The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/uma_core.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2002, 2003, 2004, 2005 Jeffrey Roberson <jeff@FreeBSD.org>
    3  * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
    4  * Copyright (c) 2004-2005 Robert N. M. Watson
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice unmodified, this list of conditions, and the following
   12  *    disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   27  */
   28 
   29 /*
   30  * uma_core.c  Implementation of the Universal Memory allocator
   31  *
   32  * This allocator is intended to replace the multitude of similar object caches
   33  * in the standard FreeBSD kernel.  The intent is to be flexible as well as
   34  * effecient.  A primary design goal is to return unused memory to the rest of
   35  * the system.  This will make the system as a whole more flexible due to the
   36  * ability to move memory to subsystems which most need it instead of leaving
   37  * pools of reserved memory unused.
   38  *
   39  * The basic ideas stem from similar slab/zone based allocators whose algorithms
   40  * are well known.
   41  *
   42  */
   43 
   44 /*
   45  * TODO:
   46  *      - Improve memory usage for large allocations
   47  *      - Investigate cache size adjustments
   48  */
   49 
   50 #include <sys/cdefs.h>
   51 __FBSDID("$FreeBSD: releng/6.2/sys/vm/uma_core.c 159168 2006-06-02 09:56:27Z rwatson $");
   52 
   53 /* I should really use ktr.. */
   54 /*
   55 #define UMA_DEBUG 1
   56 #define UMA_DEBUG_ALLOC 1
   57 #define UMA_DEBUG_ALLOC_1 1
   58 */
   59 
   60 #include "opt_ddb.h"
   61 #include "opt_param.h"
   62 
   63 #include <sys/param.h>
   64 #include <sys/systm.h>
   65 #include <sys/kernel.h>
   66 #include <sys/types.h>
   67 #include <sys/queue.h>
   68 #include <sys/malloc.h>
   69 #include <sys/ktr.h>
   70 #include <sys/lock.h>
   71 #include <sys/sysctl.h>
   72 #include <sys/mutex.h>
   73 #include <sys/proc.h>
   74 #include <sys/sbuf.h>
   75 #include <sys/smp.h>
   76 #include <sys/vmmeter.h>
   77 
   78 #include <vm/vm.h>
   79 #include <vm/vm_object.h>
   80 #include <vm/vm_page.h>
   81 #include <vm/vm_param.h>
   82 #include <vm/vm_map.h>
   83 #include <vm/vm_kern.h>
   84 #include <vm/vm_extern.h>
   85 #include <vm/uma.h>
   86 #include <vm/uma_int.h>
   87 #include <vm/uma_dbg.h>
   88 
   89 #include <machine/vmparam.h>
   90 
   91 #include <ddb/ddb.h>
   92 
   93 /*
   94  * This is the zone and keg from which all zones are spawned.  The idea is that
   95  * even the zone & keg heads are allocated from the allocator, so we use the
   96  * bss section to bootstrap us.
   97  */
   98 static struct uma_keg masterkeg;
   99 static struct uma_zone masterzone_k;
  100 static struct uma_zone masterzone_z;
  101 static uma_zone_t kegs = &masterzone_k;
  102 static uma_zone_t zones = &masterzone_z;
  103 
  104 /* This is the zone from which all of uma_slab_t's are allocated. */
  105 static uma_zone_t slabzone;
  106 static uma_zone_t slabrefzone;  /* With refcounters (for UMA_ZONE_REFCNT) */
  107 
  108 /*
  109  * The initial hash tables come out of this zone so they can be allocated
  110  * prior to malloc coming up.
  111  */
  112 static uma_zone_t hashzone;
  113 
  114 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
  115 
  116 /*
  117  * Are we allowed to allocate buckets?
  118  */
  119 static int bucketdisable = 1;
  120 
  121 /* Linked list of all kegs in the system */
  122 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(&uma_kegs);
  123 
  124 /* This mutex protects the keg list */
  125 static struct mtx uma_mtx;
  126 
  127 /* Linked list of boot time pages */
  128 static LIST_HEAD(,uma_slab) uma_boot_pages =
  129     LIST_HEAD_INITIALIZER(&uma_boot_pages);
  130 
  131 /* This mutex protects the boot time pages list */
  132 static struct mtx uma_boot_pages_mtx;
  133 
  134 /* Is the VM done starting up? */
  135 static int booted = 0;
  136 
  137 /* Maximum number of allowed items-per-slab if the slab header is OFFPAGE */
  138 static u_int uma_max_ipers;
  139 static u_int uma_max_ipers_ref;
  140 
  141 /*
  142  * This is the handle used to schedule events that need to happen
  143  * outside of the allocation fast path.
  144  */
  145 static struct callout uma_callout;
  146 #define UMA_TIMEOUT     20              /* Seconds for callout interval. */
  147 
  148 /*
  149  * This structure is passed as the zone ctor arg so that I don't have to create
  150  * a special allocation function just for zones.
  151  */
  152 struct uma_zctor_args {
  153         char *name;
  154         size_t size;
  155         uma_ctor ctor;
  156         uma_dtor dtor;
  157         uma_init uminit;
  158         uma_fini fini;
  159         uma_keg_t keg;
  160         int align;
  161         u_int32_t flags;
  162 };
  163 
  164 struct uma_kctor_args {
  165         uma_zone_t zone;
  166         size_t size;
  167         uma_init uminit;
  168         uma_fini fini;
  169         int align;
  170         u_int32_t flags;
  171 };
  172 
  173 struct uma_bucket_zone {
  174         uma_zone_t      ubz_zone;
  175         char            *ubz_name;
  176         int             ubz_entries;
  177 };
  178 
  179 #define BUCKET_MAX      128
  180 
  181 struct uma_bucket_zone bucket_zones[] = {
  182         { NULL, "16 Bucket", 16 },
  183         { NULL, "32 Bucket", 32 },
  184         { NULL, "64 Bucket", 64 },
  185         { NULL, "128 Bucket", 128 },
  186         { NULL, NULL, 0}
  187 };
  188 
  189 #define BUCKET_SHIFT    4
  190 #define BUCKET_ZONES    ((BUCKET_MAX >> BUCKET_SHIFT) + 1)
  191 
  192 /*
  193  * bucket_size[] maps requested bucket sizes to zones that allocate a bucket
  194  * of approximately the right size.
  195  */
  196 static uint8_t bucket_size[BUCKET_ZONES];
  197 
  198 /*
  199  * Flags and enumerations to be passed to internal functions.
  200  */
  201 enum zfreeskip { SKIP_NONE, SKIP_DTOR, SKIP_FINI };
  202 
  203 #define ZFREE_STATFAIL  0x00000001      /* Update zone failure statistic. */
  204 #define ZFREE_STATFREE  0x00000002      /* Update zone free statistic. */
  205 
  206 /* Prototypes.. */
  207 
  208 static void *obj_alloc(uma_zone_t, int, u_int8_t *, int);
  209 static void *page_alloc(uma_zone_t, int, u_int8_t *, int);
  210 static void *startup_alloc(uma_zone_t, int, u_int8_t *, int);
  211 static void page_free(void *, int, u_int8_t);
  212 static uma_slab_t slab_zalloc(uma_zone_t, int);
  213 static void cache_drain(uma_zone_t);
  214 static void bucket_drain(uma_zone_t, uma_bucket_t);
  215 static void bucket_cache_drain(uma_zone_t zone);
  216 static int keg_ctor(void *, int, void *, int);
  217 static void keg_dtor(void *, int, void *);
  218 static int zone_ctor(void *, int, void *, int);
  219 static void zone_dtor(void *, int, void *);
  220 static int zero_init(void *, int, int);
  221 static void zone_small_init(uma_zone_t zone);
  222 static void zone_large_init(uma_zone_t zone);
  223 static void zone_foreach(void (*zfunc)(uma_zone_t));
  224 static void zone_timeout(uma_zone_t zone);
  225 static int hash_alloc(struct uma_hash *);
  226 static int hash_expand(struct uma_hash *, struct uma_hash *);
  227 static void hash_free(struct uma_hash *hash);
  228 static void uma_timeout(void *);
  229 static void uma_startup3(void);
  230 static void *uma_zalloc_internal(uma_zone_t, void *, int);
  231 static void uma_zfree_internal(uma_zone_t, void *, void *, enum zfreeskip,
  232     int);
  233 static void bucket_enable(void);
  234 static void bucket_init(void);
  235 static uma_bucket_t bucket_alloc(int, int);
  236 static void bucket_free(uma_bucket_t);
  237 static void bucket_zone_drain(void);
  238 static int uma_zalloc_bucket(uma_zone_t zone, int flags);
  239 static uma_slab_t uma_zone_slab(uma_zone_t zone, int flags);
  240 static void *uma_slab_alloc(uma_zone_t zone, uma_slab_t slab);
  241 static void zone_drain(uma_zone_t);
  242 static uma_zone_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
  243     uma_fini fini, int align, u_int32_t flags);
  244 
  245 void uma_print_zone(uma_zone_t);
  246 void uma_print_stats(void);
  247 static int sysctl_vm_zone(SYSCTL_HANDLER_ARGS);
  248 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
  249 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
  250 
  251 #ifdef WITNESS
  252 static int nosleepwithlocks = 1;
  253 SYSCTL_INT(_debug, OID_AUTO, nosleepwithlocks, CTLFLAG_RW, &nosleepwithlocks,
  254     0, "Convert M_WAITOK to M_NOWAIT to avoid lock-held-across-sleep paths");
  255 #else
  256 static int nosleepwithlocks = 0;
  257 SYSCTL_INT(_debug, OID_AUTO, nosleepwithlocks, CTLFLAG_RW, &nosleepwithlocks,
  258     0, "Convert M_WAITOK to M_NOWAIT to avoid lock-held-across-sleep paths");
  259 #endif
  260 SYSCTL_OID(_vm, OID_AUTO, zone, CTLTYPE_STRING|CTLFLAG_RD,
  261     NULL, 0, sysctl_vm_zone, "A", "Zone Info");
  262 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
  263 
  264 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT,
  265     0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
  266 
  267 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
  268     0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
  269 
  270 /*
  271  * This routine checks to see whether or not it's safe to enable buckets.
  272  */
  273 
  274 static void
  275 bucket_enable(void)
  276 {
  277         if (cnt.v_free_count < cnt.v_free_min)
  278                 bucketdisable = 1;
  279         else
  280                 bucketdisable = 0;
  281 }
  282 
  283 /*
  284  * Initialize bucket_zones, the array of zones of buckets of various sizes.
  285  *
  286  * For each zone, calculate the memory required for each bucket, consisting
  287  * of the header and an array of pointers.  Initialize bucket_size[] to point
  288  * the range of appropriate bucket sizes at the zone.
  289  */
  290 static void
  291 bucket_init(void)
  292 {
  293         struct uma_bucket_zone *ubz;
  294         int i;
  295         int j;
  296 
  297         for (i = 0, j = 0; bucket_zones[j].ubz_entries != 0; j++) {
  298                 int size;
  299 
  300                 ubz = &bucket_zones[j];
  301                 size = roundup(sizeof(struct uma_bucket), sizeof(void *));
  302                 size += sizeof(void *) * ubz->ubz_entries;
  303                 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
  304                     NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
  305                 for (; i <= ubz->ubz_entries; i += (1 << BUCKET_SHIFT))
  306                         bucket_size[i >> BUCKET_SHIFT] = j;
  307         }
  308 }
  309 
  310 /*
  311  * Given a desired number of entries for a bucket, return the zone from which
  312  * to allocate the bucket.
  313  */
  314 static struct uma_bucket_zone *
  315 bucket_zone_lookup(int entries)
  316 {
  317         int idx;
  318 
  319         idx = howmany(entries, 1 << BUCKET_SHIFT);
  320         return (&bucket_zones[bucket_size[idx]]);
  321 }
  322 
  323 static uma_bucket_t
  324 bucket_alloc(int entries, int bflags)
  325 {
  326         struct uma_bucket_zone *ubz;
  327         uma_bucket_t bucket;
  328 
  329         /*
  330          * This is to stop us from allocating per cpu buckets while we're
  331          * running out of vm.boot_pages.  Otherwise, we would exhaust the
  332          * boot pages.  This also prevents us from allocating buckets in
  333          * low memory situations.
  334          */
  335         if (bucketdisable)
  336                 return (NULL);
  337 
  338         ubz = bucket_zone_lookup(entries);
  339         bucket = uma_zalloc_internal(ubz->ubz_zone, NULL, bflags);
  340         if (bucket) {
  341 #ifdef INVARIANTS
  342                 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
  343 #endif
  344                 bucket->ub_cnt = 0;
  345                 bucket->ub_entries = ubz->ubz_entries;
  346         }
  347 
  348         return (bucket);
  349 }
  350 
  351 static void
  352 bucket_free(uma_bucket_t bucket)
  353 {
  354         struct uma_bucket_zone *ubz;
  355 
  356         ubz = bucket_zone_lookup(bucket->ub_entries);
  357         uma_zfree_internal(ubz->ubz_zone, bucket, NULL, SKIP_NONE,
  358             ZFREE_STATFREE);
  359 }
  360 
  361 static void
  362 bucket_zone_drain(void)
  363 {
  364         struct uma_bucket_zone *ubz;
  365 
  366         for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
  367                 zone_drain(ubz->ubz_zone);
  368 }
  369 
  370 
  371 /*
  372  * Routine called by timeout which is used to fire off some time interval
  373  * based calculations.  (stats, hash size, etc.)
  374  *
  375  * Arguments:
  376  *      arg   Unused
  377  *
  378  * Returns:
  379  *      Nothing
  380  */
  381 static void
  382 uma_timeout(void *unused)
  383 {
  384         bucket_enable();
  385         zone_foreach(zone_timeout);
  386 
  387         /* Reschedule this event */
  388         callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
  389 }
  390 
  391 /*
  392  * Routine to perform timeout driven calculations.  This expands the
  393  * hashes and does per cpu statistics aggregation.
  394  *
  395  *  Arguments:
  396  *      zone  The zone to operate on
  397  *
  398  *  Returns:
  399  *      Nothing
  400  */
  401 static void
  402 zone_timeout(uma_zone_t zone)
  403 {
  404         uma_keg_t keg;
  405         u_int64_t alloc;
  406 
  407         keg = zone->uz_keg;
  408         alloc = 0;
  409 
  410         /*
  411          * Expand the zone hash table.
  412          *
  413          * This is done if the number of slabs is larger than the hash size.
  414          * What I'm trying to do here is completely reduce collisions.  This
  415          * may be a little aggressive.  Should I allow for two collisions max?
  416          */
  417         ZONE_LOCK(zone);
  418         if (keg->uk_flags & UMA_ZONE_HASH &&
  419             keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) {
  420                 struct uma_hash newhash;
  421                 struct uma_hash oldhash;
  422                 int ret;
  423 
  424                 /*
  425                  * This is so involved because allocating and freeing
  426                  * while the zone lock is held will lead to deadlock.
  427                  * I have to do everything in stages and check for
  428                  * races.
  429                  */
  430                 newhash = keg->uk_hash;
  431                 ZONE_UNLOCK(zone);
  432                 ret = hash_alloc(&newhash);
  433                 ZONE_LOCK(zone);
  434                 if (ret) {
  435                         if (hash_expand(&keg->uk_hash, &newhash)) {
  436                                 oldhash = keg->uk_hash;
  437                                 keg->uk_hash = newhash;
  438                         } else
  439                                 oldhash = newhash;
  440 
  441                         ZONE_UNLOCK(zone);
  442                         hash_free(&oldhash);
  443                         ZONE_LOCK(zone);
  444                 }
  445         }
  446         ZONE_UNLOCK(zone);
  447 }
  448 
  449 /*
  450  * Allocate and zero fill the next sized hash table from the appropriate
  451  * backing store.
  452  *
  453  * Arguments:
  454  *      hash  A new hash structure with the old hash size in uh_hashsize
  455  *
  456  * Returns:
  457  *      1 on sucess and 0 on failure.
  458  */
  459 static int
  460 hash_alloc(struct uma_hash *hash)
  461 {
  462         int oldsize;
  463         int alloc;
  464 
  465         oldsize = hash->uh_hashsize;
  466 
  467         /* We're just going to go to a power of two greater */
  468         if (oldsize)  {
  469                 hash->uh_hashsize = oldsize * 2;
  470                 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
  471                 hash->uh_slab_hash = (struct slabhead *)malloc(alloc,
  472                     M_UMAHASH, M_NOWAIT);
  473         } else {
  474                 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
  475                 hash->uh_slab_hash = uma_zalloc_internal(hashzone, NULL,
  476                     M_WAITOK);
  477                 hash->uh_hashsize = UMA_HASH_SIZE_INIT;
  478         }
  479         if (hash->uh_slab_hash) {
  480                 bzero(hash->uh_slab_hash, alloc);
  481                 hash->uh_hashmask = hash->uh_hashsize - 1;
  482                 return (1);
  483         }
  484 
  485         return (0);
  486 }
  487 
  488 /*
  489  * Expands the hash table for HASH zones.  This is done from zone_timeout
  490  * to reduce collisions.  This must not be done in the regular allocation
  491  * path, otherwise, we can recurse on the vm while allocating pages.
  492  *
  493  * Arguments:
  494  *      oldhash  The hash you want to expand
  495  *      newhash  The hash structure for the new table
  496  *
  497  * Returns:
  498  *      Nothing
  499  *
  500  * Discussion:
  501  */
  502 static int
  503 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
  504 {
  505         uma_slab_t slab;
  506         int hval;
  507         int i;
  508 
  509         if (!newhash->uh_slab_hash)
  510                 return (0);
  511 
  512         if (oldhash->uh_hashsize >= newhash->uh_hashsize)
  513                 return (0);
  514 
  515         /*
  516          * I need to investigate hash algorithms for resizing without a
  517          * full rehash.
  518          */
  519 
  520         for (i = 0; i < oldhash->uh_hashsize; i++)
  521                 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) {
  522                         slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]);
  523                         SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink);
  524                         hval = UMA_HASH(newhash, slab->us_data);
  525                         SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
  526                             slab, us_hlink);
  527                 }
  528 
  529         return (1);
  530 }
  531 
  532 /*
  533  * Free the hash bucket to the appropriate backing store.
  534  *
  535  * Arguments:
  536  *      slab_hash  The hash bucket we're freeing
  537  *      hashsize   The number of entries in that hash bucket
  538  *
  539  * Returns:
  540  *      Nothing
  541  */
  542 static void
  543 hash_free(struct uma_hash *hash)
  544 {
  545         if (hash->uh_slab_hash == NULL)
  546                 return;
  547         if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
  548                 uma_zfree_internal(hashzone,
  549                     hash->uh_slab_hash, NULL, SKIP_NONE, ZFREE_STATFREE);
  550         else
  551                 free(hash->uh_slab_hash, M_UMAHASH);
  552 }
  553 
  554 /*
  555  * Frees all outstanding items in a bucket
  556  *
  557  * Arguments:
  558  *      zone   The zone to free to, must be unlocked.
  559  *      bucket The free/alloc bucket with items, cpu queue must be locked.
  560  *
  561  * Returns:
  562  *      Nothing
  563  */
  564 
  565 static void
  566 bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
  567 {
  568         uma_slab_t slab;
  569         int mzone;
  570         void *item;
  571 
  572         if (bucket == NULL)
  573                 return;
  574 
  575         slab = NULL;
  576         mzone = 0;
  577 
  578         /* We have to lookup the slab again for malloc.. */
  579         if (zone->uz_keg->uk_flags & UMA_ZONE_MALLOC)
  580                 mzone = 1;
  581 
  582         while (bucket->ub_cnt > 0)  {
  583                 bucket->ub_cnt--;
  584                 item = bucket->ub_bucket[bucket->ub_cnt];
  585 #ifdef INVARIANTS
  586                 bucket->ub_bucket[bucket->ub_cnt] = NULL;
  587                 KASSERT(item != NULL,
  588                     ("bucket_drain: botched ptr, item is NULL"));
  589 #endif
  590                 /*
  591                  * This is extremely inefficient.  The slab pointer was passed
  592                  * to uma_zfree_arg, but we lost it because the buckets don't
  593                  * hold them.  This will go away when free() gets a size passed
  594                  * to it.
  595                  */
  596                 if (mzone)
  597                         slab = vtoslab((vm_offset_t)item & (~UMA_SLAB_MASK));
  598                 uma_zfree_internal(zone, item, slab, SKIP_DTOR, 0);
  599         }
  600 }
  601 
  602 /*
  603  * Drains the per cpu caches for a zone.
  604  *
  605  * NOTE: This may only be called while the zone is being turn down, and not
  606  * during normal operation.  This is necessary in order that we do not have
  607  * to migrate CPUs to drain the per-CPU caches.
  608  *
  609  * Arguments:
  610  *      zone     The zone to drain, must be unlocked.
  611  *
  612  * Returns:
  613  *      Nothing
  614  */
  615 static void
  616 cache_drain(uma_zone_t zone)
  617 {
  618         uma_cache_t cache;
  619         int cpu;
  620 
  621         /*
  622          * XXX: It is safe to not lock the per-CPU caches, because we're
  623          * tearing down the zone anyway.  I.e., there will be no further use
  624          * of the caches at this point.
  625          *
  626          * XXX: It would good to be able to assert that the zone is being
  627          * torn down to prevent improper use of cache_drain().
  628          *
  629          * XXX: We lock the zone before passing into bucket_cache_drain() as
  630          * it is used elsewhere.  Should the tear-down path be made special
  631          * there in some form?
  632          */
  633         for (cpu = 0; cpu <= mp_maxid; cpu++) {
  634                 if (CPU_ABSENT(cpu))
  635                         continue;
  636                 cache = &zone->uz_cpu[cpu];
  637                 bucket_drain(zone, cache->uc_allocbucket);
  638                 bucket_drain(zone, cache->uc_freebucket);
  639                 if (cache->uc_allocbucket != NULL)
  640                         bucket_free(cache->uc_allocbucket);
  641                 if (cache->uc_freebucket != NULL)
  642                         bucket_free(cache->uc_freebucket);
  643                 cache->uc_allocbucket = cache->uc_freebucket = NULL;
  644         }
  645         ZONE_LOCK(zone);
  646         bucket_cache_drain(zone);
  647         ZONE_UNLOCK(zone);
  648 }
  649 
  650 /*
  651  * Drain the cached buckets from a zone.  Expects a locked zone on entry.
  652  */
  653 static void
  654 bucket_cache_drain(uma_zone_t zone)
  655 {
  656         uma_bucket_t bucket;
  657 
  658         /*
  659          * Drain the bucket queues and free the buckets, we just keep two per
  660          * cpu (alloc/free).
  661          */
  662         while ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) {
  663                 LIST_REMOVE(bucket, ub_link);
  664                 ZONE_UNLOCK(zone);
  665                 bucket_drain(zone, bucket);
  666                 bucket_free(bucket);
  667                 ZONE_LOCK(zone);
  668         }
  669 
  670         /* Now we do the free queue.. */
  671         while ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
  672                 LIST_REMOVE(bucket, ub_link);
  673                 bucket_free(bucket);
  674         }
  675 }
  676 
  677 /*
  678  * Frees pages from a zone back to the system.  This is done on demand from
  679  * the pageout daemon.
  680  *
  681  * Arguments:
  682  *      zone  The zone to free pages from
  683  *       all  Should we drain all items?
  684  *
  685  * Returns:
  686  *      Nothing.
  687  */
  688 static void
  689 zone_drain(uma_zone_t zone)
  690 {
  691         struct slabhead freeslabs = { 0 };
  692         uma_keg_t keg;
  693         uma_slab_t slab;
  694         uma_slab_t n;
  695         u_int8_t flags;
  696         u_int8_t *mem;
  697         int i;
  698 
  699         keg = zone->uz_keg;
  700 
  701         /*
  702          * We don't want to take pages from statically allocated zones at this
  703          * time
  704          */
  705         if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
  706                 return;
  707 
  708         ZONE_LOCK(zone);
  709 
  710 #ifdef UMA_DEBUG
  711         printf("%s free items: %u\n", zone->uz_name, keg->uk_free);
  712 #endif
  713         bucket_cache_drain(zone);
  714         if (keg->uk_free == 0)
  715                 goto finished;
  716 
  717         slab = LIST_FIRST(&keg->uk_free_slab);
  718         while (slab) {
  719                 n = LIST_NEXT(slab, us_link);
  720 
  721                 /* We have no where to free these to */
  722                 if (slab->us_flags & UMA_SLAB_BOOT) {
  723                         slab = n;
  724                         continue;
  725                 }
  726 
  727                 LIST_REMOVE(slab, us_link);
  728                 keg->uk_pages -= keg->uk_ppera;
  729                 keg->uk_free -= keg->uk_ipers;
  730 
  731                 if (keg->uk_flags & UMA_ZONE_HASH)
  732                         UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data);
  733 
  734                 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink);
  735 
  736                 slab = n;
  737         }
  738 finished:
  739         ZONE_UNLOCK(zone);
  740 
  741         while ((slab = SLIST_FIRST(&freeslabs)) != NULL) {
  742                 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink);
  743                 if (keg->uk_fini)
  744                         for (i = 0; i < keg->uk_ipers; i++)
  745                                 keg->uk_fini(
  746                                     slab->us_data + (keg->uk_rsize * i),
  747                                     keg->uk_size);
  748                 flags = slab->us_flags;
  749                 mem = slab->us_data;
  750 
  751                 if ((keg->uk_flags & UMA_ZONE_MALLOC) ||
  752                     (keg->uk_flags & UMA_ZONE_REFCNT)) {
  753                         vm_object_t obj;
  754 
  755                         if (flags & UMA_SLAB_KMEM)
  756                                 obj = kmem_object;
  757                         else
  758                                 obj = NULL;
  759                         for (i = 0; i < keg->uk_ppera; i++)
  760                                 vsetobj((vm_offset_t)mem + (i * PAGE_SIZE),
  761                                     obj);
  762                 }
  763                 if (keg->uk_flags & UMA_ZONE_OFFPAGE)
  764                         uma_zfree_internal(keg->uk_slabzone, slab, NULL,
  765                             SKIP_NONE, ZFREE_STATFREE);
  766 #ifdef UMA_DEBUG
  767                 printf("%s: Returning %d bytes.\n",
  768                     zone->uz_name, UMA_SLAB_SIZE * keg->uk_ppera);
  769 #endif
  770                 keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera, flags);
  771         }
  772 }
  773 
  774 /*
  775  * Allocate a new slab for a zone.  This does not insert the slab onto a list.
  776  *
  777  * Arguments:
  778  *      zone  The zone to allocate slabs for
  779  *      wait  Shall we wait?
  780  *
  781  * Returns:
  782  *      The slab that was allocated or NULL if there is no memory and the
  783  *      caller specified M_NOWAIT.
  784  */
  785 static uma_slab_t
  786 slab_zalloc(uma_zone_t zone, int wait)
  787 {
  788         uma_slabrefcnt_t slabref;
  789         uma_slab_t slab;
  790         uma_keg_t keg;
  791         u_int8_t *mem;
  792         u_int8_t flags;
  793         int i;
  794 
  795         slab = NULL;
  796         keg = zone->uz_keg;
  797 
  798 #ifdef UMA_DEBUG
  799         printf("slab_zalloc:  Allocating a new slab for %s\n", zone->uz_name);
  800 #endif
  801         ZONE_UNLOCK(zone);
  802 
  803         if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
  804                 slab = uma_zalloc_internal(keg->uk_slabzone, NULL, wait);
  805                 if (slab == NULL) {
  806                         ZONE_LOCK(zone);
  807                         return NULL;
  808                 }
  809         }
  810 
  811         /*
  812          * This reproduces the old vm_zone behavior of zero filling pages the
  813          * first time they are added to a zone.
  814          *
  815          * Malloced items are zeroed in uma_zalloc.
  816          */
  817 
  818         if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
  819                 wait |= M_ZERO;
  820         else
  821                 wait &= ~M_ZERO;
  822 
  823         mem = keg->uk_allocf(zone, keg->uk_ppera * UMA_SLAB_SIZE,
  824             &flags, wait);
  825         if (mem == NULL) {
  826                 if (keg->uk_flags & UMA_ZONE_OFFPAGE)
  827                         uma_zfree_internal(keg->uk_slabzone, slab, NULL,
  828                             SKIP_NONE, ZFREE_STATFREE);
  829                 ZONE_LOCK(zone);
  830                 return (NULL);
  831         }
  832 
  833         /* Point the slab into the allocated memory */
  834         if (!(keg->uk_flags & UMA_ZONE_OFFPAGE))
  835                 slab = (uma_slab_t )(mem + keg->uk_pgoff);
  836 
  837         if ((keg->uk_flags & UMA_ZONE_MALLOC) ||
  838             (keg->uk_flags & UMA_ZONE_REFCNT))
  839                 for (i = 0; i < keg->uk_ppera; i++)
  840                         vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab);
  841 
  842         slab->us_keg = keg;
  843         slab->us_data = mem;
  844         slab->us_freecount = keg->uk_ipers;
  845         slab->us_firstfree = 0;
  846         slab->us_flags = flags;
  847 
  848         if (keg->uk_flags & UMA_ZONE_REFCNT) {
  849                 slabref = (uma_slabrefcnt_t)slab;
  850                 for (i = 0; i < keg->uk_ipers; i++) {
  851                         slabref->us_freelist[i].us_refcnt = 0;
  852                         slabref->us_freelist[i].us_item = i+1;
  853                 }
  854         } else {
  855                 for (i = 0; i < keg->uk_ipers; i++)
  856                         slab->us_freelist[i].us_item = i+1;
  857         }
  858 
  859         if (keg->uk_init != NULL) {
  860                 for (i = 0; i < keg->uk_ipers; i++)
  861                         if (keg->uk_init(slab->us_data + (keg->uk_rsize * i),
  862                             keg->uk_size, wait) != 0)
  863                                 break;
  864                 if (i != keg->uk_ipers) {
  865                         if (keg->uk_fini != NULL) {
  866                                 for (i--; i > -1; i--)
  867                                         keg->uk_fini(slab->us_data +
  868                                             (keg->uk_rsize * i),
  869                                             keg->uk_size);
  870                         }
  871                         if ((keg->uk_flags & UMA_ZONE_MALLOC) ||
  872                             (keg->uk_flags & UMA_ZONE_REFCNT)) {
  873                                 vm_object_t obj;
  874 
  875                                 if (flags & UMA_SLAB_KMEM)
  876                                         obj = kmem_object;
  877                                 else
  878                                         obj = NULL;
  879                                 for (i = 0; i < keg->uk_ppera; i++)
  880                                         vsetobj((vm_offset_t)mem +
  881                                             (i * PAGE_SIZE), obj);
  882                         }
  883                         if (keg->uk_flags & UMA_ZONE_OFFPAGE)
  884                                 uma_zfree_internal(keg->uk_slabzone, slab,
  885                                     NULL, SKIP_NONE, ZFREE_STATFREE);
  886                         keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera,
  887                             flags);
  888                         ZONE_LOCK(zone);
  889                         return (NULL);
  890                 }
  891         }
  892         ZONE_LOCK(zone);
  893 
  894         if (keg->uk_flags & UMA_ZONE_HASH)
  895                 UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
  896 
  897         keg->uk_pages += keg->uk_ppera;
  898         keg->uk_free += keg->uk_ipers;
  899 
  900         return (slab);
  901 }
  902 
  903 /*
  904  * This function is intended to be used early on in place of page_alloc() so
  905  * that we may use the boot time page cache to satisfy allocations before
  906  * the VM is ready.
  907  */
  908 static void *
  909 startup_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait)
  910 {
  911         uma_keg_t keg;
  912         uma_slab_t tmps;
  913 
  914         keg = zone->uz_keg;
  915 
  916         /*
  917          * Check our small startup cache to see if it has pages remaining.
  918          */
  919         mtx_lock(&uma_boot_pages_mtx);
  920         if ((tmps = LIST_FIRST(&uma_boot_pages)) != NULL) {
  921                 LIST_REMOVE(tmps, us_link);
  922                 mtx_unlock(&uma_boot_pages_mtx);
  923                 *pflag = tmps->us_flags;
  924                 return (tmps->us_data);
  925         }
  926         mtx_unlock(&uma_boot_pages_mtx);
  927         if (booted == 0)
  928                 panic("UMA: Increase vm.boot_pages");
  929         /*
  930          * Now that we've booted reset these users to their real allocator.
  931          */
  932 #ifdef UMA_MD_SMALL_ALLOC
  933         keg->uk_allocf = uma_small_alloc;
  934 #else
  935         keg->uk_allocf = page_alloc;
  936 #endif
  937         return keg->uk_allocf(zone, bytes, pflag, wait);
  938 }
  939 
  940 /*
  941  * Allocates a number of pages from the system
  942  *
  943  * Arguments:
  944  *      zone  Unused
  945  *      bytes  The number of bytes requested
  946  *      wait  Shall we wait?
  947  *
  948  * Returns:
  949  *      A pointer to the alloced memory or possibly
  950  *      NULL if M_NOWAIT is set.
  951  */
  952 static void *
  953 page_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait)
  954 {
  955         void *p;        /* Returned page */
  956 
  957         *pflag = UMA_SLAB_KMEM;
  958         p = (void *) kmem_malloc(kmem_map, bytes, wait);
  959 
  960         return (p);
  961 }
  962 
  963 /*
  964  * Allocates a number of pages from within an object
  965  *
  966  * Arguments:
  967  *      zone   Unused
  968  *      bytes  The number of bytes requested
  969  *      wait   Shall we wait?
  970  *
  971  * Returns:
  972  *      A pointer to the alloced memory or possibly
  973  *      NULL if M_NOWAIT is set.
  974  */
  975 static void *
  976 obj_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
  977 {
  978         vm_object_t object;
  979         vm_offset_t retkva, zkva;
  980         vm_page_t p;
  981         int pages, startpages;
  982 
  983         object = zone->uz_keg->uk_obj;
  984         retkva = 0;
  985 
  986         /*
  987          * This looks a little weird since we're getting one page at a time.
  988          */
  989         VM_OBJECT_LOCK(object);
  990         p = TAILQ_LAST(&object->memq, pglist);
  991         pages = p != NULL ? p->pindex + 1 : 0;
  992         startpages = pages;
  993         zkva = zone->uz_keg->uk_kva + pages * PAGE_SIZE;
  994         for (; bytes > 0; bytes -= PAGE_SIZE) {
  995                 p = vm_page_alloc(object, pages,
  996                     VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED);
  997                 if (p == NULL) {
  998                         if (pages != startpages)
  999                                 pmap_qremove(retkva, pages - startpages);
 1000                         while (pages != startpages) {
 1001                                 pages--;
 1002                                 p = TAILQ_LAST(&object->memq, pglist);
 1003                                 vm_page_lock_queues();
 1004                                 vm_page_unwire(p, 0);
 1005                                 vm_page_free(p);
 1006                                 vm_page_unlock_queues();
 1007                         }
 1008                         retkva = 0;
 1009                         goto done;
 1010                 }
 1011                 pmap_qenter(zkva, &p, 1);
 1012                 if (retkva == 0)
 1013                         retkva = zkva;
 1014                 zkva += PAGE_SIZE;
 1015                 pages += 1;
 1016         }
 1017 done:
 1018         VM_OBJECT_UNLOCK(object);
 1019         *flags = UMA_SLAB_PRIV;
 1020 
 1021         return ((void *)retkva);
 1022 }
 1023 
 1024 /*
 1025  * Frees a number of pages to the system
 1026  *
 1027  * Arguments:
 1028  *      mem   A pointer to the memory to be freed
 1029  *      size  The size of the memory being freed
 1030  *      flags The original p->us_flags field
 1031  *
 1032  * Returns:
 1033  *      Nothing
 1034  */
 1035 static void
 1036 page_free(void *mem, int size, u_int8_t flags)
 1037 {
 1038         vm_map_t map;
 1039 
 1040         if (flags & UMA_SLAB_KMEM)
 1041                 map = kmem_map;
 1042         else
 1043                 panic("UMA: page_free used with invalid flags %d\n", flags);
 1044 
 1045         kmem_free(map, (vm_offset_t)mem, size);
 1046 }
 1047 
 1048 /*
 1049  * Zero fill initializer
 1050  *
 1051  * Arguments/Returns follow uma_init specifications
 1052  */
 1053 static int
 1054 zero_init(void *mem, int size, int flags)
 1055 {
 1056         bzero(mem, size);
 1057         return (0);
 1058 }
 1059 
 1060 /*
 1061  * Finish creating a small uma zone.  This calculates ipers, and the zone size.
 1062  *
 1063  * Arguments
 1064  *      zone  The zone we should initialize
 1065  *
 1066  * Returns
 1067  *      Nothing
 1068  */
 1069 static void
 1070 zone_small_init(uma_zone_t zone)
 1071 {
 1072         uma_keg_t keg;
 1073         u_int rsize;
 1074         u_int memused;
 1075         u_int wastedspace;
 1076         u_int shsize;
 1077 
 1078         keg = zone->uz_keg;
 1079         KASSERT(keg != NULL, ("Keg is null in zone_small_init"));
 1080         rsize = keg->uk_size;
 1081 
 1082         if (rsize < UMA_SMALLEST_UNIT)
 1083                 rsize = UMA_SMALLEST_UNIT;
 1084         if (rsize & keg->uk_align)
 1085                 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1);
 1086 
 1087         keg->uk_rsize = rsize;
 1088         keg->uk_ppera = 1;
 1089 
 1090         if (keg->uk_flags & UMA_ZONE_REFCNT) {
 1091                 rsize += UMA_FRITMREF_SZ;       /* linkage & refcnt */
 1092                 shsize = sizeof(struct uma_slab_refcnt);
 1093         } else {
 1094                 rsize += UMA_FRITM_SZ;  /* Account for linkage */
 1095                 shsize = sizeof(struct uma_slab);
 1096         }
 1097 
 1098         keg->uk_ipers = (UMA_SLAB_SIZE - shsize) / rsize;
 1099         KASSERT(keg->uk_ipers != 0, ("zone_small_init: ipers is 0"));
 1100         memused = keg->uk_ipers * rsize + shsize;
 1101         wastedspace = UMA_SLAB_SIZE - memused;
 1102 
 1103         /*
 1104          * We can't do OFFPAGE if we're internal or if we've been
 1105          * asked to not go to the VM for buckets.  If we do this we
 1106          * may end up going to the VM (kmem_map) for slabs which we
 1107          * do not want to do if we're UMA_ZFLAG_CACHEONLY as a
 1108          * result of UMA_ZONE_VM, which clearly forbids it.
 1109          */
 1110         if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) ||
 1111             (keg->uk_flags & UMA_ZFLAG_CACHEONLY))
 1112                 return;
 1113 
 1114         if ((wastedspace >= UMA_MAX_WASTE) &&
 1115             (keg->uk_ipers < (UMA_SLAB_SIZE / keg->uk_rsize))) {
 1116                 keg->uk_ipers = UMA_SLAB_SIZE / keg->uk_rsize;
 1117                 KASSERT(keg->uk_ipers <= 255,
 1118                     ("zone_small_init: keg->uk_ipers too high!"));
 1119 #ifdef UMA_DEBUG
 1120                 printf("UMA decided we need offpage slab headers for "
 1121                     "zone: %s, calculated wastedspace = %d, "
 1122                     "maximum wasted space allowed = %d, "
 1123                     "calculated ipers = %d, "
 1124                     "new wasted space = %d\n", zone->uz_name, wastedspace,
 1125                     UMA_MAX_WASTE, keg->uk_ipers,
 1126                     UMA_SLAB_SIZE - keg->uk_ipers * keg->uk_rsize);
 1127 #endif
 1128                 keg->uk_flags |= UMA_ZONE_OFFPAGE;
 1129                 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
 1130                         keg->uk_flags |= UMA_ZONE_HASH;
 1131         }
 1132 }
 1133 
 1134 /*
 1135  * Finish creating a large (> UMA_SLAB_SIZE) uma zone.  Just give in and do
 1136  * OFFPAGE for now.  When I can allow for more dynamic slab sizes this will be
 1137  * more complicated.
 1138  *
 1139  * Arguments
 1140  *      zone  The zone we should initialize
 1141  *
 1142  * Returns
 1143  *      Nothing
 1144  */
 1145 static void
 1146 zone_large_init(uma_zone_t zone)
 1147 {
 1148         uma_keg_t keg;
 1149         int pages;
 1150 
 1151         keg = zone->uz_keg;
 1152 
 1153         KASSERT(keg != NULL, ("Keg is null in zone_large_init"));
 1154         KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0,
 1155             ("zone_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY zone"));
 1156 
 1157         pages = keg->uk_size / UMA_SLAB_SIZE;
 1158 
 1159         /* Account for remainder */
 1160         if ((pages * UMA_SLAB_SIZE) < keg->uk_size)
 1161                 pages++;
 1162 
 1163         keg->uk_ppera = pages;
 1164         keg->uk_ipers = 1;
 1165 
 1166         keg->uk_flags |= UMA_ZONE_OFFPAGE;
 1167         if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
 1168                 keg->uk_flags |= UMA_ZONE_HASH;
 1169 
 1170         keg->uk_rsize = keg->uk_size;
 1171 }
 1172 
 1173 /*
 1174  * Keg header ctor.  This initializes all fields, locks, etc.  And inserts
 1175  * the keg onto the global keg list.
 1176  *
 1177  * Arguments/Returns follow uma_ctor specifications
 1178  *      udata  Actually uma_kctor_args
 1179  */
 1180 static int
 1181 keg_ctor(void *mem, int size, void *udata, int flags)
 1182 {
 1183         struct uma_kctor_args *arg = udata;
 1184         uma_keg_t keg = mem;
 1185         uma_zone_t zone;
 1186 
 1187         bzero(keg, size);
 1188         keg->uk_size = arg->size;
 1189         keg->uk_init = arg->uminit;
 1190         keg->uk_fini = arg->fini;
 1191         keg->uk_align = arg->align;
 1192         keg->uk_free = 0;
 1193         keg->uk_pages = 0;
 1194         keg->uk_flags = arg->flags;
 1195         keg->uk_allocf = page_alloc;
 1196         keg->uk_freef = page_free;
 1197         keg->uk_recurse = 0;
 1198         keg->uk_slabzone = NULL;
 1199 
 1200         /*
 1201          * The master zone is passed to us at keg-creation time.
 1202          */
 1203         zone = arg->zone;
 1204         zone->uz_keg = keg;
 1205 
 1206         if (arg->flags & UMA_ZONE_VM)
 1207                 keg->uk_flags |= UMA_ZFLAG_CACHEONLY;
 1208 
 1209         if (arg->flags & UMA_ZONE_ZINIT)
 1210                 keg->uk_init = zero_init;
 1211 
 1212         /*
 1213          * The +UMA_FRITM_SZ added to uk_size is to account for the
 1214          * linkage that is added to the size in zone_small_init().  If
 1215          * we don't account for this here then we may end up in
 1216          * zone_small_init() with a calculated 'ipers' of 0.
 1217          */
 1218         if (keg->uk_flags & UMA_ZONE_REFCNT) {
 1219                 if ((keg->uk_size+UMA_FRITMREF_SZ) >
 1220                     (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)))
 1221                         zone_large_init(zone);
 1222                 else
 1223                         zone_small_init(zone);
 1224         } else {
 1225                 if ((keg->uk_size+UMA_FRITM_SZ) >
 1226                     (UMA_SLAB_SIZE - sizeof(struct uma_slab)))
 1227                         zone_large_init(zone);
 1228                 else
 1229                         zone_small_init(zone);
 1230         }
 1231 
 1232         if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
 1233                 if (keg->uk_flags & UMA_ZONE_REFCNT)
 1234                         keg->uk_slabzone = slabrefzone;
 1235                 else
 1236                         keg->uk_slabzone = slabzone;
 1237         }
 1238 
 1239         /*
 1240          * If we haven't booted yet we need allocations to go through the
 1241          * startup cache until the vm is ready.
 1242          */
 1243         if (keg->uk_ppera == 1) {
 1244 #ifdef UMA_MD_SMALL_ALLOC
 1245                 keg->uk_allocf = uma_small_alloc;
 1246                 keg->uk_freef = uma_small_free;
 1247 #endif
 1248                 if (booted == 0)
 1249                         keg->uk_allocf = startup_alloc;
 1250         }
 1251 
 1252         /*
 1253          * Initialize keg's lock (shared among zones) through
 1254          * Master zone
 1255          */
 1256         zone->uz_lock = &keg->uk_lock;
 1257         if (arg->flags & UMA_ZONE_MTXCLASS)
 1258                 ZONE_LOCK_INIT(zone, 1);
 1259         else
 1260                 ZONE_LOCK_INIT(zone, 0);
 1261 
 1262         /*
 1263          * If we're putting the slab header in the actual page we need to
 1264          * figure out where in each page it goes.  This calculates a right
 1265          * justified offset into the memory on an ALIGN_PTR boundary.
 1266          */
 1267         if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) {
 1268                 u_int totsize;
 1269 
 1270                 /* Size of the slab struct and free list */
 1271                 if (keg->uk_flags & UMA_ZONE_REFCNT)
 1272                         totsize = sizeof(struct uma_slab_refcnt) +
 1273                             keg->uk_ipers * UMA_FRITMREF_SZ;
 1274                 else
 1275                         totsize = sizeof(struct uma_slab) +
 1276                             keg->uk_ipers * UMA_FRITM_SZ;
 1277 
 1278                 if (totsize & UMA_ALIGN_PTR)
 1279                         totsize = (totsize & ~UMA_ALIGN_PTR) +
 1280                             (UMA_ALIGN_PTR + 1);
 1281                 keg->uk_pgoff = UMA_SLAB_SIZE - totsize;
 1282 
 1283                 if (keg->uk_flags & UMA_ZONE_REFCNT)
 1284                         totsize = keg->uk_pgoff + sizeof(struct uma_slab_refcnt)
 1285                             + keg->uk_ipers * UMA_FRITMREF_SZ;
 1286                 else
 1287                         totsize = keg->uk_pgoff + sizeof(struct uma_slab)
 1288                             + keg->uk_ipers * UMA_FRITM_SZ;
 1289 
 1290                 /*
 1291                  * The only way the following is possible is if with our
 1292                  * UMA_ALIGN_PTR adjustments we are now bigger than
 1293                  * UMA_SLAB_SIZE.  I haven't checked whether this is
 1294                  * mathematically possible for all cases, so we make
 1295                  * sure here anyway.
 1296                  */
 1297                 if (totsize > UMA_SLAB_SIZE) {
 1298                         printf("zone %s ipers %d rsize %d size %d\n",
 1299                             zone->uz_name, keg->uk_ipers, keg->uk_rsize,
 1300                             keg->uk_size);
 1301                         panic("UMA slab won't fit.\n");
 1302                 }
 1303         }
 1304 
 1305         if (keg->uk_flags & UMA_ZONE_HASH)
 1306                 hash_alloc(&keg->uk_hash);
 1307 
 1308 #ifdef UMA_DEBUG
 1309         printf("%s(%p) size = %d ipers = %d ppera = %d pgoff = %d\n",
 1310             zone->uz_name, zone,
 1311             keg->uk_size, keg->uk_ipers,
 1312             keg->uk_ppera, keg->uk_pgoff);
 1313 #endif
 1314 
 1315         LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
 1316 
 1317         mtx_lock(&uma_mtx);
 1318         LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
 1319         mtx_unlock(&uma_mtx);
 1320         return (0);
 1321 }
 1322 
 1323 /*
 1324  * Zone header ctor.  This initializes all fields, locks, etc.
 1325  *
 1326  * Arguments/Returns follow uma_ctor specifications
 1327  *      udata  Actually uma_zctor_args
 1328  */
 1329 
 1330 static int
 1331 zone_ctor(void *mem, int size, void *udata, int flags)
 1332 {
 1333         struct uma_zctor_args *arg = udata;
 1334         uma_zone_t zone = mem;
 1335         uma_zone_t z;
 1336         uma_keg_t keg;
 1337 
 1338         bzero(zone, size);
 1339         zone->uz_name = arg->name;
 1340         zone->uz_ctor = arg->ctor;
 1341         zone->uz_dtor = arg->dtor;
 1342         zone->uz_init = NULL;
 1343         zone->uz_fini = NULL;
 1344         zone->uz_allocs = 0;
 1345         zone->uz_frees = 0;
 1346         zone->uz_fails = 0;
 1347         zone->uz_fills = zone->uz_count = 0;
 1348 
 1349         if (arg->flags & UMA_ZONE_SECONDARY) {
 1350                 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
 1351                 keg = arg->keg;
 1352                 zone->uz_keg = keg;
 1353                 zone->uz_init = arg->uminit;
 1354                 zone->uz_fini = arg->fini;
 1355                 zone->uz_lock = &keg->uk_lock;
 1356                 mtx_lock(&uma_mtx);
 1357                 ZONE_LOCK(zone);
 1358                 keg->uk_flags |= UMA_ZONE_SECONDARY;
 1359                 LIST_FOREACH(z, &keg->uk_zones, uz_link) {
 1360                         if (LIST_NEXT(z, uz_link) == NULL) {
 1361                                 LIST_INSERT_AFTER(z, zone, uz_link);
 1362                                 break;
 1363                         }
 1364                 }
 1365                 ZONE_UNLOCK(zone);
 1366                 mtx_unlock(&uma_mtx);
 1367         } else if (arg->keg == NULL) {
 1368                 if (uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
 1369                     arg->align, arg->flags) == NULL)
 1370                         return (ENOMEM);
 1371         } else {
 1372                 struct uma_kctor_args karg;
 1373                 int error;
 1374 
 1375                 /* We should only be here from uma_startup() */
 1376                 karg.size = arg->size;
 1377                 karg.uminit = arg->uminit;
 1378                 karg.fini = arg->fini;
 1379                 karg.align = arg->align;
 1380                 karg.flags = arg->flags;
 1381                 karg.zone = zone;
 1382                 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
 1383                     flags);
 1384                 if (error)
 1385                         return (error);
 1386         }
 1387         keg = zone->uz_keg;
 1388         zone->uz_lock = &keg->uk_lock;
 1389 
 1390         /*
 1391          * Some internal zones don't have room allocated for the per cpu
 1392          * caches.  If we're internal, bail out here.
 1393          */
 1394         if (keg->uk_flags & UMA_ZFLAG_INTERNAL) {
 1395                 KASSERT((keg->uk_flags & UMA_ZONE_SECONDARY) == 0,
 1396                     ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
 1397                 return (0);
 1398         }
 1399 
 1400         if (keg->uk_flags & UMA_ZONE_MAXBUCKET)
 1401                 zone->uz_count = BUCKET_MAX;
 1402         else if (keg->uk_ipers <= BUCKET_MAX)
 1403                 zone->uz_count = keg->uk_ipers;
 1404         else
 1405                 zone->uz_count = BUCKET_MAX;
 1406         return (0);
 1407 }
 1408 
 1409 /*
 1410  * Keg header dtor.  This frees all data, destroys locks, frees the hash
 1411  * table and removes the keg from the global list.
 1412  *
 1413  * Arguments/Returns follow uma_dtor specifications
 1414  *      udata  unused
 1415  */
 1416 static void
 1417 keg_dtor(void *arg, int size, void *udata)
 1418 {
 1419         uma_keg_t keg;
 1420 
 1421         keg = (uma_keg_t)arg;
 1422         mtx_lock(&keg->uk_lock);
 1423         if (keg->uk_free != 0) {
 1424                 printf("Freed UMA keg was not empty (%d items). "
 1425                     " Lost %d pages of memory.\n",
 1426                     keg->uk_free, keg->uk_pages);
 1427         }
 1428         mtx_unlock(&keg->uk_lock);
 1429 
 1430         if (keg->uk_flags & UMA_ZONE_HASH)
 1431                 hash_free(&keg->uk_hash);
 1432 
 1433         mtx_destroy(&keg->uk_lock);
 1434 }
 1435 
 1436 /*
 1437  * Zone header dtor.
 1438  *
 1439  * Arguments/Returns follow uma_dtor specifications
 1440  *      udata  unused
 1441  */
 1442 static void
 1443 zone_dtor(void *arg, int size, void *udata)
 1444 {
 1445         uma_zone_t zone;
 1446         uma_keg_t keg;
 1447 
 1448         zone = (uma_zone_t)arg;
 1449         keg = zone->uz_keg;
 1450 
 1451         if (!(keg->uk_flags & UMA_ZFLAG_INTERNAL))
 1452                 cache_drain(zone);
 1453 
 1454         mtx_lock(&uma_mtx);
 1455         zone_drain(zone);
 1456         if (keg->uk_flags & UMA_ZONE_SECONDARY) {
 1457                 LIST_REMOVE(zone, uz_link);
 1458                 /*
 1459                  * XXX there are some races here where
 1460                  * the zone can be drained but zone lock
 1461                  * released and then refilled before we
 1462                  * remove it... we dont care for now
 1463                  */
 1464                 ZONE_LOCK(zone);
 1465                 if (LIST_EMPTY(&keg->uk_zones))
 1466                         keg->uk_flags &= ~UMA_ZONE_SECONDARY;
 1467                 ZONE_UNLOCK(zone);
 1468                 mtx_unlock(&uma_mtx);
 1469         } else {
 1470                 LIST_REMOVE(keg, uk_link);
 1471                 LIST_REMOVE(zone, uz_link);
 1472                 mtx_unlock(&uma_mtx);
 1473                 uma_zfree_internal(kegs, keg, NULL, SKIP_NONE,
 1474                     ZFREE_STATFREE);
 1475         }
 1476         zone->uz_keg = NULL;
 1477 }
 1478 
 1479 /*
 1480  * Traverses every zone in the system and calls a callback
 1481  *
 1482  * Arguments:
 1483  *      zfunc  A pointer to a function which accepts a zone
 1484  *              as an argument.
 1485  *
 1486  * Returns:
 1487  *      Nothing
 1488  */
 1489 static void
 1490 zone_foreach(void (*zfunc)(uma_zone_t))
 1491 {
 1492         uma_keg_t keg;
 1493         uma_zone_t zone;
 1494 
 1495         mtx_lock(&uma_mtx);
 1496         LIST_FOREACH(keg, &uma_kegs, uk_link) {
 1497                 LIST_FOREACH(zone, &keg->uk_zones, uz_link)
 1498                         zfunc(zone);
 1499         }
 1500         mtx_unlock(&uma_mtx);
 1501 }
 1502 
 1503 /* Public functions */
 1504 /* See uma.h */
 1505 void
 1506 uma_startup(void *bootmem, int boot_pages)
 1507 {
 1508         struct uma_zctor_args args;
 1509         uma_slab_t slab;
 1510         u_int slabsize;
 1511         u_int objsize, totsize, wsize;
 1512         int i;
 1513 
 1514 #ifdef UMA_DEBUG
 1515         printf("Creating uma keg headers zone and keg.\n");
 1516 #endif
 1517         mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF);
 1518 
 1519         /*
 1520          * Figure out the maximum number of items-per-slab we'll have if
 1521          * we're using the OFFPAGE slab header to track free items, given
 1522          * all possible object sizes and the maximum desired wastage
 1523          * (UMA_MAX_WASTE).
 1524          *
 1525          * We iterate until we find an object size for
 1526          * which the calculated wastage in zone_small_init() will be
 1527          * enough to warrant OFFPAGE.  Since wastedspace versus objsize
 1528          * is an overall increasing see-saw function, we find the smallest
 1529          * objsize such that the wastage is always acceptable for objects
 1530          * with that objsize or smaller.  Since a smaller objsize always
 1531          * generates a larger possible uma_max_ipers, we use this computed
 1532          * objsize to calculate the largest ipers possible.  Since the
 1533          * ipers calculated for OFFPAGE slab headers is always larger than
 1534          * the ipers initially calculated in zone_small_init(), we use
 1535          * the former's equation (UMA_SLAB_SIZE / keg->uk_rsize) to
 1536          * obtain the maximum ipers possible for offpage slab headers.
 1537          *
 1538          * It should be noted that ipers versus objsize is an inversly
 1539          * proportional function which drops off rather quickly so as
 1540          * long as our UMA_MAX_WASTE is such that the objsize we calculate
 1541          * falls into the portion of the inverse relation AFTER the steep
 1542          * falloff, then uma_max_ipers shouldn't be too high (~10 on i386).
 1543          *
 1544          * Note that we have 8-bits (1 byte) to use as a freelist index
 1545          * inside the actual slab header itself and this is enough to
 1546          * accomodate us.  In the worst case, a UMA_SMALLEST_UNIT sized
 1547          * object with offpage slab header would have ipers =
 1548          * UMA_SLAB_SIZE / UMA_SMALLEST_UNIT (currently = 256), which is
 1549          * 1 greater than what our byte-integer freelist index can
 1550          * accomodate, but we know that this situation never occurs as
 1551          * for UMA_SMALLEST_UNIT-sized objects, we will never calculate
 1552          * that we need to go to offpage slab headers.  Or, if we do,
 1553          * then we trap that condition below and panic in the INVARIANTS case.
 1554          */
 1555         wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab) - UMA_MAX_WASTE;
 1556         totsize = wsize;
 1557         objsize = UMA_SMALLEST_UNIT;
 1558         while (totsize >= wsize) {
 1559                 totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab)) /
 1560                     (objsize + UMA_FRITM_SZ);
 1561                 totsize *= (UMA_FRITM_SZ + objsize);
 1562                 objsize++;
 1563         }
 1564         if (objsize > UMA_SMALLEST_UNIT)
 1565                 objsize--;
 1566         uma_max_ipers = UMA_SLAB_SIZE / objsize;
 1567 
 1568         wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) - UMA_MAX_WASTE;
 1569         totsize = wsize;
 1570         objsize = UMA_SMALLEST_UNIT;
 1571         while (totsize >= wsize) {
 1572                 totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)) /
 1573                     (objsize + UMA_FRITMREF_SZ);
 1574                 totsize *= (UMA_FRITMREF_SZ + objsize);
 1575                 objsize++;
 1576         }
 1577         if (objsize > UMA_SMALLEST_UNIT)
 1578                 objsize--;
 1579         uma_max_ipers_ref = UMA_SLAB_SIZE / objsize;
 1580 
 1581         KASSERT((uma_max_ipers_ref <= 255) && (uma_max_ipers <= 255),
 1582             ("uma_startup: calculated uma_max_ipers values too large!"));
 1583 
 1584 #ifdef UMA_DEBUG
 1585         printf("Calculated uma_max_ipers (for OFFPAGE) is %d\n", uma_max_ipers);
 1586         printf("Calculated uma_max_ipers_slab (for OFFPAGE) is %d\n",
 1587             uma_max_ipers_ref);
 1588 #endif
 1589 
 1590         /* "manually" create the initial zone */
 1591         args.name = "UMA Kegs";
 1592         args.size = sizeof(struct uma_keg);
 1593         args.ctor = keg_ctor;
 1594         args.dtor = keg_dtor;
 1595         args.uminit = zero_init;
 1596         args.fini = NULL;
 1597         args.keg = &masterkeg;
 1598         args.align = 32 - 1;
 1599         args.flags = UMA_ZFLAG_INTERNAL;
 1600         /* The initial zone has no Per cpu queues so it's smaller */
 1601         zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK);
 1602 
 1603 #ifdef UMA_DEBUG
 1604         printf("Filling boot free list.\n");
 1605 #endif
 1606         for (i = 0; i < boot_pages; i++) {
 1607                 slab = (uma_slab_t)((u_int8_t *)bootmem + (i * UMA_SLAB_SIZE));
 1608                 slab->us_data = (u_int8_t *)slab;
 1609                 slab->us_flags = UMA_SLAB_BOOT;
 1610                 LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link);
 1611         }
 1612         mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF);
 1613 
 1614 #ifdef UMA_DEBUG
 1615         printf("Creating uma zone headers zone and keg.\n");
 1616 #endif
 1617         args.name = "UMA Zones";
 1618         args.size = sizeof(struct uma_zone) +
 1619             (sizeof(struct uma_cache) * (mp_maxid + 1));
 1620         args.ctor = zone_ctor;
 1621         args.dtor = zone_dtor;
 1622         args.uminit = zero_init;
 1623         args.fini = NULL;
 1624         args.keg = NULL;
 1625         args.align = 32 - 1;
 1626         args.flags = UMA_ZFLAG_INTERNAL;
 1627         /* The initial zone has no Per cpu queues so it's smaller */
 1628         zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK);
 1629 
 1630 #ifdef UMA_DEBUG
 1631         printf("Initializing pcpu cache locks.\n");
 1632 #endif
 1633 #ifdef UMA_DEBUG
 1634         printf("Creating slab and hash zones.\n");
 1635 #endif
 1636 
 1637         /*
 1638          * This is the max number of free list items we'll have with
 1639          * offpage slabs.
 1640          */
 1641         slabsize = uma_max_ipers * UMA_FRITM_SZ;
 1642         slabsize += sizeof(struct uma_slab);
 1643 
 1644         /* Now make a zone for slab headers */
 1645         slabzone = uma_zcreate("UMA Slabs",
 1646                                 slabsize,
 1647                                 NULL, NULL, NULL, NULL,
 1648                                 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
 1649 
 1650         /*
 1651          * We also create a zone for the bigger slabs with reference
 1652          * counts in them, to accomodate UMA_ZONE_REFCNT zones.
 1653          */
 1654         slabsize = uma_max_ipers_ref * UMA_FRITMREF_SZ;
 1655         slabsize += sizeof(struct uma_slab_refcnt);
 1656         slabrefzone = uma_zcreate("UMA RCntSlabs",
 1657                                   slabsize,
 1658                                   NULL, NULL, NULL, NULL,
 1659                                   UMA_ALIGN_PTR,
 1660                                   UMA_ZFLAG_INTERNAL);
 1661 
 1662         hashzone = uma_zcreate("UMA Hash",
 1663             sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
 1664             NULL, NULL, NULL, NULL,
 1665             UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
 1666 
 1667         bucket_init();
 1668 
 1669 #ifdef UMA_MD_SMALL_ALLOC
 1670         booted = 1;
 1671 #endif
 1672 
 1673 #ifdef UMA_DEBUG
 1674         printf("UMA startup complete.\n");
 1675 #endif
 1676 }
 1677 
 1678 /* see uma.h */
 1679 void
 1680 uma_startup2(void)
 1681 {
 1682         booted = 1;
 1683         bucket_enable();
 1684 #ifdef UMA_DEBUG
 1685         printf("UMA startup2 complete.\n");
 1686 #endif
 1687 }
 1688 
 1689 /*
 1690  * Initialize our callout handle
 1691  *
 1692  */
 1693 
 1694 static void
 1695 uma_startup3(void)
 1696 {
 1697 #ifdef UMA_DEBUG
 1698         printf("Starting callout.\n");
 1699 #endif
 1700         callout_init(&uma_callout, CALLOUT_MPSAFE);
 1701         callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
 1702 #ifdef UMA_DEBUG
 1703         printf("UMA startup3 complete.\n");
 1704 #endif
 1705 }
 1706 
 1707 static uma_zone_t
 1708 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
 1709                 int align, u_int32_t flags)
 1710 {
 1711         struct uma_kctor_args args;
 1712 
 1713         args.size = size;
 1714         args.uminit = uminit;
 1715         args.fini = fini;
 1716         args.align = align;
 1717         args.flags = flags;
 1718         args.zone = zone;
 1719         return (uma_zalloc_internal(kegs, &args, M_WAITOK));
 1720 }
 1721 
 1722 /* See uma.h */
 1723 uma_zone_t
 1724 uma_zcreate(char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
 1725                 uma_init uminit, uma_fini fini, int align, u_int32_t flags)
 1726 
 1727 {
 1728         struct uma_zctor_args args;
 1729 
 1730         /* This stuff is essential for the zone ctor */
 1731         args.name = name;
 1732         args.size = size;
 1733         args.ctor = ctor;
 1734         args.dtor = dtor;
 1735         args.uminit = uminit;
 1736         args.fini = fini;
 1737         args.align = align;
 1738         args.flags = flags;
 1739         args.keg = NULL;
 1740 
 1741         return (uma_zalloc_internal(zones, &args, M_WAITOK));
 1742 }
 1743 
 1744 /* See uma.h */
 1745 uma_zone_t
 1746 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
 1747                     uma_init zinit, uma_fini zfini, uma_zone_t master)
 1748 {
 1749         struct uma_zctor_args args;
 1750 
 1751         args.name = name;
 1752         args.size = master->uz_keg->uk_size;
 1753         args.ctor = ctor;
 1754         args.dtor = dtor;
 1755         args.uminit = zinit;
 1756         args.fini = zfini;
 1757         args.align = master->uz_keg->uk_align;
 1758         args.flags = master->uz_keg->uk_flags | UMA_ZONE_SECONDARY;
 1759         args.keg = master->uz_keg;
 1760 
 1761         return (uma_zalloc_internal(zones, &args, M_WAITOK));
 1762 }
 1763 
 1764 /* See uma.h */
 1765 void
 1766 uma_zdestroy(uma_zone_t zone)
 1767 {
 1768 
 1769         uma_zfree_internal(zones, zone, NULL, SKIP_NONE, ZFREE_STATFREE);
 1770 }
 1771 
 1772 /* See uma.h */
 1773 void *
 1774 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
 1775 {
 1776         void *item;
 1777         uma_cache_t cache;
 1778         uma_bucket_t bucket;
 1779         int cpu;
 1780         int badness;
 1781 
 1782         /* This is the fast path allocation */
 1783 #ifdef UMA_DEBUG_ALLOC_1
 1784         printf("Allocating one item from %s(%p)\n", zone->uz_name, zone);
 1785 #endif
 1786         CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread,
 1787             zone->uz_name, flags);
 1788 
 1789         if (!(flags & M_NOWAIT)) {
 1790                 KASSERT(curthread->td_intr_nesting_level == 0,
 1791                    ("malloc(M_WAITOK) in interrupt context"));
 1792                 if (nosleepwithlocks) {
 1793 #ifdef WITNESS
 1794                         badness = WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
 1795                             NULL,
 1796                             "malloc(M_WAITOK) of \"%s\", forcing M_NOWAIT",
 1797                             zone->uz_name);
 1798 #else
 1799                         badness = 1;
 1800 #endif
 1801                 } else {
 1802                         badness = 0;
 1803 #ifdef WITNESS
 1804                         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
 1805                             "malloc(M_WAITOK) of \"%s\"", zone->uz_name);
 1806 #endif
 1807                 }
 1808                 if (badness) {
 1809                         flags &= ~M_WAITOK;
 1810                         flags |= M_NOWAIT;
 1811                 }
 1812         }
 1813 
 1814         /*
 1815          * If possible, allocate from the per-CPU cache.  There are two
 1816          * requirements for safe access to the per-CPU cache: (1) the thread
 1817          * accessing the cache must not be preempted or yield during access,
 1818          * and (2) the thread must not migrate CPUs without switching which
 1819          * cache it accesses.  We rely on a critical section to prevent
 1820          * preemption and migration.  We release the critical section in
 1821          * order to acquire the zone mutex if we are unable to allocate from
 1822          * the current cache; when we re-acquire the critical section, we
 1823          * must detect and handle migration if it has occurred.
 1824          */
 1825 zalloc_restart:
 1826         critical_enter();
 1827         cpu = curcpu;
 1828         cache = &zone->uz_cpu[cpu];
 1829 
 1830 zalloc_start:
 1831         bucket = cache->uc_allocbucket;
 1832 
 1833         if (bucket) {
 1834                 if (bucket->ub_cnt > 0) {
 1835                         bucket->ub_cnt--;
 1836                         item = bucket->ub_bucket[bucket->ub_cnt];
 1837 #ifdef INVARIANTS
 1838                         bucket->ub_bucket[bucket->ub_cnt] = NULL;
 1839 #endif
 1840                         KASSERT(item != NULL,
 1841                             ("uma_zalloc: Bucket pointer mangled."));
 1842                         cache->uc_allocs++;
 1843                         critical_exit();
 1844 #ifdef INVARIANTS
 1845                         ZONE_LOCK(zone);
 1846                         uma_dbg_alloc(zone, NULL, item);
 1847                         ZONE_UNLOCK(zone);
 1848 #endif
 1849                         if (zone->uz_ctor != NULL) {
 1850                                 if (zone->uz_ctor(item, zone->uz_keg->uk_size,
 1851                                     udata, flags) != 0) {
 1852                                         uma_zfree_internal(zone, item, udata,
 1853                                             SKIP_DTOR, ZFREE_STATFAIL |
 1854                                             ZFREE_STATFREE);
 1855                                         return (NULL);
 1856                                 }
 1857                         }
 1858                         if (flags & M_ZERO)
 1859                                 bzero(item, zone->uz_keg->uk_size);
 1860                         return (item);
 1861                 } else if (cache->uc_freebucket) {
 1862                         /*
 1863                          * We have run out of items in our allocbucket.
 1864                          * See if we can switch with our free bucket.
 1865                          */
 1866                         if (cache->uc_freebucket->ub_cnt > 0) {
 1867 #ifdef UMA_DEBUG_ALLOC
 1868                                 printf("uma_zalloc: Swapping empty with"
 1869                                     " alloc.\n");
 1870 #endif
 1871                                 bucket = cache->uc_freebucket;
 1872                                 cache->uc_freebucket = cache->uc_allocbucket;
 1873                                 cache->uc_allocbucket = bucket;
 1874 
 1875                                 goto zalloc_start;
 1876                         }
 1877                 }
 1878         }
 1879         /*
 1880          * Attempt to retrieve the item from the per-CPU cache has failed, so
 1881          * we must go back to the zone.  This requires the zone lock, so we
 1882          * must drop the critical section, then re-acquire it when we go back
 1883          * to the cache.  Since the critical section is released, we may be
 1884          * preempted or migrate.  As such, make sure not to maintain any
 1885          * thread-local state specific to the cache from prior to releasing
 1886          * the critical section.
 1887          */
 1888         critical_exit();
 1889         ZONE_LOCK(zone);
 1890         critical_enter();
 1891         cpu = curcpu;
 1892         cache = &zone->uz_cpu[cpu];
 1893         bucket = cache->uc_allocbucket;
 1894         if (bucket != NULL) {
 1895                 if (bucket->ub_cnt > 0) {
 1896                         ZONE_UNLOCK(zone);
 1897                         goto zalloc_start;
 1898                 }
 1899                 bucket = cache->uc_freebucket;
 1900                 if (bucket != NULL && bucket->ub_cnt > 0) {
 1901                         ZONE_UNLOCK(zone);
 1902                         goto zalloc_start;
 1903                 }
 1904         }
 1905 
 1906         /* Since we have locked the zone we may as well send back our stats */
 1907         zone->uz_allocs += cache->uc_allocs;
 1908         cache->uc_allocs = 0;
 1909         zone->uz_frees += cache->uc_frees;
 1910         cache->uc_frees = 0;
 1911 
 1912         /* Our old one is now a free bucket */
 1913         if (cache->uc_allocbucket) {
 1914                 KASSERT(cache->uc_allocbucket->ub_cnt == 0,
 1915                     ("uma_zalloc_arg: Freeing a non free bucket."));
 1916                 LIST_INSERT_HEAD(&zone->uz_free_bucket,
 1917                     cache->uc_allocbucket, ub_link);
 1918                 cache->uc_allocbucket = NULL;
 1919         }
 1920 
 1921         /* Check the free list for a new alloc bucket */
 1922         if ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) {
 1923                 KASSERT(bucket->ub_cnt != 0,
 1924                     ("uma_zalloc_arg: Returning an empty bucket."));
 1925 
 1926                 LIST_REMOVE(bucket, ub_link);
 1927                 cache->uc_allocbucket = bucket;
 1928                 ZONE_UNLOCK(zone);
 1929                 goto zalloc_start;
 1930         }
 1931         /* We are no longer associated with this CPU. */
 1932         critical_exit();
 1933 
 1934         /* Bump up our uz_count so we get here less */
 1935         if (zone->uz_count < BUCKET_MAX)
 1936                 zone->uz_count++;
 1937 
 1938         /*
 1939          * Now lets just fill a bucket and put it on the free list.  If that
 1940          * works we'll restart the allocation from the begining.
 1941          */
 1942         if (uma_zalloc_bucket(zone, flags)) {
 1943                 ZONE_UNLOCK(zone);
 1944                 goto zalloc_restart;
 1945         }
 1946         ZONE_UNLOCK(zone);
 1947         /*
 1948          * We may not be able to get a bucket so return an actual item.
 1949          */
 1950 #ifdef UMA_DEBUG
 1951         printf("uma_zalloc_arg: Bucketzone returned NULL\n");
 1952 #endif
 1953 
 1954         return (uma_zalloc_internal(zone, udata, flags));
 1955 }
 1956 
 1957 static uma_slab_t
 1958 uma_zone_slab(uma_zone_t zone, int flags)
 1959 {
 1960         uma_slab_t slab;
 1961         uma_keg_t keg;
 1962 
 1963         keg = zone->uz_keg;
 1964 
 1965         /*
 1966          * This is to prevent us from recursively trying to allocate
 1967          * buckets.  The problem is that if an allocation forces us to
 1968          * grab a new bucket we will call page_alloc, which will go off
 1969          * and cause the vm to allocate vm_map_entries.  If we need new
 1970          * buckets there too we will recurse in kmem_alloc and bad
 1971          * things happen.  So instead we return a NULL bucket, and make
 1972          * the code that allocates buckets smart enough to deal with it
 1973          *
 1974          * XXX: While we want this protection for the bucket zones so that
 1975          * recursion from the VM is handled (and the calling code that
 1976          * allocates buckets knows how to deal with it), we do not want
 1977          * to prevent allocation from the slab header zones (slabzone
 1978          * and slabrefzone) if uk_recurse is not zero for them.  The
 1979          * reason is that it could lead to NULL being returned for
 1980          * slab header allocations even in the M_WAITOK case, and the
 1981          * caller can't handle that. 
 1982          */
 1983         if (keg->uk_flags & UMA_ZFLAG_INTERNAL && keg->uk_recurse != 0)
 1984                 if ((zone != slabzone) && (zone != slabrefzone))
 1985                         return (NULL);
 1986 
 1987         slab = NULL;
 1988 
 1989         for (;;) {
 1990                 /*
 1991                  * Find a slab with some space.  Prefer slabs that are partially
 1992                  * used over those that are totally full.  This helps to reduce
 1993                  * fragmentation.
 1994                  */
 1995                 if (keg->uk_free != 0) {
 1996                         if (!LIST_EMPTY(&keg->uk_part_slab)) {
 1997                                 slab = LIST_FIRST(&keg->uk_part_slab);
 1998                         } else {
 1999                                 slab = LIST_FIRST(&keg->uk_free_slab);
 2000                                 LIST_REMOVE(slab, us_link);
 2001                                 LIST_INSERT_HEAD(&keg->uk_part_slab, slab,
 2002                                     us_link);
 2003                         }
 2004                         return (slab);
 2005                 }
 2006 
 2007                 /*
 2008                  * M_NOVM means don't ask at all!
 2009                  */
 2010                 if (flags & M_NOVM)
 2011                         break;
 2012 
 2013                 if (keg->uk_maxpages &&
 2014                     keg->uk_pages >= keg->uk_maxpages) {
 2015                         keg->uk_flags |= UMA_ZFLAG_FULL;
 2016 
 2017                         if (flags & M_NOWAIT)
 2018                                 break;
 2019                         else
 2020                                 msleep(keg, &keg->uk_lock, PVM,
 2021                                     "zonelimit", 0);
 2022                         continue;
 2023                 }
 2024                 keg->uk_recurse++;
 2025                 slab = slab_zalloc(zone, flags);
 2026                 keg->uk_recurse--;
 2027 
 2028                 /*
 2029                  * If we got a slab here it's safe to mark it partially used
 2030                  * and return.  We assume that the caller is going to remove
 2031                  * at least one item.
 2032                  */
 2033                 if (slab) {
 2034                         LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
 2035                         return (slab);
 2036                 }
 2037                 /*
 2038                  * We might not have been able to get a slab but another cpu
 2039                  * could have while we were unlocked.  Check again before we
 2040                  * fail.
 2041                  */
 2042                 if (flags & M_NOWAIT)
 2043                         flags |= M_NOVM;
 2044         }
 2045         return (slab);
 2046 }
 2047 
 2048 static void *
 2049 uma_slab_alloc(uma_zone_t zone, uma_slab_t slab)
 2050 {
 2051         uma_keg_t keg;
 2052         uma_slabrefcnt_t slabref;
 2053         void *item;
 2054         u_int8_t freei;
 2055 
 2056         keg = zone->uz_keg;
 2057 
 2058         freei = slab->us_firstfree;
 2059         if (keg->uk_flags & UMA_ZONE_REFCNT) {
 2060                 slabref = (uma_slabrefcnt_t)slab;
 2061                 slab->us_firstfree = slabref->us_freelist[freei].us_item;
 2062         } else {
 2063                 slab->us_firstfree = slab->us_freelist[freei].us_item;
 2064         }
 2065         item = slab->us_data + (keg->uk_rsize * freei);
 2066 
 2067         slab->us_freecount--;
 2068         keg->uk_free--;
 2069 #ifdef INVARIANTS
 2070         uma_dbg_alloc(zone, slab, item);
 2071 #endif
 2072         /* Move this slab to the full list */
 2073         if (slab->us_freecount == 0) {
 2074                 LIST_REMOVE(slab, us_link);
 2075                 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link);
 2076         }
 2077 
 2078         return (item);
 2079 }
 2080 
 2081 static int
 2082 uma_zalloc_bucket(uma_zone_t zone, int flags)
 2083 {
 2084         uma_bucket_t bucket;
 2085         uma_slab_t slab;
 2086         int16_t saved;
 2087         int max, origflags = flags;
 2088 
 2089         /*
 2090          * Try this zone's free list first so we don't allocate extra buckets.
 2091          */
 2092         if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
 2093                 KASSERT(bucket->ub_cnt == 0,
 2094                     ("uma_zalloc_bucket: Bucket on free list is not empty."));
 2095                 LIST_REMOVE(bucket, ub_link);
 2096         } else {
 2097                 int bflags;
 2098 
 2099                 bflags = (flags & ~M_ZERO);
 2100                 if (zone->uz_keg->uk_flags & UMA_ZFLAG_CACHEONLY)
 2101                         bflags |= M_NOVM;
 2102 
 2103                 ZONE_UNLOCK(zone);
 2104                 bucket = bucket_alloc(zone->uz_count, bflags);
 2105                 ZONE_LOCK(zone);
 2106         }
 2107 
 2108         if (bucket == NULL)
 2109                 return (0);
 2110 
 2111 #ifdef SMP
 2112         /*
 2113          * This code is here to limit the number of simultaneous bucket fills
 2114          * for any given zone to the number of per cpu caches in this zone. This
 2115          * is done so that we don't allocate more memory than we really need.
 2116          */
 2117         if (zone->uz_fills >= mp_ncpus)
 2118                 goto done;
 2119 
 2120 #endif
 2121         zone->uz_fills++;
 2122 
 2123         max = MIN(bucket->ub_entries, zone->uz_count);
 2124         /* Try to keep the buckets totally full */
 2125         saved = bucket->ub_cnt;
 2126         while (bucket->ub_cnt < max &&
 2127             (slab = uma_zone_slab(zone, flags)) != NULL) {
 2128                 while (slab->us_freecount && bucket->ub_cnt < max) {
 2129                         bucket->ub_bucket[bucket->ub_cnt++] =
 2130                             uma_slab_alloc(zone, slab);
 2131                 }
 2132 
 2133                 /* Don't block on the next fill */
 2134                 flags |= M_NOWAIT;
 2135         }
 2136 
 2137         /*
 2138          * We unlock here because we need to call the zone's init.
 2139          * It should be safe to unlock because the slab dealt with
 2140          * above is already on the appropriate list within the keg
 2141          * and the bucket we filled is not yet on any list, so we
 2142          * own it.
 2143          */
 2144         if (zone->uz_init != NULL) {
 2145                 int i;
 2146 
 2147                 ZONE_UNLOCK(zone);
 2148                 for (i = saved; i < bucket->ub_cnt; i++)
 2149                         if (zone->uz_init(bucket->ub_bucket[i],
 2150                             zone->uz_keg->uk_size, origflags) != 0)
 2151                                 break;
 2152                 /*
 2153                  * If we couldn't initialize the whole bucket, put the
 2154                  * rest back onto the freelist.
 2155                  */
 2156                 if (i != bucket->ub_cnt) {
 2157                         int j;
 2158 
 2159                         for (j = i; j < bucket->ub_cnt; j++) {
 2160                                 uma_zfree_internal(zone, bucket->ub_bucket[j],
 2161                                     NULL, SKIP_FINI, 0);
 2162 #ifdef INVARIANTS
 2163                                 bucket->ub_bucket[j] = NULL;
 2164 #endif
 2165                         }
 2166                         bucket->ub_cnt = i;
 2167                 }
 2168                 ZONE_LOCK(zone);
 2169         }
 2170 
 2171         zone->uz_fills--;
 2172         if (bucket->ub_cnt != 0) {
 2173                 LIST_INSERT_HEAD(&zone->uz_full_bucket,
 2174                     bucket, ub_link);
 2175                 return (1);
 2176         }
 2177 #ifdef SMP
 2178 done:
 2179 #endif
 2180         bucket_free(bucket);
 2181 
 2182         return (0);
 2183 }
 2184 /*
 2185  * Allocates an item for an internal zone
 2186  *
 2187  * Arguments
 2188  *      zone   The zone to alloc for.
 2189  *      udata  The data to be passed to the constructor.
 2190  *      flags  M_WAITOK, M_NOWAIT, M_ZERO.
 2191  *
 2192  * Returns
 2193  *      NULL if there is no memory and M_NOWAIT is set
 2194  *      An item if successful
 2195  */
 2196 
 2197 static void *
 2198 uma_zalloc_internal(uma_zone_t zone, void *udata, int flags)
 2199 {
 2200         uma_keg_t keg;
 2201         uma_slab_t slab;
 2202         void *item;
 2203 
 2204         item = NULL;
 2205         keg = zone->uz_keg;
 2206 
 2207 #ifdef UMA_DEBUG_ALLOC
 2208         printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone);
 2209 #endif
 2210         ZONE_LOCK(zone);
 2211 
 2212         slab = uma_zone_slab(zone, flags);
 2213         if (slab == NULL) {
 2214                 zone->uz_fails++;
 2215                 ZONE_UNLOCK(zone);
 2216                 return (NULL);
 2217         }
 2218 
 2219         item = uma_slab_alloc(zone, slab);
 2220 
 2221         zone->uz_allocs++;
 2222 
 2223         ZONE_UNLOCK(zone);
 2224 
 2225         /*
 2226          * We have to call both the zone's init (not the keg's init)
 2227          * and the zone's ctor.  This is because the item is going from
 2228          * a keg slab directly to the user, and the user is expecting it
 2229          * to be both zone-init'd as well as zone-ctor'd.
 2230          */
 2231         if (zone->uz_init != NULL) {
 2232                 if (zone->uz_init(item, keg->uk_size, flags) != 0) {
 2233                         uma_zfree_internal(zone, item, udata, SKIP_FINI,
 2234                             ZFREE_STATFAIL | ZFREE_STATFREE);
 2235                         return (NULL);
 2236                 }
 2237         }
 2238         if (zone->uz_ctor != NULL) {
 2239                 if (zone->uz_ctor(item, keg->uk_size, udata, flags) != 0) {
 2240                         uma_zfree_internal(zone, item, udata, SKIP_DTOR,
 2241                             ZFREE_STATFAIL | ZFREE_STATFREE);
 2242                         return (NULL);
 2243                 }
 2244         }
 2245         if (flags & M_ZERO)
 2246                 bzero(item, keg->uk_size);
 2247 
 2248         return (item);
 2249 }
 2250 
 2251 /* See uma.h */
 2252 void
 2253 uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
 2254 {
 2255         uma_keg_t keg;
 2256         uma_cache_t cache;
 2257         uma_bucket_t bucket;
 2258         int bflags;
 2259         int cpu;
 2260 
 2261         keg = zone->uz_keg;
 2262 
 2263 #ifdef UMA_DEBUG_ALLOC_1
 2264         printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone);
 2265 #endif
 2266         CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread,
 2267             zone->uz_name);
 2268 
 2269         if (zone->uz_dtor)
 2270                 zone->uz_dtor(item, keg->uk_size, udata);
 2271 #ifdef INVARIANTS
 2272         ZONE_LOCK(zone);
 2273         if (keg->uk_flags & UMA_ZONE_MALLOC)
 2274                 uma_dbg_free(zone, udata, item);
 2275         else
 2276                 uma_dbg_free(zone, NULL, item);
 2277         ZONE_UNLOCK(zone);
 2278 #endif
 2279         /*
 2280          * The race here is acceptable.  If we miss it we'll just have to wait
 2281          * a little longer for the limits to be reset.
 2282          */
 2283         if (keg->uk_flags & UMA_ZFLAG_FULL)
 2284                 goto zfree_internal;
 2285 
 2286         /*
 2287          * If possible, free to the per-CPU cache.  There are two
 2288          * requirements for safe access to the per-CPU cache: (1) the thread
 2289          * accessing the cache must not be preempted or yield during access,
 2290          * and (2) the thread must not migrate CPUs without switching which
 2291          * cache it accesses.  We rely on a critical section to prevent
 2292          * preemption and migration.  We release the critical section in
 2293          * order to acquire the zone mutex if we are unable to free to the
 2294          * current cache; when we re-acquire the critical section, we must
 2295          * detect and handle migration if it has occurred.
 2296          */
 2297 zfree_restart:
 2298         critical_enter();
 2299         cpu = curcpu;
 2300         cache = &zone->uz_cpu[cpu];
 2301 
 2302 zfree_start:
 2303         bucket = cache->uc_freebucket;
 2304 
 2305         if (bucket) {
 2306                 /*
 2307                  * Do we have room in our bucket? It is OK for this uz count
 2308                  * check to be slightly out of sync.
 2309                  */
 2310 
 2311                 if (bucket->ub_cnt < bucket->ub_entries) {
 2312                         KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL,
 2313                             ("uma_zfree: Freeing to non free bucket index."));
 2314                         bucket->ub_bucket[bucket->ub_cnt] = item;
 2315                         bucket->ub_cnt++;
 2316                         cache->uc_frees++;
 2317                         critical_exit();
 2318                         return;
 2319                 } else if (cache->uc_allocbucket) {
 2320 #ifdef UMA_DEBUG_ALLOC
 2321                         printf("uma_zfree: Swapping buckets.\n");
 2322 #endif
 2323                         /*
 2324                          * We have run out of space in our freebucket.
 2325                          * See if we can switch with our alloc bucket.
 2326                          */
 2327                         if (cache->uc_allocbucket->ub_cnt <
 2328                             cache->uc_freebucket->ub_cnt) {
 2329                                 bucket = cache->uc_freebucket;
 2330                                 cache->uc_freebucket = cache->uc_allocbucket;
 2331                                 cache->uc_allocbucket = bucket;
 2332                                 goto zfree_start;
 2333                         }
 2334                 }
 2335         }
 2336         /*
 2337          * We can get here for two reasons:
 2338          *
 2339          * 1) The buckets are NULL
 2340          * 2) The alloc and free buckets are both somewhat full.
 2341          *
 2342          * We must go back the zone, which requires acquiring the zone lock,
 2343          * which in turn means we must release and re-acquire the critical
 2344          * section.  Since the critical section is released, we may be
 2345          * preempted or migrate.  As such, make sure not to maintain any
 2346          * thread-local state specific to the cache from prior to releasing
 2347          * the critical section.
 2348          */
 2349         critical_exit();
 2350         ZONE_LOCK(zone);
 2351         critical_enter();
 2352         cpu = curcpu;
 2353         cache = &zone->uz_cpu[cpu];
 2354         if (cache->uc_freebucket != NULL) {
 2355                 if (cache->uc_freebucket->ub_cnt <
 2356                     cache->uc_freebucket->ub_entries) {
 2357                         ZONE_UNLOCK(zone);
 2358                         goto zfree_start;
 2359                 }
 2360                 if (cache->uc_allocbucket != NULL &&
 2361                     (cache->uc_allocbucket->ub_cnt <
 2362                     cache->uc_freebucket->ub_cnt)) {
 2363                         ZONE_UNLOCK(zone);
 2364                         goto zfree_start;
 2365                 }
 2366         }
 2367 
 2368         /* Since we have locked the zone we may as well send back our stats */
 2369         zone->uz_allocs += cache->uc_allocs;
 2370         cache->uc_allocs = 0;
 2371         zone->uz_frees += cache->uc_frees;
 2372         cache->uc_frees = 0;
 2373 
 2374         bucket = cache->uc_freebucket;
 2375         cache->uc_freebucket = NULL;
 2376 
 2377         /* Can we throw this on the zone full list? */
 2378         if (bucket != NULL) {
 2379 #ifdef UMA_DEBUG_ALLOC
 2380                 printf("uma_zfree: Putting old bucket on the free list.\n");
 2381 #endif
 2382                 /* ub_cnt is pointing to the last free item */
 2383                 KASSERT(bucket->ub_cnt != 0,
 2384                     ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
 2385                 LIST_INSERT_HEAD(&zone->uz_full_bucket,
 2386                     bucket, ub_link);
 2387         }
 2388         if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
 2389                 LIST_REMOVE(bucket, ub_link);
 2390                 ZONE_UNLOCK(zone);
 2391                 cache->uc_freebucket = bucket;
 2392                 goto zfree_start;
 2393         }
 2394         /* We are no longer associated with this CPU. */
 2395         critical_exit();
 2396 
 2397         /* And the zone.. */
 2398         ZONE_UNLOCK(zone);
 2399 
 2400 #ifdef UMA_DEBUG_ALLOC
 2401         printf("uma_zfree: Allocating new free bucket.\n");
 2402 #endif
 2403         bflags = M_NOWAIT;
 2404 
 2405         if (keg->uk_flags & UMA_ZFLAG_CACHEONLY)
 2406                 bflags |= M_NOVM;
 2407         bucket = bucket_alloc(zone->uz_count, bflags);
 2408         if (bucket) {
 2409                 ZONE_LOCK(zone);
 2410                 LIST_INSERT_HEAD(&zone->uz_free_bucket,
 2411                     bucket, ub_link);
 2412                 ZONE_UNLOCK(zone);
 2413                 goto zfree_restart;
 2414         }
 2415 
 2416         /*
 2417          * If nothing else caught this, we'll just do an internal free.
 2418          */
 2419 zfree_internal:
 2420         uma_zfree_internal(zone, item, udata, SKIP_DTOR, ZFREE_STATFREE);
 2421 
 2422         return;
 2423 }
 2424 
 2425 /*
 2426  * Frees an item to an INTERNAL zone or allocates a free bucket
 2427  *
 2428  * Arguments:
 2429  *      zone   The zone to free to
 2430  *      item   The item we're freeing
 2431  *      udata  User supplied data for the dtor
 2432  *      skip   Skip dtors and finis
 2433  */
 2434 static void
 2435 uma_zfree_internal(uma_zone_t zone, void *item, void *udata,
 2436     enum zfreeskip skip, int flags)
 2437 {
 2438         uma_slab_t slab;
 2439         uma_slabrefcnt_t slabref;
 2440         uma_keg_t keg;
 2441         u_int8_t *mem;
 2442         u_int8_t freei;
 2443 
 2444         keg = zone->uz_keg;
 2445 
 2446         if (skip < SKIP_DTOR && zone->uz_dtor)
 2447                 zone->uz_dtor(item, keg->uk_size, udata);
 2448         if (skip < SKIP_FINI && zone->uz_fini)
 2449                 zone->uz_fini(item, keg->uk_size);
 2450 
 2451         ZONE_LOCK(zone);
 2452 
 2453         if (flags & ZFREE_STATFAIL)
 2454                 zone->uz_fails++;
 2455         if (flags & ZFREE_STATFREE)
 2456                 zone->uz_frees++;
 2457 
 2458         if (!(keg->uk_flags & UMA_ZONE_MALLOC)) {
 2459                 mem = (u_int8_t *)((unsigned long)item & (~UMA_SLAB_MASK));
 2460                 if (keg->uk_flags & UMA_ZONE_HASH)
 2461                         slab = hash_sfind(&keg->uk_hash, mem);
 2462                 else {
 2463                         mem += keg->uk_pgoff;
 2464                         slab = (uma_slab_t)mem;
 2465                 }
 2466         } else {
 2467                 slab = (uma_slab_t)udata;
 2468         }
 2469 
 2470         /* Do we need to remove from any lists? */
 2471         if (slab->us_freecount+1 == keg->uk_ipers) {
 2472                 LIST_REMOVE(slab, us_link);
 2473                 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
 2474         } else if (slab->us_freecount == 0) {
 2475                 LIST_REMOVE(slab, us_link);
 2476                 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
 2477         }
 2478 
 2479         /* Slab management stuff */
 2480         freei = ((unsigned long)item - (unsigned long)slab->us_data)
 2481                 / keg->uk_rsize;
 2482 
 2483 #ifdef INVARIANTS
 2484         if (!skip)
 2485                 uma_dbg_free(zone, slab, item);
 2486 #endif
 2487 
 2488         if (keg->uk_flags & UMA_ZONE_REFCNT) {
 2489                 slabref = (uma_slabrefcnt_t)slab;
 2490                 slabref->us_freelist[freei].us_item = slab->us_firstfree;
 2491         } else {
 2492                 slab->us_freelist[freei].us_item = slab->us_firstfree;
 2493         }
 2494         slab->us_firstfree = freei;
 2495         slab->us_freecount++;
 2496 
 2497         /* Zone statistics */
 2498         keg->uk_free++;
 2499 
 2500         if (keg->uk_flags & UMA_ZFLAG_FULL) {
 2501                 if (keg->uk_pages < keg->uk_maxpages)
 2502                         keg->uk_flags &= ~UMA_ZFLAG_FULL;
 2503 
 2504                 /* We can handle one more allocation */
 2505                 wakeup_one(keg);
 2506         }
 2507 
 2508         ZONE_UNLOCK(zone);
 2509 }
 2510 
 2511 /* See uma.h */
 2512 void
 2513 uma_zone_set_max(uma_zone_t zone, int nitems)
 2514 {
 2515         uma_keg_t keg;
 2516 
 2517         keg = zone->uz_keg;
 2518         ZONE_LOCK(zone);
 2519         if (keg->uk_ppera > 1)
 2520                 keg->uk_maxpages = nitems * keg->uk_ppera;
 2521         else
 2522                 keg->uk_maxpages = nitems / keg->uk_ipers;
 2523 
 2524         if (keg->uk_maxpages * keg->uk_ipers < nitems)
 2525                 keg->uk_maxpages++;
 2526 
 2527         ZONE_UNLOCK(zone);
 2528 }
 2529 
 2530 /* See uma.h */
 2531 void
 2532 uma_zone_set_init(uma_zone_t zone, uma_init uminit)
 2533 {
 2534         ZONE_LOCK(zone);
 2535         KASSERT(zone->uz_keg->uk_pages == 0,
 2536             ("uma_zone_set_init on non-empty keg"));
 2537         zone->uz_keg->uk_init = uminit;
 2538         ZONE_UNLOCK(zone);
 2539 }
 2540 
 2541 /* See uma.h */
 2542 void
 2543 uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
 2544 {
 2545         ZONE_LOCK(zone);
 2546         KASSERT(zone->uz_keg->uk_pages == 0,
 2547             ("uma_zone_set_fini on non-empty keg"));
 2548         zone->uz_keg->uk_fini = fini;
 2549         ZONE_UNLOCK(zone);
 2550 }
 2551 
 2552 /* See uma.h */
 2553 void
 2554 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
 2555 {
 2556         ZONE_LOCK(zone);
 2557         KASSERT(zone->uz_keg->uk_pages == 0,
 2558             ("uma_zone_set_zinit on non-empty keg"));
 2559         zone->uz_init = zinit;
 2560         ZONE_UNLOCK(zone);
 2561 }
 2562 
 2563 /* See uma.h */
 2564 void
 2565 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
 2566 {
 2567         ZONE_LOCK(zone);
 2568         KASSERT(zone->uz_keg->uk_pages == 0,
 2569             ("uma_zone_set_zfini on non-empty keg"));
 2570         zone->uz_fini = zfini;
 2571         ZONE_UNLOCK(zone);
 2572 }
 2573 
 2574 /* See uma.h */
 2575 /* XXX uk_freef is not actually used with the zone locked */
 2576 void
 2577 uma_zone_set_freef(uma_zone_t zone, uma_free freef)
 2578 {
 2579         ZONE_LOCK(zone);
 2580         zone->uz_keg->uk_freef = freef;
 2581         ZONE_UNLOCK(zone);
 2582 }
 2583 
 2584 /* See uma.h */
 2585 /* XXX uk_allocf is not actually used with the zone locked */
 2586 void
 2587 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
 2588 {
 2589         ZONE_LOCK(zone);
 2590         zone->uz_keg->uk_flags |= UMA_ZFLAG_PRIVALLOC;
 2591         zone->uz_keg->uk_allocf = allocf;
 2592         ZONE_UNLOCK(zone);
 2593 }
 2594 
 2595 /* See uma.h */
 2596 int
 2597 uma_zone_set_obj(uma_zone_t zone, struct vm_object *obj, int count)
 2598 {
 2599         uma_keg_t keg;
 2600         vm_offset_t kva;
 2601         int pages;
 2602 
 2603         keg = zone->uz_keg;
 2604         pages = count / keg->uk_ipers;
 2605 
 2606         if (pages * keg->uk_ipers < count)
 2607                 pages++;
 2608 
 2609         kva = kmem_alloc_nofault(kernel_map, pages * UMA_SLAB_SIZE);
 2610 
 2611         if (kva == 0)
 2612                 return (0);
 2613         if (obj == NULL) {
 2614                 obj = vm_object_allocate(OBJT_DEFAULT,
 2615                     pages);
 2616         } else {
 2617                 VM_OBJECT_LOCK_INIT(obj, "uma object");
 2618                 _vm_object_allocate(OBJT_DEFAULT,
 2619                     pages, obj);
 2620         }
 2621         ZONE_LOCK(zone);
 2622         keg->uk_kva = kva;
 2623         keg->uk_obj = obj;
 2624         keg->uk_maxpages = pages;
 2625         keg->uk_allocf = obj_alloc;
 2626         keg->uk_flags |= UMA_ZONE_NOFREE | UMA_ZFLAG_PRIVALLOC;
 2627         ZONE_UNLOCK(zone);
 2628         return (1);
 2629 }
 2630 
 2631 /* See uma.h */
 2632 void
 2633 uma_prealloc(uma_zone_t zone, int items)
 2634 {
 2635         int slabs;
 2636         uma_slab_t slab;
 2637         uma_keg_t keg;
 2638 
 2639         keg = zone->uz_keg;
 2640         ZONE_LOCK(zone);
 2641         slabs = items / keg->uk_ipers;
 2642         if (slabs * keg->uk_ipers < items)
 2643                 slabs++;
 2644         while (slabs > 0) {
 2645                 slab = slab_zalloc(zone, M_WAITOK);
 2646                 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
 2647                 slabs--;
 2648         }
 2649         ZONE_UNLOCK(zone);
 2650 }
 2651 
 2652 /* See uma.h */
 2653 u_int32_t *
 2654 uma_find_refcnt(uma_zone_t zone, void *item)
 2655 {
 2656         uma_slabrefcnt_t slabref;
 2657         uma_keg_t keg;
 2658         u_int32_t *refcnt;
 2659         int idx;
 2660 
 2661         keg = zone->uz_keg;
 2662         slabref = (uma_slabrefcnt_t)vtoslab((vm_offset_t)item &
 2663             (~UMA_SLAB_MASK));
 2664         KASSERT(slabref != NULL && slabref->us_keg->uk_flags & UMA_ZONE_REFCNT,
 2665             ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT"));
 2666         idx = ((unsigned long)item - (unsigned long)slabref->us_data)
 2667             / keg->uk_rsize;
 2668         refcnt = &slabref->us_freelist[idx].us_refcnt;
 2669         return refcnt;
 2670 }
 2671 
 2672 /* See uma.h */
 2673 void
 2674 uma_reclaim(void)
 2675 {
 2676 #ifdef UMA_DEBUG
 2677         printf("UMA: vm asked us to release pages!\n");
 2678 #endif
 2679         bucket_enable();
 2680         zone_foreach(zone_drain);
 2681         /*
 2682          * Some slabs may have been freed but this zone will be visited early
 2683          * we visit again so that we can free pages that are empty once other
 2684          * zones are drained.  We have to do the same for buckets.
 2685          */
 2686         zone_drain(slabzone);
 2687         zone_drain(slabrefzone);
 2688         bucket_zone_drain();
 2689 }
 2690 
 2691 void *
 2692 uma_large_malloc(int size, int wait)
 2693 {
 2694         void *mem;
 2695         uma_slab_t slab;
 2696         u_int8_t flags;
 2697 
 2698         slab = uma_zalloc_internal(slabzone, NULL, wait);
 2699         if (slab == NULL)
 2700                 return (NULL);
 2701         mem = page_alloc(NULL, size, &flags, wait);
 2702         if (mem) {
 2703                 vsetslab((vm_offset_t)mem, slab);
 2704                 slab->us_data = mem;
 2705                 slab->us_flags = flags | UMA_SLAB_MALLOC;
 2706                 slab->us_size = size;
 2707         } else {
 2708                 uma_zfree_internal(slabzone, slab, NULL, SKIP_NONE,
 2709                     ZFREE_STATFAIL | ZFREE_STATFREE);
 2710         }
 2711 
 2712         return (mem);
 2713 }
 2714 
 2715 void
 2716 uma_large_free(uma_slab_t slab)
 2717 {
 2718         vsetobj((vm_offset_t)slab->us_data, kmem_object);
 2719         page_free(slab->us_data, slab->us_size, slab->us_flags);
 2720         uma_zfree_internal(slabzone, slab, NULL, SKIP_NONE, ZFREE_STATFREE);
 2721 }
 2722 
 2723 void
 2724 uma_print_stats(void)
 2725 {
 2726         zone_foreach(uma_print_zone);
 2727 }
 2728 
 2729 static void
 2730 slab_print(uma_slab_t slab)
 2731 {
 2732         printf("slab: keg %p, data %p, freecount %d, firstfree %d\n",
 2733                 slab->us_keg, slab->us_data, slab->us_freecount,
 2734                 slab->us_firstfree);
 2735 }
 2736 
 2737 static void
 2738 cache_print(uma_cache_t cache)
 2739 {
 2740         printf("alloc: %p(%d), free: %p(%d)\n",
 2741                 cache->uc_allocbucket,
 2742                 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0,
 2743                 cache->uc_freebucket,
 2744                 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0);
 2745 }
 2746 
 2747 void
 2748 uma_print_zone(uma_zone_t zone)
 2749 {
 2750         uma_cache_t cache;
 2751         uma_keg_t keg;
 2752         uma_slab_t slab;
 2753         int i;
 2754 
 2755         keg = zone->uz_keg;
 2756         printf("%s(%p) size %d(%d) flags %d ipers %d ppera %d out %d free %d\n",
 2757             zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags,
 2758             keg->uk_ipers, keg->uk_ppera,
 2759             (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free);
 2760         printf("Part slabs:\n");
 2761         LIST_FOREACH(slab, &keg->uk_part_slab, us_link)
 2762                 slab_print(slab);
 2763         printf("Free slabs:\n");
 2764         LIST_FOREACH(slab, &keg->uk_free_slab, us_link)
 2765                 slab_print(slab);
 2766         printf("Full slabs:\n");
 2767         LIST_FOREACH(slab, &keg->uk_full_slab, us_link)
 2768                 slab_print(slab);
 2769         for (i = 0; i <= mp_maxid; i++) {
 2770                 if (CPU_ABSENT(i))
 2771                         continue;
 2772                 cache = &zone->uz_cpu[i];
 2773                 printf("CPU %d Cache:\n", i);
 2774                 cache_print(cache);
 2775         }
 2776 }
 2777 
 2778 /*
 2779  * Generate statistics across both the zone and its per-cpu cache's.  Return
 2780  * desired statistics if the pointer is non-NULL for that statistic.
 2781  *
 2782  * Note: does not update the zone statistics, as it can't safely clear the
 2783  * per-CPU cache statistic.
 2784  *
 2785  * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't
 2786  * safe from off-CPU; we should modify the caches to track this information
 2787  * directly so that we don't have to.
 2788  */
 2789 static void
 2790 uma_zone_sumstat(uma_zone_t z, int *cachefreep, u_int64_t *allocsp,
 2791     u_int64_t *freesp)
 2792 {
 2793         uma_cache_t cache;
 2794         u_int64_t allocs, frees;
 2795         int cachefree, cpu;
 2796 
 2797         allocs = frees = 0;
 2798         cachefree = 0;
 2799         for (cpu = 0; cpu <= mp_maxid; cpu++) {
 2800                 if (CPU_ABSENT(cpu))
 2801                         continue;
 2802                 cache = &z->uz_cpu[cpu];
 2803                 if (cache->uc_allocbucket != NULL)
 2804                         cachefree += cache->uc_allocbucket->ub_cnt;
 2805                 if (cache->uc_freebucket != NULL)
 2806                         cachefree += cache->uc_freebucket->ub_cnt;
 2807                 allocs += cache->uc_allocs;
 2808                 frees += cache->uc_frees;
 2809         }
 2810         allocs += z->uz_allocs;
 2811         frees += z->uz_frees;
 2812         if (cachefreep != NULL)
 2813                 *cachefreep = cachefree;
 2814         if (allocsp != NULL)
 2815                 *allocsp = allocs;
 2816         if (freesp != NULL)
 2817                 *freesp = frees;
 2818 }
 2819 
 2820 /*
 2821  * Sysctl handler for vm.zone
 2822  *
 2823  * stolen from vm_zone.c
 2824  */
 2825 static int
 2826 sysctl_vm_zone(SYSCTL_HANDLER_ARGS)
 2827 {
 2828         int error, len, cnt;
 2829         const int linesize = 128;       /* conservative */
 2830         int totalfree;
 2831         char *tmpbuf, *offset;
 2832         uma_zone_t z;
 2833         uma_keg_t zk;
 2834         char *p;
 2835         int cachefree;
 2836         uma_bucket_t bucket;
 2837         u_int64_t allocs, frees;
 2838 
 2839         cnt = 0;
 2840         mtx_lock(&uma_mtx);
 2841         LIST_FOREACH(zk, &uma_kegs, uk_link) {
 2842                 LIST_FOREACH(z, &zk->uk_zones, uz_link)
 2843                         cnt++;
 2844         }
 2845         mtx_unlock(&uma_mtx);
 2846         MALLOC(tmpbuf, char *, (cnt == 0 ? 1 : cnt) * linesize,
 2847                         M_TEMP, M_WAITOK);
 2848         len = snprintf(tmpbuf, linesize,
 2849             "\nITEM            SIZE     LIMIT     USED    FREE  REQUESTS\n\n");
 2850         if (cnt == 0)
 2851                 tmpbuf[len - 1] = '\0';
 2852         error = SYSCTL_OUT(req, tmpbuf, cnt == 0 ? len-1 : len);
 2853         if (error || cnt == 0)
 2854                 goto out;
 2855         offset = tmpbuf;
 2856         mtx_lock(&uma_mtx);
 2857         LIST_FOREACH(zk, &uma_kegs, uk_link) {
 2858           LIST_FOREACH(z, &zk->uk_zones, uz_link) {
 2859                 if (cnt == 0)   /* list may have changed size */
 2860                         break;
 2861                 ZONE_LOCK(z);
 2862                 cachefree = 0;
 2863                 if (!(zk->uk_flags & UMA_ZFLAG_INTERNAL)) {
 2864                         uma_zone_sumstat(z, &cachefree, &allocs, &frees);
 2865                 } else {
 2866                         allocs = z->uz_allocs;
 2867                         frees = z->uz_frees;
 2868                 }
 2869 
 2870                 LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link) {
 2871                         cachefree += bucket->ub_cnt;
 2872                 }
 2873                 totalfree = zk->uk_free + cachefree;
 2874                 len = snprintf(offset, linesize,
 2875                     "%-12.12s  %6.6u, %8.8u, %6.6u, %6.6u, %8.8llu\n",
 2876                     z->uz_name, zk->uk_size,
 2877                     zk->uk_maxpages * zk->uk_ipers,
 2878                     (zk->uk_ipers * (zk->uk_pages / zk->uk_ppera)) - totalfree,
 2879                     totalfree,
 2880                     (unsigned long long)allocs);
 2881                 ZONE_UNLOCK(z);
 2882                 for (p = offset + 12; p > offset && *p == ' '; --p)
 2883                         /* nothing */ ;
 2884                 p[1] = ':';
 2885                 cnt--;
 2886                 offset += len;
 2887           }
 2888         }
 2889         mtx_unlock(&uma_mtx);
 2890         *offset++ = '\0';
 2891         error = SYSCTL_OUT(req, tmpbuf, offset - tmpbuf);
 2892 out:
 2893         FREE(tmpbuf, M_TEMP);
 2894         return (error);
 2895 }
 2896 
 2897 static int
 2898 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
 2899 {
 2900         uma_keg_t kz;
 2901         uma_zone_t z;
 2902         int count;
 2903 
 2904         count = 0;
 2905         mtx_lock(&uma_mtx);
 2906         LIST_FOREACH(kz, &uma_kegs, uk_link) {
 2907                 LIST_FOREACH(z, &kz->uk_zones, uz_link)
 2908                         count++;
 2909         }
 2910         mtx_unlock(&uma_mtx);
 2911         return (sysctl_handle_int(oidp, &count, 0, req));
 2912 }
 2913 
 2914 static int
 2915 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
 2916 {
 2917         struct uma_stream_header ush;
 2918         struct uma_type_header uth;
 2919         struct uma_percpu_stat ups;
 2920         uma_bucket_t bucket;
 2921         struct sbuf sbuf;
 2922         uma_cache_t cache;
 2923         uma_keg_t kz;
 2924         uma_zone_t z;
 2925         char *buffer;
 2926         int buflen, count, error, i;
 2927 
 2928         mtx_lock(&uma_mtx);
 2929 restart:
 2930         mtx_assert(&uma_mtx, MA_OWNED);
 2931         count = 0;
 2932         LIST_FOREACH(kz, &uma_kegs, uk_link) {
 2933                 LIST_FOREACH(z, &kz->uk_zones, uz_link)
 2934                         count++;
 2935         }
 2936         mtx_unlock(&uma_mtx);
 2937 
 2938         buflen = sizeof(ush) + count * (sizeof(uth) + sizeof(ups) *
 2939             (mp_maxid + 1)) + 1;
 2940         buffer = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO);
 2941 
 2942         mtx_lock(&uma_mtx);
 2943         i = 0;
 2944         LIST_FOREACH(kz, &uma_kegs, uk_link) {
 2945                 LIST_FOREACH(z, &kz->uk_zones, uz_link)
 2946                         i++;
 2947         }
 2948         if (i > count) {
 2949                 free(buffer, M_TEMP);
 2950                 goto restart;
 2951         }
 2952         count =  i;
 2953 
 2954         sbuf_new(&sbuf, buffer, buflen, SBUF_FIXEDLEN);
 2955 
 2956         /*
 2957          * Insert stream header.
 2958          */
 2959         bzero(&ush, sizeof(ush));
 2960         ush.ush_version = UMA_STREAM_VERSION;
 2961         ush.ush_maxcpus = (mp_maxid + 1);
 2962         ush.ush_count = count;
 2963         if (sbuf_bcat(&sbuf, &ush, sizeof(ush)) < 0) {
 2964                 mtx_unlock(&uma_mtx);
 2965                 error = ENOMEM;
 2966                 goto out;
 2967         }
 2968 
 2969         LIST_FOREACH(kz, &uma_kegs, uk_link) {
 2970                 LIST_FOREACH(z, &kz->uk_zones, uz_link) {
 2971                         bzero(&uth, sizeof(uth));
 2972                         ZONE_LOCK(z);
 2973                         strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
 2974                         uth.uth_align = kz->uk_align;
 2975                         uth.uth_pages = kz->uk_pages;
 2976                         uth.uth_keg_free = kz->uk_free;
 2977                         uth.uth_size = kz->uk_size;
 2978                         uth.uth_rsize = kz->uk_rsize;
 2979                         uth.uth_maxpages = kz->uk_maxpages;
 2980                         if (kz->uk_ppera > 1)
 2981                                 uth.uth_limit = kz->uk_maxpages /
 2982                                     kz->uk_ppera;
 2983                         else
 2984                                 uth.uth_limit = kz->uk_maxpages *
 2985                                     kz->uk_ipers;
 2986 
 2987                         /*
 2988                          * A zone is secondary is it is not the first entry
 2989                          * on the keg's zone list.
 2990                          */
 2991                         if ((kz->uk_flags & UMA_ZONE_SECONDARY) &&
 2992                             (LIST_FIRST(&kz->uk_zones) != z))
 2993                                 uth.uth_zone_flags = UTH_ZONE_SECONDARY;
 2994 
 2995                         LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link)
 2996                                 uth.uth_zone_free += bucket->ub_cnt;
 2997                         uth.uth_allocs = z->uz_allocs;
 2998                         uth.uth_frees = z->uz_frees;
 2999                         uth.uth_fails = z->uz_fails;
 3000                         if (sbuf_bcat(&sbuf, &uth, sizeof(uth)) < 0) {
 3001                                 ZONE_UNLOCK(z);
 3002                                 mtx_unlock(&uma_mtx);
 3003                                 error = ENOMEM;
 3004                                 goto out;
 3005                         }
 3006                         /*
 3007                          * While it is not normally safe to access the cache
 3008                          * bucket pointers while not on the CPU that owns the
 3009                          * cache, we only allow the pointers to be exchanged
 3010                          * without the zone lock held, not invalidated, so
 3011                          * accept the possible race associated with bucket
 3012                          * exchange during monitoring.
 3013                          */
 3014                         for (i = 0; i < (mp_maxid + 1); i++) {
 3015                                 bzero(&ups, sizeof(ups));
 3016                                 if (kz->uk_flags & UMA_ZFLAG_INTERNAL)
 3017                                         goto skip;
 3018                                 if (CPU_ABSENT(i))
 3019                                         goto skip;
 3020                                 cache = &z->uz_cpu[i];
 3021                                 if (cache->uc_allocbucket != NULL)
 3022                                         ups.ups_cache_free +=
 3023                                             cache->uc_allocbucket->ub_cnt;
 3024                                 if (cache->uc_freebucket != NULL)
 3025                                         ups.ups_cache_free +=
 3026                                             cache->uc_freebucket->ub_cnt;
 3027                                 ups.ups_allocs = cache->uc_allocs;
 3028                                 ups.ups_frees = cache->uc_frees;
 3029 skip:
 3030                                 if (sbuf_bcat(&sbuf, &ups, sizeof(ups)) < 0) {
 3031                                         ZONE_UNLOCK(z);
 3032                                         mtx_unlock(&uma_mtx);
 3033                                         error = ENOMEM;
 3034                                         goto out;
 3035                                 }
 3036                         }
 3037                         ZONE_UNLOCK(z);
 3038                 }
 3039         }
 3040         mtx_unlock(&uma_mtx);
 3041         sbuf_finish(&sbuf);
 3042         error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
 3043 out:
 3044         free(buffer, M_TEMP);
 3045         return (error);
 3046 }
 3047 
 3048 #ifdef DDB
 3049 DB_SHOW_COMMAND(uma, db_show_uma)
 3050 {
 3051         u_int64_t allocs, frees;
 3052         uma_bucket_t bucket;
 3053         uma_keg_t kz;
 3054         uma_zone_t z;
 3055         int cachefree;
 3056 
 3057         db_printf("%18s %12s %12s %12s %8s\n", "Zone", "Allocs", "Frees",
 3058             "Used", "Cache");
 3059         LIST_FOREACH(kz, &uma_kegs, uk_link) {
 3060                 LIST_FOREACH(z, &kz->uk_zones, uz_link) {
 3061                         if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
 3062                                 allocs = z->uz_allocs;
 3063                                 frees = z->uz_frees;
 3064                                 cachefree = 0;
 3065                         } else
 3066                                 uma_zone_sumstat(z, &cachefree, &allocs,
 3067                                     &frees);
 3068                         if (!((kz->uk_flags & UMA_ZONE_SECONDARY) &&
 3069                             (LIST_FIRST(&kz->uk_zones) != z)))
 3070                                 cachefree += kz->uk_free;
 3071                         LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link)
 3072                                 cachefree += bucket->ub_cnt;
 3073                         db_printf("%18s %12ju %12ju %12ju %8d\n", z->uz_name,
 3074                             allocs, frees, allocs - frees, cachefree);
 3075                 }
 3076         }
 3077 }
 3078 #endif

Cache object: 3ff973ab5c4d8f46cacae178a764035b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.