The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/uma_core.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2002-2005, 2009 Jeffrey Roberson <jeff@FreeBSD.org>
    3  * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
    4  * Copyright (c) 2004-2006 Robert N. M. Watson
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice unmodified, this list of conditions, and the following
   12  *    disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   27  */
   28 
   29 /*
   30  * uma_core.c  Implementation of the Universal Memory allocator
   31  *
   32  * This allocator is intended to replace the multitude of similar object caches
   33  * in the standard FreeBSD kernel.  The intent is to be flexible as well as
   34  * effecient.  A primary design goal is to return unused memory to the rest of
   35  * the system.  This will make the system as a whole more flexible due to the
   36  * ability to move memory to subsystems which most need it instead of leaving
   37  * pools of reserved memory unused.
   38  *
   39  * The basic ideas stem from similar slab/zone based allocators whose algorithms
   40  * are well known.
   41  *
   42  */
   43 
   44 /*
   45  * TODO:
   46  *      - Improve memory usage for large allocations
   47  *      - Investigate cache size adjustments
   48  */
   49 
   50 #include <sys/cdefs.h>
   51 __FBSDID("$FreeBSD$");
   52 
   53 /* I should really use ktr.. */
   54 /*
   55 #define UMA_DEBUG 1
   56 #define UMA_DEBUG_ALLOC 1
   57 #define UMA_DEBUG_ALLOC_1 1
   58 */
   59 
   60 #include "opt_ddb.h"
   61 #include "opt_param.h"
   62 
   63 #include <sys/param.h>
   64 #include <sys/systm.h>
   65 #include <sys/kernel.h>
   66 #include <sys/types.h>
   67 #include <sys/queue.h>
   68 #include <sys/malloc.h>
   69 #include <sys/ktr.h>
   70 #include <sys/lock.h>
   71 #include <sys/sysctl.h>
   72 #include <sys/mutex.h>
   73 #include <sys/proc.h>
   74 #include <sys/sbuf.h>
   75 #include <sys/smp.h>
   76 #include <sys/vmmeter.h>
   77 
   78 #include <vm/vm.h>
   79 #include <vm/vm_object.h>
   80 #include <vm/vm_page.h>
   81 #include <vm/vm_param.h>
   82 #include <vm/vm_map.h>
   83 #include <vm/vm_kern.h>
   84 #include <vm/vm_extern.h>
   85 #include <vm/uma.h>
   86 #include <vm/uma_int.h>
   87 #include <vm/uma_dbg.h>
   88 
   89 #include <machine/vmparam.h>
   90 
   91 #include <ddb/ddb.h>
   92 
   93 /*
   94  * This is the zone and keg from which all zones are spawned.  The idea is that
   95  * even the zone & keg heads are allocated from the allocator, so we use the
   96  * bss section to bootstrap us.
   97  */
   98 static struct uma_keg masterkeg;
   99 static struct uma_zone masterzone_k;
  100 static struct uma_zone masterzone_z;
  101 static uma_zone_t kegs = &masterzone_k;
  102 static uma_zone_t zones = &masterzone_z;
  103 
  104 /* This is the zone from which all of uma_slab_t's are allocated. */
  105 static uma_zone_t slabzone;
  106 static uma_zone_t slabrefzone;  /* With refcounters (for UMA_ZONE_REFCNT) */
  107 
  108 /*
  109  * The initial hash tables come out of this zone so they can be allocated
  110  * prior to malloc coming up.
  111  */
  112 static uma_zone_t hashzone;
  113 
  114 /* The boot-time adjusted value for cache line alignment. */
  115 static int uma_align_cache = 64 - 1;
  116 
  117 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
  118 
  119 /*
  120  * Are we allowed to allocate buckets?
  121  */
  122 static int bucketdisable = 1;
  123 
  124 /* Linked list of all kegs in the system */
  125 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
  126 
  127 /* This mutex protects the keg list */
  128 static struct mtx uma_mtx;
  129 
  130 /* Linked list of boot time pages */
  131 static LIST_HEAD(,uma_slab) uma_boot_pages =
  132     LIST_HEAD_INITIALIZER(uma_boot_pages);
  133 
  134 /* This mutex protects the boot time pages list */
  135 static struct mtx uma_boot_pages_mtx;
  136 
  137 /* Is the VM done starting up? */
  138 static int booted = 0;
  139 
  140 /* Maximum number of allowed items-per-slab if the slab header is OFFPAGE */
  141 static u_int uma_max_ipers;
  142 static u_int uma_max_ipers_ref;
  143 
  144 /*
  145  * This is the handle used to schedule events that need to happen
  146  * outside of the allocation fast path.
  147  */
  148 static struct callout uma_callout;
  149 #define UMA_TIMEOUT     20              /* Seconds for callout interval. */
  150 
  151 /*
  152  * This structure is passed as the zone ctor arg so that I don't have to create
  153  * a special allocation function just for zones.
  154  */
  155 struct uma_zctor_args {
  156         const char *name;
  157         size_t size;
  158         uma_ctor ctor;
  159         uma_dtor dtor;
  160         uma_init uminit;
  161         uma_fini fini;
  162         uma_keg_t keg;
  163         int align;
  164         u_int32_t flags;
  165 };
  166 
  167 struct uma_kctor_args {
  168         uma_zone_t zone;
  169         size_t size;
  170         uma_init uminit;
  171         uma_fini fini;
  172         int align;
  173         u_int32_t flags;
  174 };
  175 
  176 struct uma_bucket_zone {
  177         uma_zone_t      ubz_zone;
  178         char            *ubz_name;
  179         int             ubz_entries;
  180 };
  181 
  182 #define BUCKET_MAX      128
  183 
  184 struct uma_bucket_zone bucket_zones[] = {
  185         { NULL, "16 Bucket", 16 },
  186         { NULL, "32 Bucket", 32 },
  187         { NULL, "64 Bucket", 64 },
  188         { NULL, "128 Bucket", 128 },
  189         { NULL, NULL, 0}
  190 };
  191 
  192 #define BUCKET_SHIFT    4
  193 #define BUCKET_ZONES    ((BUCKET_MAX >> BUCKET_SHIFT) + 1)
  194 
  195 /*
  196  * bucket_size[] maps requested bucket sizes to zones that allocate a bucket
  197  * of approximately the right size.
  198  */
  199 static uint8_t bucket_size[BUCKET_ZONES];
  200 
  201 /*
  202  * Flags and enumerations to be passed to internal functions.
  203  */
  204 enum zfreeskip { SKIP_NONE, SKIP_DTOR, SKIP_FINI };
  205 
  206 #define ZFREE_STATFAIL  0x00000001      /* Update zone failure statistic. */
  207 #define ZFREE_STATFREE  0x00000002      /* Update zone free statistic. */
  208 
  209 /* Prototypes.. */
  210 
  211 static void *obj_alloc(uma_zone_t, int, u_int8_t *, int);
  212 static void *page_alloc(uma_zone_t, int, u_int8_t *, int);
  213 static void *startup_alloc(uma_zone_t, int, u_int8_t *, int);
  214 static void page_free(void *, int, u_int8_t);
  215 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int);
  216 static void cache_drain(uma_zone_t);
  217 static void bucket_drain(uma_zone_t, uma_bucket_t);
  218 static void bucket_cache_drain(uma_zone_t zone);
  219 static int keg_ctor(void *, int, void *, int);
  220 static void keg_dtor(void *, int, void *);
  221 static int zone_ctor(void *, int, void *, int);
  222 static void zone_dtor(void *, int, void *);
  223 static int zero_init(void *, int, int);
  224 static void keg_small_init(uma_keg_t keg);
  225 static void keg_large_init(uma_keg_t keg);
  226 static void zone_foreach(void (*zfunc)(uma_zone_t));
  227 static void zone_timeout(uma_zone_t zone);
  228 static int hash_alloc(struct uma_hash *);
  229 static int hash_expand(struct uma_hash *, struct uma_hash *);
  230 static void hash_free(struct uma_hash *hash);
  231 static void uma_timeout(void *);
  232 static void uma_startup3(void);
  233 static void *zone_alloc_item(uma_zone_t, void *, int);
  234 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip,
  235     int);
  236 static void bucket_enable(void);
  237 static void bucket_init(void);
  238 static uma_bucket_t bucket_alloc(int, int);
  239 static void bucket_free(uma_bucket_t);
  240 static void bucket_zone_drain(void);
  241 static int zone_alloc_bucket(uma_zone_t zone, int flags);
  242 static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags);
  243 static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags);
  244 static void *slab_alloc_item(uma_zone_t zone, uma_slab_t slab);
  245 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
  246     uma_fini fini, int align, u_int32_t flags);
  247 static inline void zone_relock(uma_zone_t zone, uma_keg_t keg);
  248 static inline void keg_relock(uma_keg_t keg, uma_zone_t zone);
  249 
  250 void uma_print_zone(uma_zone_t);
  251 void uma_print_stats(void);
  252 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
  253 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
  254 
  255 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
  256 
  257 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT,
  258     0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
  259 
  260 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
  261     0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
  262 
  263 /*
  264  * This routine checks to see whether or not it's safe to enable buckets.
  265  */
  266 
  267 static void
  268 bucket_enable(void)
  269 {
  270         bucketdisable = vm_page_count_min();
  271 }
  272 
  273 /*
  274  * Initialize bucket_zones, the array of zones of buckets of various sizes.
  275  *
  276  * For each zone, calculate the memory required for each bucket, consisting
  277  * of the header and an array of pointers.  Initialize bucket_size[] to point
  278  * the range of appropriate bucket sizes at the zone.
  279  */
  280 static void
  281 bucket_init(void)
  282 {
  283         struct uma_bucket_zone *ubz;
  284         int i;
  285         int j;
  286 
  287         for (i = 0, j = 0; bucket_zones[j].ubz_entries != 0; j++) {
  288                 int size;
  289 
  290                 ubz = &bucket_zones[j];
  291                 size = roundup(sizeof(struct uma_bucket), sizeof(void *));
  292                 size += sizeof(void *) * ubz->ubz_entries;
  293                 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
  294                     NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
  295                     UMA_ZFLAG_INTERNAL | UMA_ZFLAG_BUCKET);
  296                 for (; i <= ubz->ubz_entries; i += (1 << BUCKET_SHIFT))
  297                         bucket_size[i >> BUCKET_SHIFT] = j;
  298         }
  299 }
  300 
  301 /*
  302  * Given a desired number of entries for a bucket, return the zone from which
  303  * to allocate the bucket.
  304  */
  305 static struct uma_bucket_zone *
  306 bucket_zone_lookup(int entries)
  307 {
  308         int idx;
  309 
  310         idx = howmany(entries, 1 << BUCKET_SHIFT);
  311         return (&bucket_zones[bucket_size[idx]]);
  312 }
  313 
  314 static uma_bucket_t
  315 bucket_alloc(int entries, int bflags)
  316 {
  317         struct uma_bucket_zone *ubz;
  318         uma_bucket_t bucket;
  319 
  320         /*
  321          * This is to stop us from allocating per cpu buckets while we're
  322          * running out of vm.boot_pages.  Otherwise, we would exhaust the
  323          * boot pages.  This also prevents us from allocating buckets in
  324          * low memory situations.
  325          */
  326         if (bucketdisable)
  327                 return (NULL);
  328 
  329         ubz = bucket_zone_lookup(entries);
  330         bucket = zone_alloc_item(ubz->ubz_zone, NULL, bflags);
  331         if (bucket) {
  332 #ifdef INVARIANTS
  333                 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
  334 #endif
  335                 bucket->ub_cnt = 0;
  336                 bucket->ub_entries = ubz->ubz_entries;
  337         }
  338 
  339         return (bucket);
  340 }
  341 
  342 static void
  343 bucket_free(uma_bucket_t bucket)
  344 {
  345         struct uma_bucket_zone *ubz;
  346 
  347         ubz = bucket_zone_lookup(bucket->ub_entries);
  348         zone_free_item(ubz->ubz_zone, bucket, NULL, SKIP_NONE,
  349             ZFREE_STATFREE);
  350 }
  351 
  352 static void
  353 bucket_zone_drain(void)
  354 {
  355         struct uma_bucket_zone *ubz;
  356 
  357         for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
  358                 zone_drain(ubz->ubz_zone);
  359 }
  360 
  361 static inline uma_keg_t
  362 zone_first_keg(uma_zone_t zone)
  363 {
  364 
  365         return (LIST_FIRST(&zone->uz_kegs)->kl_keg);
  366 }
  367 
  368 static void
  369 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t))
  370 {
  371         uma_klink_t klink;
  372 
  373         LIST_FOREACH(klink, &zone->uz_kegs, kl_link)
  374                 kegfn(klink->kl_keg);
  375 }
  376 
  377 /*
  378  * Routine called by timeout which is used to fire off some time interval
  379  * based calculations.  (stats, hash size, etc.)
  380  *
  381  * Arguments:
  382  *      arg   Unused
  383  *
  384  * Returns:
  385  *      Nothing
  386  */
  387 static void
  388 uma_timeout(void *unused)
  389 {
  390         bucket_enable();
  391         zone_foreach(zone_timeout);
  392 
  393         /* Reschedule this event */
  394         callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
  395 }
  396 
  397 /*
  398  * Routine to perform timeout driven calculations.  This expands the
  399  * hashes and does per cpu statistics aggregation.
  400  *
  401  *  Returns nothing.
  402  */
  403 static void
  404 keg_timeout(uma_keg_t keg)
  405 {
  406 
  407         KEG_LOCK(keg);
  408         /*
  409          * Expand the keg hash table.
  410          *
  411          * This is done if the number of slabs is larger than the hash size.
  412          * What I'm trying to do here is completely reduce collisions.  This
  413          * may be a little aggressive.  Should I allow for two collisions max?
  414          */
  415         if (keg->uk_flags & UMA_ZONE_HASH &&
  416             keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) {
  417                 struct uma_hash newhash;
  418                 struct uma_hash oldhash;
  419                 int ret;
  420 
  421                 /*
  422                  * This is so involved because allocating and freeing
  423                  * while the keg lock is held will lead to deadlock.
  424                  * I have to do everything in stages and check for
  425                  * races.
  426                  */
  427                 newhash = keg->uk_hash;
  428                 KEG_UNLOCK(keg);
  429                 ret = hash_alloc(&newhash);
  430                 KEG_LOCK(keg);
  431                 if (ret) {
  432                         if (hash_expand(&keg->uk_hash, &newhash)) {
  433                                 oldhash = keg->uk_hash;
  434                                 keg->uk_hash = newhash;
  435                         } else
  436                                 oldhash = newhash;
  437 
  438                         KEG_UNLOCK(keg);
  439                         hash_free(&oldhash);
  440                         KEG_LOCK(keg);
  441                 }
  442         }
  443         KEG_UNLOCK(keg);
  444 }
  445 
  446 static void
  447 zone_timeout(uma_zone_t zone)
  448 {
  449 
  450         zone_foreach_keg(zone, &keg_timeout);
  451 }
  452 
  453 /*
  454  * Allocate and zero fill the next sized hash table from the appropriate
  455  * backing store.
  456  *
  457  * Arguments:
  458  *      hash  A new hash structure with the old hash size in uh_hashsize
  459  *
  460  * Returns:
  461  *      1 on sucess and 0 on failure.
  462  */
  463 static int
  464 hash_alloc(struct uma_hash *hash)
  465 {
  466         int oldsize;
  467         int alloc;
  468 
  469         oldsize = hash->uh_hashsize;
  470 
  471         /* We're just going to go to a power of two greater */
  472         if (oldsize)  {
  473                 hash->uh_hashsize = oldsize * 2;
  474                 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
  475                 hash->uh_slab_hash = (struct slabhead *)malloc(alloc,
  476                     M_UMAHASH, M_NOWAIT);
  477         } else {
  478                 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
  479                 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
  480                     M_WAITOK);
  481                 hash->uh_hashsize = UMA_HASH_SIZE_INIT;
  482         }
  483         if (hash->uh_slab_hash) {
  484                 bzero(hash->uh_slab_hash, alloc);
  485                 hash->uh_hashmask = hash->uh_hashsize - 1;
  486                 return (1);
  487         }
  488 
  489         return (0);
  490 }
  491 
  492 /*
  493  * Expands the hash table for HASH zones.  This is done from zone_timeout
  494  * to reduce collisions.  This must not be done in the regular allocation
  495  * path, otherwise, we can recurse on the vm while allocating pages.
  496  *
  497  * Arguments:
  498  *      oldhash  The hash you want to expand
  499  *      newhash  The hash structure for the new table
  500  *
  501  * Returns:
  502  *      Nothing
  503  *
  504  * Discussion:
  505  */
  506 static int
  507 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
  508 {
  509         uma_slab_t slab;
  510         int hval;
  511         int i;
  512 
  513         if (!newhash->uh_slab_hash)
  514                 return (0);
  515 
  516         if (oldhash->uh_hashsize >= newhash->uh_hashsize)
  517                 return (0);
  518 
  519         /*
  520          * I need to investigate hash algorithms for resizing without a
  521          * full rehash.
  522          */
  523 
  524         for (i = 0; i < oldhash->uh_hashsize; i++)
  525                 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) {
  526                         slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]);
  527                         SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink);
  528                         hval = UMA_HASH(newhash, slab->us_data);
  529                         SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
  530                             slab, us_hlink);
  531                 }
  532 
  533         return (1);
  534 }
  535 
  536 /*
  537  * Free the hash bucket to the appropriate backing store.
  538  *
  539  * Arguments:
  540  *      slab_hash  The hash bucket we're freeing
  541  *      hashsize   The number of entries in that hash bucket
  542  *
  543  * Returns:
  544  *      Nothing
  545  */
  546 static void
  547 hash_free(struct uma_hash *hash)
  548 {
  549         if (hash->uh_slab_hash == NULL)
  550                 return;
  551         if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
  552                 zone_free_item(hashzone,
  553                     hash->uh_slab_hash, NULL, SKIP_NONE, ZFREE_STATFREE);
  554         else
  555                 free(hash->uh_slab_hash, M_UMAHASH);
  556 }
  557 
  558 /*
  559  * Frees all outstanding items in a bucket
  560  *
  561  * Arguments:
  562  *      zone   The zone to free to, must be unlocked.
  563  *      bucket The free/alloc bucket with items, cpu queue must be locked.
  564  *
  565  * Returns:
  566  *      Nothing
  567  */
  568 
  569 static void
  570 bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
  571 {
  572         void *item;
  573 
  574         if (bucket == NULL)
  575                 return;
  576 
  577         while (bucket->ub_cnt > 0)  {
  578                 bucket->ub_cnt--;
  579                 item = bucket->ub_bucket[bucket->ub_cnt];
  580 #ifdef INVARIANTS
  581                 bucket->ub_bucket[bucket->ub_cnt] = NULL;
  582                 KASSERT(item != NULL,
  583                     ("bucket_drain: botched ptr, item is NULL"));
  584 #endif
  585                 zone_free_item(zone, item, NULL, SKIP_DTOR, 0);
  586         }
  587 }
  588 
  589 /*
  590  * Drains the per cpu caches for a zone.
  591  *
  592  * NOTE: This may only be called while the zone is being turn down, and not
  593  * during normal operation.  This is necessary in order that we do not have
  594  * to migrate CPUs to drain the per-CPU caches.
  595  *
  596  * Arguments:
  597  *      zone     The zone to drain, must be unlocked.
  598  *
  599  * Returns:
  600  *      Nothing
  601  */
  602 static void
  603 cache_drain(uma_zone_t zone)
  604 {
  605         uma_cache_t cache;
  606         int cpu;
  607 
  608         /*
  609          * XXX: It is safe to not lock the per-CPU caches, because we're
  610          * tearing down the zone anyway.  I.e., there will be no further use
  611          * of the caches at this point.
  612          *
  613          * XXX: It would good to be able to assert that the zone is being
  614          * torn down to prevent improper use of cache_drain().
  615          *
  616          * XXX: We lock the zone before passing into bucket_cache_drain() as
  617          * it is used elsewhere.  Should the tear-down path be made special
  618          * there in some form?
  619          */
  620         CPU_FOREACH(cpu) {
  621                 cache = &zone->uz_cpu[cpu];
  622                 bucket_drain(zone, cache->uc_allocbucket);
  623                 bucket_drain(zone, cache->uc_freebucket);
  624                 if (cache->uc_allocbucket != NULL)
  625                         bucket_free(cache->uc_allocbucket);
  626                 if (cache->uc_freebucket != NULL)
  627                         bucket_free(cache->uc_freebucket);
  628                 cache->uc_allocbucket = cache->uc_freebucket = NULL;
  629         }
  630         ZONE_LOCK(zone);
  631         bucket_cache_drain(zone);
  632         ZONE_UNLOCK(zone);
  633 }
  634 
  635 /*
  636  * Drain the cached buckets from a zone.  Expects a locked zone on entry.
  637  */
  638 static void
  639 bucket_cache_drain(uma_zone_t zone)
  640 {
  641         uma_bucket_t bucket;
  642 
  643         /*
  644          * Drain the bucket queues and free the buckets, we just keep two per
  645          * cpu (alloc/free).
  646          */
  647         while ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) {
  648                 LIST_REMOVE(bucket, ub_link);
  649                 ZONE_UNLOCK(zone);
  650                 bucket_drain(zone, bucket);
  651                 bucket_free(bucket);
  652                 ZONE_LOCK(zone);
  653         }
  654 
  655         /* Now we do the free queue.. */
  656         while ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
  657                 LIST_REMOVE(bucket, ub_link);
  658                 bucket_free(bucket);
  659         }
  660 }
  661 
  662 /*
  663  * Frees pages from a keg back to the system.  This is done on demand from
  664  * the pageout daemon.
  665  *
  666  * Returns nothing.
  667  */
  668 static void
  669 keg_drain(uma_keg_t keg)
  670 {
  671         struct slabhead freeslabs = { 0 };
  672         uma_slab_t slab;
  673         uma_slab_t n;
  674         u_int8_t flags;
  675         u_int8_t *mem;
  676         int i;
  677 
  678         /*
  679          * We don't want to take pages from statically allocated kegs at this
  680          * time
  681          */
  682         if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
  683                 return;
  684 
  685 #ifdef UMA_DEBUG
  686         printf("%s free items: %u\n", keg->uk_name, keg->uk_free);
  687 #endif
  688         KEG_LOCK(keg);
  689         if (keg->uk_free == 0)
  690                 goto finished;
  691 
  692         slab = LIST_FIRST(&keg->uk_free_slab);
  693         while (slab) {
  694                 n = LIST_NEXT(slab, us_link);
  695 
  696                 /* We have no where to free these to */
  697                 if (slab->us_flags & UMA_SLAB_BOOT) {
  698                         slab = n;
  699                         continue;
  700                 }
  701 
  702                 LIST_REMOVE(slab, us_link);
  703                 keg->uk_pages -= keg->uk_ppera;
  704                 keg->uk_free -= keg->uk_ipers;
  705 
  706                 if (keg->uk_flags & UMA_ZONE_HASH)
  707                         UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data);
  708 
  709                 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink);
  710 
  711                 slab = n;
  712         }
  713 finished:
  714         KEG_UNLOCK(keg);
  715 
  716         while ((slab = SLIST_FIRST(&freeslabs)) != NULL) {
  717                 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink);
  718                 if (keg->uk_fini)
  719                         for (i = 0; i < keg->uk_ipers; i++)
  720                                 keg->uk_fini(
  721                                     slab->us_data + (keg->uk_rsize * i),
  722                                     keg->uk_size);
  723                 flags = slab->us_flags;
  724                 mem = slab->us_data;
  725 
  726                 if (keg->uk_flags & UMA_ZONE_VTOSLAB) {
  727                         vm_object_t obj;
  728 
  729                         if (flags & UMA_SLAB_KMEM)
  730                                 obj = kmem_object;
  731                         else if (flags & UMA_SLAB_KERNEL)
  732                                 obj = kernel_object;
  733                         else
  734                                 obj = NULL;
  735                         for (i = 0; i < keg->uk_ppera; i++)
  736                                 vsetobj((vm_offset_t)mem + (i * PAGE_SIZE),
  737                                     obj);
  738                 }
  739                 if (keg->uk_flags & UMA_ZONE_OFFPAGE)
  740                         zone_free_item(keg->uk_slabzone, slab, NULL,
  741                             SKIP_NONE, ZFREE_STATFREE);
  742 #ifdef UMA_DEBUG
  743                 printf("%s: Returning %d bytes.\n",
  744                     keg->uk_name, UMA_SLAB_SIZE * keg->uk_ppera);
  745 #endif
  746                 keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera, flags);
  747         }
  748 }
  749 
  750 static void
  751 zone_drain_wait(uma_zone_t zone, int waitok)
  752 {
  753 
  754         /*
  755          * Set draining to interlock with zone_dtor() so we can release our
  756          * locks as we go.  Only dtor() should do a WAITOK call since it
  757          * is the only call that knows the structure will still be available
  758          * when it wakes up.
  759          */
  760         ZONE_LOCK(zone);
  761         while (zone->uz_flags & UMA_ZFLAG_DRAINING) {
  762                 if (waitok == M_NOWAIT)
  763                         goto out;
  764                 msleep(zone, zone->uz_lock, PVM, "zonedrain", 1);
  765         }
  766         zone->uz_flags |= UMA_ZFLAG_DRAINING;
  767         bucket_cache_drain(zone);
  768         ZONE_UNLOCK(zone);
  769         /*
  770          * The DRAINING flag protects us from being freed while
  771          * we're running.  Normally the uma_mtx would protect us but we
  772          * must be able to release and acquire the right lock for each keg.
  773          */
  774         zone_foreach_keg(zone, &keg_drain);
  775         ZONE_LOCK(zone);
  776         zone->uz_flags &= ~UMA_ZFLAG_DRAINING;
  777         wakeup(zone);
  778 out:
  779         ZONE_UNLOCK(zone);
  780 }
  781 
  782 void
  783 zone_drain(uma_zone_t zone)
  784 {
  785 
  786         zone_drain_wait(zone, M_NOWAIT);
  787 }
  788 
  789 /*
  790  * Allocate a new slab for a keg.  This does not insert the slab onto a list.
  791  *
  792  * Arguments:
  793  *      wait  Shall we wait?
  794  *
  795  * Returns:
  796  *      The slab that was allocated or NULL if there is no memory and the
  797  *      caller specified M_NOWAIT.
  798  */
  799 static uma_slab_t
  800 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait)
  801 {
  802         uma_slabrefcnt_t slabref;
  803         uma_alloc allocf;
  804         uma_slab_t slab;
  805         u_int8_t *mem;
  806         u_int8_t flags;
  807         int i;
  808 
  809         mtx_assert(&keg->uk_lock, MA_OWNED);
  810         slab = NULL;
  811 
  812 #ifdef UMA_DEBUG
  813         printf("slab_zalloc:  Allocating a new slab for %s\n", keg->uk_name);
  814 #endif
  815         allocf = keg->uk_allocf;
  816         KEG_UNLOCK(keg);
  817 
  818         if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
  819                 slab = zone_alloc_item(keg->uk_slabzone, NULL, wait);
  820                 if (slab == NULL) {
  821                         KEG_LOCK(keg);
  822                         return NULL;
  823                 }
  824         }
  825 
  826         /*
  827          * This reproduces the old vm_zone behavior of zero filling pages the
  828          * first time they are added to a zone.
  829          *
  830          * Malloced items are zeroed in uma_zalloc.
  831          */
  832 
  833         if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
  834                 wait |= M_ZERO;
  835         else
  836                 wait &= ~M_ZERO;
  837 
  838         /* zone is passed for legacy reasons. */
  839         mem = allocf(zone, keg->uk_ppera * UMA_SLAB_SIZE, &flags, wait);
  840         if (mem == NULL) {
  841                 if (keg->uk_flags & UMA_ZONE_OFFPAGE)
  842                         zone_free_item(keg->uk_slabzone, slab, NULL,
  843                             SKIP_NONE, ZFREE_STATFREE);
  844                 KEG_LOCK(keg);
  845                 return (NULL);
  846         }
  847 
  848         /* Point the slab into the allocated memory */
  849         if (!(keg->uk_flags & UMA_ZONE_OFFPAGE))
  850                 slab = (uma_slab_t )(mem + keg->uk_pgoff);
  851 
  852         if (keg->uk_flags & UMA_ZONE_VTOSLAB)
  853                 for (i = 0; i < keg->uk_ppera; i++)
  854                         vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab);
  855 
  856         slab->us_keg = keg;
  857         slab->us_data = mem;
  858         slab->us_freecount = keg->uk_ipers;
  859         slab->us_firstfree = 0;
  860         slab->us_flags = flags;
  861 
  862         if (keg->uk_flags & UMA_ZONE_REFCNT) {
  863                 slabref = (uma_slabrefcnt_t)slab;
  864                 for (i = 0; i < keg->uk_ipers; i++) {
  865                         slabref->us_freelist[i].us_refcnt = 0;
  866                         slabref->us_freelist[i].us_item = i+1;
  867                 }
  868         } else {
  869                 for (i = 0; i < keg->uk_ipers; i++)
  870                         slab->us_freelist[i].us_item = i+1;
  871         }
  872 
  873         if (keg->uk_init != NULL) {
  874                 for (i = 0; i < keg->uk_ipers; i++)
  875                         if (keg->uk_init(slab->us_data + (keg->uk_rsize * i),
  876                             keg->uk_size, wait) != 0)
  877                                 break;
  878                 if (i != keg->uk_ipers) {
  879                         if (keg->uk_fini != NULL) {
  880                                 for (i--; i > -1; i--)
  881                                         keg->uk_fini(slab->us_data +
  882                                             (keg->uk_rsize * i),
  883                                             keg->uk_size);
  884                         }
  885                         if (keg->uk_flags & UMA_ZONE_VTOSLAB) {
  886                                 vm_object_t obj;
  887 
  888                                 if (flags & UMA_SLAB_KMEM)
  889                                         obj = kmem_object;
  890                                 else if (flags & UMA_SLAB_KERNEL)
  891                                         obj = kernel_object;
  892                                 else
  893                                         obj = NULL;
  894                                 for (i = 0; i < keg->uk_ppera; i++)
  895                                         vsetobj((vm_offset_t)mem +
  896                                             (i * PAGE_SIZE), obj);
  897                         }
  898                         if (keg->uk_flags & UMA_ZONE_OFFPAGE)
  899                                 zone_free_item(keg->uk_slabzone, slab,
  900                                     NULL, SKIP_NONE, ZFREE_STATFREE);
  901                         keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera,
  902                             flags);
  903                         KEG_LOCK(keg);
  904                         return (NULL);
  905                 }
  906         }
  907         KEG_LOCK(keg);
  908 
  909         if (keg->uk_flags & UMA_ZONE_HASH)
  910                 UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
  911 
  912         keg->uk_pages += keg->uk_ppera;
  913         keg->uk_free += keg->uk_ipers;
  914 
  915         return (slab);
  916 }
  917 
  918 /*
  919  * This function is intended to be used early on in place of page_alloc() so
  920  * that we may use the boot time page cache to satisfy allocations before
  921  * the VM is ready.
  922  */
  923 static void *
  924 startup_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait)
  925 {
  926         uma_keg_t keg;
  927         uma_slab_t tmps;
  928         int pages, check_pages;
  929 
  930         keg = zone_first_keg(zone);
  931         pages = howmany(bytes, PAGE_SIZE);
  932         check_pages = pages - 1;
  933         KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n"));
  934 
  935         /*
  936          * Check our small startup cache to see if it has pages remaining.
  937          */
  938         mtx_lock(&uma_boot_pages_mtx);
  939 
  940         /* First check if we have enough room. */
  941         tmps = LIST_FIRST(&uma_boot_pages);
  942         while (tmps != NULL && check_pages-- > 0)
  943                 tmps = LIST_NEXT(tmps, us_link);
  944         if (tmps != NULL) {
  945                 /*
  946                  * It's ok to lose tmps references.  The last one will
  947                  * have tmps->us_data pointing to the start address of
  948                  * "pages" contiguous pages of memory.
  949                  */
  950                 while (pages-- > 0) {
  951                         tmps = LIST_FIRST(&uma_boot_pages);
  952                         LIST_REMOVE(tmps, us_link);
  953                 }
  954                 mtx_unlock(&uma_boot_pages_mtx);
  955                 *pflag = tmps->us_flags;
  956                 return (tmps->us_data);
  957         }
  958         mtx_unlock(&uma_boot_pages_mtx);
  959         if (booted == 0)
  960                 panic("UMA: Increase vm.boot_pages");
  961         /*
  962          * Now that we've booted reset these users to their real allocator.
  963          */
  964 #ifdef UMA_MD_SMALL_ALLOC
  965         keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc;
  966 #else
  967         keg->uk_allocf = page_alloc;
  968 #endif
  969         return keg->uk_allocf(zone, bytes, pflag, wait);
  970 }
  971 
  972 /*
  973  * Allocates a number of pages from the system
  974  *
  975  * Arguments:
  976  *      bytes  The number of bytes requested
  977  *      wait  Shall we wait?
  978  *
  979  * Returns:
  980  *      A pointer to the alloced memory or possibly
  981  *      NULL if M_NOWAIT is set.
  982  */
  983 static void *
  984 page_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait)
  985 {
  986         void *p;        /* Returned page */
  987 
  988         *pflag = UMA_SLAB_KMEM;
  989         p = (void *) kmem_malloc(kmem_map, bytes, wait);
  990 
  991         return (p);
  992 }
  993 
  994 /*
  995  * Allocates a number of pages from within an object
  996  *
  997  * Arguments:
  998  *      bytes  The number of bytes requested
  999  *      wait   Shall we wait?
 1000  *
 1001  * Returns:
 1002  *      A pointer to the alloced memory or possibly
 1003  *      NULL if M_NOWAIT is set.
 1004  */
 1005 static void *
 1006 obj_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
 1007 {
 1008         vm_object_t object;
 1009         vm_offset_t retkva, zkva;
 1010         vm_page_t p;
 1011         int pages, startpages;
 1012         uma_keg_t keg;
 1013 
 1014         keg = zone_first_keg(zone);
 1015         object = keg->uk_obj;
 1016         retkva = 0;
 1017 
 1018         /*
 1019          * This looks a little weird since we're getting one page at a time.
 1020          */
 1021         VM_OBJECT_LOCK(object);
 1022         p = TAILQ_LAST(&object->memq, pglist);
 1023         pages = p != NULL ? p->pindex + 1 : 0;
 1024         startpages = pages;
 1025         zkva = keg->uk_kva + pages * PAGE_SIZE;
 1026         for (; bytes > 0; bytes -= PAGE_SIZE) {
 1027                 p = vm_page_alloc(object, pages,
 1028                     VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED);
 1029                 if (p == NULL) {
 1030                         if (pages != startpages)
 1031                                 pmap_qremove(retkva, pages - startpages);
 1032                         while (pages != startpages) {
 1033                                 pages--;
 1034                                 p = TAILQ_LAST(&object->memq, pglist);
 1035                                 vm_page_lock_queues();
 1036                                 vm_page_unwire(p, 0);
 1037                                 vm_page_free(p);
 1038                                 vm_page_unlock_queues();
 1039                         }
 1040                         retkva = 0;
 1041                         goto done;
 1042                 }
 1043                 pmap_qenter(zkva, &p, 1);
 1044                 if (retkva == 0)
 1045                         retkva = zkva;
 1046                 zkva += PAGE_SIZE;
 1047                 pages += 1;
 1048         }
 1049 done:
 1050         VM_OBJECT_UNLOCK(object);
 1051         *flags = UMA_SLAB_PRIV;
 1052 
 1053         return ((void *)retkva);
 1054 }
 1055 
 1056 /*
 1057  * Frees a number of pages to the system
 1058  *
 1059  * Arguments:
 1060  *      mem   A pointer to the memory to be freed
 1061  *      size  The size of the memory being freed
 1062  *      flags The original p->us_flags field
 1063  *
 1064  * Returns:
 1065  *      Nothing
 1066  */
 1067 static void
 1068 page_free(void *mem, int size, u_int8_t flags)
 1069 {
 1070         vm_map_t map;
 1071 
 1072         if (flags & UMA_SLAB_KMEM)
 1073                 map = kmem_map;
 1074         else if (flags & UMA_SLAB_KERNEL)
 1075                 map = kernel_map;
 1076         else
 1077                 panic("UMA: page_free used with invalid flags %d", flags);
 1078 
 1079         kmem_free(map, (vm_offset_t)mem, size);
 1080 }
 1081 
 1082 /*
 1083  * Zero fill initializer
 1084  *
 1085  * Arguments/Returns follow uma_init specifications
 1086  */
 1087 static int
 1088 zero_init(void *mem, int size, int flags)
 1089 {
 1090         bzero(mem, size);
 1091         return (0);
 1092 }
 1093 
 1094 /*
 1095  * Finish creating a small uma keg.  This calculates ipers, and the keg size.
 1096  *
 1097  * Arguments
 1098  *      keg  The zone we should initialize
 1099  *
 1100  * Returns
 1101  *      Nothing
 1102  */
 1103 static void
 1104 keg_small_init(uma_keg_t keg)
 1105 {
 1106         u_int rsize;
 1107         u_int memused;
 1108         u_int wastedspace;
 1109         u_int shsize;
 1110 
 1111         KASSERT(keg != NULL, ("Keg is null in keg_small_init"));
 1112         rsize = keg->uk_size;
 1113 
 1114         if (rsize < UMA_SMALLEST_UNIT)
 1115                 rsize = UMA_SMALLEST_UNIT;
 1116         if (rsize & keg->uk_align)
 1117                 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1);
 1118 
 1119         keg->uk_rsize = rsize;
 1120         keg->uk_ppera = 1;
 1121 
 1122         if (keg->uk_flags & UMA_ZONE_REFCNT) {
 1123                 rsize += UMA_FRITMREF_SZ;       /* linkage & refcnt */
 1124                 shsize = sizeof(struct uma_slab_refcnt);
 1125         } else {
 1126                 rsize += UMA_FRITM_SZ;  /* Account for linkage */
 1127                 shsize = sizeof(struct uma_slab);
 1128         }
 1129 
 1130         keg->uk_ipers = (UMA_SLAB_SIZE - shsize) / rsize;
 1131         KASSERT(keg->uk_ipers != 0, ("keg_small_init: ipers is 0"));
 1132         memused = keg->uk_ipers * rsize + shsize;
 1133         wastedspace = UMA_SLAB_SIZE - memused;
 1134 
 1135         /*
 1136          * We can't do OFFPAGE if we're internal or if we've been
 1137          * asked to not go to the VM for buckets.  If we do this we
 1138          * may end up going to the VM (kmem_map) for slabs which we
 1139          * do not want to do if we're UMA_ZFLAG_CACHEONLY as a
 1140          * result of UMA_ZONE_VM, which clearly forbids it.
 1141          */
 1142         if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) ||
 1143             (keg->uk_flags & UMA_ZFLAG_CACHEONLY))
 1144                 return;
 1145 
 1146         if ((wastedspace >= UMA_MAX_WASTE) &&
 1147             (keg->uk_ipers < (UMA_SLAB_SIZE / keg->uk_rsize))) {
 1148                 keg->uk_ipers = UMA_SLAB_SIZE / keg->uk_rsize;
 1149                 KASSERT(keg->uk_ipers <= 255,
 1150                     ("keg_small_init: keg->uk_ipers too high!"));
 1151 #ifdef UMA_DEBUG
 1152                 printf("UMA decided we need offpage slab headers for "
 1153                     "keg: %s, calculated wastedspace = %d, "
 1154                     "maximum wasted space allowed = %d, "
 1155                     "calculated ipers = %d, "
 1156                     "new wasted space = %d\n", keg->uk_name, wastedspace,
 1157                     UMA_MAX_WASTE, keg->uk_ipers,
 1158                     UMA_SLAB_SIZE - keg->uk_ipers * keg->uk_rsize);
 1159 #endif
 1160                 keg->uk_flags |= UMA_ZONE_OFFPAGE;
 1161                 if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
 1162                         keg->uk_flags |= UMA_ZONE_HASH;
 1163         }
 1164 }
 1165 
 1166 /*
 1167  * Finish creating a large (> UMA_SLAB_SIZE) uma kegs.  Just give in and do
 1168  * OFFPAGE for now.  When I can allow for more dynamic slab sizes this will be
 1169  * more complicated.
 1170  *
 1171  * Arguments
 1172  *      keg  The keg we should initialize
 1173  *
 1174  * Returns
 1175  *      Nothing
 1176  */
 1177 static void
 1178 keg_large_init(uma_keg_t keg)
 1179 {
 1180         int pages;
 1181 
 1182         KASSERT(keg != NULL, ("Keg is null in keg_large_init"));
 1183         KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0,
 1184             ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg"));
 1185 
 1186         pages = keg->uk_size / UMA_SLAB_SIZE;
 1187 
 1188         /* Account for remainder */
 1189         if ((pages * UMA_SLAB_SIZE) < keg->uk_size)
 1190                 pages++;
 1191 
 1192         keg->uk_ppera = pages;
 1193         keg->uk_ipers = 1;
 1194         keg->uk_rsize = keg->uk_size;
 1195 
 1196         /* We can't do OFFPAGE if we're internal, bail out here. */
 1197         if (keg->uk_flags & UMA_ZFLAG_INTERNAL)
 1198                 return;
 1199 
 1200         keg->uk_flags |= UMA_ZONE_OFFPAGE;
 1201         if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
 1202                 keg->uk_flags |= UMA_ZONE_HASH;
 1203 }
 1204 
 1205 static void
 1206 keg_cachespread_init(uma_keg_t keg)
 1207 {
 1208         int alignsize;
 1209         int trailer;
 1210         int pages;
 1211         int rsize;
 1212 
 1213         alignsize = keg->uk_align + 1;
 1214         rsize = keg->uk_size;
 1215         /*
 1216          * We want one item to start on every align boundary in a page.  To
 1217          * do this we will span pages.  We will also extend the item by the
 1218          * size of align if it is an even multiple of align.  Otherwise, it
 1219          * would fall on the same boundary every time.
 1220          */
 1221         if (rsize & keg->uk_align)
 1222                 rsize = (rsize & ~keg->uk_align) + alignsize;
 1223         if ((rsize & alignsize) == 0)
 1224                 rsize += alignsize;
 1225         trailer = rsize - keg->uk_size;
 1226         pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE;
 1227         pages = MIN(pages, (128 * 1024) / PAGE_SIZE);
 1228         keg->uk_rsize = rsize;
 1229         keg->uk_ppera = pages;
 1230         keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize;
 1231         keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB;
 1232         KASSERT(keg->uk_ipers <= uma_max_ipers,
 1233             ("keg_small_init: keg->uk_ipers too high(%d) increase max_ipers",
 1234             keg->uk_ipers));
 1235 }
 1236 
 1237 /*
 1238  * Keg header ctor.  This initializes all fields, locks, etc.  And inserts
 1239  * the keg onto the global keg list.
 1240  *
 1241  * Arguments/Returns follow uma_ctor specifications
 1242  *      udata  Actually uma_kctor_args
 1243  */
 1244 static int
 1245 keg_ctor(void *mem, int size, void *udata, int flags)
 1246 {
 1247         struct uma_kctor_args *arg = udata;
 1248         uma_keg_t keg = mem;
 1249         uma_zone_t zone;
 1250 
 1251         bzero(keg, size);
 1252         keg->uk_size = arg->size;
 1253         keg->uk_init = arg->uminit;
 1254         keg->uk_fini = arg->fini;
 1255         keg->uk_align = arg->align;
 1256         keg->uk_free = 0;
 1257         keg->uk_pages = 0;
 1258         keg->uk_flags = arg->flags;
 1259         keg->uk_allocf = page_alloc;
 1260         keg->uk_freef = page_free;
 1261         keg->uk_recurse = 0;
 1262         keg->uk_slabzone = NULL;
 1263 
 1264         /*
 1265          * The master zone is passed to us at keg-creation time.
 1266          */
 1267         zone = arg->zone;
 1268         keg->uk_name = zone->uz_name;
 1269 
 1270         if (arg->flags & UMA_ZONE_VM)
 1271                 keg->uk_flags |= UMA_ZFLAG_CACHEONLY;
 1272 
 1273         if (arg->flags & UMA_ZONE_ZINIT)
 1274                 keg->uk_init = zero_init;
 1275 
 1276         if (arg->flags & UMA_ZONE_REFCNT || arg->flags & UMA_ZONE_MALLOC)
 1277                 keg->uk_flags |= UMA_ZONE_VTOSLAB;
 1278 
 1279         /*
 1280          * The +UMA_FRITM_SZ added to uk_size is to account for the
 1281          * linkage that is added to the size in keg_small_init().  If
 1282          * we don't account for this here then we may end up in
 1283          * keg_small_init() with a calculated 'ipers' of 0.
 1284          */
 1285         if (keg->uk_flags & UMA_ZONE_REFCNT) {
 1286                 if (keg->uk_flags & UMA_ZONE_CACHESPREAD)
 1287                         keg_cachespread_init(keg);
 1288                 else if ((keg->uk_size+UMA_FRITMREF_SZ) >
 1289                     (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)))
 1290                         keg_large_init(keg);
 1291                 else
 1292                         keg_small_init(keg);
 1293         } else {
 1294                 if (keg->uk_flags & UMA_ZONE_CACHESPREAD)
 1295                         keg_cachespread_init(keg);
 1296                 else if ((keg->uk_size+UMA_FRITM_SZ) >
 1297                     (UMA_SLAB_SIZE - sizeof(struct uma_slab)))
 1298                         keg_large_init(keg);
 1299                 else
 1300                         keg_small_init(keg);
 1301         }
 1302 
 1303         if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
 1304                 if (keg->uk_flags & UMA_ZONE_REFCNT)
 1305                         keg->uk_slabzone = slabrefzone;
 1306                 else
 1307                         keg->uk_slabzone = slabzone;
 1308         }
 1309 
 1310         /*
 1311          * If we haven't booted yet we need allocations to go through the
 1312          * startup cache until the vm is ready.
 1313          */
 1314         if (keg->uk_ppera == 1) {
 1315 #ifdef UMA_MD_SMALL_ALLOC
 1316                 keg->uk_allocf = uma_small_alloc;
 1317                 keg->uk_freef = uma_small_free;
 1318 #endif
 1319                 if (booted == 0)
 1320                         keg->uk_allocf = startup_alloc;
 1321         } else if (booted == 0 && (keg->uk_flags & UMA_ZFLAG_INTERNAL))
 1322                 keg->uk_allocf = startup_alloc;
 1323 
 1324         /*
 1325          * Initialize keg's lock (shared among zones).
 1326          */
 1327         if (arg->flags & UMA_ZONE_MTXCLASS)
 1328                 KEG_LOCK_INIT(keg, 1);
 1329         else
 1330                 KEG_LOCK_INIT(keg, 0);
 1331 
 1332         /*
 1333          * If we're putting the slab header in the actual page we need to
 1334          * figure out where in each page it goes.  This calculates a right
 1335          * justified offset into the memory on an ALIGN_PTR boundary.
 1336          */
 1337         if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) {
 1338                 u_int totsize;
 1339 
 1340                 /* Size of the slab struct and free list */
 1341                 if (keg->uk_flags & UMA_ZONE_REFCNT)
 1342                         totsize = sizeof(struct uma_slab_refcnt) +
 1343                             keg->uk_ipers * UMA_FRITMREF_SZ;
 1344                 else
 1345                         totsize = sizeof(struct uma_slab) +
 1346                             keg->uk_ipers * UMA_FRITM_SZ;
 1347 
 1348                 if (totsize & UMA_ALIGN_PTR)
 1349                         totsize = (totsize & ~UMA_ALIGN_PTR) +
 1350                             (UMA_ALIGN_PTR + 1);
 1351                 keg->uk_pgoff = (UMA_SLAB_SIZE * keg->uk_ppera) - totsize;
 1352 
 1353                 if (keg->uk_flags & UMA_ZONE_REFCNT)
 1354                         totsize = keg->uk_pgoff + sizeof(struct uma_slab_refcnt)
 1355                             + keg->uk_ipers * UMA_FRITMREF_SZ;
 1356                 else
 1357                         totsize = keg->uk_pgoff + sizeof(struct uma_slab)
 1358                             + keg->uk_ipers * UMA_FRITM_SZ;
 1359 
 1360                 /*
 1361                  * The only way the following is possible is if with our
 1362                  * UMA_ALIGN_PTR adjustments we are now bigger than
 1363                  * UMA_SLAB_SIZE.  I haven't checked whether this is
 1364                  * mathematically possible for all cases, so we make
 1365                  * sure here anyway.
 1366                  */
 1367                 if (totsize > UMA_SLAB_SIZE * keg->uk_ppera) {
 1368                         printf("zone %s ipers %d rsize %d size %d\n",
 1369                             zone->uz_name, keg->uk_ipers, keg->uk_rsize,
 1370                             keg->uk_size);
 1371                         panic("UMA slab won't fit.");
 1372                 }
 1373         }
 1374 
 1375         if (keg->uk_flags & UMA_ZONE_HASH)
 1376                 hash_alloc(&keg->uk_hash);
 1377 
 1378 #ifdef UMA_DEBUG
 1379         printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n",
 1380             zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags,
 1381             keg->uk_ipers, keg->uk_ppera,
 1382             (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free);
 1383 #endif
 1384 
 1385         LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
 1386 
 1387         mtx_lock(&uma_mtx);
 1388         LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
 1389         mtx_unlock(&uma_mtx);
 1390         return (0);
 1391 }
 1392 
 1393 /*
 1394  * Zone header ctor.  This initializes all fields, locks, etc.
 1395  *
 1396  * Arguments/Returns follow uma_ctor specifications
 1397  *      udata  Actually uma_zctor_args
 1398  */
 1399 static int
 1400 zone_ctor(void *mem, int size, void *udata, int flags)
 1401 {
 1402         struct uma_zctor_args *arg = udata;
 1403         uma_zone_t zone = mem;
 1404         uma_zone_t z;
 1405         uma_keg_t keg;
 1406 
 1407         bzero(zone, size);
 1408         zone->uz_name = arg->name;
 1409         zone->uz_ctor = arg->ctor;
 1410         zone->uz_dtor = arg->dtor;
 1411         zone->uz_slab = zone_fetch_slab;
 1412         zone->uz_init = NULL;
 1413         zone->uz_fini = NULL;
 1414         zone->uz_allocs = 0;
 1415         zone->uz_frees = 0;
 1416         zone->uz_fails = 0;
 1417         zone->uz_fills = zone->uz_count = 0;
 1418         zone->uz_flags = 0;
 1419         keg = arg->keg;
 1420 
 1421         if (arg->flags & UMA_ZONE_SECONDARY) {
 1422                 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
 1423                 zone->uz_init = arg->uminit;
 1424                 zone->uz_fini = arg->fini;
 1425                 zone->uz_lock = &keg->uk_lock;
 1426                 zone->uz_flags |= UMA_ZONE_SECONDARY;
 1427                 mtx_lock(&uma_mtx);
 1428                 ZONE_LOCK(zone);
 1429                 LIST_FOREACH(z, &keg->uk_zones, uz_link) {
 1430                         if (LIST_NEXT(z, uz_link) == NULL) {
 1431                                 LIST_INSERT_AFTER(z, zone, uz_link);
 1432                                 break;
 1433                         }
 1434                 }
 1435                 ZONE_UNLOCK(zone);
 1436                 mtx_unlock(&uma_mtx);
 1437         } else if (keg == NULL) {
 1438                 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
 1439                     arg->align, arg->flags)) == NULL)
 1440                         return (ENOMEM);
 1441         } else {
 1442                 struct uma_kctor_args karg;
 1443                 int error;
 1444 
 1445                 /* We should only be here from uma_startup() */
 1446                 karg.size = arg->size;
 1447                 karg.uminit = arg->uminit;
 1448                 karg.fini = arg->fini;
 1449                 karg.align = arg->align;
 1450                 karg.flags = arg->flags;
 1451                 karg.zone = zone;
 1452                 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
 1453                     flags);
 1454                 if (error)
 1455                         return (error);
 1456         }
 1457         /*
 1458          * Link in the first keg.
 1459          */
 1460         zone->uz_klink.kl_keg = keg;
 1461         LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link);
 1462         zone->uz_lock = &keg->uk_lock;
 1463         zone->uz_size = keg->uk_size;
 1464         zone->uz_flags |= (keg->uk_flags &
 1465             (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
 1466 
 1467         /*
 1468          * Some internal zones don't have room allocated for the per cpu
 1469          * caches.  If we're internal, bail out here.
 1470          */
 1471         if (keg->uk_flags & UMA_ZFLAG_INTERNAL) {
 1472                 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
 1473                     ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
 1474                 return (0);
 1475         }
 1476 
 1477         if (keg->uk_flags & UMA_ZONE_MAXBUCKET)
 1478                 zone->uz_count = BUCKET_MAX;
 1479         else if (keg->uk_ipers <= BUCKET_MAX)
 1480                 zone->uz_count = keg->uk_ipers;
 1481         else
 1482                 zone->uz_count = BUCKET_MAX;
 1483         return (0);
 1484 }
 1485 
 1486 /*
 1487  * Keg header dtor.  This frees all data, destroys locks, frees the hash
 1488  * table and removes the keg from the global list.
 1489  *
 1490  * Arguments/Returns follow uma_dtor specifications
 1491  *      udata  unused
 1492  */
 1493 static void
 1494 keg_dtor(void *arg, int size, void *udata)
 1495 {
 1496         uma_keg_t keg;
 1497 
 1498         keg = (uma_keg_t)arg;
 1499         KEG_LOCK(keg);
 1500         if (keg->uk_free != 0) {
 1501                 printf("Freed UMA keg was not empty (%d items). "
 1502                     " Lost %d pages of memory.\n",
 1503                     keg->uk_free, keg->uk_pages);
 1504         }
 1505         KEG_UNLOCK(keg);
 1506 
 1507         hash_free(&keg->uk_hash);
 1508 
 1509         KEG_LOCK_FINI(keg);
 1510 }
 1511 
 1512 /*
 1513  * Zone header dtor.
 1514  *
 1515  * Arguments/Returns follow uma_dtor specifications
 1516  *      udata  unused
 1517  */
 1518 static void
 1519 zone_dtor(void *arg, int size, void *udata)
 1520 {
 1521         uma_klink_t klink;
 1522         uma_zone_t zone;
 1523         uma_keg_t keg;
 1524 
 1525         zone = (uma_zone_t)arg;
 1526         keg = zone_first_keg(zone);
 1527 
 1528         if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
 1529                 cache_drain(zone);
 1530 
 1531         mtx_lock(&uma_mtx);
 1532         LIST_REMOVE(zone, uz_link);
 1533         mtx_unlock(&uma_mtx);
 1534         /*
 1535          * XXX there are some races here where
 1536          * the zone can be drained but zone lock
 1537          * released and then refilled before we
 1538          * remove it... we dont care for now
 1539          */
 1540         zone_drain_wait(zone, M_WAITOK);
 1541         /*
 1542          * Unlink all of our kegs.
 1543          */
 1544         while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) {
 1545                 klink->kl_keg = NULL;
 1546                 LIST_REMOVE(klink, kl_link);
 1547                 if (klink == &zone->uz_klink)
 1548                         continue;
 1549                 free(klink, M_TEMP);
 1550         }
 1551         /*
 1552          * We only destroy kegs from non secondary zones.
 1553          */
 1554         if ((zone->uz_flags & UMA_ZONE_SECONDARY) == 0)  {
 1555                 mtx_lock(&uma_mtx);
 1556                 LIST_REMOVE(keg, uk_link);
 1557                 mtx_unlock(&uma_mtx);
 1558                 zone_free_item(kegs, keg, NULL, SKIP_NONE,
 1559                     ZFREE_STATFREE);
 1560         }
 1561 }
 1562 
 1563 /*
 1564  * Traverses every zone in the system and calls a callback
 1565  *
 1566  * Arguments:
 1567  *      zfunc  A pointer to a function which accepts a zone
 1568  *              as an argument.
 1569  *
 1570  * Returns:
 1571  *      Nothing
 1572  */
 1573 static void
 1574 zone_foreach(void (*zfunc)(uma_zone_t))
 1575 {
 1576         uma_keg_t keg;
 1577         uma_zone_t zone;
 1578 
 1579         mtx_lock(&uma_mtx);
 1580         LIST_FOREACH(keg, &uma_kegs, uk_link) {
 1581                 LIST_FOREACH(zone, &keg->uk_zones, uz_link)
 1582                         zfunc(zone);
 1583         }
 1584         mtx_unlock(&uma_mtx);
 1585 }
 1586 
 1587 /* Public functions */
 1588 /* See uma.h */
 1589 void
 1590 uma_startup(void *bootmem, int boot_pages)
 1591 {
 1592         struct uma_zctor_args args;
 1593         uma_slab_t slab;
 1594         u_int slabsize;
 1595         u_int objsize, totsize, wsize;
 1596         int i;
 1597 
 1598 #ifdef UMA_DEBUG
 1599         printf("Creating uma keg headers zone and keg.\n");
 1600 #endif
 1601         mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF);
 1602 
 1603         /*
 1604          * Figure out the maximum number of items-per-slab we'll have if
 1605          * we're using the OFFPAGE slab header to track free items, given
 1606          * all possible object sizes and the maximum desired wastage
 1607          * (UMA_MAX_WASTE).
 1608          *
 1609          * We iterate until we find an object size for
 1610          * which the calculated wastage in keg_small_init() will be
 1611          * enough to warrant OFFPAGE.  Since wastedspace versus objsize
 1612          * is an overall increasing see-saw function, we find the smallest
 1613          * objsize such that the wastage is always acceptable for objects
 1614          * with that objsize or smaller.  Since a smaller objsize always
 1615          * generates a larger possible uma_max_ipers, we use this computed
 1616          * objsize to calculate the largest ipers possible.  Since the
 1617          * ipers calculated for OFFPAGE slab headers is always larger than
 1618          * the ipers initially calculated in keg_small_init(), we use
 1619          * the former's equation (UMA_SLAB_SIZE / keg->uk_rsize) to
 1620          * obtain the maximum ipers possible for offpage slab headers.
 1621          *
 1622          * It should be noted that ipers versus objsize is an inversly
 1623          * proportional function which drops off rather quickly so as
 1624          * long as our UMA_MAX_WASTE is such that the objsize we calculate
 1625          * falls into the portion of the inverse relation AFTER the steep
 1626          * falloff, then uma_max_ipers shouldn't be too high (~10 on i386).
 1627          *
 1628          * Note that we have 8-bits (1 byte) to use as a freelist index
 1629          * inside the actual slab header itself and this is enough to
 1630          * accomodate us.  In the worst case, a UMA_SMALLEST_UNIT sized
 1631          * object with offpage slab header would have ipers =
 1632          * UMA_SLAB_SIZE / UMA_SMALLEST_UNIT (currently = 256), which is
 1633          * 1 greater than what our byte-integer freelist index can
 1634          * accomodate, but we know that this situation never occurs as
 1635          * for UMA_SMALLEST_UNIT-sized objects, we will never calculate
 1636          * that we need to go to offpage slab headers.  Or, if we do,
 1637          * then we trap that condition below and panic in the INVARIANTS case.
 1638          */
 1639         wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab) - UMA_MAX_WASTE;
 1640         totsize = wsize;
 1641         objsize = UMA_SMALLEST_UNIT;
 1642         while (totsize >= wsize) {
 1643                 totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab)) /
 1644                     (objsize + UMA_FRITM_SZ);
 1645                 totsize *= (UMA_FRITM_SZ + objsize);
 1646                 objsize++;
 1647         }
 1648         if (objsize > UMA_SMALLEST_UNIT)
 1649                 objsize--;
 1650         uma_max_ipers = MAX(UMA_SLAB_SIZE / objsize, 64);
 1651 
 1652         wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) - UMA_MAX_WASTE;
 1653         totsize = wsize;
 1654         objsize = UMA_SMALLEST_UNIT;
 1655         while (totsize >= wsize) {
 1656                 totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)) /
 1657                     (objsize + UMA_FRITMREF_SZ);
 1658                 totsize *= (UMA_FRITMREF_SZ + objsize);
 1659                 objsize++;
 1660         }
 1661         if (objsize > UMA_SMALLEST_UNIT)
 1662                 objsize--;
 1663         uma_max_ipers_ref = MAX(UMA_SLAB_SIZE / objsize, 64);
 1664 
 1665         KASSERT((uma_max_ipers_ref <= 255) && (uma_max_ipers <= 255),
 1666             ("uma_startup: calculated uma_max_ipers values too large!"));
 1667 
 1668 #ifdef UMA_DEBUG
 1669         printf("Calculated uma_max_ipers (for OFFPAGE) is %d\n", uma_max_ipers);
 1670         printf("Calculated uma_max_ipers_slab (for OFFPAGE) is %d\n",
 1671             uma_max_ipers_ref);
 1672 #endif
 1673 
 1674         /* "manually" create the initial zone */
 1675         args.name = "UMA Kegs";
 1676         args.size = sizeof(struct uma_keg);
 1677         args.ctor = keg_ctor;
 1678         args.dtor = keg_dtor;
 1679         args.uminit = zero_init;
 1680         args.fini = NULL;
 1681         args.keg = &masterkeg;
 1682         args.align = 32 - 1;
 1683         args.flags = UMA_ZFLAG_INTERNAL;
 1684         /* The initial zone has no Per cpu queues so it's smaller */
 1685         zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK);
 1686 
 1687 #ifdef UMA_DEBUG
 1688         printf("Filling boot free list.\n");
 1689 #endif
 1690         for (i = 0; i < boot_pages; i++) {
 1691                 slab = (uma_slab_t)((u_int8_t *)bootmem + (i * UMA_SLAB_SIZE));
 1692                 slab->us_data = (u_int8_t *)slab;
 1693                 slab->us_flags = UMA_SLAB_BOOT;
 1694                 LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link);
 1695         }
 1696         mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF);
 1697 
 1698 #ifdef UMA_DEBUG
 1699         printf("Creating uma zone headers zone and keg.\n");
 1700 #endif
 1701         args.name = "UMA Zones";
 1702         args.size = sizeof(struct uma_zone) +
 1703             (sizeof(struct uma_cache) * (mp_maxid + 1));
 1704         args.ctor = zone_ctor;
 1705         args.dtor = zone_dtor;
 1706         args.uminit = zero_init;
 1707         args.fini = NULL;
 1708         args.keg = NULL;
 1709         args.align = 32 - 1;
 1710         args.flags = UMA_ZFLAG_INTERNAL;
 1711         /* The initial zone has no Per cpu queues so it's smaller */
 1712         zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK);
 1713 
 1714 #ifdef UMA_DEBUG
 1715         printf("Initializing pcpu cache locks.\n");
 1716 #endif
 1717 #ifdef UMA_DEBUG
 1718         printf("Creating slab and hash zones.\n");
 1719 #endif
 1720 
 1721         /*
 1722          * This is the max number of free list items we'll have with
 1723          * offpage slabs.
 1724          */
 1725         slabsize = uma_max_ipers * UMA_FRITM_SZ;
 1726         slabsize += sizeof(struct uma_slab);
 1727 
 1728         /* Now make a zone for slab headers */
 1729         slabzone = uma_zcreate("UMA Slabs",
 1730                                 slabsize,
 1731                                 NULL, NULL, NULL, NULL,
 1732                                 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
 1733 
 1734         /*
 1735          * We also create a zone for the bigger slabs with reference
 1736          * counts in them, to accomodate UMA_ZONE_REFCNT zones.
 1737          */
 1738         slabsize = uma_max_ipers_ref * UMA_FRITMREF_SZ;
 1739         slabsize += sizeof(struct uma_slab_refcnt);
 1740         slabrefzone = uma_zcreate("UMA RCntSlabs",
 1741                                   slabsize,
 1742                                   NULL, NULL, NULL, NULL,
 1743                                   UMA_ALIGN_PTR,
 1744                                   UMA_ZFLAG_INTERNAL);
 1745 
 1746         hashzone = uma_zcreate("UMA Hash",
 1747             sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
 1748             NULL, NULL, NULL, NULL,
 1749             UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
 1750 
 1751         bucket_init();
 1752 
 1753 #if defined(UMA_MD_SMALL_ALLOC) && !defined(UMA_MD_SMALL_ALLOC_NEEDS_VM)
 1754         booted = 1;
 1755 #endif
 1756 
 1757 #ifdef UMA_DEBUG
 1758         printf("UMA startup complete.\n");
 1759 #endif
 1760 }
 1761 
 1762 /* see uma.h */
 1763 void
 1764 uma_startup2(void)
 1765 {
 1766         booted = 1;
 1767         bucket_enable();
 1768 #ifdef UMA_DEBUG
 1769         printf("UMA startup2 complete.\n");
 1770 #endif
 1771 }
 1772 
 1773 /*
 1774  * Initialize our callout handle
 1775  *
 1776  */
 1777 
 1778 static void
 1779 uma_startup3(void)
 1780 {
 1781 #ifdef UMA_DEBUG
 1782         printf("Starting callout.\n");
 1783 #endif
 1784         callout_init(&uma_callout, CALLOUT_MPSAFE);
 1785         callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
 1786 #ifdef UMA_DEBUG
 1787         printf("UMA startup3 complete.\n");
 1788 #endif
 1789 }
 1790 
 1791 static uma_keg_t
 1792 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
 1793                 int align, u_int32_t flags)
 1794 {
 1795         struct uma_kctor_args args;
 1796 
 1797         args.size = size;
 1798         args.uminit = uminit;
 1799         args.fini = fini;
 1800         args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
 1801         args.flags = flags;
 1802         args.zone = zone;
 1803         return (zone_alloc_item(kegs, &args, M_WAITOK));
 1804 }
 1805 
 1806 /* See uma.h */
 1807 void
 1808 uma_set_align(int align)
 1809 {
 1810 
 1811         if (align != UMA_ALIGN_CACHE)
 1812                 uma_align_cache = align;
 1813 }
 1814 
 1815 /* See uma.h */
 1816 uma_zone_t
 1817 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
 1818                 uma_init uminit, uma_fini fini, int align, u_int32_t flags)
 1819 
 1820 {
 1821         struct uma_zctor_args args;
 1822 
 1823         /* This stuff is essential for the zone ctor */
 1824         args.name = name;
 1825         args.size = size;
 1826         args.ctor = ctor;
 1827         args.dtor = dtor;
 1828         args.uminit = uminit;
 1829         args.fini = fini;
 1830         args.align = align;
 1831         args.flags = flags;
 1832         args.keg = NULL;
 1833 
 1834         return (zone_alloc_item(zones, &args, M_WAITOK));
 1835 }
 1836 
 1837 /* See uma.h */
 1838 uma_zone_t
 1839 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
 1840                     uma_init zinit, uma_fini zfini, uma_zone_t master)
 1841 {
 1842         struct uma_zctor_args args;
 1843         uma_keg_t keg;
 1844 
 1845         keg = zone_first_keg(master);
 1846         args.name = name;
 1847         args.size = keg->uk_size;
 1848         args.ctor = ctor;
 1849         args.dtor = dtor;
 1850         args.uminit = zinit;
 1851         args.fini = zfini;
 1852         args.align = keg->uk_align;
 1853         args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
 1854         args.keg = keg;
 1855 
 1856         /* XXX Attaches only one keg of potentially many. */
 1857         return (zone_alloc_item(zones, &args, M_WAITOK));
 1858 }
 1859 
 1860 static void
 1861 zone_lock_pair(uma_zone_t a, uma_zone_t b)
 1862 {
 1863         if (a < b) {
 1864                 ZONE_LOCK(a);
 1865                 mtx_lock_flags(b->uz_lock, MTX_DUPOK);
 1866         } else {
 1867                 ZONE_LOCK(b);
 1868                 mtx_lock_flags(a->uz_lock, MTX_DUPOK);
 1869         }
 1870 }
 1871 
 1872 static void
 1873 zone_unlock_pair(uma_zone_t a, uma_zone_t b)
 1874 {
 1875 
 1876         ZONE_UNLOCK(a);
 1877         ZONE_UNLOCK(b);
 1878 }
 1879 
 1880 int
 1881 uma_zsecond_add(uma_zone_t zone, uma_zone_t master)
 1882 {
 1883         uma_klink_t klink;
 1884         uma_klink_t kl;
 1885         int error;
 1886 
 1887         error = 0;
 1888         klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO);
 1889 
 1890         zone_lock_pair(zone, master);
 1891         /*
 1892          * zone must use vtoslab() to resolve objects and must already be
 1893          * a secondary.
 1894          */
 1895         if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY))
 1896             != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) {
 1897                 error = EINVAL;
 1898                 goto out;
 1899         }
 1900         /*
 1901          * The new master must also use vtoslab().
 1902          */
 1903         if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) {
 1904                 error = EINVAL;
 1905                 goto out;
 1906         }
 1907         /*
 1908          * Both must either be refcnt, or not be refcnt.
 1909          */
 1910         if ((zone->uz_flags & UMA_ZONE_REFCNT) !=
 1911             (master->uz_flags & UMA_ZONE_REFCNT)) {
 1912                 error = EINVAL;
 1913                 goto out;
 1914         }
 1915         /*
 1916          * The underlying object must be the same size.  rsize
 1917          * may be different.
 1918          */
 1919         if (master->uz_size != zone->uz_size) {
 1920                 error = E2BIG;
 1921                 goto out;
 1922         }
 1923         /*
 1924          * Put it at the end of the list.
 1925          */
 1926         klink->kl_keg = zone_first_keg(master);
 1927         LIST_FOREACH(kl, &zone->uz_kegs, kl_link) {
 1928                 if (LIST_NEXT(kl, kl_link) == NULL) {
 1929                         LIST_INSERT_AFTER(kl, klink, kl_link);
 1930                         break;
 1931                 }
 1932         }
 1933         klink = NULL;
 1934         zone->uz_flags |= UMA_ZFLAG_MULTI;
 1935         zone->uz_slab = zone_fetch_slab_multi;
 1936 
 1937 out:
 1938         zone_unlock_pair(zone, master);
 1939         if (klink != NULL)
 1940                 free(klink, M_TEMP);
 1941 
 1942         return (error);
 1943 }
 1944 
 1945 
 1946 /* See uma.h */
 1947 void
 1948 uma_zdestroy(uma_zone_t zone)
 1949 {
 1950 
 1951         zone_free_item(zones, zone, NULL, SKIP_NONE, ZFREE_STATFREE);
 1952 }
 1953 
 1954 /* See uma.h */
 1955 void *
 1956 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
 1957 {
 1958         void *item;
 1959         uma_cache_t cache;
 1960         uma_bucket_t bucket;
 1961         int cpu;
 1962 
 1963         /* This is the fast path allocation */
 1964 #ifdef UMA_DEBUG_ALLOC_1
 1965         printf("Allocating one item from %s(%p)\n", zone->uz_name, zone);
 1966 #endif
 1967         CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread,
 1968             zone->uz_name, flags);
 1969 
 1970         if (flags & M_WAITOK) {
 1971                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
 1972                     "uma_zalloc_arg: zone \"%s\"", zone->uz_name);
 1973         }
 1974 
 1975         /*
 1976          * If possible, allocate from the per-CPU cache.  There are two
 1977          * requirements for safe access to the per-CPU cache: (1) the thread
 1978          * accessing the cache must not be preempted or yield during access,
 1979          * and (2) the thread must not migrate CPUs without switching which
 1980          * cache it accesses.  We rely on a critical section to prevent
 1981          * preemption and migration.  We release the critical section in
 1982          * order to acquire the zone mutex if we are unable to allocate from
 1983          * the current cache; when we re-acquire the critical section, we
 1984          * must detect and handle migration if it has occurred.
 1985          */
 1986 zalloc_restart:
 1987         critical_enter();
 1988         cpu = curcpu;
 1989         cache = &zone->uz_cpu[cpu];
 1990 
 1991 zalloc_start:
 1992         bucket = cache->uc_allocbucket;
 1993 
 1994         if (bucket) {
 1995                 if (bucket->ub_cnt > 0) {
 1996                         bucket->ub_cnt--;
 1997                         item = bucket->ub_bucket[bucket->ub_cnt];
 1998 #ifdef INVARIANTS
 1999                         bucket->ub_bucket[bucket->ub_cnt] = NULL;
 2000 #endif
 2001                         KASSERT(item != NULL,
 2002                             ("uma_zalloc: Bucket pointer mangled."));
 2003                         cache->uc_allocs++;
 2004                         critical_exit();
 2005 #ifdef INVARIANTS
 2006                         ZONE_LOCK(zone);
 2007                         uma_dbg_alloc(zone, NULL, item);
 2008                         ZONE_UNLOCK(zone);
 2009 #endif
 2010                         if (zone->uz_ctor != NULL) {
 2011                                 if (zone->uz_ctor(item, zone->uz_size,
 2012                                     udata, flags) != 0) {
 2013                                         zone_free_item(zone, item, udata,
 2014                                             SKIP_DTOR, ZFREE_STATFAIL |
 2015                                             ZFREE_STATFREE);
 2016                                         return (NULL);
 2017                                 }
 2018                         }
 2019                         if (flags & M_ZERO)
 2020                                 bzero(item, zone->uz_size);
 2021                         return (item);
 2022                 } else if (cache->uc_freebucket) {
 2023                         /*
 2024                          * We have run out of items in our allocbucket.
 2025                          * See if we can switch with our free bucket.
 2026                          */
 2027                         if (cache->uc_freebucket->ub_cnt > 0) {
 2028 #ifdef UMA_DEBUG_ALLOC
 2029                                 printf("uma_zalloc: Swapping empty with"
 2030                                     " alloc.\n");
 2031 #endif
 2032                                 bucket = cache->uc_freebucket;
 2033                                 cache->uc_freebucket = cache->uc_allocbucket;
 2034                                 cache->uc_allocbucket = bucket;
 2035 
 2036                                 goto zalloc_start;
 2037                         }
 2038                 }
 2039         }
 2040         /*
 2041          * Attempt to retrieve the item from the per-CPU cache has failed, so
 2042          * we must go back to the zone.  This requires the zone lock, so we
 2043          * must drop the critical section, then re-acquire it when we go back
 2044          * to the cache.  Since the critical section is released, we may be
 2045          * preempted or migrate.  As such, make sure not to maintain any
 2046          * thread-local state specific to the cache from prior to releasing
 2047          * the critical section.
 2048          */
 2049         critical_exit();
 2050         ZONE_LOCK(zone);
 2051         critical_enter();
 2052         cpu = curcpu;
 2053         cache = &zone->uz_cpu[cpu];
 2054         bucket = cache->uc_allocbucket;
 2055         if (bucket != NULL) {
 2056                 if (bucket->ub_cnt > 0) {
 2057                         ZONE_UNLOCK(zone);
 2058                         goto zalloc_start;
 2059                 }
 2060                 bucket = cache->uc_freebucket;
 2061                 if (bucket != NULL && bucket->ub_cnt > 0) {
 2062                         ZONE_UNLOCK(zone);
 2063                         goto zalloc_start;
 2064                 }
 2065         }
 2066 
 2067         /* Since we have locked the zone we may as well send back our stats */
 2068         zone->uz_allocs += cache->uc_allocs;
 2069         cache->uc_allocs = 0;
 2070         zone->uz_frees += cache->uc_frees;
 2071         cache->uc_frees = 0;
 2072 
 2073         /* Our old one is now a free bucket */
 2074         if (cache->uc_allocbucket) {
 2075                 KASSERT(cache->uc_allocbucket->ub_cnt == 0,
 2076                     ("uma_zalloc_arg: Freeing a non free bucket."));
 2077                 LIST_INSERT_HEAD(&zone->uz_free_bucket,
 2078                     cache->uc_allocbucket, ub_link);
 2079                 cache->uc_allocbucket = NULL;
 2080         }
 2081 
 2082         /* Check the free list for a new alloc bucket */
 2083         if ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) {
 2084                 KASSERT(bucket->ub_cnt != 0,
 2085                     ("uma_zalloc_arg: Returning an empty bucket."));
 2086 
 2087                 LIST_REMOVE(bucket, ub_link);
 2088                 cache->uc_allocbucket = bucket;
 2089                 ZONE_UNLOCK(zone);
 2090                 goto zalloc_start;
 2091         }
 2092         /* We are no longer associated with this CPU. */
 2093         critical_exit();
 2094 
 2095         /* Bump up our uz_count so we get here less */
 2096         if (zone->uz_count < BUCKET_MAX)
 2097                 zone->uz_count++;
 2098 
 2099         /*
 2100          * Now lets just fill a bucket and put it on the free list.  If that
 2101          * works we'll restart the allocation from the begining.
 2102          */
 2103         if (zone_alloc_bucket(zone, flags)) {
 2104                 ZONE_UNLOCK(zone);
 2105                 goto zalloc_restart;
 2106         }
 2107         ZONE_UNLOCK(zone);
 2108         /*
 2109          * We may not be able to get a bucket so return an actual item.
 2110          */
 2111 #ifdef UMA_DEBUG
 2112         printf("uma_zalloc_arg: Bucketzone returned NULL\n");
 2113 #endif
 2114 
 2115         item = zone_alloc_item(zone, udata, flags);
 2116         return (item);
 2117 }
 2118 
 2119 static uma_slab_t
 2120 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags)
 2121 {
 2122         uma_slab_t slab;
 2123 
 2124         mtx_assert(&keg->uk_lock, MA_OWNED);
 2125         slab = NULL;
 2126 
 2127         for (;;) {
 2128                 /*
 2129                  * Find a slab with some space.  Prefer slabs that are partially
 2130                  * used over those that are totally full.  This helps to reduce
 2131                  * fragmentation.
 2132                  */
 2133                 if (keg->uk_free != 0) {
 2134                         if (!LIST_EMPTY(&keg->uk_part_slab)) {
 2135                                 slab = LIST_FIRST(&keg->uk_part_slab);
 2136                         } else {
 2137                                 slab = LIST_FIRST(&keg->uk_free_slab);
 2138                                 LIST_REMOVE(slab, us_link);
 2139                                 LIST_INSERT_HEAD(&keg->uk_part_slab, slab,
 2140                                     us_link);
 2141                         }
 2142                         MPASS(slab->us_keg == keg);
 2143                         return (slab);
 2144                 }
 2145 
 2146                 /*
 2147                  * M_NOVM means don't ask at all!
 2148                  */
 2149                 if (flags & M_NOVM)
 2150                         break;
 2151 
 2152                 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) {
 2153                         keg->uk_flags |= UMA_ZFLAG_FULL;
 2154                         /*
 2155                          * If this is not a multi-zone, set the FULL bit.
 2156                          * Otherwise slab_multi() takes care of it.
 2157                          */
 2158                         if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0)
 2159                                 zone->uz_flags |= UMA_ZFLAG_FULL;
 2160                         if (flags & M_NOWAIT)
 2161                                 break;
 2162                         msleep(keg, &keg->uk_lock, PVM, "keglimit", 0);
 2163                         continue;
 2164                 }
 2165                 keg->uk_recurse++;
 2166                 slab = keg_alloc_slab(keg, zone, flags);
 2167                 keg->uk_recurse--;
 2168                 /*
 2169                  * If we got a slab here it's safe to mark it partially used
 2170                  * and return.  We assume that the caller is going to remove
 2171                  * at least one item.
 2172                  */
 2173                 if (slab) {
 2174                         MPASS(slab->us_keg == keg);
 2175                         LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
 2176                         return (slab);
 2177                 }
 2178                 /*
 2179                  * We might not have been able to get a slab but another cpu
 2180                  * could have while we were unlocked.  Check again before we
 2181                  * fail.
 2182                  */
 2183                 flags |= M_NOVM;
 2184         }
 2185         return (slab);
 2186 }
 2187 
 2188 static inline void
 2189 zone_relock(uma_zone_t zone, uma_keg_t keg)
 2190 {
 2191         if (zone->uz_lock != &keg->uk_lock) {
 2192                 KEG_UNLOCK(keg);
 2193                 ZONE_LOCK(zone);
 2194         }
 2195 }
 2196 
 2197 static inline void
 2198 keg_relock(uma_keg_t keg, uma_zone_t zone)
 2199 {
 2200         if (zone->uz_lock != &keg->uk_lock) {
 2201                 ZONE_UNLOCK(zone);
 2202                 KEG_LOCK(keg);
 2203         }
 2204 }
 2205 
 2206 static uma_slab_t
 2207 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags)
 2208 {
 2209         uma_slab_t slab;
 2210 
 2211         if (keg == NULL)
 2212                 keg = zone_first_keg(zone);
 2213         /*
 2214          * This is to prevent us from recursively trying to allocate
 2215          * buckets.  The problem is that if an allocation forces us to
 2216          * grab a new bucket we will call page_alloc, which will go off
 2217          * and cause the vm to allocate vm_map_entries.  If we need new
 2218          * buckets there too we will recurse in kmem_alloc and bad
 2219          * things happen.  So instead we return a NULL bucket, and make
 2220          * the code that allocates buckets smart enough to deal with it
 2221          */
 2222         if (keg->uk_flags & UMA_ZFLAG_BUCKET && keg->uk_recurse != 0)
 2223                 return (NULL);
 2224 
 2225         for (;;) {
 2226                 slab = keg_fetch_slab(keg, zone, flags);
 2227                 if (slab)
 2228                         return (slab);
 2229                 if (flags & (M_NOWAIT | M_NOVM))
 2230                         break;
 2231         }
 2232         return (NULL);
 2233 }
 2234 
 2235 /*
 2236  * uma_zone_fetch_slab_multi:  Fetches a slab from one available keg.  Returns
 2237  * with the keg locked.  Caller must call zone_relock() afterwards if the
 2238  * zone lock is required.  On NULL the zone lock is held.
 2239  *
 2240  * The last pointer is used to seed the search.  It is not required.
 2241  */
 2242 static uma_slab_t
 2243 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags)
 2244 {
 2245         uma_klink_t klink;
 2246         uma_slab_t slab;
 2247         uma_keg_t keg;
 2248         int flags;
 2249         int empty;
 2250         int full;
 2251 
 2252         /*
 2253          * Don't wait on the first pass.  This will skip limit tests
 2254          * as well.  We don't want to block if we can find a provider
 2255          * without blocking.
 2256          */
 2257         flags = (rflags & ~M_WAITOK) | M_NOWAIT;
 2258         /*
 2259          * Use the last slab allocated as a hint for where to start
 2260          * the search.
 2261          */
 2262         if (last) {
 2263                 slab = keg_fetch_slab(last, zone, flags);
 2264                 if (slab)
 2265                         return (slab);
 2266                 zone_relock(zone, last);
 2267                 last = NULL;
 2268         }
 2269         /*
 2270          * Loop until we have a slab incase of transient failures
 2271          * while M_WAITOK is specified.  I'm not sure this is 100%
 2272          * required but we've done it for so long now.
 2273          */
 2274         for (;;) {
 2275                 empty = 0;
 2276                 full = 0;
 2277                 /*
 2278                  * Search the available kegs for slabs.  Be careful to hold the
 2279                  * correct lock while calling into the keg layer.
 2280                  */
 2281                 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) {
 2282                         keg = klink->kl_keg;
 2283                         keg_relock(keg, zone);
 2284                         if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) {
 2285                                 slab = keg_fetch_slab(keg, zone, flags);
 2286                                 if (slab)
 2287                                         return (slab);
 2288                         }
 2289                         if (keg->uk_flags & UMA_ZFLAG_FULL)
 2290                                 full++;
 2291                         else
 2292                                 empty++;
 2293                         zone_relock(zone, keg);
 2294                 }
 2295                 if (rflags & (M_NOWAIT | M_NOVM))
 2296                         break;
 2297                 flags = rflags;
 2298                 /*
 2299                  * All kegs are full.  XXX We can't atomically check all kegs
 2300                  * and sleep so just sleep for a short period and retry.
 2301                  */
 2302                 if (full && !empty) {
 2303                         zone->uz_flags |= UMA_ZFLAG_FULL;
 2304                         msleep(zone, zone->uz_lock, PVM, "zonelimit", hz/100);
 2305                         zone->uz_flags &= ~UMA_ZFLAG_FULL;
 2306                         continue;
 2307                 }
 2308         }
 2309         return (NULL);
 2310 }
 2311 
 2312 static void *
 2313 slab_alloc_item(uma_zone_t zone, uma_slab_t slab)
 2314 {
 2315         uma_keg_t keg;
 2316         uma_slabrefcnt_t slabref;
 2317         void *item;
 2318         u_int8_t freei;
 2319 
 2320         keg = slab->us_keg;
 2321         mtx_assert(&keg->uk_lock, MA_OWNED);
 2322 
 2323         freei = slab->us_firstfree;
 2324         if (keg->uk_flags & UMA_ZONE_REFCNT) {
 2325                 slabref = (uma_slabrefcnt_t)slab;
 2326                 slab->us_firstfree = slabref->us_freelist[freei].us_item;
 2327         } else {
 2328                 slab->us_firstfree = slab->us_freelist[freei].us_item;
 2329         }
 2330         item = slab->us_data + (keg->uk_rsize * freei);
 2331 
 2332         slab->us_freecount--;
 2333         keg->uk_free--;
 2334 #ifdef INVARIANTS
 2335         uma_dbg_alloc(zone, slab, item);
 2336 #endif
 2337         /* Move this slab to the full list */
 2338         if (slab->us_freecount == 0) {
 2339                 LIST_REMOVE(slab, us_link);
 2340                 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link);
 2341         }
 2342 
 2343         return (item);
 2344 }
 2345 
 2346 static int
 2347 zone_alloc_bucket(uma_zone_t zone, int flags)
 2348 {
 2349         uma_bucket_t bucket;
 2350         uma_slab_t slab;
 2351         uma_keg_t keg;
 2352         int16_t saved;
 2353         int max, origflags = flags;
 2354 
 2355         /*
 2356          * Try this zone's free list first so we don't allocate extra buckets.
 2357          */
 2358         if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
 2359                 KASSERT(bucket->ub_cnt == 0,
 2360                     ("zone_alloc_bucket: Bucket on free list is not empty."));
 2361                 LIST_REMOVE(bucket, ub_link);
 2362         } else {
 2363                 int bflags;
 2364 
 2365                 bflags = (flags & ~M_ZERO);
 2366                 if (zone->uz_flags & UMA_ZFLAG_CACHEONLY)
 2367                         bflags |= M_NOVM;
 2368 
 2369                 ZONE_UNLOCK(zone);
 2370                 bucket = bucket_alloc(zone->uz_count, bflags);
 2371                 ZONE_LOCK(zone);
 2372         }
 2373 
 2374         if (bucket == NULL) {
 2375                 return (0);
 2376         }
 2377 
 2378 #ifdef SMP
 2379         /*
 2380          * This code is here to limit the number of simultaneous bucket fills
 2381          * for any given zone to the number of per cpu caches in this zone. This
 2382          * is done so that we don't allocate more memory than we really need.
 2383          */
 2384         if (zone->uz_fills >= mp_ncpus)
 2385                 goto done;
 2386 
 2387 #endif
 2388         zone->uz_fills++;
 2389 
 2390         max = MIN(bucket->ub_entries, zone->uz_count);
 2391         /* Try to keep the buckets totally full */
 2392         saved = bucket->ub_cnt;
 2393         slab = NULL;
 2394         keg = NULL;
 2395         while (bucket->ub_cnt < max &&
 2396             (slab = zone->uz_slab(zone, keg, flags)) != NULL) {
 2397                 keg = slab->us_keg;
 2398                 while (slab->us_freecount && bucket->ub_cnt < max) {
 2399                         bucket->ub_bucket[bucket->ub_cnt++] =
 2400                             slab_alloc_item(zone, slab);
 2401                 }
 2402 
 2403                 /* Don't block on the next fill */
 2404                 flags |= M_NOWAIT;
 2405         }
 2406         if (slab)
 2407                 zone_relock(zone, keg);
 2408 
 2409         /*
 2410          * We unlock here because we need to call the zone's init.
 2411          * It should be safe to unlock because the slab dealt with
 2412          * above is already on the appropriate list within the keg
 2413          * and the bucket we filled is not yet on any list, so we
 2414          * own it.
 2415          */
 2416         if (zone->uz_init != NULL) {
 2417                 int i;
 2418 
 2419                 ZONE_UNLOCK(zone);
 2420                 for (i = saved; i < bucket->ub_cnt; i++)
 2421                         if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
 2422                             origflags) != 0)
 2423                                 break;
 2424                 /*
 2425                  * If we couldn't initialize the whole bucket, put the
 2426                  * rest back onto the freelist.
 2427                  */
 2428                 if (i != bucket->ub_cnt) {
 2429                         int j;
 2430 
 2431                         for (j = i; j < bucket->ub_cnt; j++) {
 2432                                 zone_free_item(zone, bucket->ub_bucket[j],
 2433                                     NULL, SKIP_FINI, 0);
 2434 #ifdef INVARIANTS
 2435                                 bucket->ub_bucket[j] = NULL;
 2436 #endif
 2437                         }
 2438                         bucket->ub_cnt = i;
 2439                 }
 2440                 ZONE_LOCK(zone);
 2441         }
 2442 
 2443         zone->uz_fills--;
 2444         if (bucket->ub_cnt != 0) {
 2445                 LIST_INSERT_HEAD(&zone->uz_full_bucket,
 2446                     bucket, ub_link);
 2447                 return (1);
 2448         }
 2449 #ifdef SMP
 2450 done:
 2451 #endif
 2452         bucket_free(bucket);
 2453 
 2454         return (0);
 2455 }
 2456 /*
 2457  * Allocates an item for an internal zone
 2458  *
 2459  * Arguments
 2460  *      zone   The zone to alloc for.
 2461  *      udata  The data to be passed to the constructor.
 2462  *      flags  M_WAITOK, M_NOWAIT, M_ZERO.
 2463  *
 2464  * Returns
 2465  *      NULL if there is no memory and M_NOWAIT is set
 2466  *      An item if successful
 2467  */
 2468 
 2469 static void *
 2470 zone_alloc_item(uma_zone_t zone, void *udata, int flags)
 2471 {
 2472         uma_slab_t slab;
 2473         void *item;
 2474 
 2475         item = NULL;
 2476 
 2477 #ifdef UMA_DEBUG_ALLOC
 2478         printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone);
 2479 #endif
 2480         ZONE_LOCK(zone);
 2481 
 2482         slab = zone->uz_slab(zone, NULL, flags);
 2483         if (slab == NULL) {
 2484                 zone->uz_fails++;
 2485                 ZONE_UNLOCK(zone);
 2486                 return (NULL);
 2487         }
 2488 
 2489         item = slab_alloc_item(zone, slab);
 2490 
 2491         zone_relock(zone, slab->us_keg);
 2492         zone->uz_allocs++;
 2493         ZONE_UNLOCK(zone);
 2494 
 2495         /*
 2496          * We have to call both the zone's init (not the keg's init)
 2497          * and the zone's ctor.  This is because the item is going from
 2498          * a keg slab directly to the user, and the user is expecting it
 2499          * to be both zone-init'd as well as zone-ctor'd.
 2500          */
 2501         if (zone->uz_init != NULL) {
 2502                 if (zone->uz_init(item, zone->uz_size, flags) != 0) {
 2503                         zone_free_item(zone, item, udata, SKIP_FINI,
 2504                             ZFREE_STATFAIL | ZFREE_STATFREE);
 2505                         return (NULL);
 2506                 }
 2507         }
 2508         if (zone->uz_ctor != NULL) {
 2509                 if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
 2510                         zone_free_item(zone, item, udata, SKIP_DTOR,
 2511                             ZFREE_STATFAIL | ZFREE_STATFREE);
 2512                         return (NULL);
 2513                 }
 2514         }
 2515         if (flags & M_ZERO)
 2516                 bzero(item, zone->uz_size);
 2517 
 2518         return (item);
 2519 }
 2520 
 2521 /* See uma.h */
 2522 void
 2523 uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
 2524 {
 2525         uma_cache_t cache;
 2526         uma_bucket_t bucket;
 2527         int bflags;
 2528         int cpu;
 2529 
 2530 #ifdef UMA_DEBUG_ALLOC_1
 2531         printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone);
 2532 #endif
 2533         CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread,
 2534             zone->uz_name);
 2535 
 2536         /* uma_zfree(..., NULL) does nothing, to match free(9). */
 2537         if (item == NULL)
 2538                 return;
 2539 
 2540         if (zone->uz_dtor)
 2541                 zone->uz_dtor(item, zone->uz_size, udata);
 2542 
 2543 #ifdef INVARIANTS
 2544         ZONE_LOCK(zone);
 2545         if (zone->uz_flags & UMA_ZONE_MALLOC)
 2546                 uma_dbg_free(zone, udata, item);
 2547         else
 2548                 uma_dbg_free(zone, NULL, item);
 2549         ZONE_UNLOCK(zone);
 2550 #endif
 2551         /*
 2552          * The race here is acceptable.  If we miss it we'll just have to wait
 2553          * a little longer for the limits to be reset.
 2554          */
 2555         if (zone->uz_flags & UMA_ZFLAG_FULL)
 2556                 goto zfree_internal;
 2557 
 2558         /*
 2559          * If possible, free to the per-CPU cache.  There are two
 2560          * requirements for safe access to the per-CPU cache: (1) the thread
 2561          * accessing the cache must not be preempted or yield during access,
 2562          * and (2) the thread must not migrate CPUs without switching which
 2563          * cache it accesses.  We rely on a critical section to prevent
 2564          * preemption and migration.  We release the critical section in
 2565          * order to acquire the zone mutex if we are unable to free to the
 2566          * current cache; when we re-acquire the critical section, we must
 2567          * detect and handle migration if it has occurred.
 2568          */
 2569 zfree_restart:
 2570         critical_enter();
 2571         cpu = curcpu;
 2572         cache = &zone->uz_cpu[cpu];
 2573 
 2574 zfree_start:
 2575         bucket = cache->uc_freebucket;
 2576 
 2577         if (bucket) {
 2578                 /*
 2579                  * Do we have room in our bucket? It is OK for this uz count
 2580                  * check to be slightly out of sync.
 2581                  */
 2582 
 2583                 if (bucket->ub_cnt < bucket->ub_entries) {
 2584                         KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL,
 2585                             ("uma_zfree: Freeing to non free bucket index."));
 2586                         bucket->ub_bucket[bucket->ub_cnt] = item;
 2587                         bucket->ub_cnt++;
 2588                         cache->uc_frees++;
 2589                         critical_exit();
 2590                         return;
 2591                 } else if (cache->uc_allocbucket) {
 2592 #ifdef UMA_DEBUG_ALLOC
 2593                         printf("uma_zfree: Swapping buckets.\n");
 2594 #endif
 2595                         /*
 2596                          * We have run out of space in our freebucket.
 2597                          * See if we can switch with our alloc bucket.
 2598                          */
 2599                         if (cache->uc_allocbucket->ub_cnt <
 2600                             cache->uc_freebucket->ub_cnt) {
 2601                                 bucket = cache->uc_freebucket;
 2602                                 cache->uc_freebucket = cache->uc_allocbucket;
 2603                                 cache->uc_allocbucket = bucket;
 2604                                 goto zfree_start;
 2605                         }
 2606                 }
 2607         }
 2608         /*
 2609          * We can get here for two reasons:
 2610          *
 2611          * 1) The buckets are NULL
 2612          * 2) The alloc and free buckets are both somewhat full.
 2613          *
 2614          * We must go back the zone, which requires acquiring the zone lock,
 2615          * which in turn means we must release and re-acquire the critical
 2616          * section.  Since the critical section is released, we may be
 2617          * preempted or migrate.  As such, make sure not to maintain any
 2618          * thread-local state specific to the cache from prior to releasing
 2619          * the critical section.
 2620          */
 2621         critical_exit();
 2622         ZONE_LOCK(zone);
 2623         critical_enter();
 2624         cpu = curcpu;
 2625         cache = &zone->uz_cpu[cpu];
 2626         if (cache->uc_freebucket != NULL) {
 2627                 if (cache->uc_freebucket->ub_cnt <
 2628                     cache->uc_freebucket->ub_entries) {
 2629                         ZONE_UNLOCK(zone);
 2630                         goto zfree_start;
 2631                 }
 2632                 if (cache->uc_allocbucket != NULL &&
 2633                     (cache->uc_allocbucket->ub_cnt <
 2634                     cache->uc_freebucket->ub_cnt)) {
 2635                         ZONE_UNLOCK(zone);
 2636                         goto zfree_start;
 2637                 }
 2638         }
 2639 
 2640         /* Since we have locked the zone we may as well send back our stats */
 2641         zone->uz_allocs += cache->uc_allocs;
 2642         cache->uc_allocs = 0;
 2643         zone->uz_frees += cache->uc_frees;
 2644         cache->uc_frees = 0;
 2645 
 2646         bucket = cache->uc_freebucket;
 2647         cache->uc_freebucket = NULL;
 2648 
 2649         /* Can we throw this on the zone full list? */
 2650         if (bucket != NULL) {
 2651 #ifdef UMA_DEBUG_ALLOC
 2652                 printf("uma_zfree: Putting old bucket on the free list.\n");
 2653 #endif
 2654                 /* ub_cnt is pointing to the last free item */
 2655                 KASSERT(bucket->ub_cnt != 0,
 2656                     ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
 2657                 LIST_INSERT_HEAD(&zone->uz_full_bucket,
 2658                     bucket, ub_link);
 2659         }
 2660         if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) {
 2661                 LIST_REMOVE(bucket, ub_link);
 2662                 ZONE_UNLOCK(zone);
 2663                 cache->uc_freebucket = bucket;
 2664                 goto zfree_start;
 2665         }
 2666         /* We are no longer associated with this CPU. */
 2667         critical_exit();
 2668 
 2669         /* And the zone.. */
 2670         ZONE_UNLOCK(zone);
 2671 
 2672 #ifdef UMA_DEBUG_ALLOC
 2673         printf("uma_zfree: Allocating new free bucket.\n");
 2674 #endif
 2675         bflags = M_NOWAIT;
 2676 
 2677         if (zone->uz_flags & UMA_ZFLAG_CACHEONLY)
 2678                 bflags |= M_NOVM;
 2679         bucket = bucket_alloc(zone->uz_count, bflags);
 2680         if (bucket) {
 2681                 ZONE_LOCK(zone);
 2682                 LIST_INSERT_HEAD(&zone->uz_free_bucket,
 2683                     bucket, ub_link);
 2684                 ZONE_UNLOCK(zone);
 2685                 goto zfree_restart;
 2686         }
 2687 
 2688         /*
 2689          * If nothing else caught this, we'll just do an internal free.
 2690          */
 2691 zfree_internal:
 2692         zone_free_item(zone, item, udata, SKIP_DTOR, ZFREE_STATFREE);
 2693 
 2694         return;
 2695 }
 2696 
 2697 /*
 2698  * Frees an item to an INTERNAL zone or allocates a free bucket
 2699  *
 2700  * Arguments:
 2701  *      zone   The zone to free to
 2702  *      item   The item we're freeing
 2703  *      udata  User supplied data for the dtor
 2704  *      skip   Skip dtors and finis
 2705  */
 2706 static void
 2707 zone_free_item(uma_zone_t zone, void *item, void *udata,
 2708     enum zfreeskip skip, int flags)
 2709 {
 2710         uma_slab_t slab;
 2711         uma_slabrefcnt_t slabref;
 2712         uma_keg_t keg;
 2713         u_int8_t *mem;
 2714         u_int8_t freei;
 2715         int clearfull;
 2716 
 2717         if (skip < SKIP_DTOR && zone->uz_dtor)
 2718                 zone->uz_dtor(item, zone->uz_size, udata);
 2719 
 2720         if (skip < SKIP_FINI && zone->uz_fini)
 2721                 zone->uz_fini(item, zone->uz_size);
 2722 
 2723         ZONE_LOCK(zone);
 2724 
 2725         if (flags & ZFREE_STATFAIL)
 2726                 zone->uz_fails++;
 2727         if (flags & ZFREE_STATFREE)
 2728                 zone->uz_frees++;
 2729 
 2730         if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) {
 2731                 mem = (u_int8_t *)((unsigned long)item & (~UMA_SLAB_MASK));
 2732                 keg = zone_first_keg(zone); /* Must only be one. */
 2733                 if (zone->uz_flags & UMA_ZONE_HASH) {
 2734                         slab = hash_sfind(&keg->uk_hash, mem);
 2735                 } else {
 2736                         mem += keg->uk_pgoff;
 2737                         slab = (uma_slab_t)mem;
 2738                 }
 2739         } else {
 2740                 /* This prevents redundant lookups via free(). */
 2741                 if ((zone->uz_flags & UMA_ZONE_MALLOC) && udata != NULL)
 2742                         slab = (uma_slab_t)udata;
 2743                 else
 2744                         slab = vtoslab((vm_offset_t)item);
 2745                 keg = slab->us_keg;
 2746                 keg_relock(keg, zone);
 2747         }
 2748         MPASS(keg == slab->us_keg);
 2749 
 2750         /* Do we need to remove from any lists? */
 2751         if (slab->us_freecount+1 == keg->uk_ipers) {
 2752                 LIST_REMOVE(slab, us_link);
 2753                 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
 2754         } else if (slab->us_freecount == 0) {
 2755                 LIST_REMOVE(slab, us_link);
 2756                 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
 2757         }
 2758 
 2759         /* Slab management stuff */
 2760         freei = ((unsigned long)item - (unsigned long)slab->us_data)
 2761                 / keg->uk_rsize;
 2762 
 2763 #ifdef INVARIANTS
 2764         if (!skip)
 2765                 uma_dbg_free(zone, slab, item);
 2766 #endif
 2767 
 2768         if (keg->uk_flags & UMA_ZONE_REFCNT) {
 2769                 slabref = (uma_slabrefcnt_t)slab;
 2770                 slabref->us_freelist[freei].us_item = slab->us_firstfree;
 2771         } else {
 2772                 slab->us_freelist[freei].us_item = slab->us_firstfree;
 2773         }
 2774         slab->us_firstfree = freei;
 2775         slab->us_freecount++;
 2776 
 2777         /* Zone statistics */
 2778         keg->uk_free++;
 2779 
 2780         clearfull = 0;
 2781         if (keg->uk_flags & UMA_ZFLAG_FULL) {
 2782                 if (keg->uk_pages < keg->uk_maxpages) {
 2783                         keg->uk_flags &= ~UMA_ZFLAG_FULL;
 2784                         clearfull = 1;
 2785                 }
 2786 
 2787                 /* 
 2788                  * We can handle one more allocation. Since we're clearing ZFLAG_FULL,
 2789                  * wake up all procs blocked on pages. This should be uncommon, so 
 2790                  * keeping this simple for now (rather than adding count of blocked 
 2791                  * threads etc).
 2792                  */
 2793                 wakeup(keg);
 2794         }
 2795         if (clearfull) {
 2796                 zone_relock(zone, keg);
 2797                 zone->uz_flags &= ~UMA_ZFLAG_FULL;
 2798                 wakeup(zone);
 2799                 ZONE_UNLOCK(zone);
 2800         } else
 2801                 KEG_UNLOCK(keg);
 2802 }
 2803 
 2804 /* See uma.h */
 2805 void
 2806 uma_zone_set_max(uma_zone_t zone, int nitems)
 2807 {
 2808         uma_keg_t keg;
 2809 
 2810         ZONE_LOCK(zone);
 2811         keg = zone_first_keg(zone);
 2812         keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera;
 2813         if (keg->uk_maxpages * keg->uk_ipers < nitems)
 2814                 keg->uk_maxpages += keg->uk_ppera;
 2815 
 2816         ZONE_UNLOCK(zone);
 2817 }
 2818 
 2819 /* See uma.h */
 2820 int
 2821 uma_zone_get_max(uma_zone_t zone)
 2822 {
 2823         int nitems;
 2824         uma_keg_t keg;
 2825 
 2826         ZONE_LOCK(zone);
 2827         keg = zone_first_keg(zone);
 2828         nitems = keg->uk_maxpages * keg->uk_ipers;
 2829         ZONE_UNLOCK(zone);
 2830 
 2831         return (nitems);
 2832 }
 2833 
 2834 /* See uma.h */
 2835 int
 2836 uma_zone_get_cur(uma_zone_t zone)
 2837 {
 2838         int64_t nitems;
 2839         u_int i;
 2840 
 2841         ZONE_LOCK(zone);
 2842         nitems = zone->uz_allocs - zone->uz_frees;
 2843         CPU_FOREACH(i) {
 2844                 /*
 2845                  * See the comment in sysctl_vm_zone_stats() regarding the
 2846                  * safety of accessing the per-cpu caches. With the zone lock
 2847                  * held, it is safe, but can potentially result in stale data.
 2848                  */
 2849                 nitems += zone->uz_cpu[i].uc_allocs -
 2850                     zone->uz_cpu[i].uc_frees;
 2851         }
 2852         ZONE_UNLOCK(zone);
 2853 
 2854         return (nitems < 0 ? 0 : nitems);
 2855 }
 2856 
 2857 /* See uma.h */
 2858 void
 2859 uma_zone_set_init(uma_zone_t zone, uma_init uminit)
 2860 {
 2861         uma_keg_t keg;
 2862 
 2863         ZONE_LOCK(zone);
 2864         keg = zone_first_keg(zone);
 2865         KASSERT(keg->uk_pages == 0,
 2866             ("uma_zone_set_init on non-empty keg"));
 2867         keg->uk_init = uminit;
 2868         ZONE_UNLOCK(zone);
 2869 }
 2870 
 2871 /* See uma.h */
 2872 void
 2873 uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
 2874 {
 2875         uma_keg_t keg;
 2876 
 2877         ZONE_LOCK(zone);
 2878         keg = zone_first_keg(zone);
 2879         KASSERT(keg->uk_pages == 0,
 2880             ("uma_zone_set_fini on non-empty keg"));
 2881         keg->uk_fini = fini;
 2882         ZONE_UNLOCK(zone);
 2883 }
 2884 
 2885 /* See uma.h */
 2886 void
 2887 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
 2888 {
 2889         ZONE_LOCK(zone);
 2890         KASSERT(zone_first_keg(zone)->uk_pages == 0,
 2891             ("uma_zone_set_zinit on non-empty keg"));
 2892         zone->uz_init = zinit;
 2893         ZONE_UNLOCK(zone);
 2894 }
 2895 
 2896 /* See uma.h */
 2897 void
 2898 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
 2899 {
 2900         ZONE_LOCK(zone);
 2901         KASSERT(zone_first_keg(zone)->uk_pages == 0,
 2902             ("uma_zone_set_zfini on non-empty keg"));
 2903         zone->uz_fini = zfini;
 2904         ZONE_UNLOCK(zone);
 2905 }
 2906 
 2907 /* See uma.h */
 2908 /* XXX uk_freef is not actually used with the zone locked */
 2909 void
 2910 uma_zone_set_freef(uma_zone_t zone, uma_free freef)
 2911 {
 2912 
 2913         ZONE_LOCK(zone);
 2914         zone_first_keg(zone)->uk_freef = freef;
 2915         ZONE_UNLOCK(zone);
 2916 }
 2917 
 2918 /* See uma.h */
 2919 /* XXX uk_allocf is not actually used with the zone locked */
 2920 void
 2921 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
 2922 {
 2923         uma_keg_t keg;
 2924 
 2925         ZONE_LOCK(zone);
 2926         keg = zone_first_keg(zone);
 2927         keg->uk_flags |= UMA_ZFLAG_PRIVALLOC;
 2928         keg->uk_allocf = allocf;
 2929         ZONE_UNLOCK(zone);
 2930 }
 2931 
 2932 /* See uma.h */
 2933 int
 2934 uma_zone_set_obj(uma_zone_t zone, struct vm_object *obj, int count)
 2935 {
 2936         uma_keg_t keg;
 2937         vm_offset_t kva;
 2938         int pages;
 2939 
 2940         keg = zone_first_keg(zone);
 2941         pages = count / keg->uk_ipers;
 2942 
 2943         if (pages * keg->uk_ipers < count)
 2944                 pages++;
 2945 
 2946         kva = kmem_alloc_nofault(kernel_map, pages * UMA_SLAB_SIZE);
 2947 
 2948         if (kva == 0)
 2949                 return (0);
 2950         if (obj == NULL) {
 2951                 obj = vm_object_allocate(OBJT_DEFAULT,
 2952                     pages);
 2953         } else {
 2954                 VM_OBJECT_LOCK_INIT(obj, "uma object");
 2955                 _vm_object_allocate(OBJT_DEFAULT,
 2956                     pages, obj);
 2957         }
 2958         ZONE_LOCK(zone);
 2959         keg->uk_kva = kva;
 2960         keg->uk_obj = obj;
 2961         keg->uk_maxpages = pages;
 2962         keg->uk_allocf = obj_alloc;
 2963         keg->uk_flags |= UMA_ZONE_NOFREE | UMA_ZFLAG_PRIVALLOC;
 2964         ZONE_UNLOCK(zone);
 2965         return (1);
 2966 }
 2967 
 2968 /* See uma.h */
 2969 void
 2970 uma_prealloc(uma_zone_t zone, int items)
 2971 {
 2972         int slabs;
 2973         uma_slab_t slab;
 2974         uma_keg_t keg;
 2975 
 2976         keg = zone_first_keg(zone);
 2977         ZONE_LOCK(zone);
 2978         slabs = items / keg->uk_ipers;
 2979         if (slabs * keg->uk_ipers < items)
 2980                 slabs++;
 2981         while (slabs > 0) {
 2982                 slab = keg_alloc_slab(keg, zone, M_WAITOK);
 2983                 if (slab == NULL)
 2984                         break;
 2985                 MPASS(slab->us_keg == keg);
 2986                 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
 2987                 slabs--;
 2988         }
 2989         ZONE_UNLOCK(zone);
 2990 }
 2991 
 2992 /* See uma.h */
 2993 u_int32_t *
 2994 uma_find_refcnt(uma_zone_t zone, void *item)
 2995 {
 2996         uma_slabrefcnt_t slabref;
 2997         uma_keg_t keg;
 2998         u_int32_t *refcnt;
 2999         int idx;
 3000 
 3001         slabref = (uma_slabrefcnt_t)vtoslab((vm_offset_t)item &
 3002             (~UMA_SLAB_MASK));
 3003         keg = slabref->us_keg;
 3004         KASSERT(slabref != NULL && slabref->us_keg->uk_flags & UMA_ZONE_REFCNT,
 3005             ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT"));
 3006         idx = ((unsigned long)item - (unsigned long)slabref->us_data)
 3007             / keg->uk_rsize;
 3008         refcnt = &slabref->us_freelist[idx].us_refcnt;
 3009         return refcnt;
 3010 }
 3011 
 3012 /* See uma.h */
 3013 void
 3014 uma_reclaim(void)
 3015 {
 3016 #ifdef UMA_DEBUG
 3017         printf("UMA: vm asked us to release pages!\n");
 3018 #endif
 3019         bucket_enable();
 3020         zone_foreach(zone_drain);
 3021         /*
 3022          * Some slabs may have been freed but this zone will be visited early
 3023          * we visit again so that we can free pages that are empty once other
 3024          * zones are drained.  We have to do the same for buckets.
 3025          */
 3026         zone_drain(slabzone);
 3027         zone_drain(slabrefzone);
 3028         bucket_zone_drain();
 3029 }
 3030 
 3031 /* See uma.h */
 3032 int
 3033 uma_zone_exhausted(uma_zone_t zone)
 3034 {
 3035         int full;
 3036 
 3037         ZONE_LOCK(zone);
 3038         full = (zone->uz_flags & UMA_ZFLAG_FULL);
 3039         ZONE_UNLOCK(zone);
 3040         return (full);  
 3041 }
 3042 
 3043 int
 3044 uma_zone_exhausted_nolock(uma_zone_t zone)
 3045 {
 3046         return (zone->uz_flags & UMA_ZFLAG_FULL);
 3047 }
 3048 
 3049 void *
 3050 uma_large_malloc(int size, int wait)
 3051 {
 3052         void *mem;
 3053         uma_slab_t slab;
 3054         u_int8_t flags;
 3055 
 3056         slab = zone_alloc_item(slabzone, NULL, wait);
 3057         if (slab == NULL)
 3058                 return (NULL);
 3059         mem = page_alloc(NULL, size, &flags, wait);
 3060         if (mem) {
 3061                 vsetslab((vm_offset_t)mem, slab);
 3062                 slab->us_data = mem;
 3063                 slab->us_flags = flags | UMA_SLAB_MALLOC;
 3064                 slab->us_size = size;
 3065         } else {
 3066                 zone_free_item(slabzone, slab, NULL, SKIP_NONE,
 3067                     ZFREE_STATFAIL | ZFREE_STATFREE);
 3068         }
 3069 
 3070         return (mem);
 3071 }
 3072 
 3073 void
 3074 uma_large_free(uma_slab_t slab)
 3075 {
 3076         vsetobj((vm_offset_t)slab->us_data, kmem_object);
 3077         page_free(slab->us_data, slab->us_size, slab->us_flags);
 3078         zone_free_item(slabzone, slab, NULL, SKIP_NONE, ZFREE_STATFREE);
 3079 }
 3080 
 3081 void
 3082 uma_print_stats(void)
 3083 {
 3084         zone_foreach(uma_print_zone);
 3085 }
 3086 
 3087 static void
 3088 slab_print(uma_slab_t slab)
 3089 {
 3090         printf("slab: keg %p, data %p, freecount %d, firstfree %d\n",
 3091                 slab->us_keg, slab->us_data, slab->us_freecount,
 3092                 slab->us_firstfree);
 3093 }
 3094 
 3095 static void
 3096 cache_print(uma_cache_t cache)
 3097 {
 3098         printf("alloc: %p(%d), free: %p(%d)\n",
 3099                 cache->uc_allocbucket,
 3100                 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0,
 3101                 cache->uc_freebucket,
 3102                 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0);
 3103 }
 3104 
 3105 static void
 3106 uma_print_keg(uma_keg_t keg)
 3107 {
 3108         uma_slab_t slab;
 3109 
 3110         printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d "
 3111             "out %d free %d limit %d\n",
 3112             keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags,
 3113             keg->uk_ipers, keg->uk_ppera,
 3114             (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free,
 3115             (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers);
 3116         printf("Part slabs:\n");
 3117         LIST_FOREACH(slab, &keg->uk_part_slab, us_link)
 3118                 slab_print(slab);
 3119         printf("Free slabs:\n");
 3120         LIST_FOREACH(slab, &keg->uk_free_slab, us_link)
 3121                 slab_print(slab);
 3122         printf("Full slabs:\n");
 3123         LIST_FOREACH(slab, &keg->uk_full_slab, us_link)
 3124                 slab_print(slab);
 3125 }
 3126 
 3127 void
 3128 uma_print_zone(uma_zone_t zone)
 3129 {
 3130         uma_cache_t cache;
 3131         uma_klink_t kl;
 3132         int i;
 3133 
 3134         printf("zone: %s(%p) size %d flags %#x\n",
 3135             zone->uz_name, zone, zone->uz_size, zone->uz_flags);
 3136         LIST_FOREACH(kl, &zone->uz_kegs, kl_link)
 3137                 uma_print_keg(kl->kl_keg);
 3138         CPU_FOREACH(i) {
 3139                 cache = &zone->uz_cpu[i];
 3140                 printf("CPU %d Cache:\n", i);
 3141                 cache_print(cache);
 3142         }
 3143 }
 3144 
 3145 #ifdef DDB
 3146 /*
 3147  * Generate statistics across both the zone and its per-cpu cache's.  Return
 3148  * desired statistics if the pointer is non-NULL for that statistic.
 3149  *
 3150  * Note: does not update the zone statistics, as it can't safely clear the
 3151  * per-CPU cache statistic.
 3152  *
 3153  * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't
 3154  * safe from off-CPU; we should modify the caches to track this information
 3155  * directly so that we don't have to.
 3156  */
 3157 static void
 3158 uma_zone_sumstat(uma_zone_t z, int *cachefreep, u_int64_t *allocsp,
 3159     u_int64_t *freesp)
 3160 {
 3161         uma_cache_t cache;
 3162         u_int64_t allocs, frees;
 3163         int cachefree, cpu;
 3164 
 3165         allocs = frees = 0;
 3166         cachefree = 0;
 3167         CPU_FOREACH(cpu) {
 3168                 cache = &z->uz_cpu[cpu];
 3169                 if (cache->uc_allocbucket != NULL)
 3170                         cachefree += cache->uc_allocbucket->ub_cnt;
 3171                 if (cache->uc_freebucket != NULL)
 3172                         cachefree += cache->uc_freebucket->ub_cnt;
 3173                 allocs += cache->uc_allocs;
 3174                 frees += cache->uc_frees;
 3175         }
 3176         allocs += z->uz_allocs;
 3177         frees += z->uz_frees;
 3178         if (cachefreep != NULL)
 3179                 *cachefreep = cachefree;
 3180         if (allocsp != NULL)
 3181                 *allocsp = allocs;
 3182         if (freesp != NULL)
 3183                 *freesp = frees;
 3184 }
 3185 #endif /* DDB */
 3186 
 3187 static int
 3188 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
 3189 {
 3190         uma_keg_t kz;
 3191         uma_zone_t z;
 3192         int count;
 3193 
 3194         count = 0;
 3195         mtx_lock(&uma_mtx);
 3196         LIST_FOREACH(kz, &uma_kegs, uk_link) {
 3197                 LIST_FOREACH(z, &kz->uk_zones, uz_link)
 3198                         count++;
 3199         }
 3200         mtx_unlock(&uma_mtx);
 3201         return (sysctl_handle_int(oidp, &count, 0, req));
 3202 }
 3203 
 3204 static int
 3205 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
 3206 {
 3207         struct uma_stream_header ush;
 3208         struct uma_type_header uth;
 3209         struct uma_percpu_stat ups;
 3210         uma_bucket_t bucket;
 3211         struct sbuf sbuf;
 3212         uma_cache_t cache;
 3213         uma_klink_t kl;
 3214         uma_keg_t kz;
 3215         uma_zone_t z;
 3216         uma_keg_t k;
 3217         char *buffer;
 3218         int buflen, count, error, i;
 3219 
 3220         mtx_lock(&uma_mtx);
 3221 restart:
 3222         mtx_assert(&uma_mtx, MA_OWNED);
 3223         count = 0;
 3224         LIST_FOREACH(kz, &uma_kegs, uk_link) {
 3225                 LIST_FOREACH(z, &kz->uk_zones, uz_link)
 3226                         count++;
 3227         }
 3228         mtx_unlock(&uma_mtx);
 3229 
 3230         buflen = sizeof(ush) + count * (sizeof(uth) + sizeof(ups) *
 3231             (mp_maxid + 1)) + 1;
 3232         buffer = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO);
 3233 
 3234         mtx_lock(&uma_mtx);
 3235         i = 0;
 3236         LIST_FOREACH(kz, &uma_kegs, uk_link) {
 3237                 LIST_FOREACH(z, &kz->uk_zones, uz_link)
 3238                         i++;
 3239         }
 3240         if (i > count) {
 3241                 free(buffer, M_TEMP);
 3242                 goto restart;
 3243         }
 3244         count =  i;
 3245 
 3246         sbuf_new(&sbuf, buffer, buflen, SBUF_FIXEDLEN);
 3247 
 3248         /*
 3249          * Insert stream header.
 3250          */
 3251         bzero(&ush, sizeof(ush));
 3252         ush.ush_version = UMA_STREAM_VERSION;
 3253         ush.ush_maxcpus = (mp_maxid + 1);
 3254         ush.ush_count = count;
 3255         if (sbuf_bcat(&sbuf, &ush, sizeof(ush)) < 0) {
 3256                 mtx_unlock(&uma_mtx);
 3257                 error = ENOMEM;
 3258                 goto out;
 3259         }
 3260 
 3261         LIST_FOREACH(kz, &uma_kegs, uk_link) {
 3262                 LIST_FOREACH(z, &kz->uk_zones, uz_link) {
 3263                         bzero(&uth, sizeof(uth));
 3264                         ZONE_LOCK(z);
 3265                         strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
 3266                         uth.uth_align = kz->uk_align;
 3267                         uth.uth_size = kz->uk_size;
 3268                         uth.uth_rsize = kz->uk_rsize;
 3269                         LIST_FOREACH(kl, &z->uz_kegs, kl_link) {
 3270                                 k = kl->kl_keg;
 3271                                 uth.uth_maxpages += k->uk_maxpages;
 3272                                 uth.uth_pages += k->uk_pages;
 3273                                 uth.uth_keg_free += k->uk_free;
 3274                                 uth.uth_limit = (k->uk_maxpages / k->uk_ppera)
 3275                                     * k->uk_ipers;
 3276                         }
 3277 
 3278                         /*
 3279                          * A zone is secondary is it is not the first entry
 3280                          * on the keg's zone list.
 3281                          */
 3282                         if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
 3283                             (LIST_FIRST(&kz->uk_zones) != z))
 3284                                 uth.uth_zone_flags = UTH_ZONE_SECONDARY;
 3285 
 3286                         LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link)
 3287                                 uth.uth_zone_free += bucket->ub_cnt;
 3288                         uth.uth_allocs = z->uz_allocs;
 3289                         uth.uth_frees = z->uz_frees;
 3290                         uth.uth_fails = z->uz_fails;
 3291                         if (sbuf_bcat(&sbuf, &uth, sizeof(uth)) < 0) {
 3292                                 ZONE_UNLOCK(z);
 3293                                 mtx_unlock(&uma_mtx);
 3294                                 error = ENOMEM;
 3295                                 goto out;
 3296                         }
 3297                         /*
 3298                          * While it is not normally safe to access the cache
 3299                          * bucket pointers while not on the CPU that owns the
 3300                          * cache, we only allow the pointers to be exchanged
 3301                          * without the zone lock held, not invalidated, so
 3302                          * accept the possible race associated with bucket
 3303                          * exchange during monitoring.
 3304                          */
 3305                         for (i = 0; i < (mp_maxid + 1); i++) {
 3306                                 bzero(&ups, sizeof(ups));
 3307                                 if (kz->uk_flags & UMA_ZFLAG_INTERNAL)
 3308                                         goto skip;
 3309                                 if (CPU_ABSENT(i))
 3310                                         goto skip;
 3311                                 cache = &z->uz_cpu[i];
 3312                                 if (cache->uc_allocbucket != NULL)
 3313                                         ups.ups_cache_free +=
 3314                                             cache->uc_allocbucket->ub_cnt;
 3315                                 if (cache->uc_freebucket != NULL)
 3316                                         ups.ups_cache_free +=
 3317                                             cache->uc_freebucket->ub_cnt;
 3318                                 ups.ups_allocs = cache->uc_allocs;
 3319                                 ups.ups_frees = cache->uc_frees;
 3320 skip:
 3321                                 if (sbuf_bcat(&sbuf, &ups, sizeof(ups)) < 0) {
 3322                                         ZONE_UNLOCK(z);
 3323                                         mtx_unlock(&uma_mtx);
 3324                                         error = ENOMEM;
 3325                                         goto out;
 3326                                 }
 3327                         }
 3328                         ZONE_UNLOCK(z);
 3329                 }
 3330         }
 3331         mtx_unlock(&uma_mtx);
 3332         sbuf_finish(&sbuf);
 3333         error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
 3334 out:
 3335         free(buffer, M_TEMP);
 3336         return (error);
 3337 }
 3338 
 3339 #ifdef DDB
 3340 DB_SHOW_COMMAND(uma, db_show_uma)
 3341 {
 3342         u_int64_t allocs, frees;
 3343         uma_bucket_t bucket;
 3344         uma_keg_t kz;
 3345         uma_zone_t z;
 3346         int cachefree;
 3347 
 3348         db_printf("%18s %8s %8s %8s %12s\n", "Zone", "Size", "Used", "Free",
 3349             "Requests");
 3350         LIST_FOREACH(kz, &uma_kegs, uk_link) {
 3351                 LIST_FOREACH(z, &kz->uk_zones, uz_link) {
 3352                         if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
 3353                                 allocs = z->uz_allocs;
 3354                                 frees = z->uz_frees;
 3355                                 cachefree = 0;
 3356                         } else
 3357                                 uma_zone_sumstat(z, &cachefree, &allocs,
 3358                                     &frees);
 3359                         if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
 3360                             (LIST_FIRST(&kz->uk_zones) != z)))
 3361                                 cachefree += kz->uk_free;
 3362                         LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link)
 3363                                 cachefree += bucket->ub_cnt;
 3364                         db_printf("%18s %8ju %8jd %8d %12ju\n", z->uz_name,
 3365                             (uintmax_t)kz->uk_size,
 3366                             (intmax_t)(allocs - frees), cachefree,
 3367                             (uintmax_t)allocs);
 3368                         if (db_pager_quit)
 3369                                 return;
 3370                 }
 3371         }
 3372 }
 3373 #endif

Cache object: 3b5095b87c85ee39f3fded8c4cae3fb9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.