FreeBSD/Linux Kernel Cross Reference
sys/vm/uma_int.h
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org>
5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * $FreeBSD$
30 *
31 */
32
33 #include <sys/counter.h>
34 #include <sys/_bitset.h>
35 #include <sys/_domainset.h>
36 #include <sys/_task.h>
37
38 /*
39 * This file includes definitions, structures, prototypes, and inlines that
40 * should not be used outside of the actual implementation of UMA.
41 */
42
43 /*
44 * The brief summary; Zones describe unique allocation types. Zones are
45 * organized into per-CPU caches which are filled by buckets. Buckets are
46 * organized according to memory domains. Buckets are filled from kegs which
47 * are also organized according to memory domains. Kegs describe a unique
48 * allocation type, backend memory provider, and layout. Kegs are associated
49 * with one or more zones and zones reference one or more kegs. Kegs provide
50 * slabs which are virtually contiguous collections of pages. Each slab is
51 * broken down int one or more items that will satisfy an individual allocation.
52 *
53 * Allocation is satisfied in the following order:
54 * 1) Per-CPU cache
55 * 2) Per-domain cache of buckets
56 * 3) Slab from any of N kegs
57 * 4) Backend page provider
58 *
59 * More detail on individual objects is contained below:
60 *
61 * Kegs contain lists of slabs which are stored in either the full bin, empty
62 * bin, or partially allocated bin, to reduce fragmentation. They also contain
63 * the user supplied value for size, which is adjusted for alignment purposes
64 * and rsize is the result of that. The Keg also stores information for
65 * managing a hash of page addresses that maps pages to uma_slab_t structures
66 * for pages that don't have embedded uma_slab_t's.
67 *
68 * Keg slab lists are organized by memory domain to support NUMA allocation
69 * policies. By default allocations are spread across domains to reduce the
70 * potential for hotspots. Special keg creation flags may be specified to
71 * prefer location allocation. However there is no strict enforcement as frees
72 * may happen on any CPU and these are returned to the CPU-local cache
73 * regardless of the originating domain.
74 *
75 * The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may
76 * be allocated off the page from a special slab zone. The free list within a
77 * slab is managed with a bitmask. For item sizes that would yield more than
78 * 10% memory waste we potentially allocate a separate uma_slab_t if this will
79 * improve the number of items per slab that will fit.
80 *
81 * The only really gross cases, with regards to memory waste, are for those
82 * items that are just over half the page size. You can get nearly 50% waste,
83 * so you fall back to the memory footprint of the power of two allocator. I
84 * have looked at memory allocation sizes on many of the machines available to
85 * me, and there does not seem to be an abundance of allocations at this range
86 * so at this time it may not make sense to optimize for it. This can, of
87 * course, be solved with dynamic slab sizes.
88 *
89 * Kegs may serve multiple Zones but by far most of the time they only serve
90 * one. When a Zone is created, a Keg is allocated and setup for it. While
91 * the backing Keg stores slabs, the Zone caches Buckets of items allocated
92 * from the slabs. Each Zone is equipped with an init/fini and ctor/dtor
93 * pair, as well as with its own set of small per-CPU caches, layered above
94 * the Zone's general Bucket cache.
95 *
96 * The PCPU caches are protected by critical sections, and may be accessed
97 * safely only from their associated CPU, while the Zones backed by the same
98 * Keg all share a common Keg lock (to coalesce contention on the backing
99 * slabs). The backing Keg typically only serves one Zone but in the case of
100 * multiple Zones, one of the Zones is considered the Primary Zone and all
101 * Zone-related stats from the Keg are done in the Primary Zone. For an
102 * example of a Multi-Zone setup, refer to the Mbuf allocation code.
103 */
104
105 /*
106 * This is the representation for normal (Non OFFPAGE slab)
107 *
108 * i == item
109 * s == slab pointer
110 *
111 * <---------------- Page (UMA_SLAB_SIZE) ------------------>
112 * ___________________________________________________________
113 * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___________ |
114 * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header||
115 * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________||
116 * |___________________________________________________________|
117 *
118 *
119 * This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE.
120 *
121 * ___________________________________________________________
122 * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
123 * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |
124 * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |
125 * |___________________________________________________________|
126 * ___________ ^
127 * |slab header| |
128 * |___________|---*
129 *
130 */
131
132 #ifndef VM_UMA_INT_H
133 #define VM_UMA_INT_H
134
135 #define UMA_SLAB_SIZE PAGE_SIZE /* How big are our slabs? */
136 #define UMA_SLAB_MASK (PAGE_SIZE - 1) /* Mask to get back to the page */
137 #define UMA_SLAB_SHIFT PAGE_SHIFT /* Number of bits PAGE_MASK */
138
139 /* Max waste percentage before going to off page slab management */
140 #define UMA_MAX_WASTE 10
141
142 /* Max size of a CACHESPREAD slab. */
143 #define UMA_CACHESPREAD_MAX_SIZE (128 * 1024)
144
145 /*
146 * These flags must not overlap with the UMA_ZONE flags specified in uma.h.
147 */
148 #define UMA_ZFLAG_OFFPAGE 0x00200000 /*
149 * Force the slab structure
150 * allocation off of the real
151 * memory.
152 */
153 #define UMA_ZFLAG_HASH 0x00400000 /*
154 * Use a hash table instead of
155 * caching information in the
156 * vm_page.
157 */
158 #define UMA_ZFLAG_VTOSLAB 0x00800000 /*
159 * Zone uses vtoslab for
160 * lookup.
161 */
162 #define UMA_ZFLAG_CTORDTOR 0x01000000 /* Zone has ctor/dtor set. */
163 #define UMA_ZFLAG_LIMIT 0x02000000 /* Zone has limit set. */
164 #define UMA_ZFLAG_CACHE 0x04000000 /* uma_zcache_create()d it */
165 #define UMA_ZFLAG_BUCKET 0x10000000 /* Bucket zone. */
166 #define UMA_ZFLAG_INTERNAL 0x20000000 /* No offpage no PCPU. */
167 #define UMA_ZFLAG_TRASH 0x40000000 /* Add trash ctor/dtor. */
168
169 #define UMA_ZFLAG_INHERIT \
170 (UMA_ZFLAG_OFFPAGE | UMA_ZFLAG_HASH | UMA_ZFLAG_VTOSLAB | \
171 UMA_ZFLAG_BUCKET | UMA_ZFLAG_INTERNAL)
172
173 #define PRINT_UMA_ZFLAGS "\2" \
174 "\37TRASH" \
175 "\36INTERNAL" \
176 "\35BUCKET" \
177 "\33CACHE" \
178 "\32LIMIT" \
179 "\31CTORDTOR" \
180 "\30VTOSLAB" \
181 "\27HASH" \
182 "\26OFFPAGE" \
183 "\23SMR" \
184 "\22ROUNDROBIN" \
185 "\21FIRSTTOUCH" \
186 "\20PCPU" \
187 "\17NODUMP" \
188 "\16CACHESPREAD" \
189 "\14MAXBUCKET" \
190 "\13NOBUCKET" \
191 "\12SECONDARY" \
192 "\11NOTPAGE" \
193 "\10VM" \
194 "\7MTXCLASS" \
195 "\6NOFREE" \
196 "\5MALLOC" \
197 "\4NOTOUCH" \
198 "\3CONTIG" \
199 "\2ZINIT"
200
201 /*
202 * Hash table for freed address -> slab translation.
203 *
204 * Only zones with memory not touchable by the allocator use the
205 * hash table. Otherwise slabs are found with vtoslab().
206 */
207 #define UMA_HASH_SIZE_INIT 32
208
209 #define UMA_HASH(h, s) ((((uintptr_t)s) >> UMA_SLAB_SHIFT) & (h)->uh_hashmask)
210
211 #define UMA_HASH_INSERT(h, s, mem) \
212 LIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h), \
213 (mem))], slab_tohashslab(s), uhs_hlink)
214
215 #define UMA_HASH_REMOVE(h, s) \
216 LIST_REMOVE(slab_tohashslab(s), uhs_hlink)
217
218 LIST_HEAD(slabhashhead, uma_hash_slab);
219
220 struct uma_hash {
221 struct slabhashhead *uh_slab_hash; /* Hash table for slabs */
222 u_int uh_hashsize; /* Current size of the hash table */
223 u_int uh_hashmask; /* Mask used during hashing */
224 };
225
226 /*
227 * Align field or structure to cache 'sector' in intel terminology. This
228 * is more efficient with adjacent line prefetch.
229 */
230 #if defined(__amd64__) || defined(__powerpc64__)
231 #define UMA_SUPER_ALIGN (CACHE_LINE_SIZE * 2)
232 #else
233 #define UMA_SUPER_ALIGN CACHE_LINE_SIZE
234 #endif
235
236 #define UMA_ALIGN __aligned(UMA_SUPER_ALIGN)
237
238 /*
239 * The uma_bucket structure is used to queue and manage buckets divorced
240 * from per-cpu caches. They are loaded into uma_cache_bucket structures
241 * for use.
242 */
243 struct uma_bucket {
244 STAILQ_ENTRY(uma_bucket) ub_link; /* Link into the zone */
245 int16_t ub_cnt; /* Count of items in bucket. */
246 int16_t ub_entries; /* Max items. */
247 smr_seq_t ub_seq; /* SMR sequence number. */
248 void *ub_bucket[]; /* actual allocation storage */
249 };
250
251 typedef struct uma_bucket * uma_bucket_t;
252
253 /*
254 * The uma_cache_bucket structure is statically allocated on each per-cpu
255 * cache. Its use reduces branches and cache misses in the fast path.
256 */
257 struct uma_cache_bucket {
258 uma_bucket_t ucb_bucket;
259 int16_t ucb_cnt;
260 int16_t ucb_entries;
261 uint32_t ucb_spare;
262 };
263
264 typedef struct uma_cache_bucket * uma_cache_bucket_t;
265
266 /*
267 * The uma_cache structure is allocated for each cpu for every zone
268 * type. This optimizes synchronization out of the allocator fast path.
269 */
270 struct uma_cache {
271 struct uma_cache_bucket uc_freebucket; /* Bucket we're freeing to */
272 struct uma_cache_bucket uc_allocbucket; /* Bucket to allocate from */
273 struct uma_cache_bucket uc_crossbucket; /* cross domain bucket */
274 uint64_t uc_allocs; /* Count of allocations */
275 uint64_t uc_frees; /* Count of frees */
276 } UMA_ALIGN;
277
278 typedef struct uma_cache * uma_cache_t;
279
280 LIST_HEAD(slabhead, uma_slab);
281
282 /*
283 * The cache structure pads perfectly into 64 bytes so we use spare
284 * bits from the embedded cache buckets to store information from the zone
285 * and keep all fast-path allocations accessing a single per-cpu line.
286 */
287 static inline void
288 cache_set_uz_flags(uma_cache_t cache, uint32_t flags)
289 {
290
291 cache->uc_freebucket.ucb_spare = flags;
292 }
293
294 static inline void
295 cache_set_uz_size(uma_cache_t cache, uint32_t size)
296 {
297
298 cache->uc_allocbucket.ucb_spare = size;
299 }
300
301 static inline uint32_t
302 cache_uz_flags(uma_cache_t cache)
303 {
304
305 return (cache->uc_freebucket.ucb_spare);
306 }
307
308 static inline uint32_t
309 cache_uz_size(uma_cache_t cache)
310 {
311
312 return (cache->uc_allocbucket.ucb_spare);
313 }
314
315 /*
316 * Per-domain slab lists. Embedded in the kegs.
317 */
318 struct uma_domain {
319 struct mtx_padalign ud_lock; /* Lock for the domain lists. */
320 struct slabhead ud_part_slab; /* partially allocated slabs */
321 struct slabhead ud_free_slab; /* completely unallocated slabs */
322 struct slabhead ud_full_slab; /* fully allocated slabs */
323 uint32_t ud_pages; /* Total page count */
324 uint32_t ud_free_items; /* Count of items free in all slabs */
325 uint32_t ud_free_slabs; /* Count of free slabs */
326 } __aligned(CACHE_LINE_SIZE);
327
328 typedef struct uma_domain * uma_domain_t;
329
330 /*
331 * Keg management structure
332 *
333 * TODO: Optimize for cache line size
334 *
335 */
336 struct uma_keg {
337 struct uma_hash uk_hash;
338 LIST_HEAD(,uma_zone) uk_zones; /* Keg's zones */
339
340 struct domainset_ref uk_dr; /* Domain selection policy. */
341 uint32_t uk_align; /* Alignment mask */
342 uint32_t uk_reserve; /* Number of reserved items. */
343 uint32_t uk_size; /* Requested size of each item */
344 uint32_t uk_rsize; /* Real size of each item */
345
346 uma_init uk_init; /* Keg's init routine */
347 uma_fini uk_fini; /* Keg's fini routine */
348 uma_alloc uk_allocf; /* Allocation function */
349 uma_free uk_freef; /* Free routine */
350
351 u_long uk_offset; /* Next free offset from base KVA */
352 vm_offset_t uk_kva; /* Zone base KVA */
353
354 uint32_t uk_pgoff; /* Offset to uma_slab struct */
355 uint16_t uk_ppera; /* pages per allocation from backend */
356 uint16_t uk_ipers; /* Items per slab */
357 uint32_t uk_flags; /* Internal flags */
358
359 /* Least used fields go to the last cache line. */
360 const char *uk_name; /* Name of creating zone. */
361 LIST_ENTRY(uma_keg) uk_link; /* List of all kegs */
362
363 /* Must be last, variable sized. */
364 struct uma_domain uk_domain[]; /* Keg's slab lists. */
365 };
366 typedef struct uma_keg * uma_keg_t;
367
368 /*
369 * Free bits per-slab.
370 */
371 #define SLAB_MAX_SETSIZE (PAGE_SIZE / UMA_SMALLEST_UNIT)
372 #define SLAB_MIN_SETSIZE _BITSET_BITS
373 BITSET_DEFINE(noslabbits, 0);
374
375 /*
376 * The slab structure manages a single contiguous allocation from backing
377 * store and subdivides it into individually allocatable items.
378 */
379 struct uma_slab {
380 LIST_ENTRY(uma_slab) us_link; /* slabs in zone */
381 uint16_t us_freecount; /* How many are free? */
382 uint8_t us_flags; /* Page flags see uma.h */
383 uint8_t us_domain; /* Backing NUMA domain. */
384 struct noslabbits us_free; /* Free bitmask, flexible. */
385 };
386 _Static_assert(sizeof(struct uma_slab) == __offsetof(struct uma_slab, us_free),
387 "us_free field must be last");
388 _Static_assert(MAXMEMDOM < 255,
389 "us_domain field is not wide enough");
390
391 typedef struct uma_slab * uma_slab_t;
392
393 /*
394 * Slab structure with a full sized bitset and hash link for both
395 * HASH and OFFPAGE zones.
396 */
397 struct uma_hash_slab {
398 LIST_ENTRY(uma_hash_slab) uhs_hlink; /* Link for hash table */
399 uint8_t *uhs_data; /* First item */
400 struct uma_slab uhs_slab; /* Must be last. */
401 };
402
403 typedef struct uma_hash_slab * uma_hash_slab_t;
404
405 static inline uma_hash_slab_t
406 slab_tohashslab(uma_slab_t slab)
407 {
408
409 return (__containerof(slab, struct uma_hash_slab, uhs_slab));
410 }
411
412 static inline void *
413 slab_data(uma_slab_t slab, uma_keg_t keg)
414 {
415
416 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) == 0)
417 return ((void *)((uintptr_t)slab - keg->uk_pgoff));
418 else
419 return (slab_tohashslab(slab)->uhs_data);
420 }
421
422 static inline void *
423 slab_item(uma_slab_t slab, uma_keg_t keg, int index)
424 {
425 uintptr_t data;
426
427 data = (uintptr_t)slab_data(slab, keg);
428 return ((void *)(data + keg->uk_rsize * index));
429 }
430
431 static inline int
432 slab_item_index(uma_slab_t slab, uma_keg_t keg, void *item)
433 {
434 uintptr_t data;
435
436 data = (uintptr_t)slab_data(slab, keg);
437 return (((uintptr_t)item - data) / keg->uk_rsize);
438 }
439
440 STAILQ_HEAD(uma_bucketlist, uma_bucket);
441
442 struct uma_zone_domain {
443 struct uma_bucketlist uzd_buckets; /* full buckets */
444 uma_bucket_t uzd_cross; /* Fills from cross buckets. */
445 long uzd_nitems; /* total item count */
446 long uzd_imax; /* maximum item count this period */
447 long uzd_imin; /* minimum item count this period */
448 long uzd_bimin; /* Minimum item count this batch. */
449 long uzd_wss; /* working set size estimate */
450 long uzd_limin; /* Longtime minimum item count. */
451 u_int uzd_timin; /* Time since uzd_limin == 0. */
452 smr_seq_t uzd_seq; /* Lowest queued seq. */
453 struct mtx uzd_lock; /* Lock for the domain */
454 } __aligned(CACHE_LINE_SIZE);
455
456 typedef struct uma_zone_domain * uma_zone_domain_t;
457
458 /*
459 * Zone structure - per memory type.
460 */
461 struct uma_zone {
462 /* Offset 0, used in alloc/free fast/medium fast path and const. */
463 uint32_t uz_flags; /* Flags inherited from kegs */
464 uint32_t uz_size; /* Size inherited from kegs */
465 uma_ctor uz_ctor; /* Constructor for each allocation */
466 uma_dtor uz_dtor; /* Destructor */
467 smr_t uz_smr; /* Safe memory reclaim context. */
468 uint64_t uz_max_items; /* Maximum number of items to alloc */
469 uint64_t uz_bucket_max; /* Maximum bucket cache size */
470 uint16_t uz_bucket_size; /* Number of items in full bucket */
471 uint16_t uz_bucket_size_max; /* Maximum number of bucket items */
472 uint32_t uz_sleepers; /* Threads sleeping on limit */
473 counter_u64_t uz_xdomain; /* Total number of cross-domain frees */
474
475 /* Offset 64, used in bucket replenish. */
476 uma_keg_t uz_keg; /* This zone's keg if !CACHE */
477 uma_import uz_import; /* Import new memory to cache. */
478 uma_release uz_release; /* Release memory from cache. */
479 void *uz_arg; /* Import/release argument. */
480 uma_init uz_init; /* Initializer for each item */
481 uma_fini uz_fini; /* Finalizer for each item. */
482 volatile uint64_t uz_items; /* Total items count & sleepers */
483 uint64_t uz_sleeps; /* Total number of alloc sleeps */
484
485 /* Offset 128 Rare stats, misc read-only. */
486 LIST_ENTRY(uma_zone) uz_link; /* List of all zones in keg */
487 counter_u64_t uz_allocs; /* Total number of allocations */
488 counter_u64_t uz_frees; /* Total number of frees */
489 counter_u64_t uz_fails; /* Total number of alloc failures */
490 const char *uz_name; /* Text name of the zone */
491 char *uz_ctlname; /* sysctl safe name string. */
492 int uz_namecnt; /* duplicate name count. */
493 uint16_t uz_bucket_size_min; /* Min number of items in bucket */
494 uint16_t uz_reclaimers; /* pending reclaim operations. */
495
496 /* Offset 192, rare read-only. */
497 struct sysctl_oid *uz_oid; /* sysctl oid pointer. */
498 const char *uz_warning; /* Warning to print on failure */
499 struct timeval uz_ratecheck; /* Warnings rate-limiting */
500 struct task uz_maxaction; /* Task to run when at limit */
501
502 /* Offset 256. */
503 struct mtx uz_cross_lock; /* Cross domain free lock */
504
505 /*
506 * This HAS to be the last item because we adjust the zone size
507 * based on NCPU and then allocate the space for the zones.
508 */
509 struct uma_cache uz_cpu[]; /* Per cpu caches */
510
511 /* domains follow here. */
512 };
513
514 /*
515 * Macros for interpreting the uz_items field. 20 bits of sleeper count
516 * and 44 bit of item count.
517 */
518 #define UZ_ITEMS_SLEEPER_SHIFT 44LL
519 #define UZ_ITEMS_SLEEPERS_MAX ((1 << (64 - UZ_ITEMS_SLEEPER_SHIFT)) - 1)
520 #define UZ_ITEMS_COUNT_MASK ((1LL << UZ_ITEMS_SLEEPER_SHIFT) - 1)
521 #define UZ_ITEMS_COUNT(x) ((x) & UZ_ITEMS_COUNT_MASK)
522 #define UZ_ITEMS_SLEEPERS(x) ((x) >> UZ_ITEMS_SLEEPER_SHIFT)
523 #define UZ_ITEMS_SLEEPER (1LL << UZ_ITEMS_SLEEPER_SHIFT)
524
525 #define ZONE_ASSERT_COLD(z) \
526 KASSERT(uma_zone_get_allocs((z)) == 0, \
527 ("zone %s initialization after use.", (z)->uz_name))
528
529 /* Domains are contiguous after the last CPU */
530 #define ZDOM_GET(z, n) \
531 (&((uma_zone_domain_t)&(z)->uz_cpu[mp_maxid + 1])[n])
532
533 #undef UMA_ALIGN
534
535 #ifdef _KERNEL
536 /* Internal prototypes */
537 static __inline uma_slab_t hash_sfind(struct uma_hash *hash, uint8_t *data);
538
539 /* Lock Macros */
540
541 #define KEG_LOCKPTR(k, d) (struct mtx *)&(k)->uk_domain[(d)].ud_lock
542 #define KEG_LOCK_INIT(k, d, lc) \
543 do { \
544 if ((lc)) \
545 mtx_init(KEG_LOCKPTR(k, d), (k)->uk_name, \
546 (k)->uk_name, MTX_DEF | MTX_DUPOK); \
547 else \
548 mtx_init(KEG_LOCKPTR(k, d), (k)->uk_name, \
549 "UMA zone", MTX_DEF | MTX_DUPOK); \
550 } while (0)
551
552 #define KEG_LOCK_FINI(k, d) mtx_destroy(KEG_LOCKPTR(k, d))
553 #define KEG_LOCK(k, d) \
554 ({ mtx_lock(KEG_LOCKPTR(k, d)); KEG_LOCKPTR(k, d); })
555 #define KEG_UNLOCK(k, d) mtx_unlock(KEG_LOCKPTR(k, d))
556 #define KEG_LOCK_ASSERT(k, d) mtx_assert(KEG_LOCKPTR(k, d), MA_OWNED)
557
558 #define KEG_GET(zone, keg) do { \
559 (keg) = (zone)->uz_keg; \
560 KASSERT((void *)(keg) != NULL, \
561 ("%s: Invalid zone %p type", __func__, (zone))); \
562 } while (0)
563
564 #define KEG_ASSERT_COLD(k) \
565 KASSERT(uma_keg_get_allocs((k)) == 0, \
566 ("keg %s initialization after use.", (k)->uk_name))
567
568 #define ZDOM_LOCK_INIT(z, zdom, lc) \
569 do { \
570 if ((lc)) \
571 mtx_init(&(zdom)->uzd_lock, (z)->uz_name, \
572 (z)->uz_name, MTX_DEF | MTX_DUPOK); \
573 else \
574 mtx_init(&(zdom)->uzd_lock, (z)->uz_name, \
575 "UMA zone", MTX_DEF | MTX_DUPOK); \
576 } while (0)
577 #define ZDOM_LOCK_FINI(z) mtx_destroy(&(z)->uzd_lock)
578 #define ZDOM_LOCK_ASSERT(z) mtx_assert(&(z)->uzd_lock, MA_OWNED)
579
580 #define ZDOM_LOCK(z) mtx_lock(&(z)->uzd_lock)
581 #define ZDOM_OWNED(z) (mtx_owner(&(z)->uzd_lock) != NULL)
582 #define ZDOM_UNLOCK(z) mtx_unlock(&(z)->uzd_lock)
583
584 #define ZONE_LOCK(z) ZDOM_LOCK(ZDOM_GET((z), 0))
585 #define ZONE_UNLOCK(z) ZDOM_UNLOCK(ZDOM_GET((z), 0))
586 #define ZONE_LOCKPTR(z) (&ZDOM_GET((z), 0)->uzd_lock)
587
588 #define ZONE_CROSS_LOCK_INIT(z) \
589 mtx_init(&(z)->uz_cross_lock, "UMA Cross", NULL, MTX_DEF)
590 #define ZONE_CROSS_LOCK(z) mtx_lock(&(z)->uz_cross_lock)
591 #define ZONE_CROSS_UNLOCK(z) mtx_unlock(&(z)->uz_cross_lock)
592 #define ZONE_CROSS_LOCK_FINI(z) mtx_destroy(&(z)->uz_cross_lock)
593
594 /*
595 * Find a slab within a hash table. This is used for OFFPAGE zones to lookup
596 * the slab structure.
597 *
598 * Arguments:
599 * hash The hash table to search.
600 * data The base page of the item.
601 *
602 * Returns:
603 * A pointer to a slab if successful, else NULL.
604 */
605 static __inline uma_slab_t
606 hash_sfind(struct uma_hash *hash, uint8_t *data)
607 {
608 uma_hash_slab_t slab;
609 u_int hval;
610
611 hval = UMA_HASH(hash, data);
612
613 LIST_FOREACH(slab, &hash->uh_slab_hash[hval], uhs_hlink) {
614 if ((uint8_t *)slab->uhs_data == data)
615 return (&slab->uhs_slab);
616 }
617 return (NULL);
618 }
619
620 static __inline uma_slab_t
621 vtoslab(vm_offset_t va)
622 {
623 vm_page_t p;
624
625 p = PHYS_TO_VM_PAGE(pmap_kextract(va));
626 return (p->plinks.uma.slab);
627 }
628
629 static __inline void
630 vtozoneslab(vm_offset_t va, uma_zone_t *zone, uma_slab_t *slab)
631 {
632 vm_page_t p;
633
634 p = PHYS_TO_VM_PAGE(pmap_kextract(va));
635 *slab = p->plinks.uma.slab;
636 *zone = p->plinks.uma.zone;
637 }
638
639 static __inline void
640 vsetzoneslab(vm_offset_t va, uma_zone_t zone, uma_slab_t slab)
641 {
642 vm_page_t p;
643
644 p = PHYS_TO_VM_PAGE(pmap_kextract(va));
645 p->plinks.uma.slab = slab;
646 p->plinks.uma.zone = zone;
647 }
648
649 extern unsigned long uma_kmem_limit;
650 extern unsigned long uma_kmem_total;
651
652 /* Adjust bytes under management by UMA. */
653 static inline void
654 uma_total_dec(unsigned long size)
655 {
656
657 atomic_subtract_long(&uma_kmem_total, size);
658 }
659
660 static inline void
661 uma_total_inc(unsigned long size)
662 {
663
664 if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit)
665 uma_reclaim_wakeup();
666 }
667
668 /*
669 * The following two functions may be defined by architecture specific code
670 * if they can provide more efficient allocation functions. This is useful
671 * for using direct mapped addresses.
672 */
673 void *uma_small_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
674 uint8_t *pflag, int wait);
675 void uma_small_free(void *mem, vm_size_t size, uint8_t flags);
676
677 /* Set a global soft limit on UMA managed memory. */
678 void uma_set_limit(unsigned long limit);
679
680 #endif /* _KERNEL */
681
682 #endif /* VM_UMA_INT_H */
Cache object: 503caf33439be36b81bb60b7127ec75c
|