;
2012 kl->slabsize = slabsize;
2013
2014 /* Handle INTERNAL as inline with an extra page. */
2015 if ((fmt & UMA_ZFLAG_INTERNAL) != 0) {
2016 kl->format &= ~UMA_ZFLAG_INTERNAL;
2017 kl->slabsize += PAGE_SIZE;
2018 }
2019
2020 kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize,
2021 (fmt & UMA_ZFLAG_OFFPAGE) == 0);
2022
2023 /* Account for memory used by an offpage slab header. */
2024 total = kl->slabsize;
2025 if ((fmt & UMA_ZFLAG_OFFPAGE) != 0)
2026 total += slabzone(kl->ipers)->uz_keg->uk_rsize;
2027
2028 kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total);
2029 }
2030
2031 /*
2032 * Determine the format of a uma keg. This determines where the slab header
2033 * will be placed (inline or offpage) and calculates ipers, rsize, and ppera.
2034 *
2035 * Arguments
2036 * keg The zone we should initialize
2037 *
2038 * Returns
2039 * Nothing
2040 */
2041 static void
2042 keg_layout(uma_keg_t keg)
2043 {
2044 struct keg_layout_result kl = {}, kl_tmp;
2045 u_int fmts[2];
2046 u_int alignsize;
2047 u_int nfmt;
2048 u_int pages;
2049 u_int rsize;
2050 u_int slabsize;
2051 u_int i, j;
2052
2053 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
2054 (keg->uk_size <= UMA_PCPU_ALLOC_SIZE &&
2055 (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0),
2056 ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b",
2057 __func__, keg->uk_name, keg->uk_size, keg->uk_flags,
2058 PRINT_UMA_ZFLAGS));
2059 KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 ||
2060 (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0,
2061 ("%s: incompatible flags 0x%b", __func__, keg->uk_flags,
2062 PRINT_UMA_ZFLAGS));
2063
2064 alignsize = keg->uk_align + 1;
2065
2066 /*
2067 * Calculate the size of each allocation (rsize) according to
2068 * alignment. If the requested size is smaller than we have
2069 * allocation bits for we round it up.
2070 */
2071 rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT);
2072 rsize = roundup2(rsize, alignsize);
2073
2074 if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) {
2075 /*
2076 * We want one item to start on every align boundary in a page.
2077 * To do this we will span pages. We will also extend the item
2078 * by the size of align if it is an even multiple of align.
2079 * Otherwise, it would fall on the same boundary every time.
2080 */
2081 if ((rsize & alignsize) == 0)
2082 rsize += alignsize;
2083 slabsize = rsize * (PAGE_SIZE / alignsize);
2084 slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE);
2085 slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE);
2086 slabsize = round_page(slabsize);
2087 } else {
2088 /*
2089 * Start with a slab size of as many pages as it takes to
2090 * represent a single item. We will try to fit as many
2091 * additional items into the slab as possible.
2092 */
2093 slabsize = round_page(keg->uk_size);
2094 }
2095
2096 /* Build a list of all of the available formats for this keg. */
2097 nfmt = 0;
2098
2099 /* Evaluate an inline slab layout. */
2100 if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0)
2101 fmts[nfmt++] = 0;
2102
2103 /* TODO: vm_page-embedded slab. */
2104
2105 /*
2106 * We can't do OFFPAGE if we're internal or if we've been
2107 * asked to not go to the VM for buckets. If we do this we
2108 * may end up going to the VM for slabs which we do not want
2109 * to do if we're UMA_ZONE_VM, which clearly forbids it.
2110 * In those cases, evaluate a pseudo-format called INTERNAL
2111 * which has an inline slab header and one extra page to
2112 * guarantee that it fits.
2113 *
2114 * Otherwise, see if using an OFFPAGE slab will improve our
2115 * efficiency.
2116 */
2117 if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0)
2118 fmts[nfmt++] = UMA_ZFLAG_INTERNAL;
2119 else
2120 fmts[nfmt++] = UMA_ZFLAG_OFFPAGE;
2121
2122 /*
2123 * Choose a slab size and format which satisfy the minimum efficiency.
2124 * Prefer the smallest slab size that meets the constraints.
2125 *
2126 * Start with a minimum slab size, to accommodate CACHESPREAD. Then,
2127 * for small items (up to PAGE_SIZE), the iteration increment is one
2128 * page; and for large items, the increment is one item.
2129 */
2130 i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize);
2131 KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u",
2132 keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize,
2133 rsize, i));
2134 for ( ; ; i++) {
2135 slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) :
2136 round_page(rsize * (i - 1) + keg->uk_size);
2137
2138 for (j = 0; j < nfmt; j++) {
2139 /* Only if we have no viable format yet. */
2140 if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 &&
2141 kl.ipers > 0)
2142 continue;
2143
2144 keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp);
2145 if (kl_tmp.eff <= kl.eff)
2146 continue;
2147
2148 kl = kl_tmp;
2149
2150 CTR6(KTR_UMA, "keg %s layout: format %#x "
2151 "(ipers %u * rsize %u) / slabsize %#x = %u%% eff",
2152 keg->uk_name, kl.format, kl.ipers, rsize,
2153 kl.slabsize, UMA_FIXPT_PCT(kl.eff));
2154
2155 /* Stop when we reach the minimum efficiency. */
2156 if (kl.eff >= UMA_MIN_EFF)
2157 break;
2158 }
2159
2160 if (kl.eff >= UMA_MIN_EFF || !multipage_slabs ||
2161 slabsize >= SLAB_MAX_SETSIZE * rsize ||
2162 (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0)
2163 break;
2164 }
2165
2166 pages = atop(kl.slabsize);
2167 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0)
2168 pages *= mp_maxid + 1;
2169
2170 keg->uk_rsize = rsize;
2171 keg->uk_ipers = kl.ipers;
2172 keg->uk_ppera = pages;
2173 keg->uk_flags |= kl.format;
2174
2175 /*
2176 * How do we find the slab header if it is offpage or if not all item
2177 * start addresses are in the same page? We could solve the latter
2178 * case with vaddr alignment, but we don't.
2179 */
2180 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 ||
2181 (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) {
2182 if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0)
2183 keg->uk_flags |= UMA_ZFLAG_HASH;
2184 else
2185 keg->uk_flags |= UMA_ZFLAG_VTOSLAB;
2186 }
2187
2188 CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u",
2189 __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers,
2190 pages);
2191 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE,
2192 ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__,
2193 keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize,
2194 keg->uk_ipers, pages));
2195 }
2196
2197 /*
2198 * Keg header ctor. This initializes all fields, locks, etc. And inserts
2199 * the keg onto the global keg list.
2200 *
2201 * Arguments/Returns follow uma_ctor specifications
2202 * udata Actually uma_kctor_args
2203 */
2204 static int
2205 keg_ctor(void *mem, int size, void *udata, int flags)
2206 {
2207 struct uma_kctor_args *arg = udata;
2208 uma_keg_t keg = mem;
2209 uma_zone_t zone;
2210 int i;
2211
2212 bzero(keg, size);
2213 keg->uk_size = arg->size;
2214 keg->uk_init = arg->uminit;
2215 keg->uk_fini = arg->fini;
2216 keg->uk_align = arg->align;
2217 keg->uk_reserve = 0;
2218 keg->uk_flags = arg->flags;
2219
2220 /*
2221 * We use a global round-robin policy by default. Zones with
2222 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which
2223 * case the iterator is never run.
2224 */
2225 keg->uk_dr.dr_policy = DOMAINSET_RR();
2226 keg->uk_dr.dr_iter = 0;
2227
2228 /*
2229 * The primary zone is passed to us at keg-creation time.
2230 */
2231 zone = arg->zone;
2232 keg->uk_name = zone->uz_name;
2233
2234 if (arg->flags & UMA_ZONE_ZINIT)
2235 keg->uk_init = zero_init;
2236
2237 if (arg->flags & UMA_ZONE_MALLOC)
2238 keg->uk_flags |= UMA_ZFLAG_VTOSLAB;
2239
2240 #ifndef SMP
2241 keg->uk_flags &= ~UMA_ZONE_PCPU;
2242 #endif
2243
2244 keg_layout(keg);
2245
2246 /*
2247 * Use a first-touch NUMA policy for kegs that pmap_extract() will
2248 * work on. Use round-robin for everything else.
2249 *
2250 * Zones may override the default by specifying either.
2251 */
2252 #ifdef NUMA
2253 if ((keg->uk_flags &
2254 (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0)
2255 keg->uk_flags |= UMA_ZONE_FIRSTTOUCH;
2256 else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0)
2257 keg->uk_flags |= UMA_ZONE_ROUNDROBIN;
2258 #endif
2259
2260 /*
2261 * If we haven't booted yet we need allocations to go through the
2262 * startup cache until the vm is ready.
2263 */
2264 #ifdef UMA_MD_SMALL_ALLOC
2265 if (keg->uk_ppera == 1)
2266 keg->uk_allocf = uma_small_alloc;
2267 else
2268 #endif
2269 if (booted < BOOT_KVA)
2270 keg->uk_allocf = startup_alloc;
2271 else if (keg->uk_flags & UMA_ZONE_PCPU)
2272 keg->uk_allocf = pcpu_page_alloc;
2273 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1)
2274 keg->uk_allocf = contig_alloc;
2275 else
2276 keg->uk_allocf = page_alloc;
2277 #ifdef UMA_MD_SMALL_ALLOC
2278 if (keg->uk_ppera == 1)
2279 keg->uk_freef = uma_small_free;
2280 else
2281 #endif
2282 if (keg->uk_flags & UMA_ZONE_PCPU)
2283 keg->uk_freef = pcpu_page_free;
2284 else
2285 keg->uk_freef = page_free;
2286
2287 /*
2288 * Initialize keg's locks.
2289 */
2290 for (i = 0; i < vm_ndomains; i++)
2291 KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS));
2292
2293 /*
2294 * If we're putting the slab header in the actual page we need to
2295 * figure out where in each page it goes. See slab_sizeof
2296 * definition.
2297 */
2298 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) {
2299 size_t shsize;
2300
2301 shsize = slab_sizeof(keg->uk_ipers);
2302 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize;
2303 /*
2304 * The only way the following is possible is if with our
2305 * UMA_ALIGN_PTR adjustments we are now bigger than
2306 * UMA_SLAB_SIZE. I haven't checked whether this is
2307 * mathematically possible for all cases, so we make
2308 * sure here anyway.
2309 */
2310 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera,
2311 ("zone %s ipers %d rsize %d size %d slab won't fit",
2312 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size));
2313 }
2314
2315 if (keg->uk_flags & UMA_ZFLAG_HASH)
2316 hash_alloc(&keg->uk_hash, 0);
2317
2318 CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone);
2319
2320 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
2321
2322 rw_wlock(&uma_rwlock);
2323 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
2324 rw_wunlock(&uma_rwlock);
2325 return (0);
2326 }
2327
2328 static void
2329 zone_kva_available(uma_zone_t zone, void *unused)
2330 {
2331 uma_keg_t keg;
2332
2333 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
2334 return;
2335 KEG_GET(zone, keg);
2336
2337 if (keg->uk_allocf == startup_alloc) {
2338 /* Switch to the real allocator. */
2339 if (keg->uk_flags & UMA_ZONE_PCPU)
2340 keg->uk_allocf = pcpu_page_alloc;
2341 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 &&
2342 keg->uk_ppera > 1)
2343 keg->uk_allocf = contig_alloc;
2344 else
2345 keg->uk_allocf = page_alloc;
2346 }
2347 }
2348
2349 static void
2350 zone_alloc_counters(uma_zone_t zone, void *unused)
2351 {
2352
2353 zone->uz_allocs = counter_u64_alloc(M_WAITOK);
2354 zone->uz_frees = counter_u64_alloc(M_WAITOK);
2355 zone->uz_fails = counter_u64_alloc(M_WAITOK);
2356 zone->uz_xdomain = counter_u64_alloc(M_WAITOK);
2357 }
2358
2359 static void
2360 zone_alloc_sysctl(uma_zone_t zone, void *unused)
2361 {
2362 uma_zone_domain_t zdom;
2363 uma_domain_t dom;
2364 uma_keg_t keg;
2365 struct sysctl_oid *oid, *domainoid;
2366 int domains, i, cnt;
2367 static const char *nokeg = "cache zone";
2368 char *c;
2369
2370 /*
2371 * Make a sysctl safe copy of the zone name by removing
2372 * any special characters and handling dups by appending
2373 * an index.
2374 */
2375 if (zone->uz_namecnt != 0) {
2376 /* Count the number of decimal digits and '_' separator. */
2377 for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++)
2378 cnt /= 10;
2379 zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1,
2380 M_UMA, M_WAITOK);
2381 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name,
2382 zone->uz_namecnt);
2383 } else
2384 zone->uz_ctlname = strdup(zone->uz_name, M_UMA);
2385 for (c = zone->uz_ctlname; *c != '\0'; c++)
2386 if (strchr("./\\ -", *c) != NULL)
2387 *c = '_';
2388
2389 /*
2390 * Basic parameters at the root.
2391 */
2392 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma),
2393 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2394 oid = zone->uz_oid;
2395 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2396 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size");
2397 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2398 "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE,
2399 zone, 0, sysctl_handle_uma_zone_flags, "A",
2400 "Allocator configuration flags");
2401 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2402 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0,
2403 "Desired per-cpu cache size");
2404 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2405 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0,
2406 "Maximum allowed per-cpu cache size");
2407
2408 /*
2409 * keg if present.
2410 */
2411 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0)
2412 domains = vm_ndomains;
2413 else
2414 domains = 1;
2415 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2416 "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2417 keg = zone->uz_keg;
2418 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) {
2419 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2420 "name", CTLFLAG_RD, keg->uk_name, "Keg name");
2421 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2422 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0,
2423 "Real object size with alignment");
2424 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2425 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0,
2426 "pages per-slab allocation");
2427 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2428 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0,
2429 "items available per-slab");
2430 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2431 "align", CTLFLAG_RD, &keg->uk_align, 0,
2432 "item alignment mask");
2433 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2434 "reserve", CTLFLAG_RD, &keg->uk_reserve, 0,
2435 "number of reserved items");
2436 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2437 "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE,
2438 keg, 0, sysctl_handle_uma_slab_efficiency, "I",
2439 "Slab utilization (100 - internal fragmentation %)");
2440 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid),
2441 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2442 for (i = 0; i < domains; i++) {
2443 dom = &keg->uk_domain[i];
2444 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid),
2445 OID_AUTO, VM_DOMAIN(i)->vmd_name,
2446 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2447 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2448 "pages", CTLFLAG_RD, &dom->ud_pages, 0,
2449 "Total pages currently allocated from VM");
2450 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2451 "free_items", CTLFLAG_RD, &dom->ud_free_items, 0,
2452 "items free in the slab layer");
2453 }
2454 } else
2455 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2456 "name", CTLFLAG_RD, nokeg, "Keg name");
2457
2458 /*
2459 * Information about zone limits.
2460 */
2461 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2462 "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2463 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2464 "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2465 zone, 0, sysctl_handle_uma_zone_items, "QU",
2466 "Current number of allocated items if limit is set");
2467 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2468 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0,
2469 "Maximum number of allocated and cached items");
2470 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2471 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0,
2472 "Number of threads sleeping at limit");
2473 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2474 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0,
2475 "Total zone limit sleeps");
2476 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2477 "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0,
2478 "Maximum number of items in each domain's bucket cache");
2479
2480 /*
2481 * Per-domain zone information.
2482 */
2483 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid),
2484 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2485 for (i = 0; i < domains; i++) {
2486 zdom = ZDOM_GET(zone, i);
2487 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid),
2488 OID_AUTO, VM_DOMAIN(i)->vmd_name,
2489 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2490 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2491 "nitems", CTLFLAG_RD, &zdom->uzd_nitems,
2492 "number of items in this domain");
2493 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2494 "imax", CTLFLAG_RD, &zdom->uzd_imax,
2495 "maximum item count in this period");
2496 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2497 "imin", CTLFLAG_RD, &zdom->uzd_imin,
2498 "minimum item count in this period");
2499 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2500 "wss", CTLFLAG_RD, &zdom->uzd_wss,
2501 "Working set size");
2502 }
2503
2504 /*
2505 * General statistics.
2506 */
2507 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO,
2508 "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2509 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2510 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE,
2511 zone, 1, sysctl_handle_uma_zone_cur, "I",
2512 "Current number of allocated items");
2513 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2514 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2515 zone, 0, sysctl_handle_uma_zone_allocs, "QU",
2516 "Total allocation calls");
2517 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2518 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE,
2519 zone, 0, sysctl_handle_uma_zone_frees, "QU",
2520 "Total free calls");
2521 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2522 "fails", CTLFLAG_RD, &zone->uz_fails,
2523 "Number of allocation failures");
2524 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO,
2525 "xdomain", CTLFLAG_RD, &zone->uz_xdomain,
2526 "Free calls from the wrong domain");
2527 }
2528
2529 struct uma_zone_count {
2530 const char *name;
2531 int count;
2532 };
2533
2534 static void
2535 zone_count(uma_zone_t zone, void *arg)
2536 {
2537 struct uma_zone_count *cnt;
2538
2539 cnt = arg;
2540 /*
2541 * Some zones are rapidly created with identical names and
2542 * destroyed out of order. This can lead to gaps in the count.
2543 * Use one greater than the maximum observed for this name.
2544 */
2545 if (strcmp(zone->uz_name, cnt->name) == 0)
2546 cnt->count = MAX(cnt->count,
2547 zone->uz_namecnt + 1);
2548 }
2549
2550 static void
2551 zone_update_caches(uma_zone_t zone)
2552 {
2553 int i;
2554
2555 for (i = 0; i <= mp_maxid; i++) {
2556 cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size);
2557 cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags);
2558 }
2559 }
2560
2561 /*
2562 * Zone header ctor. This initializes all fields, locks, etc.
2563 *
2564 * Arguments/Returns follow uma_ctor specifications
2565 * udata Actually uma_zctor_args
2566 */
2567 static int
2568 zone_ctor(void *mem, int size, void *udata, int flags)
2569 {
2570 struct uma_zone_count cnt;
2571 struct uma_zctor_args *arg = udata;
2572 uma_zone_domain_t zdom;
2573 uma_zone_t zone = mem;
2574 uma_zone_t z;
2575 uma_keg_t keg;
2576 int i;
2577
2578 bzero(zone, size);
2579 zone->uz_name = arg->name;
2580 zone->uz_ctor = arg->ctor;
2581 zone->uz_dtor = arg->dtor;
2582 zone->uz_init = NULL;
2583 zone->uz_fini = NULL;
2584 zone->uz_sleeps = 0;
2585 zone->uz_bucket_size = 0;
2586 zone->uz_bucket_size_min = 0;
2587 zone->uz_bucket_size_max = BUCKET_MAX;
2588 zone->uz_flags = (arg->flags & UMA_ZONE_SMR);
2589 zone->uz_warning = NULL;
2590 /* The domain structures follow the cpu structures. */
2591 zone->uz_bucket_max = ULONG_MAX;
2592 timevalclear(&zone->uz_ratecheck);
2593
2594 /* Count the number of duplicate names. */
2595 cnt.name = arg->name;
2596 cnt.count = 0;
2597 zone_foreach(zone_count, &cnt);
2598 zone->uz_namecnt = cnt.count;
2599 ZONE_CROSS_LOCK_INIT(zone);
2600
2601 for (i = 0; i < vm_ndomains; i++) {
2602 zdom = ZDOM_GET(zone, i);
2603 ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS));
2604 STAILQ_INIT(&zdom->uzd_buckets);
2605 }
2606
2607 #ifdef INVARIANTS
2608 if (arg->uminit == trash_init && arg->fini == trash_fini)
2609 zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR;
2610 #endif
2611
2612 /*
2613 * This is a pure cache zone, no kegs.
2614 */
2615 if (arg->import) {
2616 KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0,
2617 ("zone_ctor: Import specified for non-cache zone."));
2618 zone->uz_flags = arg->flags;
2619 zone->uz_size = arg->size;
2620 zone->uz_import = arg->import;
2621 zone->uz_release = arg->release;
2622 zone->uz_arg = arg->arg;
2623 #ifdef NUMA
2624 /*
2625 * Cache zones are round-robin unless a policy is
2626 * specified because they may have incompatible
2627 * constraints.
2628 */
2629 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0)
2630 zone->uz_flags |= UMA_ZONE_ROUNDROBIN;
2631 #endif
2632 rw_wlock(&uma_rwlock);
2633 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link);
2634 rw_wunlock(&uma_rwlock);
2635 goto out;
2636 }
2637
2638 /*
2639 * Use the regular zone/keg/slab allocator.
2640 */
2641 zone->uz_import = zone_import;
2642 zone->uz_release = zone_release;
2643 zone->uz_arg = zone;
2644 keg = arg->keg;
2645
2646 if (arg->flags & UMA_ZONE_SECONDARY) {
2647 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
2648 ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
2649 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
2650 zone->uz_init = arg->uminit;
2651 zone->uz_fini = arg->fini;
2652 zone->uz_flags |= UMA_ZONE_SECONDARY;
2653 rw_wlock(&uma_rwlock);
2654 ZONE_LOCK(zone);
2655 LIST_FOREACH(z, &keg->uk_zones, uz_link) {
2656 if (LIST_NEXT(z, uz_link) == NULL) {
2657 LIST_INSERT_AFTER(z, zone, uz_link);
2658 break;
2659 }
2660 }
2661 ZONE_UNLOCK(zone);
2662 rw_wunlock(&uma_rwlock);
2663 } else if (keg == NULL) {
2664 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
2665 arg->align, arg->flags)) == NULL)
2666 return (ENOMEM);
2667 } else {
2668 struct uma_kctor_args karg;
2669 int error;
2670
2671 /* We should only be here from uma_startup() */
2672 karg.size = arg->size;
2673 karg.uminit = arg->uminit;
2674 karg.fini = arg->fini;
2675 karg.align = arg->align;
2676 karg.flags = (arg->flags & ~UMA_ZONE_SMR);
2677 karg.zone = zone;
2678 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
2679 flags);
2680 if (error)
2681 return (error);
2682 }
2683
2684 /* Inherit properties from the keg. */
2685 zone->uz_keg = keg;
2686 zone->uz_size = keg->uk_size;
2687 zone->uz_flags |= (keg->uk_flags &
2688 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
2689
2690 out:
2691 if (booted >= BOOT_PCPU) {
2692 zone_alloc_counters(zone, NULL);
2693 if (booted >= BOOT_RUNNING)
2694 zone_alloc_sysctl(zone, NULL);
2695 } else {
2696 zone->uz_allocs = EARLY_COUNTER;
2697 zone->uz_frees = EARLY_COUNTER;
2698 zone->uz_fails = EARLY_COUNTER;
2699 }
2700
2701 /* Caller requests a private SMR context. */
2702 if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
2703 zone->uz_smr = smr_create(zone->uz_name, 0, 0);
2704
2705 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) !=
2706 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET),
2707 ("Invalid zone flag combination"));
2708 if (arg->flags & UMA_ZFLAG_INTERNAL)
2709 zone->uz_bucket_size_max = zone->uz_bucket_size = 0;
2710 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0)
2711 zone->uz_bucket_size = BUCKET_MAX;
2712 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0)
2713 zone->uz_bucket_size = 0;
2714 else
2715 zone->uz_bucket_size = bucket_select(zone->uz_size);
2716 zone->uz_bucket_size_min = zone->uz_bucket_size;
2717 if (zone->uz_dtor != NULL || zone->uz_ctor != NULL)
2718 zone->uz_flags |= UMA_ZFLAG_CTORDTOR;
2719 zone_update_caches(zone);
2720
2721 return (0);
2722 }
2723
2724 /*
2725 * Keg header dtor. This frees all data, destroys locks, frees the hash
2726 * table and removes the keg from the global list.
2727 *
2728 * Arguments/Returns follow uma_dtor specifications
2729 * udata unused
2730 */
2731 static void
2732 keg_dtor(void *arg, int size, void *udata)
2733 {
2734 uma_keg_t keg;
2735 uint32_t free, pages;
2736 int i;
2737
2738 keg = (uma_keg_t)arg;
2739 free = pages = 0;
2740 for (i = 0; i < vm_ndomains; i++) {
2741 free += keg->uk_domain[i].ud_free_items;
2742 pages += keg->uk_domain[i].ud_pages;
2743 KEG_LOCK_FINI(keg, i);
2744 }
2745 if (pages != 0)
2746 printf("Freed UMA keg (%s) was not empty (%u items). "
2747 " Lost %u pages of memory.\n",
2748 keg->uk_name ? keg->uk_name : "",
2749 pages / keg->uk_ppera * keg->uk_ipers - free, pages);
2750
2751 hash_free(&keg->uk_hash);
2752 }
2753
2754 /*
2755 * Zone header dtor.
2756 *
2757 * Arguments/Returns follow uma_dtor specifications
2758 * udata unused
2759 */
2760 static void
2761 zone_dtor(void *arg, int size, void *udata)
2762 {
2763 uma_zone_t zone;
2764 uma_keg_t keg;
2765 int i;
2766
2767 zone = (uma_zone_t)arg;
2768
2769 sysctl_remove_oid(zone->uz_oid, 1, 1);
2770
2771 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
2772 cache_drain(zone);
2773
2774 rw_wlock(&uma_rwlock);
2775 LIST_REMOVE(zone, uz_link);
2776 rw_wunlock(&uma_rwlock);
2777 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) {
2778 keg = zone->uz_keg;
2779 keg->uk_reserve = 0;
2780 }
2781 zone_reclaim(zone, M_WAITOK, true);
2782
2783 /*
2784 * We only destroy kegs from non secondary/non cache zones.
2785 */
2786 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) {
2787 keg = zone->uz_keg;
2788 rw_wlock(&uma_rwlock);
2789 LIST_REMOVE(keg, uk_link);
2790 rw_wunlock(&uma_rwlock);
2791 zone_free_item(kegs, keg, NULL, SKIP_NONE);
2792 }
2793 counter_u64_free(zone->uz_allocs);
2794 counter_u64_free(zone->uz_frees);
2795 counter_u64_free(zone->uz_fails);
2796 counter_u64_free(zone->uz_xdomain);
2797 free(zone->uz_ctlname, M_UMA);
2798 for (i = 0; i < vm_ndomains; i++)
2799 ZDOM_LOCK_FINI(ZDOM_GET(zone, i));
2800 ZONE_CROSS_LOCK_FINI(zone);
2801 }
2802
2803 static void
2804 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg)
2805 {
2806 uma_keg_t keg;
2807 uma_zone_t zone;
2808
2809 LIST_FOREACH(keg, &uma_kegs, uk_link) {
2810 LIST_FOREACH(zone, &keg->uk_zones, uz_link)
2811 zfunc(zone, arg);
2812 }
2813 LIST_FOREACH(zone, &uma_cachezones, uz_link)
2814 zfunc(zone, arg);
2815 }
2816
2817 /*
2818 * Traverses every zone in the system and calls a callback
2819 *
2820 * Arguments:
2821 * zfunc A pointer to a function which accepts a zone
2822 * as an argument.
2823 *
2824 * Returns:
2825 * Nothing
2826 */
2827 static void
2828 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg)
2829 {
2830
2831 rw_rlock(&uma_rwlock);
2832 zone_foreach_unlocked(zfunc, arg);
2833 rw_runlock(&uma_rwlock);
2834 }
2835
2836 /*
2837 * Initialize the kernel memory allocator. This is done after pages can be
2838 * allocated but before general KVA is available.
2839 */
2840 void
2841 uma_startup1(vm_offset_t virtual_avail)
2842 {
2843 struct uma_zctor_args args;
2844 size_t ksize, zsize, size;
2845 uma_keg_t primarykeg;
2846 uintptr_t m;
2847 int domain;
2848 uint8_t pflag;
2849
2850 bootstart = bootmem = virtual_avail;
2851
2852 rw_init(&uma_rwlock, "UMA lock");
2853 sx_init(&uma_reclaim_lock, "umareclaim");
2854
2855 ksize = sizeof(struct uma_keg) +
2856 (sizeof(struct uma_domain) * vm_ndomains);
2857 ksize = roundup(ksize, UMA_SUPER_ALIGN);
2858 zsize = sizeof(struct uma_zone) +
2859 (sizeof(struct uma_cache) * (mp_maxid + 1)) +
2860 (sizeof(struct uma_zone_domain) * vm_ndomains);
2861 zsize = roundup(zsize, UMA_SUPER_ALIGN);
2862
2863 /* Allocate the zone of zones, zone of kegs, and zone of zones keg. */
2864 size = (zsize * 2) + ksize;
2865 for (domain = 0; domain < vm_ndomains; domain++) {
2866 m = (uintptr_t)startup_alloc(NULL, size, domain, &pflag,
2867 M_NOWAIT | M_ZERO);
2868 if (m != 0)
2869 break;
2870 }
2871 zones = (uma_zone_t)m;
2872 m += zsize;
2873 kegs = (uma_zone_t)m;
2874 m += zsize;
2875 primarykeg = (uma_keg_t)m;
2876
2877 /* "manually" create the initial zone */
2878 memset(&args, 0, sizeof(args));
2879 args.name = "UMA Kegs";
2880 args.size = ksize;
2881 args.ctor = keg_ctor;
2882 args.dtor = keg_dtor;
2883 args.uminit = zero_init;
2884 args.fini = NULL;
2885 args.keg = primarykeg;
2886 args.align = UMA_SUPER_ALIGN - 1;
2887 args.flags = UMA_ZFLAG_INTERNAL;
2888 zone_ctor(kegs, zsize, &args, M_WAITOK);
2889
2890 args.name = "UMA Zones";
2891 args.size = zsize;
2892 args.ctor = zone_ctor;
2893 args.dtor = zone_dtor;
2894 args.uminit = zero_init;
2895 args.fini = NULL;
2896 args.keg = NULL;
2897 args.align = UMA_SUPER_ALIGN - 1;
2898 args.flags = UMA_ZFLAG_INTERNAL;
2899 zone_ctor(zones, zsize, &args, M_WAITOK);
2900
2901 /* Now make zones for slab headers */
2902 slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE,
2903 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
2904 slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE,
2905 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
2906
2907 hashzone = uma_zcreate("UMA Hash",
2908 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
2909 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
2910
2911 bucket_init();
2912 smr_init();
2913 }
2914
2915 #ifndef UMA_MD_SMALL_ALLOC
2916 extern void vm_radix_reserve_kva(void);
2917 #endif
2918
2919 /*
2920 * Advertise the availability of normal kva allocations and switch to
2921 * the default back-end allocator. Marks the KVA we consumed on startup
2922 * as used in the map.
2923 */
2924 void
2925 uma_startup2(void)
2926 {
2927
2928 if (bootstart != bootmem) {
2929 vm_map_lock(kernel_map);
2930 (void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem,
2931 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
2932 vm_map_unlock(kernel_map);
2933 }
2934
2935 #ifndef UMA_MD_SMALL_ALLOC
2936 /* Set up radix zone to use noobj_alloc. */
2937 vm_radix_reserve_kva();
2938 #endif
2939
2940 booted = BOOT_KVA;
2941 zone_foreach_unlocked(zone_kva_available, NULL);
2942 bucket_enable();
2943 }
2944
2945 /*
2946 * Allocate counters as early as possible so that boot-time allocations are
2947 * accounted more precisely.
2948 */
2949 static void
2950 uma_startup_pcpu(void *arg __unused)
2951 {
2952
2953 zone_foreach_unlocked(zone_alloc_counters, NULL);
2954 booted = BOOT_PCPU;
2955 }
2956 SYSINIT(uma_startup_pcpu, SI_SUB_COUNTER, SI_ORDER_ANY, uma_startup_pcpu, NULL);
2957
2958 /*
2959 * Finish our initialization steps.
2960 */
2961 static void
2962 uma_startup3(void *arg __unused)
2963 {
2964
2965 #ifdef INVARIANTS
2966 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor);
2967 uma_dbg_cnt = counter_u64_alloc(M_WAITOK);
2968 uma_skip_cnt = counter_u64_alloc(M_WAITOK);
2969 #endif
2970 zone_foreach_unlocked(zone_alloc_sysctl, NULL);
2971 callout_init(&uma_callout, 1);
2972 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
2973 booted = BOOT_RUNNING;
2974
2975 EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL,
2976 EVENTHANDLER_PRI_FIRST);
2977 }
2978 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
2979
2980 static void
2981 uma_shutdown(void)
2982 {
2983
2984 booted = BOOT_SHUTDOWN;
2985 }
2986
2987 static uma_keg_t
2988 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
2989 int align, uint32_t flags)
2990 {
2991 struct uma_kctor_args args;
2992
2993 args.size = size;
2994 args.uminit = uminit;
2995 args.fini = fini;
2996 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
2997 args.flags = flags;
2998 args.zone = zone;
2999 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK));
3000 }
3001
3002 /* Public functions */
3003 /* See uma.h */
3004 void
3005 uma_set_align(int align)
3006 {
3007
3008 if (align != UMA_ALIGN_CACHE)
3009 uma_align_cache = align;
3010 }
3011
3012 /* See uma.h */
3013 uma_zone_t
3014 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
3015 uma_init uminit, uma_fini fini, int align, uint32_t flags)
3016
3017 {
3018 struct uma_zctor_args args;
3019 uma_zone_t res;
3020
3021 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"",
3022 align, name));
3023
3024 /* This stuff is essential for the zone ctor */
3025 memset(&args, 0, sizeof(args));
3026 args.name = name;
3027 args.size = size;
3028 args.ctor = ctor;
3029 args.dtor = dtor;
3030 args.uminit = uminit;
3031 args.fini = fini;
3032 #ifdef INVARIANTS
3033 /*
3034 * Inject procedures which check for memory use after free if we are
3035 * allowed to scramble the memory while it is not allocated. This
3036 * requires that: UMA is actually able to access the memory, no init
3037 * or fini procedures, no dependency on the initial value of the
3038 * memory, and no (legitimate) use of the memory after free. Note,
3039 * the ctor and dtor do not need to be empty.
3040 */
3041 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH |
3042 UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) {
3043 args.uminit = trash_init;
3044 args.fini = trash_fini;
3045 }
3046 #endif
3047 args.align = align;
3048 args.flags = flags;
3049 args.keg = NULL;
3050
3051 sx_slock(&uma_reclaim_lock);
3052 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
3053 sx_sunlock(&uma_reclaim_lock);
3054
3055 return (res);
3056 }
3057
3058 /* See uma.h */
3059 uma_zone_t
3060 uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor,
3061 uma_init zinit, uma_fini zfini, uma_zone_t primary)
3062 {
3063 struct uma_zctor_args args;
3064 uma_keg_t keg;
3065 uma_zone_t res;
3066
3067 keg = primary->uz_keg;
3068 memset(&args, 0, sizeof(args));
3069 args.name = name;
3070 args.size = keg->uk_size;
3071 args.ctor = ctor;
3072 args.dtor = dtor;
3073 args.uminit = zinit;
3074 args.fini = zfini;
3075 args.align = keg->uk_align;
3076 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
3077 args.keg = keg;
3078
3079 sx_slock(&uma_reclaim_lock);
3080 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK);
3081 sx_sunlock(&uma_reclaim_lock);
3082
3083 return (res);
3084 }
3085
3086 /* See uma.h */
3087 uma_zone_t
3088 uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor,
3089 uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease,
3090 void *arg, int flags)
3091 {
3092 struct uma_zctor_args args;
3093
3094 memset(&args, 0, sizeof(args));
3095 args.name = name;
3096 args.size = size;
3097 args.ctor = ctor;
3098 args.dtor = dtor;
3099 args.uminit = zinit;
3100 args.fini = zfini;
3101 args.import = zimport;
3102 args.release = zrelease;
3103 args.arg = arg;
3104 args.align = 0;
3105 args.flags = flags | UMA_ZFLAG_CACHE;
3106
3107 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK));
3108 }
3109
3110 /* See uma.h */
3111 void
3112 uma_zdestroy(uma_zone_t zone)
3113 {
3114
3115 /*
3116 * Large slabs are expensive to reclaim, so don't bother doing
3117 * unnecessary work if we're shutting down.
3118 */
3119 if (booted == BOOT_SHUTDOWN &&
3120 zone->uz_fini == NULL && zone->uz_release == zone_release)
3121 return;
3122 sx_slock(&uma_reclaim_lock);
3123 zone_free_item(zones, zone, NULL, SKIP_NONE);
3124 sx_sunlock(&uma_reclaim_lock);
3125 }
3126
3127 void
3128 uma_zwait(uma_zone_t zone)
3129 {
3130
3131 if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
3132 uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK));
3133 else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0)
3134 uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK));
3135 else
3136 uma_zfree(zone, uma_zalloc(zone, M_WAITOK));
3137 }
3138
3139 void *
3140 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags)
3141 {
3142 void *item, *pcpu_item;
3143 #ifdef SMP
3144 int i;
3145
3146 MPASS(zone->uz_flags & UMA_ZONE_PCPU);
3147 #endif
3148 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO);
3149 if (item == NULL)
3150 return (NULL);
3151 pcpu_item = zpcpu_base_to_offset(item);
3152 if (flags & M_ZERO) {
3153 #ifdef SMP
3154 for (i = 0; i <= mp_maxid; i++)
3155 bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size);
3156 #else
3157 bzero(item, zone->uz_size);
3158 #endif
3159 }
3160 return (pcpu_item);
3161 }
3162
3163 /*
3164 * A stub while both regular and pcpu cases are identical.
3165 */
3166 void
3167 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata)
3168 {
3169 void *item;
3170
3171 #ifdef SMP
3172 MPASS(zone->uz_flags & UMA_ZONE_PCPU);
3173 #endif
3174 item = zpcpu_offset_to_base(pcpu_item);
3175 uma_zfree_arg(zone, item, udata);
3176 }
3177
3178 static inline void *
3179 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags,
3180 void *item)
3181 {
3182 #ifdef INVARIANTS
3183 bool skipdbg;
3184
3185 skipdbg = uma_dbg_zskip(zone, item);
3186 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 &&
3187 zone->uz_ctor != trash_ctor)
3188 trash_ctor(item, size, udata, flags);
3189 #endif
3190 /* Check flags before loading ctor pointer. */
3191 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) &&
3192 __predict_false(zone->uz_ctor != NULL) &&
3193 zone->uz_ctor(item, size, udata, flags) != 0) {
3194 counter_u64_add(zone->uz_fails, 1);
3195 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT);
3196 return (NULL);
3197 }
3198 #ifdef INVARIANTS
3199 if (!skipdbg)
3200 uma_dbg_alloc(zone, NULL, item);
3201 #endif
3202 if (__predict_false(flags & M_ZERO))
3203 return (memset(item, 0, size));
3204
3205 return (item);
3206 }
3207
3208 static inline void
3209 item_dtor(uma_zone_t zone, void *item, int size, void *udata,
3210 enum zfreeskip skip)
3211 {
3212 #ifdef INVARIANTS
3213 bool skipdbg;
3214
3215 skipdbg = uma_dbg_zskip(zone, item);
3216 if (skip == SKIP_NONE && !skipdbg) {
3217 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0)
3218 uma_dbg_free(zone, udata, item);
3219 else
3220 uma_dbg_free(zone, NULL, item);
3221 }
3222 #endif
3223 if (__predict_true(skip < SKIP_DTOR)) {
3224 if (zone->uz_dtor != NULL)
3225 zone->uz_dtor(item, size, udata);
3226 #ifdef INVARIANTS
3227 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 &&
3228 zone->uz_dtor != trash_dtor)
3229 trash_dtor(item, size, udata);
3230 #endif
3231 }
3232 }
3233
3234 #ifdef NUMA
3235 static int
3236 item_domain(void *item)
3237 {
3238 int domain;
3239
3240 domain = vm_phys_domain(vtophys(item));
3241 KASSERT(domain >= 0 && domain < vm_ndomains,
3242 ("%s: unknown domain for item %p", __func__, item));
3243 return (domain);
3244 }
3245 #endif
3246
3247 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS)
3248 #define UMA_ZALLOC_DEBUG
3249 static int
3250 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags)
3251 {
3252 int error;
3253
3254 error = 0;
3255 #ifdef WITNESS
3256 if (flags & M_WAITOK) {
3257 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
3258 "uma_zalloc_debug: zone \"%s\"", zone->uz_name);
3259 }
3260 #endif
3261
3262 #ifdef INVARIANTS
3263 KASSERT((flags & M_EXEC) == 0,
3264 ("uma_zalloc_debug: called with M_EXEC"));
3265 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3266 ("uma_zalloc_debug: called within spinlock or critical section"));
3267 KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0,
3268 ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO"));
3269 #endif
3270
3271 #ifdef DEBUG_MEMGUARD
3272 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && memguard_cmp_zone(zone)) {
3273 void *item;
3274 item = memguard_alloc(zone->uz_size, flags);
3275 if (item != NULL) {
3276 error = EJUSTRETURN;
3277 if (zone->uz_init != NULL &&
3278 zone->uz_init(item, zone->uz_size, flags) != 0) {
3279 *itemp = NULL;
3280 return (error);
3281 }
3282 if (zone->uz_ctor != NULL &&
3283 zone->uz_ctor(item, zone->uz_size, udata,
3284 flags) != 0) {
3285 counter_u64_add(zone->uz_fails, 1);
3286 zone->uz_fini(item, zone->uz_size);
3287 *itemp = NULL;
3288 return (error);
3289 }
3290 *itemp = item;
3291 return (error);
3292 }
3293 /* This is unfortunate but should not be fatal. */
3294 }
3295 #endif
3296 return (error);
3297 }
3298
3299 static int
3300 uma_zfree_debug(uma_zone_t zone, void *item, void *udata)
3301 {
3302 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3303 ("uma_zfree_debug: called with spinlock or critical section held"));
3304
3305 #ifdef DEBUG_MEMGUARD
3306 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && is_memguard_addr(item)) {
3307 if (zone->uz_dtor != NULL)
3308 zone->uz_dtor(item, zone->uz_size, udata);
3309 if (zone->uz_fini != NULL)
3310 zone->uz_fini(item, zone->uz_size);
3311 memguard_free(item);
3312 return (EJUSTRETURN);
3313 }
3314 #endif
3315 return (0);
3316 }
3317 #endif
3318
3319 static inline void *
3320 cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket,
3321 void *udata, int flags)
3322 {
3323 void *item;
3324 int size, uz_flags;
3325
3326 item = cache_bucket_pop(cache, bucket);
3327 size = cache_uz_size(cache);
3328 uz_flags = cache_uz_flags(cache);
3329 critical_exit();
3330 return (item_ctor(zone, uz_flags, size, udata, flags, item));
3331 }
3332
3333 static __noinline void *
3334 cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags)
3335 {
3336 uma_cache_bucket_t bucket;
3337 int domain;
3338
3339 while (cache_alloc(zone, cache, udata, flags)) {
3340 cache = &zone->uz_cpu[curcpu];
3341 bucket = &cache->uc_allocbucket;
3342 if (__predict_false(bucket->ucb_cnt == 0))
3343 continue;
3344 return (cache_alloc_item(zone, cache, bucket, udata, flags));
3345 }
3346 critical_exit();
3347
3348 /*
3349 * We can not get a bucket so try to return a single item.
3350 */
3351 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH)
3352 domain = PCPU_GET(domain);
3353 else
3354 domain = UMA_ANYDOMAIN;
3355 return (zone_alloc_item(zone, udata, domain, flags));
3356 }
3357
3358 /* See uma.h */
3359 void *
3360 uma_zalloc_smr(uma_zone_t zone, int flags)
3361 {
3362 uma_cache_bucket_t bucket;
3363 uma_cache_t cache;
3364
3365 #ifdef UMA_ZALLOC_DEBUG
3366 void *item;
3367
3368 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0,
3369 ("uma_zalloc_arg: called with non-SMR zone."));
3370 if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN)
3371 return (item);
3372 #endif
3373
3374 critical_enter();
3375 cache = &zone->uz_cpu[curcpu];
3376 bucket = &cache->uc_allocbucket;
3377 if (__predict_false(bucket->ucb_cnt == 0))
3378 return (cache_alloc_retry(zone, cache, NULL, flags));
3379 return (cache_alloc_item(zone, cache, bucket, NULL, flags));
3380 }
3381
3382 /* See uma.h */
3383 void *
3384 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
3385 {
3386 uma_cache_bucket_t bucket;
3387 uma_cache_t cache;
3388
3389 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
3390 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
3391
3392 /* This is the fast path allocation */
3393 CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name,
3394 zone, flags);
3395
3396 #ifdef UMA_ZALLOC_DEBUG
3397 void *item;
3398
3399 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
3400 ("uma_zalloc_arg: called with SMR zone."));
3401 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN)
3402 return (item);
3403 #endif
3404
3405 /*
3406 * If possible, allocate from the per-CPU cache. There are two
3407 * requirements for safe access to the per-CPU cache: (1) the thread
3408 * accessing the cache must not be preempted or yield during access,
3409 * and (2) the thread must not migrate CPUs without switching which
3410 * cache it accesses. We rely on a critical section to prevent
3411 * preemption and migration. We release the critical section in
3412 * order to acquire the zone mutex if we are unable to allocate from
3413 * the current cache; when we re-acquire the critical section, we
3414 * must detect and handle migration if it has occurred.
3415 */
3416 critical_enter();
3417 cache = &zone->uz_cpu[curcpu];
3418 bucket = &cache->uc_allocbucket;
3419 if (__predict_false(bucket->ucb_cnt == 0))
3420 return (cache_alloc_retry(zone, cache, udata, flags));
3421 return (cache_alloc_item(zone, cache, bucket, udata, flags));
3422 }
3423
3424 /*
3425 * Replenish an alloc bucket and possibly restore an old one. Called in
3426 * a critical section. Returns in a critical section.
3427 *
3428 * A false return value indicates an allocation failure.
3429 * A true return value indicates success and the caller should retry.
3430 */
3431 static __noinline bool
3432 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags)
3433 {
3434 uma_bucket_t bucket;
3435 int curdomain, domain;
3436 bool new;
3437
3438 CRITICAL_ASSERT(curthread);
3439
3440 /*
3441 * If we have run out of items in our alloc bucket see
3442 * if we can switch with the free bucket.
3443 *
3444 * SMR Zones can't re-use the free bucket until the sequence has
3445 * expired.
3446 */
3447 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 &&
3448 cache->uc_freebucket.ucb_cnt != 0) {
3449 cache_bucket_swap(&cache->uc_freebucket,
3450 &cache->uc_allocbucket);
3451 return (true);
3452 }
3453
3454 /*
3455 * Discard any empty allocation bucket while we hold no locks.
3456 */
3457 bucket = cache_bucket_unload_alloc(cache);
3458 critical_exit();
3459
3460 if (bucket != NULL) {
3461 KASSERT(bucket->ub_cnt == 0,
3462 ("cache_alloc: Entered with non-empty alloc bucket."));
3463 bucket_free(zone, bucket, udata);
3464 }
3465
3466 /*
3467 * Attempt to retrieve the item from the per-CPU cache has failed, so
3468 * we must go back to the zone. This requires the zdom lock, so we
3469 * must drop the critical section, then re-acquire it when we go back
3470 * to the cache. Since the critical section is released, we may be
3471 * preempted or migrate. As such, make sure not to maintain any
3472 * thread-local state specific to the cache from prior to releasing
3473 * the critical section.
3474 */
3475 domain = PCPU_GET(domain);
3476 if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0 ||
3477 VM_DOMAIN_EMPTY(domain))
3478 domain = zone_domain_highest(zone, domain);
3479 bucket = cache_fetch_bucket(zone, cache, domain);
3480 if (bucket == NULL && zone->uz_bucket_size != 0 && !bucketdisable) {
3481 bucket = zone_alloc_bucket(zone, udata, domain, flags);
3482 new = true;
3483 } else {
3484 new = false;
3485 }
3486
3487 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p",
3488 zone->uz_name, zone, bucket);
3489 if (bucket == NULL) {
3490 critical_enter();
3491 return (false);
3492 }
3493
3494 /*
3495 * See if we lost the race or were migrated. Cache the
3496 * initialized bucket to make this less likely or claim
3497 * the memory directly.
3498 */
3499 critical_enter();
3500 cache = &zone->uz_cpu[curcpu];
3501 if (cache->uc_allocbucket.ucb_bucket == NULL &&
3502 ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 ||
3503 (curdomain = PCPU_GET(domain)) == domain ||
3504 VM_DOMAIN_EMPTY(curdomain))) {
3505 if (new)
3506 atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax,
3507 bucket->ub_cnt);
3508 cache_bucket_load_alloc(cache, bucket);
3509 return (true);
3510 }
3511
3512 /*
3513 * We lost the race, release this bucket and start over.
3514 */
3515 critical_exit();
3516 zone_put_bucket(zone, domain, bucket, udata, false);
3517 critical_enter();
3518
3519 return (true);
3520 }
3521
3522 void *
3523 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags)
3524 {
3525 #ifdef NUMA
3526 uma_bucket_t bucket;
3527 uma_zone_domain_t zdom;
3528 void *item;
3529 #endif
3530
3531 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
3532 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
3533
3534 /* This is the fast path allocation */
3535 CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d",
3536 zone->uz_name, zone, domain, flags);
3537
3538 if (flags & M_WAITOK) {
3539 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
3540 "uma_zalloc_domain: zone \"%s\"", zone->uz_name);
3541 }
3542 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
3543 ("uma_zalloc_domain: called with spinlock or critical section held"));
3544 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
3545 ("uma_zalloc_domain: called with SMR zone."));
3546 #ifdef NUMA
3547 KASSERT((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0,
3548 ("uma_zalloc_domain: called with non-FIRSTTOUCH zone."));
3549
3550 if (vm_ndomains == 1)
3551 return (uma_zalloc_arg(zone, udata, flags));
3552
3553 /*
3554 * Try to allocate from the bucket cache before falling back to the keg.
3555 * We could try harder and attempt to allocate from per-CPU caches or
3556 * the per-domain cross-domain buckets, but the complexity is probably
3557 * not worth it. It is more important that frees of previous
3558 * cross-domain allocations do not blow up the cache.
3559 */
3560 zdom = zone_domain_lock(zone, domain);
3561 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) {
3562 item = bucket->ub_bucket[bucket->ub_cnt - 1];
3563 #ifdef INVARIANTS
3564 bucket->ub_bucket[bucket->ub_cnt - 1] = NULL;
3565 #endif
3566 bucket->ub_cnt--;
3567 zone_put_bucket(zone, domain, bucket, udata, true);
3568 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata,
3569 flags, item);
3570 if (item != NULL) {
3571 KASSERT(item_domain(item) == domain,
3572 ("%s: bucket cache item %p from wrong domain",
3573 __func__, item));
3574 counter_u64_add(zone->uz_allocs, 1);
3575 }
3576 return (item);
3577 }
3578 ZDOM_UNLOCK(zdom);
3579 return (zone_alloc_item(zone, udata, domain, flags));
3580 #else
3581 return (uma_zalloc_arg(zone, udata, flags));
3582 #endif
3583 }
3584
3585 /*
3586 * Find a slab with some space. Prefer slabs that are partially used over those
3587 * that are totally full. This helps to reduce fragmentation.
3588 *
3589 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check
3590 * only 'domain'.
3591 */
3592 static uma_slab_t
3593 keg_first_slab(uma_keg_t keg, int domain, bool rr)
3594 {
3595 uma_domain_t dom;
3596 uma_slab_t slab;
3597 int start;
3598
3599 KASSERT(domain >= 0 && domain < vm_ndomains,
3600 ("keg_first_slab: domain %d out of range", domain));
3601 KEG_LOCK_ASSERT(keg, domain);
3602
3603 slab = NULL;
3604 start = domain;
3605 do {
3606 dom = &keg->uk_domain[domain];
3607 if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL)
3608 return (slab);
3609 if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) {
3610 LIST_REMOVE(slab, us_link);
3611 dom->ud_free_slabs--;
3612 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
3613 return (slab);
3614 }
3615 if (rr)
3616 domain = (domain + 1) % vm_ndomains;
3617 } while (domain != start);
3618
3619 return (NULL);
3620 }
3621
3622 /*
3623 * Fetch an existing slab from a free or partial list. Returns with the
3624 * keg domain lock held if a slab was found or unlocked if not.
3625 */
3626 static uma_slab_t
3627 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags)
3628 {
3629 uma_slab_t slab;
3630 uint32_t reserve;
3631
3632 /* HASH has a single free list. */
3633 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0)
3634 domain = 0;
3635
3636 KEG_LOCK(keg, domain);
3637 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve;
3638 if (keg->uk_domain[domain].ud_free_items <= reserve ||
3639 (slab = keg_first_slab(keg, domain, rr)) == NULL) {
3640 KEG_UNLOCK(keg, domain);
3641 return (NULL);
3642 }
3643 return (slab);
3644 }
3645
3646 static uma_slab_t
3647 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags)
3648 {
3649 struct vm_domainset_iter di;
3650 uma_slab_t slab;
3651 int aflags, domain;
3652 bool rr;
3653
3654 restart:
3655 /*
3656 * Use the keg's policy if upper layers haven't already specified a
3657 * domain (as happens with first-touch zones).
3658 *
3659 * To avoid races we run the iterator with the keg lock held, but that
3660 * means that we cannot allow the vm_domainset layer to sleep. Thus,
3661 * clear M_WAITOK and handle low memory conditions locally.
3662 */
3663 rr = rdomain == UMA_ANYDOMAIN;
3664 if (rr) {
3665 aflags = (flags & ~M_WAITOK) | M_NOWAIT;
3666 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain,
3667 &aflags);
3668 } else {
3669 aflags = flags;
3670 domain = rdomain;
3671 }
3672
3673 for (;;) {
3674 slab = keg_fetch_free_slab(keg, domain, rr, flags);
3675 if (slab != NULL)
3676 return (slab);
3677
3678 /*
3679 * M_NOVM means don't ask at all!
3680 */
3681 if (flags & M_NOVM)
3682 break;
3683
3684 slab = keg_alloc_slab(keg, zone, domain, flags, aflags);
3685 if (slab != NULL)
3686 return (slab);
3687 if (!rr && (flags & M_WAITOK) == 0)
3688 break;
3689 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) {
3690 if ((flags & M_WAITOK) != 0) {
3691 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0);
3692 goto restart;
3693 }
3694 break;
3695 }
3696 }
3697
3698 /*
3699 * We might not have been able to get a slab but another cpu
3700 * could have while we were unlocked. Check again before we
3701 * fail.
3702 */
3703 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL)
3704 return (slab);
3705
3706 return (NULL);
3707 }
3708
3709 static void *
3710 slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
3711 {
3712 uma_domain_t dom;
3713 void *item;
3714 int freei;
3715
3716 KEG_LOCK_ASSERT(keg, slab->us_domain);
3717
3718 dom = &keg->uk_domain[slab->us_domain];
3719 freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1;
3720 BIT_CLR(keg->uk_ipers, freei, &slab->us_free);
3721 item = slab_item(slab, keg, freei);
3722 slab->us_freecount--;
3723 dom->ud_free_items--;
3724
3725 /*
3726 * Move this slab to the full list. It must be on the partial list, so
3727 * we do not need to update the free slab count. In particular,
3728 * keg_fetch_slab() always returns slabs on the partial list.
3729 */
3730 if (slab->us_freecount == 0) {
3731 LIST_REMOVE(slab, us_link);
3732 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link);
3733 }
3734
3735 return (item);
3736 }
3737
3738 static int
3739 zone_import(void *arg, void **bucket, int max, int domain, int flags)
3740 {
3741 uma_domain_t dom;
3742 uma_zone_t zone;
3743 uma_slab_t slab;
3744 uma_keg_t keg;
3745 #ifdef NUMA
3746 int stripe;
3747 #endif
3748 int i;
3749
3750 zone = arg;
3751 slab = NULL;
3752 keg = zone->uz_keg;
3753 /* Try to keep the buckets totally full */
3754 for (i = 0; i < max; ) {
3755 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL)
3756 break;
3757 #ifdef NUMA
3758 stripe = howmany(max, vm_ndomains);
3759 #endif
3760 dom = &keg->uk_domain[slab->us_domain];
3761 do {
3762 bucket[i++] = slab_alloc_item(keg, slab);
3763 if (dom->ud_free_items <= keg->uk_reserve) {
3764 /*
3765 * Avoid depleting the reserve after a
3766 * successful item allocation, even if
3767 * M_USE_RESERVE is specified.
3768 */
3769 KEG_UNLOCK(keg, slab->us_domain);
3770 goto out;
3771 }
3772 #ifdef NUMA
3773 /*
3774 * If the zone is striped we pick a new slab for every
3775 * N allocations. Eliminating this conditional will
3776 * instead pick a new domain for each bucket rather
3777 * than stripe within each bucket. The current option
3778 * produces more fragmentation and requires more cpu
3779 * time but yields better distribution.
3780 */
3781 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 &&
3782 vm_ndomains > 1 && --stripe == 0)
3783 break;
3784 #endif
3785 } while (slab->us_freecount != 0 && i < max);
3786 KEG_UNLOCK(keg, slab->us_domain);
3787
3788 /* Don't block if we allocated any successfully. */
3789 flags &= ~M_WAITOK;
3790 flags |= M_NOWAIT;
3791 }
3792 out:
3793 return i;
3794 }
3795
3796 static int
3797 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags)
3798 {
3799 uint64_t old, new, total, max;
3800
3801 /*
3802 * The hard case. We're going to sleep because there were existing
3803 * sleepers or because we ran out of items. This routine enforces
3804 * fairness by keeping fifo order.
3805 *
3806 * First release our ill gotten gains and make some noise.
3807 */
3808 for (;;) {
3809 zone_free_limit(zone, count);
3810 zone_log_warning(zone);
3811 zone_maxaction(zone);
3812 if (flags & M_NOWAIT)
3813 return (0);
3814
3815 /*
3816 * We need to allocate an item or set ourself as a sleeper
3817 * while the sleepq lock is held to avoid wakeup races. This
3818 * is essentially a home rolled semaphore.
3819 */
3820 sleepq_lock(&zone->uz_max_items);
3821 old = zone->uz_items;
3822 do {
3823 MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX);
3824 /* Cache the max since we will evaluate twice. */
3825 max = zone->uz_max_items;
3826 if (UZ_ITEMS_SLEEPERS(old) != 0 ||
3827 UZ_ITEMS_COUNT(old) >= max)
3828 new = old + UZ_ITEMS_SLEEPER;
3829 else
3830 new = old + MIN(count, max - old);
3831 } while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0);
3832
3833 /* We may have successfully allocated under the sleepq lock. */
3834 if (UZ_ITEMS_SLEEPERS(new) == 0) {
3835 sleepq_release(&zone->uz_max_items);
3836 return (new - old);
3837 }
3838
3839 /*
3840 * This is in a different cacheline from uz_items so that we
3841 * don't constantly invalidate the fastpath cacheline when we
3842 * adjust item counts. This could be limited to toggling on
3843 * transitions.
3844 */
3845 atomic_add_32(&zone->uz_sleepers, 1);
3846 atomic_add_64(&zone->uz_sleeps, 1);
3847
3848 /*
3849 * We have added ourselves as a sleeper. The sleepq lock
3850 * protects us from wakeup races. Sleep now and then retry.
3851 */
3852 sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0);
3853 sleepq_wait(&zone->uz_max_items, PVM);
3854
3855 /*
3856 * After wakeup, remove ourselves as a sleeper and try
3857 * again. We no longer have the sleepq lock for protection.
3858 *
3859 * Subract ourselves as a sleeper while attempting to add
3860 * our count.
3861 */
3862 atomic_subtract_32(&zone->uz_sleepers, 1);
3863 old = atomic_fetchadd_64(&zone->uz_items,
3864 -(UZ_ITEMS_SLEEPER - count));
3865 /* We're no longer a sleeper. */
3866 old -= UZ_ITEMS_SLEEPER;
3867
3868 /*
3869 * If we're still at the limit, restart. Notably do not
3870 * block on other sleepers. Cache the max value to protect
3871 * against changes via sysctl.
3872 */
3873 total = UZ_ITEMS_COUNT(old);
3874 max = zone->uz_max_items;
3875 if (total >= max)
3876 continue;
3877 /* Truncate if necessary, otherwise wake other sleepers. */
3878 if (total + count > max) {
3879 zone_free_limit(zone, total + count - max);
3880 count = max - total;
3881 } else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0)
3882 wakeup_one(&zone->uz_max_items);
3883
3884 return (count);
3885 }
3886 }
3887
3888 /*
3889 * Allocate 'count' items from our max_items limit. Returns the number
3890 * available. If M_NOWAIT is not specified it will sleep until at least
3891 * one item can be allocated.
3892 */
3893 static int
3894 zone_alloc_limit(uma_zone_t zone, int count, int flags)
3895 {
3896 uint64_t old;
3897 uint64_t max;
3898
3899 max = zone->uz_max_items;
3900 MPASS(max > 0);
3901
3902 /*
3903 * We expect normal allocations to succeed with a simple
3904 * fetchadd.
3905 */
3906 old = atomic_fetchadd_64(&zone->uz_items, count);
3907 if (__predict_true(old + count <= max))
3908 return (count);
3909
3910 /*
3911 * If we had some items and no sleepers just return the
3912 * truncated value. We have to release the excess space
3913 * though because that may wake sleepers who weren't woken
3914 * because we were temporarily over the limit.
3915 */
3916 if (old < max) {
3917 zone_free_limit(zone, (old + count) - max);
3918 return (max - old);
3919 }
3920 return (zone_alloc_limit_hard(zone, count, flags));
3921 }
3922
3923 /*
3924 * Free a number of items back to the limit.
3925 */
3926 static void
3927 zone_free_limit(uma_zone_t zone, int count)
3928 {
3929 uint64_t old;
3930
3931 MPASS(count > 0);
3932
3933 /*
3934 * In the common case we either have no sleepers or
3935 * are still over the limit and can just return.
3936 */
3937 old = atomic_fetchadd_64(&zone->uz_items, -count);
3938 if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 ||
3939 UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items))
3940 return;
3941
3942 /*
3943 * Moderate the rate of wakeups. Sleepers will continue
3944 * to generate wakeups if necessary.
3945 */
3946 wakeup_one(&zone->uz_max_items);
3947 }
3948
3949 static uma_bucket_t
3950 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags)
3951 {
3952 uma_bucket_t bucket;
3953 int maxbucket, cnt;
3954
3955 CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name,
3956 zone, domain);
3957
3958 /* Avoid allocs targeting empty domains. */
3959 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain))
3960 domain = UMA_ANYDOMAIN;
3961 else if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0)
3962 domain = UMA_ANYDOMAIN;
3963
3964 if (zone->uz_max_items > 0)
3965 maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size,
3966 M_NOWAIT);
3967 else
3968 maxbucket = zone->uz_bucket_size;
3969 if (maxbucket == 0)
3970 return (false);
3971
3972 /* Don't wait for buckets, preserve caller's NOVM setting. */
3973 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
3974 if (bucket == NULL) {
3975 cnt = 0;
3976 goto out;
3977 }
3978
3979 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
3980 MIN(maxbucket, bucket->ub_entries), domain, flags);
3981
3982 /*
3983 * Initialize the memory if necessary.
3984 */
3985 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
3986 int i;
3987
3988 for (i = 0; i < bucket->ub_cnt; i++)
3989 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
3990 flags) != 0)
3991 break;
3992 /*
3993 * If we couldn't initialize the whole bucket, put the
3994 * rest back onto the freelist.
3995 */
3996 if (i != bucket->ub_cnt) {
3997 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
3998 bucket->ub_cnt - i);
3999 #ifdef INVARIANTS
4000 bzero(&bucket->ub_bucket[i],
4001 sizeof(void *) * (bucket->ub_cnt - i));
4002 #endif
4003 bucket->ub_cnt = i;
4004 }
4005 }
4006
4007 cnt = bucket->ub_cnt;
4008 if (bucket->ub_cnt == 0) {
4009 bucket_free(zone, bucket, udata);
4010 counter_u64_add(zone->uz_fails, 1);
4011 bucket = NULL;
4012 }
4013 out:
4014 if (zone->uz_max_items > 0 && cnt < maxbucket)
4015 zone_free_limit(zone, maxbucket - cnt);
4016
4017 return (bucket);
4018 }
4019
4020 /*
4021 * Allocates a single item from a zone.
4022 *
4023 * Arguments
4024 * zone The zone to alloc for.
4025 * udata The data to be passed to the constructor.
4026 * domain The domain to allocate from or UMA_ANYDOMAIN.
4027 * flags M_WAITOK, M_NOWAIT, M_ZERO.
4028 *
4029 * Returns
4030 * NULL if there is no memory and M_NOWAIT is set
4031 * An item if successful
4032 */
4033
4034 static void *
4035 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags)
4036 {
4037 void *item;
4038
4039 if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) {
4040 counter_u64_add(zone->uz_fails, 1);
4041 return (NULL);
4042 }
4043
4044 /* Avoid allocs targeting empty domains. */
4045 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain))
4046 domain = UMA_ANYDOMAIN;
4047
4048 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1)
4049 goto fail_cnt;
4050
4051 /*
4052 * We have to call both the zone's init (not the keg's init)
4053 * and the zone's ctor. This is because the item is going from
4054 * a keg slab directly to the user, and the user is expecting it
4055 * to be both zone-init'd as well as zone-ctor'd.
4056 */
4057 if (zone->uz_init != NULL) {
4058 if (zone->uz_init(item, zone->uz_size, flags) != 0) {
4059 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT);
4060 goto fail_cnt;
4061 }
4062 }
4063 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags,
4064 item);
4065 if (item == NULL)
4066 goto fail;
4067
4068 counter_u64_add(zone->uz_allocs, 1);
4069 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item,
4070 zone->uz_name, zone);
4071
4072 return (item);
4073
4074 fail_cnt:
4075 counter_u64_add(zone->uz_fails, 1);
4076 fail:
4077 if (zone->uz_max_items > 0)
4078 zone_free_limit(zone, 1);
4079 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)",
4080 zone->uz_name, zone);
4081
4082 return (NULL);
4083 }
4084
4085 /* See uma.h */
4086 void
4087 uma_zfree_smr(uma_zone_t zone, void *item)
4088 {
4089 uma_cache_t cache;
4090 uma_cache_bucket_t bucket;
4091 int itemdomain, uz_flags;
4092
4093 #ifdef UMA_ZALLOC_DEBUG
4094 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0,
4095 ("uma_zfree_smr: called with non-SMR zone."));
4096 KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer."));
4097 SMR_ASSERT_NOT_ENTERED(zone->uz_smr);
4098 if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN)
4099 return;
4100 #endif
4101 cache = &zone->uz_cpu[curcpu];
4102 uz_flags = cache_uz_flags(cache);
4103 itemdomain = 0;
4104 #ifdef NUMA
4105 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
4106 itemdomain = item_domain(item);
4107 #endif
4108 critical_enter();
4109 do {
4110 cache = &zone->uz_cpu[curcpu];
4111 /* SMR Zones must free to the free bucket. */
4112 bucket = &cache->uc_freebucket;
4113 #ifdef NUMA
4114 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4115 PCPU_GET(domain) != itemdomain) {
4116 bucket = &cache->uc_crossbucket;
4117 }
4118 #endif
4119 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) {
4120 cache_bucket_push(cache, bucket, item);
4121 critical_exit();
4122 return;
4123 }
4124 } while (cache_free(zone, cache, NULL, item, itemdomain));
4125 critical_exit();
4126
4127 /*
4128 * If nothing else caught this, we'll just do an internal free.
4129 */
4130 zone_free_item(zone, item, NULL, SKIP_NONE);
4131 }
4132
4133 /* See uma.h */
4134 void
4135 uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
4136 {
4137 uma_cache_t cache;
4138 uma_cache_bucket_t bucket;
4139 int itemdomain, uz_flags;
4140
4141 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */
4142 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA);
4143
4144 CTR2(KTR_UMA, "uma_zfree_arg zone %s(%p)", zone->uz_name, zone);
4145
4146 #ifdef UMA_ZALLOC_DEBUG
4147 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
4148 ("uma_zfree_arg: called with SMR zone."));
4149 if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN)
4150 return;
4151 #endif
4152 /* uma_zfree(..., NULL) does nothing, to match free(9). */
4153 if (item == NULL)
4154 return;
4155
4156 /*
4157 * We are accessing the per-cpu cache without a critical section to
4158 * fetch size and flags. This is acceptable, if we are preempted we
4159 * will simply read another cpu's line.
4160 */
4161 cache = &zone->uz_cpu[curcpu];
4162 uz_flags = cache_uz_flags(cache);
4163 if (UMA_ALWAYS_CTORDTOR ||
4164 __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0))
4165 item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE);
4166
4167 /*
4168 * The race here is acceptable. If we miss it we'll just have to wait
4169 * a little longer for the limits to be reset.
4170 */
4171 if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) {
4172 if (atomic_load_32(&zone->uz_sleepers) > 0)
4173 goto zfree_item;
4174 }
4175
4176 /*
4177 * If possible, free to the per-CPU cache. There are two
4178 * requirements for safe access to the per-CPU cache: (1) the thread
4179 * accessing the cache must not be preempted or yield during access,
4180 * and (2) the thread must not migrate CPUs without switching which
4181 * cache it accesses. We rely on a critical section to prevent
4182 * preemption and migration. We release the critical section in
4183 * order to acquire the zone mutex if we are unable to free to the
4184 * current cache; when we re-acquire the critical section, we must
4185 * detect and handle migration if it has occurred.
4186 */
4187 itemdomain = 0;
4188 #ifdef NUMA
4189 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0)
4190 itemdomain = item_domain(item);
4191 #endif
4192 critical_enter();
4193 do {
4194 cache = &zone->uz_cpu[curcpu];
4195 /*
4196 * Try to free into the allocbucket first to give LIFO
4197 * ordering for cache-hot datastructures. Spill over
4198 * into the freebucket if necessary. Alloc will swap
4199 * them if one runs dry.
4200 */
4201 bucket = &cache->uc_allocbucket;
4202 #ifdef NUMA
4203 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4204 PCPU_GET(domain) != itemdomain) {
4205 bucket = &cache->uc_crossbucket;
4206 } else
4207 #endif
4208 if (bucket->ucb_cnt == bucket->ucb_entries &&
4209 cache->uc_freebucket.ucb_cnt <
4210 cache->uc_freebucket.ucb_entries)
4211 cache_bucket_swap(&cache->uc_freebucket,
4212 &cache->uc_allocbucket);
4213 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) {
4214 cache_bucket_push(cache, bucket, item);
4215 critical_exit();
4216 return;
4217 }
4218 } while (cache_free(zone, cache, udata, item, itemdomain));
4219 critical_exit();
4220
4221 /*
4222 * If nothing else caught this, we'll just do an internal free.
4223 */
4224 zfree_item:
4225 zone_free_item(zone, item, udata, SKIP_DTOR);
4226 }
4227
4228 #ifdef NUMA
4229 /*
4230 * sort crossdomain free buckets to domain correct buckets and cache
4231 * them.
4232 */
4233 static void
4234 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata)
4235 {
4236 struct uma_bucketlist emptybuckets, fullbuckets;
4237 uma_zone_domain_t zdom;
4238 uma_bucket_t b;
4239 smr_seq_t seq;
4240 void *item;
4241 int domain;
4242
4243 CTR3(KTR_UMA,
4244 "uma_zfree: zone %s(%p) draining cross bucket %p",
4245 zone->uz_name, zone, bucket);
4246
4247 /*
4248 * It is possible for buckets to arrive here out of order so we fetch
4249 * the current smr seq rather than accepting the bucket's.
4250 */
4251 seq = SMR_SEQ_INVALID;
4252 if ((zone->uz_flags & UMA_ZONE_SMR) != 0)
4253 seq = smr_advance(zone->uz_smr);
4254
4255 /*
4256 * To avoid having ndomain * ndomain buckets for sorting we have a
4257 * lock on the current crossfree bucket. A full matrix with
4258 * per-domain locking could be used if necessary.
4259 */
4260 STAILQ_INIT(&emptybuckets);
4261 STAILQ_INIT(&fullbuckets);
4262 ZONE_CROSS_LOCK(zone);
4263 for (; bucket->ub_cnt > 0; bucket->ub_cnt--) {
4264 item = bucket->ub_bucket[bucket->ub_cnt - 1];
4265 domain = item_domain(item);
4266 zdom = ZDOM_GET(zone, domain);
4267 if (zdom->uzd_cross == NULL) {
4268 if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) {
4269 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4270 zdom->uzd_cross = b;
4271 } else {
4272 /*
4273 * Avoid allocating a bucket with the cross lock
4274 * held, since allocation can trigger a
4275 * cross-domain free and bucket zones may
4276 * allocate from each other.
4277 */
4278 ZONE_CROSS_UNLOCK(zone);
4279 b = bucket_alloc(zone, udata, M_NOWAIT);
4280 if (b == NULL)
4281 goto out;
4282 ZONE_CROSS_LOCK(zone);
4283 if (zdom->uzd_cross != NULL) {
4284 STAILQ_INSERT_HEAD(&emptybuckets, b,
4285 ub_link);
4286 } else {
4287 zdom->uzd_cross = b;
4288 }
4289 }
4290 }
4291 b = zdom->uzd_cross;
4292 b->ub_bucket[b->ub_cnt++] = item;
4293 b->ub_seq = seq;
4294 if (b->ub_cnt == b->ub_entries) {
4295 STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link);
4296 if ((b = STAILQ_FIRST(&emptybuckets)) != NULL)
4297 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4298 zdom->uzd_cross = b;
4299 }
4300 }
4301 ZONE_CROSS_UNLOCK(zone);
4302 out:
4303 if (bucket->ub_cnt == 0)
4304 bucket->ub_seq = SMR_SEQ_INVALID;
4305 bucket_free(zone, bucket, udata);
4306
4307 while ((b = STAILQ_FIRST(&emptybuckets)) != NULL) {
4308 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link);
4309 bucket_free(zone, b, udata);
4310 }
4311 while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) {
4312 STAILQ_REMOVE_HEAD(&fullbuckets, ub_link);
4313 domain = item_domain(b->ub_bucket[0]);
4314 zone_put_bucket(zone, domain, b, udata, true);
4315 }
4316 }
4317 #endif
4318
4319 static void
4320 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata,
4321 int itemdomain, bool ws)
4322 {
4323
4324 #ifdef NUMA
4325 /*
4326 * Buckets coming from the wrong domain will be entirely for the
4327 * only other domain on two domain systems. In this case we can
4328 * simply cache them. Otherwise we need to sort them back to
4329 * correct domains.
4330 */
4331 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 &&
4332 vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) {
4333 zone_free_cross(zone, bucket, udata);
4334 return;
4335 }
4336 #endif
4337
4338 /*
4339 * Attempt to save the bucket in the zone's domain bucket cache.
4340 */
4341 CTR3(KTR_UMA,
4342 "uma_zfree: zone %s(%p) putting bucket %p on free list",
4343 zone->uz_name, zone, bucket);
4344 /* ub_cnt is pointing to the last free item */
4345 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0)
4346 itemdomain = zone_domain_lowest(zone, itemdomain);
4347 zone_put_bucket(zone, itemdomain, bucket, udata, ws);
4348 }
4349
4350 /*
4351 * Populate a free or cross bucket for the current cpu cache. Free any
4352 * existing full bucket either to the zone cache or back to the slab layer.
4353 *
4354 * Enters and returns in a critical section. false return indicates that
4355 * we can not satisfy this free in the cache layer. true indicates that
4356 * the caller should retry.
4357 */
4358 static __noinline bool
4359 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, void *item,
4360 int itemdomain)
4361 {
4362 uma_cache_bucket_t cbucket;
4363 uma_bucket_t newbucket, bucket;
4364
4365 CRITICAL_ASSERT(curthread);
4366
4367 if (zone->uz_bucket_size == 0)
4368 return false;
4369
4370 cache = &zone->uz_cpu[curcpu];
4371 newbucket = NULL;
4372
4373 /*
4374 * FIRSTTOUCH domains need to free to the correct zdom. When
4375 * enabled this is the zdom of the item. The bucket is the
4376 * cross bucket if the current domain and itemdomain do not match.
4377 */
4378 cbucket = &cache->uc_freebucket;
4379 #ifdef NUMA
4380 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) {
4381 if (PCPU_GET(domain) != itemdomain) {
4382 cbucket = &cache->uc_crossbucket;
4383 if (cbucket->ucb_cnt != 0)
4384 counter_u64_add(zone->uz_xdomain,
4385 cbucket->ucb_cnt);
4386 }
4387 }
4388 #endif
4389 bucket = cache_bucket_unload(cbucket);
4390 KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries,
4391 ("cache_free: Entered with non-full free bucket."));
4392
4393 /* We are no longer associated with this CPU. */
4394 critical_exit();
4395
4396 /*
4397 * Don't let SMR zones operate without a free bucket. Force
4398 * a synchronize and re-use this one. We will only degrade
4399 * to a synchronize every bucket_size items rather than every
4400 * item if we fail to allocate a bucket.
4401 */
4402 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) {
4403 if (bucket != NULL)
4404 bucket->ub_seq = smr_advance(zone->uz_smr);
4405 newbucket = bucket_alloc(zone, udata, M_NOWAIT);
4406 if (newbucket == NULL && bucket != NULL) {
4407 bucket_drain(zone, bucket);
4408 newbucket = bucket;
4409 bucket = NULL;
4410 }
4411 } else if (!bucketdisable)
4412 newbucket = bucket_alloc(zone, udata, M_NOWAIT);
4413
4414 if (bucket != NULL)
4415 zone_free_bucket(zone, bucket, udata, itemdomain, true);
4416
4417 critical_enter();
4418 if ((bucket = newbucket) == NULL)
4419 return (false);
4420 cache = &zone->uz_cpu[curcpu];
4421 #ifdef NUMA
4422 /*
4423 * Check to see if we should be populating the cross bucket. If it
4424 * is already populated we will fall through and attempt to populate
4425 * the free bucket.
4426 */
4427 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) {
4428 if (PCPU_GET(domain) != itemdomain &&
4429 cache->uc_crossbucket.ucb_bucket == NULL) {
4430 cache_bucket_load_cross(cache, bucket);
4431 return (true);
4432 }
4433 }
4434 #endif
4435 /*
4436 * We may have lost the race to fill the bucket or switched CPUs.
4437 */
4438 if (cache->uc_freebucket.ucb_bucket != NULL) {
4439 critical_exit();
4440 bucket_free(zone, bucket, udata);
4441 critical_enter();
4442 } else
4443 cache_bucket_load_free(cache, bucket);
4444
4445 return (true);
4446 }
4447
4448 static void
4449 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item)
4450 {
4451 uma_keg_t keg;
4452 uma_domain_t dom;
4453 int freei;
4454
4455 keg = zone->uz_keg;
4456 KEG_LOCK_ASSERT(keg, slab->us_domain);
4457
4458 /* Do we need to remove from any lists? */
4459 dom = &keg->uk_domain[slab->us_domain];
4460 if (slab->us_freecount + 1 == keg->uk_ipers) {
4461 LIST_REMOVE(slab, us_link);
4462 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link);
4463 dom->ud_free_slabs++;
4464 } else if (slab->us_freecount == 0) {
4465 LIST_REMOVE(slab, us_link);
4466 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link);
4467 }
4468
4469 /* Slab management. */
4470 freei = slab_item_index(slab, keg, item);
4471 BIT_SET(keg->uk_ipers, freei, &slab->us_free);
4472 slab->us_freecount++;
4473
4474 /* Keg statistics. */
4475 dom->ud_free_items++;
4476 }
4477
4478 static void
4479 zone_release(void *arg, void **bucket, int cnt)
4480 {
4481 struct mtx *lock;
4482 uma_zone_t zone;
4483 uma_slab_t slab;
4484 uma_keg_t keg;
4485 uint8_t *mem;
4486 void *item;
4487 int i;
4488
4489 zone = arg;
4490 keg = zone->uz_keg;
4491 lock = NULL;
4492 if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0))
4493 lock = KEG_LOCK(keg, 0);
4494 for (i = 0; i < cnt; i++) {
4495 item = bucket[i];
4496 if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) {
4497 slab = vtoslab((vm_offset_t)item);
4498 } else {
4499 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
4500 if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0)
4501 slab = hash_sfind(&keg->uk_hash, mem);
4502 else
4503 slab = (uma_slab_t)(mem + keg->uk_pgoff);
4504 }
4505 if (lock != KEG_LOCKPTR(keg, slab->us_domain)) {
4506 if (lock != NULL)
4507 mtx_unlock(lock);
4508 lock = KEG_LOCK(keg, slab->us_domain);
4509 }
4510 slab_free_item(zone, slab, item);
4511 }
4512 if (lock != NULL)
4513 mtx_unlock(lock);
4514 }
4515
4516 /*
4517 * Frees a single item to any zone.
4518 *
4519 * Arguments:
4520 * zone The zone to free to
4521 * item The item we're freeing
4522 * udata User supplied data for the dtor
4523 * skip Skip dtors and finis
4524 */
4525 static __noinline void
4526 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
4527 {
4528
4529 /*
4530 * If a free is sent directly to an SMR zone we have to
4531 * synchronize immediately because the item can instantly
4532 * be reallocated. This should only happen in degenerate
4533 * cases when no memory is available for per-cpu caches.
4534 */
4535 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE)
4536 smr_synchronize(zone->uz_smr);
4537
4538 item_dtor(zone, item, zone->uz_size, udata, skip);
4539
4540 if (skip < SKIP_FINI && zone->uz_fini)
4541 zone->uz_fini(item, zone->uz_size);
4542
4543 zone->uz_release(zone->uz_arg, &item, 1);
4544
4545 if (skip & SKIP_CNT)
4546 return;
4547
4548 counter_u64_add(zone->uz_frees, 1);
4549
4550 if (zone->uz_max_items > 0)
4551 zone_free_limit(zone, 1);
4552 }
4553
4554 /* See uma.h */
4555 int
4556 uma_zone_set_max(uma_zone_t zone, int nitems)
4557 {
4558
4559 /*
4560 * If the limit is small, we may need to constrain the maximum per-CPU
4561 * cache size, or disable caching entirely.
4562 */
4563 uma_zone_set_maxcache(zone, nitems);
4564
4565 /*
4566 * XXX This can misbehave if the zone has any allocations with
4567 * no limit and a limit is imposed. There is currently no
4568 * way to clear a limit.
4569 */
4570 ZONE_LOCK(zone);
4571 zone->uz_max_items = nitems;
4572 zone->uz_flags |= UMA_ZFLAG_LIMIT;
4573 zone_update_caches(zone);
4574 /* We may need to wake waiters. */
4575 wakeup(&zone->uz_max_items);
4576 ZONE_UNLOCK(zone);
4577
4578 return (nitems);
4579 }
4580
4581 /* See uma.h */
4582 void
4583 uma_zone_set_maxcache(uma_zone_t zone, int nitems)
4584 {
4585 int bpcpu, bpdom, bsize, nb;
4586
4587 ZONE_LOCK(zone);
4588
4589 /*
4590 * Compute a lower bound on the number of items that may be cached in
4591 * the zone. Each CPU gets at least two buckets, and for cross-domain
4592 * frees we use an additional bucket per CPU and per domain. Select the
4593 * largest bucket size that does not exceed half of the requested limit,
4594 * with the left over space given to the full bucket cache.
4595 */
4596 bpdom = 0;
4597 bpcpu = 2;
4598 #ifdef NUMA
4599 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && vm_ndomains > 1) {
4600 bpcpu++;
4601 bpdom++;
4602 }
4603 #endif
4604 nb = bpcpu * mp_ncpus + bpdom * vm_ndomains;
4605 bsize = nitems / nb / 2;
4606 if (bsize > BUCKET_MAX)
4607 bsize = BUCKET_MAX;
4608 else if (bsize == 0 && nitems / nb > 0)
4609 bsize = 1;
4610 zone->uz_bucket_size_max = zone->uz_bucket_size = bsize;
4611 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max)
4612 zone->uz_bucket_size_min = zone->uz_bucket_size_max;
4613 zone->uz_bucket_max = nitems - nb * bsize;
4614 ZONE_UNLOCK(zone);
4615 }
4616
4617 /* See uma.h */
4618 int
4619 uma_zone_get_max(uma_zone_t zone)
4620 {
4621 int nitems;
4622
4623 nitems = atomic_load_64(&zone->uz_max_items);
4624
4625 return (nitems);
4626 }
4627
4628 /* See uma.h */
4629 void
4630 uma_zone_set_warning(uma_zone_t zone, const char *warning)
4631 {
4632
4633 ZONE_ASSERT_COLD(zone);
4634 zone->uz_warning = warning;
4635 }
4636
4637 /* See uma.h */
4638 void
4639 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction)
4640 {
4641
4642 ZONE_ASSERT_COLD(zone);
4643 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone);
4644 }
4645
4646 /* See uma.h */
4647 int
4648 uma_zone_get_cur(uma_zone_t zone)
4649 {
4650 int64_t nitems;
4651 u_int i;
4652
4653 nitems = 0;
4654 if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER)
4655 nitems = counter_u64_fetch(zone->uz_allocs) -
4656 counter_u64_fetch(zone->uz_frees);
4657 CPU_FOREACH(i)
4658 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) -
4659 atomic_load_64(&zone->uz_cpu[i].uc_frees);
4660
4661 return (nitems < 0 ? 0 : nitems);
4662 }
4663
4664 static uint64_t
4665 uma_zone_get_allocs(uma_zone_t zone)
4666 {
4667 uint64_t nitems;
4668 u_int i;
4669
4670 nitems = 0;
4671 if (zone->uz_allocs != EARLY_COUNTER)
4672 nitems = counter_u64_fetch(zone->uz_allocs);
4673 CPU_FOREACH(i)
4674 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs);
4675
4676 return (nitems);
4677 }
4678
4679 static uint64_t
4680 uma_zone_get_frees(uma_zone_t zone)
4681 {
4682 uint64_t nitems;
4683 u_int i;
4684
4685 nitems = 0;
4686 if (zone->uz_frees != EARLY_COUNTER)
4687 nitems = counter_u64_fetch(zone->uz_frees);
4688 CPU_FOREACH(i)
4689 nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees);
4690
4691 return (nitems);
4692 }
4693
4694 #ifdef INVARIANTS
4695 /* Used only for KEG_ASSERT_COLD(). */
4696 static uint64_t
4697 uma_keg_get_allocs(uma_keg_t keg)
4698 {
4699 uma_zone_t z;
4700 uint64_t nitems;
4701
4702 nitems = 0;
4703 LIST_FOREACH(z, &keg->uk_zones, uz_link)
4704 nitems += uma_zone_get_allocs(z);
4705
4706 return (nitems);
4707 }
4708 #endif
4709
4710 /* See uma.h */
4711 void
4712 uma_zone_set_init(uma_zone_t zone, uma_init uminit)
4713 {
4714 uma_keg_t keg;
4715
4716 KEG_GET(zone, keg);
4717 KEG_ASSERT_COLD(keg);
4718 keg->uk_init = uminit;
4719 }
4720
4721 /* See uma.h */
4722 void
4723 uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
4724 {
4725 uma_keg_t keg;
4726
4727 KEG_GET(zone, keg);
4728 KEG_ASSERT_COLD(keg);
4729 keg->uk_fini = fini;
4730 }
4731
4732 /* See uma.h */
4733 void
4734 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
4735 {
4736
4737 ZONE_ASSERT_COLD(zone);
4738 zone->uz_init = zinit;
4739 }
4740
4741 /* See uma.h */
4742 void
4743 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
4744 {
4745
4746 ZONE_ASSERT_COLD(zone);
4747 zone->uz_fini = zfini;
4748 }
4749
4750 /* See uma.h */
4751 void
4752 uma_zone_set_freef(uma_zone_t zone, uma_free freef)
4753 {
4754 uma_keg_t keg;
4755
4756 KEG_GET(zone, keg);
4757 KEG_ASSERT_COLD(keg);
4758 keg->uk_freef = freef;
4759 }
4760
4761 /* See uma.h */
4762 void
4763 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
4764 {
4765 uma_keg_t keg;
4766
4767 KEG_GET(zone, keg);
4768 KEG_ASSERT_COLD(keg);
4769 keg->uk_allocf = allocf;
4770 }
4771
4772 /* See uma.h */
4773 void
4774 uma_zone_set_smr(uma_zone_t zone, smr_t smr)
4775 {
4776
4777 ZONE_ASSERT_COLD(zone);
4778
4779 KASSERT(smr != NULL, ("Got NULL smr"));
4780 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0,
4781 ("zone %p (%s) already uses SMR", zone, zone->uz_name));
4782 zone->uz_flags |= UMA_ZONE_SMR;
4783 zone->uz_smr = smr;
4784 zone_update_caches(zone);
4785 }
4786
4787 smr_t
4788 uma_zone_get_smr(uma_zone_t zone)
4789 {
4790
4791 return (zone->uz_smr);
4792 }
4793
4794 /* See uma.h */
4795 void
4796 uma_zone_reserve(uma_zone_t zone, int items)
4797 {
4798 uma_keg_t keg;
4799
4800 KEG_GET(zone, keg);
4801 KEG_ASSERT_COLD(keg);
4802 keg->uk_reserve = items;
4803 }
4804
4805 /* See uma.h */
4806 int
4807 uma_zone_reserve_kva(uma_zone_t zone, int count)
4808 {
4809 uma_keg_t keg;
4810 vm_offset_t kva;
4811 u_int pages;
4812
4813 KEG_GET(zone, keg);
4814 KEG_ASSERT_COLD(keg);
4815 ZONE_ASSERT_COLD(zone);
4816
4817 pages = howmany(count, keg->uk_ipers) * keg->uk_ppera;
4818
4819 #ifdef UMA_MD_SMALL_ALLOC
4820 if (keg->uk_ppera > 1) {
4821 #else
4822 if (1) {
4823 #endif
4824 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE);
4825 if (kva == 0)
4826 return (0);
4827 } else
4828 kva = 0;
4829
4830 MPASS(keg->uk_kva == 0);
4831 keg->uk_kva = kva;
4832 keg->uk_offset = 0;
4833 zone->uz_max_items = pages * keg->uk_ipers;
4834 #ifdef UMA_MD_SMALL_ALLOC
4835 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
4836 #else
4837 keg->uk_allocf = noobj_alloc;
4838 #endif
4839 keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE;
4840 zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE;
4841 zone_update_caches(zone);
4842
4843 return (1);
4844 }
4845
4846 /* See uma.h */
4847 void
4848 uma_prealloc(uma_zone_t zone, int items)
4849 {
4850 struct vm_domainset_iter di;
4851 uma_domain_t dom;
4852 uma_slab_t slab;
4853 uma_keg_t keg;
4854 int aflags, domain, slabs;
4855
4856 KEG_GET(zone, keg);
4857 slabs = howmany(items, keg->uk_ipers);
4858 while (slabs-- > 0) {
4859 aflags = M_NOWAIT;
4860 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain,
4861 &aflags);
4862 for (;;) {
4863 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK,
4864 aflags);
4865 if (slab != NULL) {
4866 dom = &keg->uk_domain[slab->us_domain];
4867 /*
4868 * keg_alloc_slab() always returns a slab on the
4869 * partial list.
4870 */
4871 LIST_REMOVE(slab, us_link);
4872 LIST_INSERT_HEAD(&dom->ud_free_slab, slab,
4873 us_link);
4874 dom->ud_free_slabs++;
4875 KEG_UNLOCK(keg, slab->us_domain);
4876 break;
4877 }
4878 if (vm_domainset_iter_policy(&di, &domain) != 0)
4879 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0);
4880 }
4881 }
4882 }
4883
4884 /*
4885 * Returns a snapshot of memory consumption in bytes.
4886 */
4887 size_t
4888 uma_zone_memory(uma_zone_t zone)
4889 {
4890 size_t sz;
4891 int i;
4892
4893 sz = 0;
4894 if (zone->uz_flags & UMA_ZFLAG_CACHE) {
4895 for (i = 0; i < vm_ndomains; i++)
4896 sz += ZDOM_GET(zone, i)->uzd_nitems;
4897 return (sz * zone->uz_size);
4898 }
4899 for (i = 0; i < vm_ndomains; i++)
4900 sz += zone->uz_keg->uk_domain[i].ud_pages;
4901
4902 return (sz * PAGE_SIZE);
4903 }
4904
4905 /* See uma.h */
4906 void
4907 uma_reclaim(int req)
4908 {
4909
4910 CTR0(KTR_UMA, "UMA: vm asked us to release pages!");
4911 sx_xlock(&uma_reclaim_lock);
4912 bucket_enable();
4913
4914 switch (req) {
4915 case UMA_RECLAIM_TRIM:
4916 zone_foreach(zone_trim, NULL);
4917 break;
4918 case UMA_RECLAIM_DRAIN:
4919 case UMA_RECLAIM_DRAIN_CPU:
4920 zone_foreach(zone_drain, NULL);
4921 if (req == UMA_RECLAIM_DRAIN_CPU) {
4922 pcpu_cache_drain_safe(NULL);
4923 zone_foreach(zone_drain, NULL);
4924 }
4925 break;
4926 default:
4927 panic("unhandled reclamation request %d", req);
4928 }
4929
4930 /*
4931 * Some slabs may have been freed but this zone will be visited early
4932 * we visit again so that we can free pages that are empty once other
4933 * zones are drained. We have to do the same for buckets.
4934 */
4935 zone_drain(slabzones[0], NULL);
4936 zone_drain(slabzones[1], NULL);
4937 bucket_zone_drain();
4938 sx_xunlock(&uma_reclaim_lock);
4939 }
4940
4941 static volatile int uma_reclaim_needed;
4942
4943 void
4944 uma_reclaim_wakeup(void)
4945 {
4946
4947 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0)
4948 wakeup(uma_reclaim);
4949 }
4950
4951 void
4952 uma_reclaim_worker(void *arg __unused)
4953 {
4954
4955 for (;;) {
4956 sx_xlock(&uma_reclaim_lock);
4957 while (atomic_load_int(&uma_reclaim_needed) == 0)
4958 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl",
4959 hz);
4960 sx_xunlock(&uma_reclaim_lock);
4961 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM);
4962 uma_reclaim(UMA_RECLAIM_DRAIN_CPU);
4963 atomic_store_int(&uma_reclaim_needed, 0);
4964 /* Don't fire more than once per-second. */
4965 pause("umarclslp", hz);
4966 }
4967 }
4968
4969 /* See uma.h */
4970 void
4971 uma_zone_reclaim(uma_zone_t zone, int req)
4972 {
4973
4974 switch (req) {
4975 case UMA_RECLAIM_TRIM:
4976 zone_trim(zone, NULL);
4977 break;
4978 case UMA_RECLAIM_DRAIN:
4979 zone_drain(zone, NULL);
4980 break;
4981 case UMA_RECLAIM_DRAIN_CPU:
4982 pcpu_cache_drain_safe(zone);
4983 zone_drain(zone, NULL);
4984 break;
4985 default:
4986 panic("unhandled reclamation request %d", req);
4987 }
4988 }
4989
4990 /* See uma.h */
4991 int
4992 uma_zone_exhausted(uma_zone_t zone)
4993 {
4994
4995 return (atomic_load_32(&zone->uz_sleepers) > 0);
4996 }
4997
4998 unsigned long
4999 uma_limit(void)
5000 {
5001
5002 return (uma_kmem_limit);
5003 }
5004
5005 void
5006 uma_set_limit(unsigned long limit)
5007 {
5008
5009 uma_kmem_limit = limit;
5010 }
5011
5012 unsigned long
5013 uma_size(void)
5014 {
5015
5016 return (atomic_load_long(&uma_kmem_total));
5017 }
5018
5019 long
5020 uma_avail(void)
5021 {
5022
5023 return (uma_kmem_limit - uma_size());
5024 }
5025
5026 #ifdef DDB
5027 /*
5028 * Generate statistics across both the zone and its per-cpu cache's. Return
5029 * desired statistics if the pointer is non-NULL for that statistic.
5030 *
5031 * Note: does not update the zone statistics, as it can't safely clear the
5032 * per-CPU cache statistic.
5033 *
5034 */
5035 static void
5036 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp,
5037 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp)
5038 {
5039 uma_cache_t cache;
5040 uint64_t allocs, frees, sleeps, xdomain;
5041 int cachefree, cpu;
5042
5043 allocs = frees = sleeps = xdomain = 0;
5044 cachefree = 0;
5045 CPU_FOREACH(cpu) {
5046 cache = &z->uz_cpu[cpu];
5047 cachefree += cache->uc_allocbucket.ucb_cnt;
5048 cachefree += cache->uc_freebucket.ucb_cnt;
5049 xdomain += cache->uc_crossbucket.ucb_cnt;
5050 cachefree += cache->uc_crossbucket.ucb_cnt;
5051 allocs += cache->uc_allocs;
5052 frees += cache->uc_frees;
5053 }
5054 allocs += counter_u64_fetch(z->uz_allocs);
5055 frees += counter_u64_fetch(z->uz_frees);
5056 xdomain += counter_u64_fetch(z->uz_xdomain);
5057 sleeps += z->uz_sleeps;
5058 if (cachefreep != NULL)
5059 *cachefreep = cachefree;
5060 if (allocsp != NULL)
5061 *allocsp = allocs;
5062 if (freesp != NULL)
5063 *freesp = frees;
5064 if (sleepsp != NULL)
5065 *sleepsp = sleeps;
5066 if (xdomainp != NULL)
5067 *xdomainp = xdomain;
5068 }
5069 #endif /* DDB */
5070
5071 static int
5072 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
5073 {
5074 uma_keg_t kz;
5075 uma_zone_t z;
5076 int count;
5077
5078 count = 0;
5079 rw_rlock(&uma_rwlock);
5080 LIST_FOREACH(kz, &uma_kegs, uk_link) {
5081 LIST_FOREACH(z, &kz->uk_zones, uz_link)
5082 count++;
5083 }
5084 LIST_FOREACH(z, &uma_cachezones, uz_link)
5085 count++;
5086
5087 rw_runlock(&uma_rwlock);
5088 return (sysctl_handle_int(oidp, &count, 0, req));
5089 }
5090
5091 static void
5092 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf,
5093 struct uma_percpu_stat *ups, bool internal)
5094 {
5095 uma_zone_domain_t zdom;
5096 uma_cache_t cache;
5097 int i;
5098
5099 for (i = 0; i < vm_ndomains; i++) {
5100 zdom = ZDOM_GET(z, i);
5101 uth->uth_zone_free += zdom->uzd_nitems;
5102 }
5103 uth->uth_allocs = counter_u64_fetch(z->uz_allocs);
5104 uth->uth_frees = counter_u64_fetch(z->uz_frees);
5105 uth->uth_fails = counter_u64_fetch(z->uz_fails);
5106 uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain);
5107 uth->uth_sleeps = z->uz_sleeps;
5108
5109 for (i = 0; i < mp_maxid + 1; i++) {
5110 bzero(&ups[i], sizeof(*ups));
5111 if (internal || CPU_ABSENT(i))
5112 continue;
5113 cache = &z->uz_cpu[i];
5114 ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt;
5115 ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt;
5116 ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt;
5117 ups[i].ups_allocs = cache->uc_allocs;
5118 ups[i].ups_frees = cache->uc_frees;
5119 }
5120 }
5121
5122 static int
5123 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
5124 {
5125 struct uma_stream_header ush;
5126 struct uma_type_header uth;
5127 struct uma_percpu_stat *ups;
5128 struct sbuf sbuf;
5129 uma_keg_t kz;
5130 uma_zone_t z;
5131 uint64_t items;
5132 uint32_t kfree, pages;
5133 int count, error, i;
5134
5135 error = sysctl_wire_old_buffer(req, 0);
5136 if (error != 0)
5137 return (error);
5138 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
5139 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
5140 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK);
5141
5142 count = 0;
5143 rw_rlock(&uma_rwlock);
5144 LIST_FOREACH(kz, &uma_kegs, uk_link) {
5145 LIST_FOREACH(z, &kz->uk_zones, uz_link)
5146 count++;
5147 }
5148
5149 LIST_FOREACH(z, &uma_cachezones, uz_link)
5150 count++;
5151
5152 /*
5153 * Insert stream header.
5154 */
5155 bzero(&ush, sizeof(ush));
5156 ush.ush_version = UMA_STREAM_VERSION;
5157 ush.ush_maxcpus = (mp_maxid + 1);
5158 ush.ush_count = count;
5159 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
5160
5161 LIST_FOREACH(kz, &uma_kegs, uk_link) {
5162 kfree = pages = 0;
5163 for (i = 0; i < vm_ndomains; i++) {
5164 kfree += kz->uk_domain[i].ud_free_items;
5165 pages += kz->uk_domain[i].ud_pages;
5166 }
5167 LIST_FOREACH(z, &kz->uk_zones, uz_link) {
5168 bzero(&uth, sizeof(uth));
5169 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
5170 uth.uth_align = kz->uk_align;
5171 uth.uth_size = kz->uk_size;
5172 uth.uth_rsize = kz->uk_rsize;
5173 if (z->uz_max_items > 0) {
5174 items = UZ_ITEMS_COUNT(z->uz_items);
5175 uth.uth_pages = (items / kz->uk_ipers) *
5176 kz->uk_ppera;
5177 } else
5178 uth.uth_pages = pages;
5179 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) *
5180 kz->uk_ppera;
5181 uth.uth_limit = z->uz_max_items;
5182 uth.uth_keg_free = kfree;
5183
5184 /*
5185 * A zone is secondary is it is not the first entry
5186 * on the keg's zone list.
5187 */
5188 if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
5189 (LIST_FIRST(&kz->uk_zones) != z))
5190 uth.uth_zone_flags = UTH_ZONE_SECONDARY;
5191 uma_vm_zone_stats(&uth, z, &sbuf, ups,
5192 kz->uk_flags & UMA_ZFLAG_INTERNAL);
5193 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
5194 for (i = 0; i < mp_maxid + 1; i++)
5195 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
5196 }
5197 }
5198 LIST_FOREACH(z, &uma_cachezones, uz_link) {
5199 bzero(&uth, sizeof(uth));
5200 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
5201 uth.uth_size = z->uz_size;
5202 uma_vm_zone_stats(&uth, z, &sbuf, ups, false);
5203 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
5204 for (i = 0; i < mp_maxid + 1; i++)
5205 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i]));
5206 }
5207
5208 rw_runlock(&uma_rwlock);
5209 error = sbuf_finish(&sbuf);
5210 sbuf_delete(&sbuf);
5211 free(ups, M_TEMP);
5212 return (error);
5213 }
5214
5215 int
5216 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS)
5217 {
5218 uma_zone_t zone = *(uma_zone_t *)arg1;
5219 int error, max;
5220
5221 max = uma_zone_get_max(zone);
5222 error = sysctl_handle_int(oidp, &max, 0, req);
5223 if (error || !req->newptr)
5224 return (error);
5225
5226 uma_zone_set_max(zone, max);
5227
5228 return (0);
5229 }
5230
5231 int
5232 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS)
5233 {
5234 uma_zone_t zone;
5235 int cur;
5236
5237 /*
5238 * Some callers want to add sysctls for global zones that
5239 * may not yet exist so they pass a pointer to a pointer.
5240 */
5241 if (arg2 == 0)
5242 zone = *(uma_zone_t *)arg1;
5243 else
5244 zone = arg1;
5245 cur = uma_zone_get_cur(zone);
5246 return (sysctl_handle_int(oidp, &cur, 0, req));
5247 }
5248
5249 static int
5250 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS)
5251 {
5252 uma_zone_t zone = arg1;
5253 uint64_t cur;
5254
5255 cur = uma_zone_get_allocs(zone);
5256 return (sysctl_handle_64(oidp, &cur, 0, req));
5257 }
5258
5259 static int
5260 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS)
5261 {
5262 uma_zone_t zone = arg1;
5263 uint64_t cur;
5264
5265 cur = uma_zone_get_frees(zone);
5266 return (sysctl_handle_64(oidp, &cur, 0, req));
5267 }
5268
5269 static int
5270 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS)
5271 {
5272 struct sbuf sbuf;
5273 uma_zone_t zone = arg1;
5274 int error;
5275
5276 sbuf_new_for_sysctl(&sbuf, NULL, 0, req);
5277 if (zone->uz_flags != 0)
5278 sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS);
5279 else
5280 sbuf_printf(&sbuf, "");
5281 error = sbuf_finish(&sbuf);
5282 sbuf_delete(&sbuf);
5283
5284 return (error);
5285 }
5286
5287 static int
5288 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS)
5289 {
5290 uma_keg_t keg = arg1;
5291 int avail, effpct, total;
5292
5293 total = keg->uk_ppera * PAGE_SIZE;
5294 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0)
5295 total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize;
5296 /*
5297 * We consider the client's requested size and alignment here, not the
5298 * real size determination uk_rsize, because we also adjust the real
5299 * size for internal implementation reasons (max bitset size).
5300 */
5301 avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1);
5302 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0)
5303 avail *= mp_maxid + 1;
5304 effpct = 100 * avail / total;
5305 return (sysctl_handle_int(oidp, &effpct, 0, req));
5306 }
5307
5308 static int
5309 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS)
5310 {
5311 uma_zone_t zone = arg1;
5312 uint64_t cur;
5313
5314 cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items));
5315 return (sysctl_handle_64(oidp, &cur, 0, req));
5316 }
5317
5318 #ifdef INVARIANTS
5319 static uma_slab_t
5320 uma_dbg_getslab(uma_zone_t zone, void *item)
5321 {
5322 uma_slab_t slab;
5323 uma_keg_t keg;
5324 uint8_t *mem;
5325
5326 /*
5327 * It is safe to return the slab here even though the
5328 * zone is unlocked because the item's allocation state
5329 * essentially holds a reference.
5330 */
5331 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
5332 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
5333 return (NULL);
5334 if (zone->uz_flags & UMA_ZFLAG_VTOSLAB)
5335 return (vtoslab((vm_offset_t)mem));
5336 keg = zone->uz_keg;
5337 if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0)
5338 return ((uma_slab_t)(mem + keg->uk_pgoff));
5339 KEG_LOCK(keg, 0);
5340 slab = hash_sfind(&keg->uk_hash, mem);
5341 KEG_UNLOCK(keg, 0);
5342
5343 return (slab);
5344 }
5345
5346 static bool
5347 uma_dbg_zskip(uma_zone_t zone, void *mem)
5348 {
5349
5350 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0)
5351 return (true);
5352
5353 return (uma_dbg_kskip(zone->uz_keg, mem));
5354 }
5355
5356 static bool
5357 uma_dbg_kskip(uma_keg_t keg, void *mem)
5358 {
5359 uintptr_t idx;
5360
5361 if (dbg_divisor == 0)
5362 return (true);
5363
5364 if (dbg_divisor == 1)
5365 return (false);
5366
5367 idx = (uintptr_t)mem >> PAGE_SHIFT;
5368 if (keg->uk_ipers > 1) {
5369 idx *= keg->uk_ipers;
5370 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize;
5371 }
5372
5373 if ((idx / dbg_divisor) * dbg_divisor != idx) {
5374 counter_u64_add(uma_skip_cnt, 1);
5375 return (true);
5376 }
5377 counter_u64_add(uma_dbg_cnt, 1);
5378
5379 return (false);
5380 }
5381
5382 /*
5383 * Set up the slab's freei data such that uma_dbg_free can function.
5384 *
5385 */
5386 static void
5387 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item)
5388 {
5389 uma_keg_t keg;
5390 int freei;
5391
5392 if (slab == NULL) {
5393 slab = uma_dbg_getslab(zone, item);
5394 if (slab == NULL)
5395 panic("uma: item %p did not belong to zone %s",
5396 item, zone->uz_name);
5397 }
5398 keg = zone->uz_keg;
5399 freei = slab_item_index(slab, keg, item);
5400
5401 if (BIT_TEST_SET_ATOMIC(keg->uk_ipers, freei,
5402 slab_dbg_bits(slab, keg)))
5403 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)",
5404 item, zone, zone->uz_name, slab, freei);
5405 }
5406
5407 /*
5408 * Verifies freed addresses. Checks for alignment, valid slab membership
5409 * and duplicate frees.
5410 *
5411 */
5412 static void
5413 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item)
5414 {
5415 uma_keg_t keg;
5416 int freei;
5417
5418 if (slab == NULL) {
5419 slab = uma_dbg_getslab(zone, item);
5420 if (slab == NULL)
5421 panic("uma: Freed item %p did not belong to zone %s",
5422 item, zone->uz_name);
5423 }
5424 keg = zone->uz_keg;
5425 freei = slab_item_index(slab, keg, item);
5426
5427 if (freei >= keg->uk_ipers)
5428 panic("Invalid free of %p from zone %p(%s) slab %p(%d)",
5429 item, zone, zone->uz_name, slab, freei);
5430
5431 if (slab_item(slab, keg, freei) != item)
5432 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)",
5433 item, zone, zone->uz_name, slab, freei);
5434
5435 if (!BIT_TEST_CLR_ATOMIC(keg->uk_ipers, freei,
5436 slab_dbg_bits(slab, keg)))
5437 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)",
5438 item, zone, zone->uz_name, slab, freei);
5439 }
5440 #endif /* INVARIANTS */
5441
5442 #ifdef DDB
5443 static int64_t
5444 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used,
5445 uint64_t *sleeps, long *cachefree, uint64_t *xdomain)
5446 {
5447 uint64_t frees;
5448 int i;
5449
5450 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
5451 *allocs = counter_u64_fetch(z->uz_allocs);
5452 frees = counter_u64_fetch(z->uz_frees);
5453 *sleeps = z->uz_sleeps;
5454 *cachefree = 0;
5455 *xdomain = 0;
5456 } else
5457 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps,
5458 xdomain);
5459 for (i = 0; i < vm_ndomains; i++) {
5460 *cachefree += ZDOM_GET(z, i)->uzd_nitems;
5461 if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
5462 (LIST_FIRST(&kz->uk_zones) != z)))
5463 *cachefree += kz->uk_domain[i].ud_free_items;
5464 }
5465 *used = *allocs - frees;
5466 return (((int64_t)*used + *cachefree) * kz->uk_size);
5467 }
5468
5469 DB_SHOW_COMMAND(uma, db_show_uma)
5470 {
5471 const char *fmt_hdr, *fmt_entry;
5472 uma_keg_t kz;
5473 uma_zone_t z;
5474 uint64_t allocs, used, sleeps, xdomain;
5475 long cachefree;
5476 /* variables for sorting */
5477 uma_keg_t cur_keg;
5478 uma_zone_t cur_zone, last_zone;
5479 int64_t cur_size, last_size, size;
5480 int ties;
5481
5482 /* /i option produces machine-parseable CSV output */
5483 if (modif[0] == 'i') {
5484 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n";
5485 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n";
5486 } else {
5487 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n";
5488 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n";
5489 }
5490
5491 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests",
5492 "Sleeps", "Bucket", "Total Mem", "XFree");
5493
5494 /* Sort the zones with largest size first. */
5495 last_zone = NULL;
5496 last_size = INT64_MAX;
5497 for (;;) {
5498 cur_zone = NULL;
5499 cur_size = -1;
5500 ties = 0;
5501 LIST_FOREACH(kz, &uma_kegs, uk_link) {
5502 LIST_FOREACH(z, &kz->uk_zones, uz_link) {
5503 /*
5504 * In the case of size ties, print out zones
5505 * in the order they are encountered. That is,
5506 * when we encounter the most recently output
5507 * zone, we have already printed all preceding
5508 * ties, and we must print all following ties.
5509 */
5510 if (z == last_zone) {
5511 ties = 1;
5512 continue;
5513 }
5514 size = get_uma_stats(kz, z, &allocs, &used,
5515 &sleeps, &cachefree, &xdomain);
5516 if (size > cur_size && size < last_size + ties)
5517 {
5518 cur_size = size;
5519 cur_zone = z;
5520 cur_keg = kz;
5521 }
5522 }
5523 }
5524 if (cur_zone == NULL)
5525 break;
5526
5527 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used,
5528 &sleeps, &cachefree, &xdomain);
5529 db_printf(fmt_entry, cur_zone->uz_name,
5530 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree,
5531 (uintmax_t)allocs, (uintmax_t)sleeps,
5532 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size,
5533 xdomain);
5534
5535 if (db_pager_quit)
5536 return;
5537 last_zone = cur_zone;
5538 last_size = cur_size;
5539 }
5540 }
5541
5542 DB_SHOW_COMMAND(umacache, db_show_umacache)
5543 {
5544 uma_zone_t z;
5545 uint64_t allocs, frees;
5546 long cachefree;
5547 int i;
5548
5549 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
5550 "Requests", "Bucket");
5551 LIST_FOREACH(z, &uma_cachezones, uz_link) {
5552 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL);
5553 for (i = 0; i < vm_ndomains; i++)
5554 cachefree += ZDOM_GET(z, i)->uzd_nitems;
5555 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n",
5556 z->uz_name, (uintmax_t)z->uz_size,
5557 (intmax_t)(allocs - frees), cachefree,
5558 (uintmax_t)allocs, z->uz_bucket_size);
5559 if (db_pager_quit)
5560 return;
5561 }
5562 }
5563 #endif /* DDB */
Cache object: de5daad641c2eb8975870676b42109a2
|