FreeBSD/Linux Kernel Cross Reference
sys/vm/uma_int.h
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org>
5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * $FreeBSD$
30 *
31 */
32
33 #include <sys/counter.h>
34 #include <sys/_bitset.h>
35 #include <sys/_domainset.h>
36 #include <sys/_task.h>
37
38 /*
39 * This file includes definitions, structures, prototypes, and inlines that
40 * should not be used outside of the actual implementation of UMA.
41 */
42
43 /*
44 * The brief summary; Zones describe unique allocation types. Zones are
45 * organized into per-CPU caches which are filled by buckets. Buckets are
46 * organized according to memory domains. Buckets are filled from kegs which
47 * are also organized according to memory domains. Kegs describe a unique
48 * allocation type, backend memory provider, and layout. Kegs are associated
49 * with one or more zones and zones reference one or more kegs. Kegs provide
50 * slabs which are virtually contiguous collections of pages. Each slab is
51 * broken down int one or more items that will satisfy an individual allocation.
52 *
53 * Allocation is satisfied in the following order:
54 * 1) Per-CPU cache
55 * 2) Per-domain cache of buckets
56 * 3) Slab from any of N kegs
57 * 4) Backend page provider
58 *
59 * More detail on individual objects is contained below:
60 *
61 * Kegs contain lists of slabs which are stored in either the full bin, empty
62 * bin, or partially allocated bin, to reduce fragmentation. They also contain
63 * the user supplied value for size, which is adjusted for alignment purposes
64 * and rsize is the result of that. The Keg also stores information for
65 * managing a hash of page addresses that maps pages to uma_slab_t structures
66 * for pages that don't have embedded uma_slab_t's.
67 *
68 * Keg slab lists are organized by memory domain to support NUMA allocation
69 * policies. By default allocations are spread across domains to reduce the
70 * potential for hotspots. Special keg creation flags may be specified to
71 * prefer location allocation. However there is no strict enforcement as frees
72 * may happen on any CPU and these are returned to the CPU-local cache
73 * regardless of the originating domain.
74 *
75 * The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may
76 * be allocated off the page from a special slab zone. The free list within a
77 * slab is managed with a bitmask. For item sizes that would yield more than
78 * 10% memory waste we potentially allocate a separate uma_slab_t if this will
79 * improve the number of items per slab that will fit.
80 *
81 * The only really gross cases, with regards to memory waste, are for those
82 * items that are just over half the page size. You can get nearly 50% waste,
83 * so you fall back to the memory footprint of the power of two allocator. I
84 * have looked at memory allocation sizes on many of the machines available to
85 * me, and there does not seem to be an abundance of allocations at this range
86 * so at this time it may not make sense to optimize for it. This can, of
87 * course, be solved with dynamic slab sizes.
88 *
89 * Kegs may serve multiple Zones but by far most of the time they only serve
90 * one. When a Zone is created, a Keg is allocated and setup for it. While
91 * the backing Keg stores slabs, the Zone caches Buckets of items allocated
92 * from the slabs. Each Zone is equipped with an init/fini and ctor/dtor
93 * pair, as well as with its own set of small per-CPU caches, layered above
94 * the Zone's general Bucket cache.
95 *
96 * The PCPU caches are protected by critical sections, and may be accessed
97 * safely only from their associated CPU, while the Zones backed by the same
98 * Keg all share a common Keg lock (to coalesce contention on the backing
99 * slabs). The backing Keg typically only serves one Zone but in the case of
100 * multiple Zones, one of the Zones is considered the Primary Zone and all
101 * Zone-related stats from the Keg are done in the Primary Zone. For an
102 * example of a Multi-Zone setup, refer to the Mbuf allocation code.
103 */
104
105 /*
106 * This is the representation for normal (Non OFFPAGE slab)
107 *
108 * i == item
109 * s == slab pointer
110 *
111 * <---------------- Page (UMA_SLAB_SIZE) ------------------>
112 * ___________________________________________________________
113 * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___________ |
114 * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header||
115 * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________||
116 * |___________________________________________________________|
117 *
118 *
119 * This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE.
120 *
121 * ___________________________________________________________
122 * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
123 * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |
124 * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |
125 * |___________________________________________________________|
126 * ___________ ^
127 * |slab header| |
128 * |___________|---*
129 *
130 */
131
132 #ifndef VM_UMA_INT_H
133 #define VM_UMA_INT_H
134
135 #define UMA_SLAB_SIZE PAGE_SIZE /* How big are our slabs? */
136 #define UMA_SLAB_MASK (PAGE_SIZE - 1) /* Mask to get back to the page */
137 #define UMA_SLAB_SHIFT PAGE_SHIFT /* Number of bits PAGE_MASK */
138
139 /* Max waste percentage before going to off page slab management */
140 #define UMA_MAX_WASTE 10
141
142 /* Max size of a CACHESPREAD slab. */
143 #define UMA_CACHESPREAD_MAX_SIZE (128 * 1024)
144
145 /*
146 * These flags must not overlap with the UMA_ZONE flags specified in uma.h.
147 */
148 #define UMA_ZFLAG_OFFPAGE 0x00200000 /*
149 * Force the slab structure
150 * allocation off of the real
151 * memory.
152 */
153 #define UMA_ZFLAG_HASH 0x00400000 /*
154 * Use a hash table instead of
155 * caching information in the
156 * vm_page.
157 */
158 #define UMA_ZFLAG_VTOSLAB 0x00800000 /*
159 * Zone uses vtoslab for
160 * lookup.
161 */
162 #define UMA_ZFLAG_CTORDTOR 0x01000000 /* Zone has ctor/dtor set. */
163 #define UMA_ZFLAG_LIMIT 0x02000000 /* Zone has limit set. */
164 #define UMA_ZFLAG_CACHE 0x04000000 /* uma_zcache_create()d it */
165 #define UMA_ZFLAG_RECLAIMING 0x08000000 /* Running zone_reclaim(). */
166 #define UMA_ZFLAG_BUCKET 0x10000000 /* Bucket zone. */
167 #define UMA_ZFLAG_INTERNAL 0x20000000 /* No offpage no PCPU. */
168 #define UMA_ZFLAG_TRASH 0x40000000 /* Add trash ctor/dtor. */
169
170 #define UMA_ZFLAG_INHERIT \
171 (UMA_ZFLAG_OFFPAGE | UMA_ZFLAG_HASH | UMA_ZFLAG_VTOSLAB | \
172 UMA_ZFLAG_BUCKET | UMA_ZFLAG_INTERNAL)
173
174 #define PRINT_UMA_ZFLAGS "\2" \
175 "\37TRASH" \
176 "\36INTERNAL" \
177 "\35BUCKET" \
178 "\34RECLAIMING" \
179 "\33CACHE" \
180 "\32LIMIT" \
181 "\31CTORDTOR" \
182 "\30VTOSLAB" \
183 "\27HASH" \
184 "\26OFFPAGE" \
185 "\23SMR" \
186 "\22ROUNDROBIN" \
187 "\21FIRSTTOUCH" \
188 "\20PCPU" \
189 "\17NODUMP" \
190 "\16CACHESPREAD" \
191 "\14MAXBUCKET" \
192 "\13NOBUCKET" \
193 "\12SECONDARY" \
194 "\11NOTPAGE" \
195 "\10VM" \
196 "\7MTXCLASS" \
197 "\6NOFREE" \
198 "\5MALLOC" \
199 "\4NOTOUCH" \
200 "\3CONTIG" \
201 "\2ZINIT"
202
203 /*
204 * Hash table for freed address -> slab translation.
205 *
206 * Only zones with memory not touchable by the allocator use the
207 * hash table. Otherwise slabs are found with vtoslab().
208 */
209 #define UMA_HASH_SIZE_INIT 32
210
211 #define UMA_HASH(h, s) ((((uintptr_t)s) >> UMA_SLAB_SHIFT) & (h)->uh_hashmask)
212
213 #define UMA_HASH_INSERT(h, s, mem) \
214 LIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h), \
215 (mem))], slab_tohashslab(s), uhs_hlink)
216
217 #define UMA_HASH_REMOVE(h, s) \
218 LIST_REMOVE(slab_tohashslab(s), uhs_hlink)
219
220 LIST_HEAD(slabhashhead, uma_hash_slab);
221
222 struct uma_hash {
223 struct slabhashhead *uh_slab_hash; /* Hash table for slabs */
224 u_int uh_hashsize; /* Current size of the hash table */
225 u_int uh_hashmask; /* Mask used during hashing */
226 };
227
228 /*
229 * Align field or structure to cache 'sector' in intel terminology. This
230 * is more efficient with adjacent line prefetch.
231 */
232 #if defined(__amd64__) || defined(__powerpc64__)
233 #define UMA_SUPER_ALIGN (CACHE_LINE_SIZE * 2)
234 #else
235 #define UMA_SUPER_ALIGN CACHE_LINE_SIZE
236 #endif
237
238 #define UMA_ALIGN __aligned(UMA_SUPER_ALIGN)
239
240 /*
241 * The uma_bucket structure is used to queue and manage buckets divorced
242 * from per-cpu caches. They are loaded into uma_cache_bucket structures
243 * for use.
244 */
245 struct uma_bucket {
246 STAILQ_ENTRY(uma_bucket) ub_link; /* Link into the zone */
247 int16_t ub_cnt; /* Count of items in bucket. */
248 int16_t ub_entries; /* Max items. */
249 smr_seq_t ub_seq; /* SMR sequence number. */
250 void *ub_bucket[]; /* actual allocation storage */
251 };
252
253 typedef struct uma_bucket * uma_bucket_t;
254
255 /*
256 * The uma_cache_bucket structure is statically allocated on each per-cpu
257 * cache. Its use reduces branches and cache misses in the fast path.
258 */
259 struct uma_cache_bucket {
260 uma_bucket_t ucb_bucket;
261 int16_t ucb_cnt;
262 int16_t ucb_entries;
263 uint32_t ucb_spare;
264 };
265
266 typedef struct uma_cache_bucket * uma_cache_bucket_t;
267
268 /*
269 * The uma_cache structure is allocated for each cpu for every zone
270 * type. This optimizes synchronization out of the allocator fast path.
271 */
272 struct uma_cache {
273 struct uma_cache_bucket uc_freebucket; /* Bucket we're freeing to */
274 struct uma_cache_bucket uc_allocbucket; /* Bucket to allocate from */
275 struct uma_cache_bucket uc_crossbucket; /* cross domain bucket */
276 uint64_t uc_allocs; /* Count of allocations */
277 uint64_t uc_frees; /* Count of frees */
278 } UMA_ALIGN;
279
280 typedef struct uma_cache * uma_cache_t;
281
282 LIST_HEAD(slabhead, uma_slab);
283
284 /*
285 * The cache structure pads perfectly into 64 bytes so we use spare
286 * bits from the embedded cache buckets to store information from the zone
287 * and keep all fast-path allocations accessing a single per-cpu line.
288 */
289 static inline void
290 cache_set_uz_flags(uma_cache_t cache, uint32_t flags)
291 {
292
293 cache->uc_freebucket.ucb_spare = flags;
294 }
295
296 static inline void
297 cache_set_uz_size(uma_cache_t cache, uint32_t size)
298 {
299
300 cache->uc_allocbucket.ucb_spare = size;
301 }
302
303 static inline uint32_t
304 cache_uz_flags(uma_cache_t cache)
305 {
306
307 return (cache->uc_freebucket.ucb_spare);
308 }
309
310 static inline uint32_t
311 cache_uz_size(uma_cache_t cache)
312 {
313
314 return (cache->uc_allocbucket.ucb_spare);
315 }
316
317 /*
318 * Per-domain slab lists. Embedded in the kegs.
319 */
320 struct uma_domain {
321 struct mtx_padalign ud_lock; /* Lock for the domain lists. */
322 struct slabhead ud_part_slab; /* partially allocated slabs */
323 struct slabhead ud_free_slab; /* completely unallocated slabs */
324 struct slabhead ud_full_slab; /* fully allocated slabs */
325 uint32_t ud_pages; /* Total page count */
326 uint32_t ud_free_items; /* Count of items free in all slabs */
327 uint32_t ud_free_slabs; /* Count of free slabs */
328 } __aligned(CACHE_LINE_SIZE);
329
330 typedef struct uma_domain * uma_domain_t;
331
332 /*
333 * Keg management structure
334 *
335 * TODO: Optimize for cache line size
336 *
337 */
338 struct uma_keg {
339 struct uma_hash uk_hash;
340 LIST_HEAD(,uma_zone) uk_zones; /* Keg's zones */
341
342 struct domainset_ref uk_dr; /* Domain selection policy. */
343 uint32_t uk_align; /* Alignment mask */
344 uint32_t uk_reserve; /* Number of reserved items. */
345 uint32_t uk_size; /* Requested size of each item */
346 uint32_t uk_rsize; /* Real size of each item */
347
348 uma_init uk_init; /* Keg's init routine */
349 uma_fini uk_fini; /* Keg's fini routine */
350 uma_alloc uk_allocf; /* Allocation function */
351 uma_free uk_freef; /* Free routine */
352
353 u_long uk_offset; /* Next free offset from base KVA */
354 vm_offset_t uk_kva; /* Zone base KVA */
355
356 uint32_t uk_pgoff; /* Offset to uma_slab struct */
357 uint16_t uk_ppera; /* pages per allocation from backend */
358 uint16_t uk_ipers; /* Items per slab */
359 uint32_t uk_flags; /* Internal flags */
360
361 /* Least used fields go to the last cache line. */
362 const char *uk_name; /* Name of creating zone. */
363 LIST_ENTRY(uma_keg) uk_link; /* List of all kegs */
364
365 /* Must be last, variable sized. */
366 struct uma_domain uk_domain[]; /* Keg's slab lists. */
367 };
368 typedef struct uma_keg * uma_keg_t;
369
370 /*
371 * Free bits per-slab.
372 */
373 #define SLAB_MAX_SETSIZE (PAGE_SIZE / UMA_SMALLEST_UNIT)
374 #define SLAB_MIN_SETSIZE _BITSET_BITS
375 BITSET_DEFINE(noslabbits, 0);
376
377 /*
378 * The slab structure manages a single contiguous allocation from backing
379 * store and subdivides it into individually allocatable items.
380 */
381 struct uma_slab {
382 LIST_ENTRY(uma_slab) us_link; /* slabs in zone */
383 uint16_t us_freecount; /* How many are free? */
384 uint8_t us_flags; /* Page flags see uma.h */
385 uint8_t us_domain; /* Backing NUMA domain. */
386 struct noslabbits us_free; /* Free bitmask, flexible. */
387 };
388 _Static_assert(sizeof(struct uma_slab) == __offsetof(struct uma_slab, us_free),
389 "us_free field must be last");
390 _Static_assert(MAXMEMDOM < 255,
391 "us_domain field is not wide enough");
392
393 typedef struct uma_slab * uma_slab_t;
394
395 /*
396 * Slab structure with a full sized bitset and hash link for both
397 * HASH and OFFPAGE zones.
398 */
399 struct uma_hash_slab {
400 LIST_ENTRY(uma_hash_slab) uhs_hlink; /* Link for hash table */
401 uint8_t *uhs_data; /* First item */
402 struct uma_slab uhs_slab; /* Must be last. */
403 };
404
405 typedef struct uma_hash_slab * uma_hash_slab_t;
406
407 static inline uma_hash_slab_t
408 slab_tohashslab(uma_slab_t slab)
409 {
410
411 return (__containerof(slab, struct uma_hash_slab, uhs_slab));
412 }
413
414 static inline void *
415 slab_data(uma_slab_t slab, uma_keg_t keg)
416 {
417
418 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) == 0)
419 return ((void *)((uintptr_t)slab - keg->uk_pgoff));
420 else
421 return (slab_tohashslab(slab)->uhs_data);
422 }
423
424 static inline void *
425 slab_item(uma_slab_t slab, uma_keg_t keg, int index)
426 {
427 uintptr_t data;
428
429 data = (uintptr_t)slab_data(slab, keg);
430 return ((void *)(data + keg->uk_rsize * index));
431 }
432
433 static inline int
434 slab_item_index(uma_slab_t slab, uma_keg_t keg, void *item)
435 {
436 uintptr_t data;
437
438 data = (uintptr_t)slab_data(slab, keg);
439 return (((uintptr_t)item - data) / keg->uk_rsize);
440 }
441
442 STAILQ_HEAD(uma_bucketlist, uma_bucket);
443
444 struct uma_zone_domain {
445 struct uma_bucketlist uzd_buckets; /* full buckets */
446 uma_bucket_t uzd_cross; /* Fills from cross buckets. */
447 long uzd_nitems; /* total item count */
448 long uzd_imax; /* maximum item count this period */
449 long uzd_imin; /* minimum item count this period */
450 long uzd_wss; /* working set size estimate */
451 smr_seq_t uzd_seq; /* Lowest queued seq. */
452 struct mtx uzd_lock; /* Lock for the domain */
453 } __aligned(CACHE_LINE_SIZE);
454
455 typedef struct uma_zone_domain * uma_zone_domain_t;
456
457 /*
458 * Zone structure - per memory type.
459 */
460 struct uma_zone {
461 /* Offset 0, used in alloc/free fast/medium fast path and const. */
462 uint32_t uz_flags; /* Flags inherited from kegs */
463 uint32_t uz_size; /* Size inherited from kegs */
464 uma_ctor uz_ctor; /* Constructor for each allocation */
465 uma_dtor uz_dtor; /* Destructor */
466 smr_t uz_smr; /* Safe memory reclaim context. */
467 uint64_t uz_max_items; /* Maximum number of items to alloc */
468 uint64_t uz_bucket_max; /* Maximum bucket cache size */
469 uint16_t uz_bucket_size; /* Number of items in full bucket */
470 uint16_t uz_bucket_size_max; /* Maximum number of bucket items */
471 uint32_t uz_sleepers; /* Threads sleeping on limit */
472 counter_u64_t uz_xdomain; /* Total number of cross-domain frees */
473
474 /* Offset 64, used in bucket replenish. */
475 uma_keg_t uz_keg; /* This zone's keg if !CACHE */
476 uma_import uz_import; /* Import new memory to cache. */
477 uma_release uz_release; /* Release memory from cache. */
478 void *uz_arg; /* Import/release argument. */
479 uma_init uz_init; /* Initializer for each item */
480 uma_fini uz_fini; /* Finalizer for each item. */
481 volatile uint64_t uz_items; /* Total items count & sleepers */
482 uint64_t uz_sleeps; /* Total number of alloc sleeps */
483
484 /* Offset 128 Rare stats, misc read-only. */
485 LIST_ENTRY(uma_zone) uz_link; /* List of all zones in keg */
486 counter_u64_t uz_allocs; /* Total number of allocations */
487 counter_u64_t uz_frees; /* Total number of frees */
488 counter_u64_t uz_fails; /* Total number of alloc failures */
489 const char *uz_name; /* Text name of the zone */
490 char *uz_ctlname; /* sysctl safe name string. */
491 int uz_namecnt; /* duplicate name count. */
492 uint16_t uz_bucket_size_min; /* Min number of items in bucket */
493 uint16_t uz_pad0;
494
495 /* Offset 192, rare read-only. */
496 struct sysctl_oid *uz_oid; /* sysctl oid pointer. */
497 const char *uz_warning; /* Warning to print on failure */
498 struct timeval uz_ratecheck; /* Warnings rate-limiting */
499 struct task uz_maxaction; /* Task to run when at limit */
500
501 /* Offset 256. */
502 struct mtx uz_cross_lock; /* Cross domain free lock */
503
504 /*
505 * This HAS to be the last item because we adjust the zone size
506 * based on NCPU and then allocate the space for the zones.
507 */
508 struct uma_cache uz_cpu[]; /* Per cpu caches */
509
510 /* domains follow here. */
511 };
512
513 /*
514 * Macros for interpreting the uz_items field. 20 bits of sleeper count
515 * and 44 bit of item count.
516 */
517 #define UZ_ITEMS_SLEEPER_SHIFT 44LL
518 #define UZ_ITEMS_SLEEPERS_MAX ((1 << (64 - UZ_ITEMS_SLEEPER_SHIFT)) - 1)
519 #define UZ_ITEMS_COUNT_MASK ((1LL << UZ_ITEMS_SLEEPER_SHIFT) - 1)
520 #define UZ_ITEMS_COUNT(x) ((x) & UZ_ITEMS_COUNT_MASK)
521 #define UZ_ITEMS_SLEEPERS(x) ((x) >> UZ_ITEMS_SLEEPER_SHIFT)
522 #define UZ_ITEMS_SLEEPER (1LL << UZ_ITEMS_SLEEPER_SHIFT)
523
524 #define ZONE_ASSERT_COLD(z) \
525 KASSERT(uma_zone_get_allocs((z)) == 0, \
526 ("zone %s initialization after use.", (z)->uz_name))
527
528 /* Domains are contiguous after the last CPU */
529 #define ZDOM_GET(z, n) \
530 (&((uma_zone_domain_t)&(z)->uz_cpu[mp_maxid + 1])[n])
531
532 #undef UMA_ALIGN
533
534 #ifdef _KERNEL
535 /* Internal prototypes */
536 static __inline uma_slab_t hash_sfind(struct uma_hash *hash, uint8_t *data);
537
538 /* Lock Macros */
539
540 #define KEG_LOCKPTR(k, d) (struct mtx *)&(k)->uk_domain[(d)].ud_lock
541 #define KEG_LOCK_INIT(k, d, lc) \
542 do { \
543 if ((lc)) \
544 mtx_init(KEG_LOCKPTR(k, d), (k)->uk_name, \
545 (k)->uk_name, MTX_DEF | MTX_DUPOK); \
546 else \
547 mtx_init(KEG_LOCKPTR(k, d), (k)->uk_name, \
548 "UMA zone", MTX_DEF | MTX_DUPOK); \
549 } while (0)
550
551 #define KEG_LOCK_FINI(k, d) mtx_destroy(KEG_LOCKPTR(k, d))
552 #define KEG_LOCK(k, d) \
553 ({ mtx_lock(KEG_LOCKPTR(k, d)); KEG_LOCKPTR(k, d); })
554 #define KEG_UNLOCK(k, d) mtx_unlock(KEG_LOCKPTR(k, d))
555 #define KEG_LOCK_ASSERT(k, d) mtx_assert(KEG_LOCKPTR(k, d), MA_OWNED)
556
557 #define KEG_GET(zone, keg) do { \
558 (keg) = (zone)->uz_keg; \
559 KASSERT((void *)(keg) != NULL, \
560 ("%s: Invalid zone %p type", __func__, (zone))); \
561 } while (0)
562
563 #define KEG_ASSERT_COLD(k) \
564 KASSERT(uma_keg_get_allocs((k)) == 0, \
565 ("keg %s initialization after use.", (k)->uk_name))
566
567 #define ZDOM_LOCK_INIT(z, zdom, lc) \
568 do { \
569 if ((lc)) \
570 mtx_init(&(zdom)->uzd_lock, (z)->uz_name, \
571 (z)->uz_name, MTX_DEF | MTX_DUPOK); \
572 else \
573 mtx_init(&(zdom)->uzd_lock, (z)->uz_name, \
574 "UMA zone", MTX_DEF | MTX_DUPOK); \
575 } while (0)
576 #define ZDOM_LOCK_FINI(z) mtx_destroy(&(z)->uzd_lock)
577 #define ZDOM_LOCK_ASSERT(z) mtx_assert(&(z)->uzd_lock, MA_OWNED)
578
579 #define ZDOM_LOCK(z) mtx_lock(&(z)->uzd_lock)
580 #define ZDOM_OWNED(z) (mtx_owner(&(z)->uzd_lock) != NULL)
581 #define ZDOM_UNLOCK(z) mtx_unlock(&(z)->uzd_lock)
582
583 #define ZONE_LOCK(z) ZDOM_LOCK(ZDOM_GET((z), 0))
584 #define ZONE_UNLOCK(z) ZDOM_UNLOCK(ZDOM_GET((z), 0))
585
586 #define ZONE_CROSS_LOCK_INIT(z) \
587 mtx_init(&(z)->uz_cross_lock, "UMA Cross", NULL, MTX_DEF)
588 #define ZONE_CROSS_LOCK(z) mtx_lock(&(z)->uz_cross_lock)
589 #define ZONE_CROSS_UNLOCK(z) mtx_unlock(&(z)->uz_cross_lock)
590 #define ZONE_CROSS_LOCK_FINI(z) mtx_destroy(&(z)->uz_cross_lock)
591
592 /*
593 * Find a slab within a hash table. This is used for OFFPAGE zones to lookup
594 * the slab structure.
595 *
596 * Arguments:
597 * hash The hash table to search.
598 * data The base page of the item.
599 *
600 * Returns:
601 * A pointer to a slab if successful, else NULL.
602 */
603 static __inline uma_slab_t
604 hash_sfind(struct uma_hash *hash, uint8_t *data)
605 {
606 uma_hash_slab_t slab;
607 u_int hval;
608
609 hval = UMA_HASH(hash, data);
610
611 LIST_FOREACH(slab, &hash->uh_slab_hash[hval], uhs_hlink) {
612 if ((uint8_t *)slab->uhs_data == data)
613 return (&slab->uhs_slab);
614 }
615 return (NULL);
616 }
617
618 static __inline uma_slab_t
619 vtoslab(vm_offset_t va)
620 {
621 vm_page_t p;
622
623 p = PHYS_TO_VM_PAGE(pmap_kextract(va));
624 return (p->plinks.uma.slab);
625 }
626
627 static __inline void
628 vtozoneslab(vm_offset_t va, uma_zone_t *zone, uma_slab_t *slab)
629 {
630 vm_page_t p;
631
632 p = PHYS_TO_VM_PAGE(pmap_kextract(va));
633 *slab = p->plinks.uma.slab;
634 *zone = p->plinks.uma.zone;
635 }
636
637 static __inline void
638 vsetzoneslab(vm_offset_t va, uma_zone_t zone, uma_slab_t slab)
639 {
640 vm_page_t p;
641
642 p = PHYS_TO_VM_PAGE(pmap_kextract(va));
643 p->plinks.uma.slab = slab;
644 p->plinks.uma.zone = zone;
645 }
646
647 extern unsigned long uma_kmem_limit;
648 extern unsigned long uma_kmem_total;
649
650 /* Adjust bytes under management by UMA. */
651 static inline void
652 uma_total_dec(unsigned long size)
653 {
654
655 atomic_subtract_long(&uma_kmem_total, size);
656 }
657
658 static inline void
659 uma_total_inc(unsigned long size)
660 {
661
662 if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit)
663 uma_reclaim_wakeup();
664 }
665
666 /*
667 * The following two functions may be defined by architecture specific code
668 * if they can provide more efficient allocation functions. This is useful
669 * for using direct mapped addresses.
670 */
671 void *uma_small_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
672 uint8_t *pflag, int wait);
673 void uma_small_free(void *mem, vm_size_t size, uint8_t flags);
674
675 /* Set a global soft limit on UMA managed memory. */
676 void uma_set_limit(unsigned long limit);
677
678 #endif /* _KERNEL */
679
680 #endif /* VM_UMA_INT_H */
Cache object: 809fd8d06a76dba5256b8b94811f07c9
|