The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_contig.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
    3  *
    4  * This code is derived from software contributed to The DragonFly Project
    5  * by Hiten Pandya <hmp@backplane.com>.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  *
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in
   15  *    the documentation and/or other materials provided with the
   16  *    distribution.
   17  * 3. Neither the name of The DragonFly Project nor the names of its
   18  *    contributors may be used to endorse or promote products derived
   19  *    from this software without specific, prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
   24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
   25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
   26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
   27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
   29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
   31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  */
   35 /*
   36  * Copyright (c) 1991 Regents of the University of California.
   37  * All rights reserved.
   38  *
   39  * This code is derived from software contributed to Berkeley by
   40  * The Mach Operating System project at Carnegie-Mellon University.
   41  *
   42  * Redistribution and use in source and binary forms, with or without
   43  * modification, are permitted provided that the following conditions
   44  * are met:
   45  * 1. Redistributions of source code must retain the above copyright
   46  *    notice, this list of conditions and the following disclaimer.
   47  * 2. Redistributions in binary form must reproduce the above copyright
   48  *    notice, this list of conditions and the following disclaimer in the
   49  *    documentation and/or other materials provided with the distribution.
   50  * 3. Neither the name of the University nor the names of its contributors
   51  *    may be used to endorse or promote products derived from this software
   52  *    without specific prior written permission.
   53  *
   54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   64  * SUCH DAMAGE.
   65  *
   66  *      from: @(#)vm_page.c     7.4 (Berkeley) 5/7/91
   67  * $DragonFly: src/sys/vm/vm_contig.c,v 1.21 2006/12/28 21:24:02 dillon Exp $
   68  */
   69 
   70 /*
   71  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   72  * All rights reserved.
   73  *
   74  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   75  *
   76  * Permission to use, copy, modify and distribute this software and
   77  * its documentation is hereby granted, provided that both the copyright
   78  * notice and this permission notice appear in all copies of the
   79  * software, derivative works or modified versions, and any portions
   80  * thereof, and that both notices appear in supporting documentation.
   81  *
   82  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   83  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   84  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   85  *
   86  * Carnegie Mellon requests users of this software to return to
   87  *
   88  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   89  *  School of Computer Science
   90  *  Carnegie Mellon University
   91  *  Pittsburgh PA 15213-3890
   92  *
   93  * any improvements or extensions that they make and grant Carnegie the
   94  * rights to redistribute these changes.
   95  */
   96 
   97 /*
   98  * Contiguous memory allocation API.
   99  */
  100 
  101 #include <sys/param.h>
  102 #include <sys/systm.h>
  103 #include <sys/malloc.h>
  104 #include <sys/proc.h>
  105 #include <sys/lock.h>
  106 #include <sys/vmmeter.h>
  107 #include <sys/vnode.h>
  108 
  109 #include <vm/vm.h>
  110 #include <vm/vm_param.h>
  111 #include <vm/vm_kern.h>
  112 #include <vm/pmap.h>
  113 #include <vm/vm_map.h>
  114 #include <vm/vm_object.h>
  115 #include <vm/vm_page.h>
  116 #include <vm/vm_pageout.h>
  117 #include <vm/vm_pager.h>
  118 #include <vm/vm_extern.h>
  119 
  120 #include <sys/thread2.h>
  121 #include <sys/spinlock2.h>
  122 #include <vm/vm_page2.h>
  123 
  124 static void vm_contig_pg_free(int start, u_long size);
  125 
  126 /*
  127  * vm_contig_pg_clean:
  128  * 
  129  * Do a thorough cleanup of the specified 'queue', which can be either
  130  * PQ_ACTIVE or PQ_INACTIVE by doing a walkthrough.  If the page is not
  131  * marked dirty, it is shoved into the page cache, provided no one has
  132  * currently aqcuired it, otherwise localized action per object type
  133  * is taken for cleanup:
  134  *
  135  *      In the OBJT_VNODE case, the whole page range is cleaned up
  136  *      using the vm_object_page_clean() routine, by specyfing a
  137  *      start and end of ''.
  138  *
  139  *      Otherwise if the object is of any other type, the generic
  140  *      pageout (daemon) flush routine is invoked.
  141  */
  142 static void
  143 vm_contig_pg_clean(int queue, int count)
  144 {
  145         vm_object_t object;
  146         vm_page_t m, m_tmp;
  147         struct vm_page marker;
  148         struct vpgqueues *pq = &vm_page_queues[queue];
  149 
  150         /*
  151          * Setup a local marker
  152          */
  153         bzero(&marker, sizeof(marker));
  154         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
  155         marker.queue = queue;
  156         marker.wire_count = 1;
  157 
  158         vm_page_queues_spin_lock(queue);
  159         TAILQ_INSERT_HEAD(&pq->pl, &marker, pageq);
  160         vm_page_queues_spin_unlock(queue);
  161 
  162         /*
  163          * Iterate the queue.  Note that the vm_page spinlock must be
  164          * acquired before the pageq spinlock so it's easiest to simply
  165          * not hold it in the loop iteration.
  166          */
  167         while (count-- > 0 && (m = TAILQ_NEXT(&marker, pageq)) != NULL) {
  168                 vm_page_and_queue_spin_lock(m);
  169                 if (m != TAILQ_NEXT(&marker, pageq)) {
  170                         vm_page_and_queue_spin_unlock(m);
  171                         ++count;
  172                         continue;
  173                 }
  174                 KKASSERT(m->queue == queue);
  175 
  176                 TAILQ_REMOVE(&pq->pl, &marker, pageq);
  177                 TAILQ_INSERT_AFTER(&pq->pl, m, &marker, pageq);
  178 
  179                 if (m->flags & PG_MARKER) {
  180                         vm_page_and_queue_spin_unlock(m);
  181                         continue;
  182                 }
  183                 if (vm_page_busy_try(m, TRUE)) {
  184                         vm_page_and_queue_spin_unlock(m);
  185                         continue;
  186                 }
  187                 vm_page_and_queue_spin_unlock(m);
  188 
  189                 /*
  190                  * We've successfully busied the page
  191                  */
  192                 if (m->queue - m->pc != queue) {
  193                         vm_page_wakeup(m);
  194                         continue;
  195                 }
  196                 if (m->wire_count || m->hold_count) {
  197                         vm_page_wakeup(m);
  198                         continue;
  199                 }
  200                 if ((object = m->object) == NULL) {
  201                         vm_page_wakeup(m);
  202                         continue;
  203                 }
  204                 vm_page_test_dirty(m);
  205                 if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
  206                         vm_object_hold(object);
  207                         KKASSERT(m->object == object);
  208 
  209                         if (object->type == OBJT_VNODE) {
  210                                 vm_page_wakeup(m);
  211                                 vn_lock(object->handle, LK_EXCLUSIVE|LK_RETRY);
  212                                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
  213                                 vn_unlock(((struct vnode *)object->handle));
  214                         } else if (object->type == OBJT_SWAP ||
  215                                         object->type == OBJT_DEFAULT) {
  216                                 m_tmp = m;
  217                                 vm_pageout_flush(&m_tmp, 1, 0);
  218                         } else {
  219                                 vm_page_wakeup(m);
  220                         }
  221                         vm_object_drop(object);
  222                 } else if (m->hold_count == 0) {
  223                         vm_page_cache(m);
  224                 } else {
  225                         vm_page_wakeup(m);
  226                 }
  227         }
  228 
  229         /*
  230          * Scrap our local marker
  231          */
  232         vm_page_queues_spin_lock(queue);
  233         TAILQ_REMOVE(&pq->pl, &marker, pageq);
  234         vm_page_queues_spin_unlock(queue);
  235 }
  236 
  237 /*
  238  * vm_contig_pg_alloc:
  239  *
  240  * Allocate contiguous pages from the VM.  This function does not
  241  * map the allocated pages into the kernel map, otherwise it is
  242  * impossible to make large allocations (i.e. >2G).
  243  *
  244  * Malloc()'s data structures have been used for collection of
  245  * statistics and for allocations of less than a page.
  246  */
  247 static int
  248 vm_contig_pg_alloc(unsigned long size, vm_paddr_t low, vm_paddr_t high,
  249                    unsigned long alignment, unsigned long boundary, int mflags)
  250 {
  251         int i, q, start, pass;
  252         vm_offset_t phys;
  253         vm_page_t pga = vm_page_array;
  254         vm_page_t m;
  255         int pqtype;
  256 
  257         size = round_page(size);
  258         if (size == 0)
  259                 panic("vm_contig_pg_alloc: size must not be 0");
  260         if ((alignment & (alignment - 1)) != 0)
  261                 panic("vm_contig_pg_alloc: alignment must be a power of 2");
  262         if ((boundary & (boundary - 1)) != 0)
  263                 panic("vm_contig_pg_alloc: boundary must be a power of 2");
  264 
  265         /*
  266          * See if we can get the pages from the contiguous page reserve
  267          * alist.  The returned pages will be allocated and wired but not
  268          * busied.
  269          */
  270         m = vm_page_alloc_contig(
  271                 low, high, alignment, boundary, size, VM_MEMATTR_DEFAULT);
  272         if (m)
  273                 return (m - &pga[0]);
  274 
  275         /*
  276          * Three passes (0, 1, 2).  Each pass scans the VM page list for
  277          * free or cached pages.  After each pass if the entire scan failed
  278          * we attempt to flush inactive pages and reset the start index back
  279          * to 0.  For passes 1 and 2 we also attempt to flush active pages.
  280          */
  281         start = 0;
  282         for (pass = 0; pass < 3; pass++) {
  283                 /*
  284                  * Find first page in array that is free, within range, 
  285                  * aligned, and such that the boundary won't be crossed.
  286                  */
  287 again:
  288                 for (i = start; i < vmstats.v_page_count; i++) {
  289                         m = &pga[i];
  290                         phys = VM_PAGE_TO_PHYS(m);
  291                         pqtype = m->queue - m->pc;
  292                         if (((pqtype == PQ_FREE) || (pqtype == PQ_CACHE)) &&
  293                             (phys >= low) && (phys < high) &&
  294                             ((phys & (alignment - 1)) == 0) &&
  295                             (((phys ^ (phys + size - 1)) & ~(boundary - 1)) == 0) &&
  296                             m->busy == 0 && m->wire_count == 0 &&
  297                             m->hold_count == 0 &&
  298                             (m->flags & (PG_BUSY | PG_NEED_COMMIT)) == 0)
  299                         {
  300                                 break;
  301                         }
  302                 }
  303 
  304                 /*
  305                  * If we cannot find the page in the given range, or we have
  306                  * crossed the boundary, call the vm_contig_pg_clean() function
  307                  * for flushing out the queues, and returning it back to
  308                  * normal state.
  309                  */
  310                 if ((i == vmstats.v_page_count) ||
  311                     ((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) {
  312 
  313                         /*
  314                          * Best effort flush of all inactive pages.
  315                          * This is quite quick, for now stall all
  316                          * callers, even if they've specified M_NOWAIT.
  317                          */
  318                         for (q = 0; q < PQ_L2_SIZE; ++q) {
  319                                 vm_contig_pg_clean(PQ_INACTIVE + q,
  320                                                    vmstats.v_inactive_count);
  321                                 lwkt_yield();
  322                         }
  323 
  324                         /*
  325                          * Best effort flush of active pages.
  326                          *
  327                          * This is very, very slow.
  328                          * Only do this if the caller has agreed to M_WAITOK.
  329                          *
  330                          * If enough pages are flushed, we may succeed on
  331                          * next (final) pass, if not the caller, contigmalloc(),
  332                          * will fail in the index < 0 case.
  333                          */
  334                         if (pass > 0 && (mflags & M_WAITOK)) {
  335                                 for (q = 0; q < PQ_L2_SIZE; ++q) {
  336                                         vm_contig_pg_clean(PQ_ACTIVE + q,
  337                                                        vmstats.v_active_count);
  338                                 }
  339                                 lwkt_yield();
  340                         }
  341 
  342                         /*
  343                          * We're already too high in the address space
  344                          * to succeed, reset to 0 for the next iteration.
  345                          */
  346                         start = 0;
  347                         continue;       /* next pass */
  348                 }
  349                 start = i;
  350 
  351                 /*
  352                  * Check successive pages for contiguous and free.
  353                  *
  354                  * (still in critical section)
  355                  */
  356                 for (i = start + 1; i < (start + size / PAGE_SIZE); i++) {
  357                         m = &pga[i];
  358                         pqtype = m->queue - m->pc;
  359                         if ((VM_PAGE_TO_PHYS(&m[0]) !=
  360                             (VM_PAGE_TO_PHYS(&m[-1]) + PAGE_SIZE)) ||
  361                             ((pqtype != PQ_FREE) && (pqtype != PQ_CACHE)) ||
  362                             m->busy || m->wire_count ||
  363                             m->hold_count ||
  364                             (m->flags & (PG_BUSY | PG_NEED_COMMIT)))
  365                         {
  366                                 start++;
  367                                 goto again;
  368                         }
  369                 }
  370 
  371                 /*
  372                  * Try to allocate the pages, wiring them as we go.
  373                  *
  374                  * (still in critical section)
  375                  */
  376                 for (i = start; i < (start + size / PAGE_SIZE); i++) {
  377                         m = &pga[i];
  378 
  379                         if (vm_page_busy_try(m, TRUE)) {
  380                                 vm_contig_pg_free(start,
  381                                                   (i - start) * PAGE_SIZE);
  382                                 start++;
  383                                 goto again;
  384                         }
  385                         pqtype = m->queue - m->pc;
  386                         if (pqtype == PQ_CACHE &&
  387                             m->hold_count == 0 &&
  388                             m->wire_count == 0 &&
  389                             (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0) {
  390                                 vm_page_protect(m, VM_PROT_NONE);
  391                                 KKASSERT((m->flags & PG_MAPPED) == 0);
  392                                 KKASSERT(m->dirty == 0);
  393                                 vm_page_free(m);
  394                                 --i;
  395                                 continue;       /* retry the page */
  396                         }
  397                         if (pqtype != PQ_FREE || m->hold_count) {
  398                                 vm_page_wakeup(m);
  399                                 vm_contig_pg_free(start,
  400                                                   (i - start) * PAGE_SIZE);
  401                                 start++;
  402                                 goto again;
  403                         }
  404                         KKASSERT((m->valid & m->dirty) == 0);
  405                         KKASSERT(m->wire_count == 0);
  406                         KKASSERT(m->object == NULL);
  407                         vm_page_unqueue_nowakeup(m);
  408                         m->valid = VM_PAGE_BITS_ALL;
  409                         if (m->flags & PG_ZERO)
  410                                 vm_page_zero_count--;
  411                         KASSERT(m->dirty == 0,
  412                                 ("vm_contig_pg_alloc: page %p was dirty", m));
  413                         KKASSERT(m->wire_count == 0);
  414                         KKASSERT(m->busy == 0);
  415 
  416                         /*
  417                          * Clear all flags except PG_BUSY, PG_ZERO, and
  418                          * PG_WANTED, then unbusy the now allocated page.
  419                          */
  420                         vm_page_flag_clear(m, ~(PG_BUSY | PG_SBUSY |
  421                                                 PG_ZERO | PG_WANTED));
  422                         vm_page_wire(m);
  423                         vm_page_wakeup(m);
  424                 }
  425 
  426                 /*
  427                  * Our job is done, return the index page of vm_page_array.
  428                  */
  429                 return (start); /* aka &pga[start] */
  430         }
  431 
  432         /*
  433          * Failed.
  434          */
  435         return (-1);
  436 }
  437 
  438 /*
  439  * vm_contig_pg_free:
  440  *
  441  * Remove pages previously allocated by vm_contig_pg_alloc, and
  442  * assume all references to the pages have been removed, and that
  443  * it is OK to add them back to the free list.
  444  *
  445  * Caller must ensure no races on the page range in question.
  446  * No other requirements.
  447  */
  448 static void
  449 vm_contig_pg_free(int start, u_long size)
  450 {
  451         vm_page_t pga = vm_page_array;
  452         
  453         size = round_page(size);
  454         if (size == 0)
  455                 panic("vm_contig_pg_free: size must not be 0");
  456 
  457         /*
  458          * The pages are wired, vm_page_free_contig() determines whether they
  459          * belong to the contig space or not and either frees them to that
  460          * space (leaving them wired), or unwires the page and frees it to the
  461          * normal PQ_FREE queue.
  462          */
  463         vm_page_free_contig(&pga[start], size);
  464 }
  465 
  466 /*
  467  * vm_contig_pg_kmap:
  468  *
  469  * Map previously allocated (vm_contig_pg_alloc) range of pages from
  470  * vm_page_array[] into the KVA.  Once mapped, the pages are part of
  471  * the Kernel, and are to free'ed with kmem_free(&kernel_map, addr, size).
  472  *
  473  * No requirements.
  474  */
  475 static vm_offset_t
  476 vm_contig_pg_kmap(int start, u_long size, vm_map_t map, int flags)
  477 {
  478         vm_offset_t addr;
  479         vm_paddr_t pa;
  480         vm_page_t pga = vm_page_array;
  481         u_long offset;
  482 
  483         if (size == 0)
  484                 panic("vm_contig_pg_kmap: size must not be 0");
  485         size = round_page(size);
  486         addr = kmem_alloc_pageable(&kernel_map, size);
  487         if (addr) {
  488                 pa = VM_PAGE_TO_PHYS(&pga[start]);
  489                 for (offset = 0; offset < size; offset += PAGE_SIZE)
  490                         pmap_kenter_quick(addr + offset, pa + offset);
  491                 smp_invltlb();
  492                 if (flags & M_ZERO)
  493                         bzero((void *)addr, size);
  494         }
  495         return(addr);
  496 }
  497 
  498 /*
  499  * No requirements.
  500  */
  501 void *
  502 contigmalloc(
  503         unsigned long size,     /* should be size_t here and for malloc() */
  504         struct malloc_type *type,
  505         int flags,
  506         vm_paddr_t low,
  507         vm_paddr_t high,
  508         unsigned long alignment,
  509         unsigned long boundary)
  510 {
  511         return contigmalloc_map(size, type, flags, low, high, alignment,
  512                         boundary, &kernel_map);
  513 }
  514 
  515 /*
  516  * No requirements.
  517  */
  518 void *
  519 contigmalloc_map(unsigned long size, struct malloc_type *type,
  520                  int flags, vm_paddr_t low, vm_paddr_t high,
  521                  unsigned long alignment, unsigned long boundary,
  522                  vm_map_t map)
  523 {
  524         int index;
  525         void *rv;
  526 
  527         index = vm_contig_pg_alloc(size, low, high, alignment, boundary, flags);
  528         if (index < 0) {
  529                 kprintf("contigmalloc_map: failed size %lu low=%llx "
  530                         "high=%llx align=%lu boundary=%lu flags=%08x\n",
  531                         size, (long long)low, (long long)high,
  532                         alignment, boundary, flags);
  533                 return NULL;
  534         }
  535 
  536         rv = (void *)vm_contig_pg_kmap(index, size, map, flags);
  537         if (rv == NULL)
  538                 vm_contig_pg_free(index, size);
  539         
  540         return rv;
  541 }
  542 
  543 /*
  544  * No requirements.
  545  */
  546 void
  547 contigfree(void *addr, unsigned long size, struct malloc_type *type)
  548 {
  549         vm_paddr_t pa;
  550         vm_page_t m;
  551 
  552         if (size == 0)
  553                 panic("vm_contig_pg_kmap: size must not be 0");
  554         size = round_page(size);
  555 
  556         pa = pmap_extract(&kernel_pmap, (vm_offset_t)addr);
  557         pmap_qremove((vm_offset_t)addr, size / PAGE_SIZE);
  558         kmem_free(&kernel_map, (vm_offset_t)addr, size);
  559 
  560         m = PHYS_TO_VM_PAGE(pa);
  561         vm_page_free_contig(m, size);
  562 }
  563 
  564 /*
  565  * No requirements.
  566  */
  567 vm_offset_t
  568 kmem_alloc_contig(vm_offset_t size, vm_paddr_t low, vm_paddr_t high,
  569                   vm_offset_t alignment)
  570 {
  571         return ((vm_offset_t)contigmalloc_map(size, M_DEVBUF, M_NOWAIT, low,
  572                                 high, alignment, 0ul, &kernel_map));
  573 }

Cache object: 01cca8c34912cbeb087cd6bfc308070f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.