FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_fault.c
1 /*-
2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * Copyright (c) 1994 John S. Dyson
7 * All rights reserved.
8 * Copyright (c) 1994 David Greenman
9 * All rights reserved.
10 *
11 *
12 * This code is derived from software contributed to Berkeley by
13 * The Mach Operating System project at Carnegie-Mellon University.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 * must display the following acknowledgement:
25 * This product includes software developed by the University of
26 * California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 * may be used to endorse or promote products derived from this software
29 * without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94
44 *
45 *
46 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47 * All rights reserved.
48 *
49 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50 *
51 * Permission to use, copy, modify and distribute this software and
52 * its documentation is hereby granted, provided that both the copyright
53 * notice and this permission notice appear in all copies of the
54 * software, derivative works or modified versions, and any portions
55 * thereof, and that both notices appear in supporting documentation.
56 *
57 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60 *
61 * Carnegie Mellon requests users of this software to return to
62 *
63 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
64 * School of Computer Science
65 * Carnegie Mellon University
66 * Pittsburgh PA 15213-3890
67 *
68 * any improvements or extensions that they make and grant Carnegie the
69 * rights to redistribute these changes.
70 */
71
72 /*
73 * Page fault handling module.
74 */
75
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78
79 #include "opt_ktrace.h"
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/lock.h>
86 #include <sys/mman.h>
87 #include <sys/mutex.h>
88 #include <sys/pctrie.h>
89 #include <sys/proc.h>
90 #include <sys/racct.h>
91 #include <sys/refcount.h>
92 #include <sys/resourcevar.h>
93 #include <sys/rwlock.h>
94 #include <sys/signalvar.h>
95 #include <sys/sysctl.h>
96 #include <sys/sysent.h>
97 #include <sys/vmmeter.h>
98 #include <sys/vnode.h>
99 #ifdef KTRACE
100 #include <sys/ktrace.h>
101 #endif
102
103 #include <vm/vm.h>
104 #include <vm/vm_param.h>
105 #include <vm/pmap.h>
106 #include <vm/vm_map.h>
107 #include <vm/vm_object.h>
108 #include <vm/vm_page.h>
109 #include <vm/vm_pageout.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_extern.h>
113 #include <vm/vm_reserv.h>
114
115 #define PFBAK 4
116 #define PFFOR 4
117
118 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT)
119
120 #define VM_FAULT_DONTNEED_MIN 1048576
121
122 struct faultstate {
123 /* Fault parameters. */
124 vm_offset_t vaddr;
125 vm_page_t *m_hold;
126 vm_prot_t fault_type;
127 vm_prot_t prot;
128 int fault_flags;
129 boolean_t wired;
130
131 /* Control state. */
132 struct timeval oom_start_time;
133 bool oom_started;
134 int nera;
135
136 /* Page reference for cow. */
137 vm_page_t m_cow;
138
139 /* Current object. */
140 vm_object_t object;
141 vm_pindex_t pindex;
142 vm_page_t m;
143
144 /* Top-level map object. */
145 vm_object_t first_object;
146 vm_pindex_t first_pindex;
147 vm_page_t first_m;
148
149 /* Map state. */
150 vm_map_t map;
151 vm_map_entry_t entry;
152 int map_generation;
153 bool lookup_still_valid;
154
155 /* Vnode if locked. */
156 struct vnode *vp;
157 };
158
159 /*
160 * Return codes for internal fault routines.
161 */
162 enum fault_status {
163 FAULT_SUCCESS = 1, /* Return success to user. */
164 FAULT_FAILURE, /* Return failure to user. */
165 FAULT_CONTINUE, /* Continue faulting. */
166 FAULT_RESTART, /* Restart fault. */
167 FAULT_OUT_OF_BOUNDS, /* Invalid address for pager. */
168 FAULT_HARD, /* Performed I/O. */
169 FAULT_SOFT, /* Found valid page. */
170 FAULT_PROTECTION_FAILURE, /* Invalid access. */
171 };
172
173 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
174 int ahead);
175 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
176 int backward, int forward, bool obj_locked);
177
178 static int vm_pfault_oom_attempts = 3;
179 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
180 &vm_pfault_oom_attempts, 0,
181 "Number of page allocation attempts in page fault handler before it "
182 "triggers OOM handling");
183
184 static int vm_pfault_oom_wait = 10;
185 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
186 &vm_pfault_oom_wait, 0,
187 "Number of seconds to wait for free pages before retrying "
188 "the page fault handler");
189
190 static inline void
191 fault_page_release(vm_page_t *mp)
192 {
193 vm_page_t m;
194
195 m = *mp;
196 if (m != NULL) {
197 /*
198 * We are likely to loop around again and attempt to busy
199 * this page. Deactivating it leaves it available for
200 * pageout while optimizing fault restarts.
201 */
202 vm_page_deactivate(m);
203 vm_page_xunbusy(m);
204 *mp = NULL;
205 }
206 }
207
208 static inline void
209 fault_page_free(vm_page_t *mp)
210 {
211 vm_page_t m;
212
213 m = *mp;
214 if (m != NULL) {
215 VM_OBJECT_ASSERT_WLOCKED(m->object);
216 if (!vm_page_wired(m))
217 vm_page_free(m);
218 else
219 vm_page_xunbusy(m);
220 *mp = NULL;
221 }
222 }
223
224 /*
225 * Return true if a vm_pager_get_pages() call is needed in order to check
226 * whether the pager might have a particular page, false if it can be determined
227 * immediately that the pager can not have a copy. For swap objects, this can
228 * be checked quickly.
229 */
230 static inline bool
231 fault_object_needs_getpages(vm_object_t object)
232 {
233 VM_OBJECT_ASSERT_LOCKED(object);
234
235 return ((object->flags & OBJ_SWAP) == 0 ||
236 !pctrie_is_empty(&object->un_pager.swp.swp_blks));
237 }
238
239 static inline void
240 unlock_map(struct faultstate *fs)
241 {
242
243 if (fs->lookup_still_valid) {
244 vm_map_lookup_done(fs->map, fs->entry);
245 fs->lookup_still_valid = false;
246 }
247 }
248
249 static void
250 unlock_vp(struct faultstate *fs)
251 {
252
253 if (fs->vp != NULL) {
254 vput(fs->vp);
255 fs->vp = NULL;
256 }
257 }
258
259 static void
260 fault_deallocate(struct faultstate *fs)
261 {
262
263 fault_page_release(&fs->m_cow);
264 fault_page_release(&fs->m);
265 vm_object_pip_wakeup(fs->object);
266 if (fs->object != fs->first_object) {
267 VM_OBJECT_WLOCK(fs->first_object);
268 fault_page_free(&fs->first_m);
269 VM_OBJECT_WUNLOCK(fs->first_object);
270 vm_object_pip_wakeup(fs->first_object);
271 }
272 vm_object_deallocate(fs->first_object);
273 unlock_map(fs);
274 unlock_vp(fs);
275 }
276
277 static void
278 unlock_and_deallocate(struct faultstate *fs)
279 {
280
281 VM_OBJECT_WUNLOCK(fs->object);
282 fault_deallocate(fs);
283 }
284
285 static void
286 vm_fault_dirty(struct faultstate *fs, vm_page_t m)
287 {
288 bool need_dirty;
289
290 if (((fs->prot & VM_PROT_WRITE) == 0 &&
291 (fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
292 (m->oflags & VPO_UNMANAGED) != 0)
293 return;
294
295 VM_PAGE_OBJECT_BUSY_ASSERT(m);
296
297 need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
298 (fs->fault_flags & VM_FAULT_WIRE) == 0) ||
299 (fs->fault_flags & VM_FAULT_DIRTY) != 0;
300
301 vm_object_set_writeable_dirty(m->object);
302
303 /*
304 * If the fault is a write, we know that this page is being
305 * written NOW so dirty it explicitly to save on
306 * pmap_is_modified() calls later.
307 *
308 * Also, since the page is now dirty, we can possibly tell
309 * the pager to release any swap backing the page.
310 */
311 if (need_dirty && vm_page_set_dirty(m) == 0) {
312 /*
313 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
314 * if the page is already dirty to prevent data written with
315 * the expectation of being synced from not being synced.
316 * Likewise if this entry does not request NOSYNC then make
317 * sure the page isn't marked NOSYNC. Applications sharing
318 * data should use the same flags to avoid ping ponging.
319 */
320 if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
321 vm_page_aflag_set(m, PGA_NOSYNC);
322 else
323 vm_page_aflag_clear(m, PGA_NOSYNC);
324 }
325
326 }
327
328 /*
329 * Unlocks fs.first_object and fs.map on success.
330 */
331 static enum fault_status
332 vm_fault_soft_fast(struct faultstate *fs)
333 {
334 vm_page_t m, m_map;
335 #if VM_NRESERVLEVEL > 0
336 vm_page_t m_super;
337 int flags;
338 #endif
339 int psind;
340 vm_offset_t vaddr;
341 enum fault_status res;
342
343 MPASS(fs->vp == NULL);
344
345 res = FAULT_SUCCESS;
346 vaddr = fs->vaddr;
347 vm_object_busy(fs->first_object);
348 m = vm_page_lookup(fs->first_object, fs->first_pindex);
349 /* A busy page can be mapped for read|execute access. */
350 if (m == NULL || ((fs->prot & VM_PROT_WRITE) != 0 &&
351 vm_page_busied(m)) || !vm_page_all_valid(m)) {
352 res = FAULT_FAILURE;
353 goto out;
354 }
355 m_map = m;
356 psind = 0;
357 #if VM_NRESERVLEVEL > 0
358 if ((m->flags & PG_FICTITIOUS) == 0 &&
359 (m_super = vm_reserv_to_superpage(m)) != NULL &&
360 rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
361 roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
362 (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
363 (pagesizes[m_super->psind] - 1)) && !fs->wired &&
364 pmap_ps_enabled(fs->map->pmap)) {
365 flags = PS_ALL_VALID;
366 if ((fs->prot & VM_PROT_WRITE) != 0) {
367 /*
368 * Create a superpage mapping allowing write access
369 * only if none of the constituent pages are busy and
370 * all of them are already dirty (except possibly for
371 * the page that was faulted on).
372 */
373 flags |= PS_NONE_BUSY;
374 if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
375 flags |= PS_ALL_DIRTY;
376 }
377 if (vm_page_ps_test(m_super, flags, m)) {
378 m_map = m_super;
379 psind = m_super->psind;
380 vaddr = rounddown2(vaddr, pagesizes[psind]);
381 /* Preset the modified bit for dirty superpages. */
382 if ((flags & PS_ALL_DIRTY) != 0)
383 fs->fault_type |= VM_PROT_WRITE;
384 }
385 }
386 #endif
387 if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
388 PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) !=
389 KERN_SUCCESS) {
390 res = FAULT_FAILURE;
391 goto out;
392 }
393 if (fs->m_hold != NULL) {
394 (*fs->m_hold) = m;
395 vm_page_wire(m);
396 }
397 if (psind == 0 && !fs->wired)
398 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
399 VM_OBJECT_RUNLOCK(fs->first_object);
400 vm_fault_dirty(fs, m);
401 vm_map_lookup_done(fs->map, fs->entry);
402 curthread->td_ru.ru_minflt++;
403
404 out:
405 vm_object_unbusy(fs->first_object);
406 return (res);
407 }
408
409 static void
410 vm_fault_restore_map_lock(struct faultstate *fs)
411 {
412
413 VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
414 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
415
416 if (!vm_map_trylock_read(fs->map)) {
417 VM_OBJECT_WUNLOCK(fs->first_object);
418 vm_map_lock_read(fs->map);
419 VM_OBJECT_WLOCK(fs->first_object);
420 }
421 fs->lookup_still_valid = true;
422 }
423
424 static void
425 vm_fault_populate_check_page(vm_page_t m)
426 {
427
428 /*
429 * Check each page to ensure that the pager is obeying the
430 * interface: the page must be installed in the object, fully
431 * valid, and exclusively busied.
432 */
433 MPASS(m != NULL);
434 MPASS(vm_page_all_valid(m));
435 MPASS(vm_page_xbusied(m));
436 }
437
438 static void
439 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
440 vm_pindex_t last)
441 {
442 vm_page_t m;
443 vm_pindex_t pidx;
444
445 VM_OBJECT_ASSERT_WLOCKED(object);
446 MPASS(first <= last);
447 for (pidx = first, m = vm_page_lookup(object, pidx);
448 pidx <= last; pidx++, m = vm_page_next(m)) {
449 vm_fault_populate_check_page(m);
450 vm_page_deactivate(m);
451 vm_page_xunbusy(m);
452 }
453 }
454
455 static enum fault_status
456 vm_fault_populate(struct faultstate *fs)
457 {
458 vm_offset_t vaddr;
459 vm_page_t m;
460 vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
461 int bdry_idx, i, npages, psind, rv;
462 enum fault_status res;
463
464 MPASS(fs->object == fs->first_object);
465 VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
466 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
467 MPASS(fs->first_object->backing_object == NULL);
468 MPASS(fs->lookup_still_valid);
469
470 pager_first = OFF_TO_IDX(fs->entry->offset);
471 pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
472 unlock_map(fs);
473 unlock_vp(fs);
474
475 res = FAULT_SUCCESS;
476
477 /*
478 * Call the pager (driver) populate() method.
479 *
480 * There is no guarantee that the method will be called again
481 * if the current fault is for read, and a future fault is
482 * for write. Report the entry's maximum allowed protection
483 * to the driver.
484 */
485 rv = vm_pager_populate(fs->first_object, fs->first_pindex,
486 fs->fault_type, fs->entry->max_protection, &pager_first,
487 &pager_last);
488
489 VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
490 if (rv == VM_PAGER_BAD) {
491 /*
492 * VM_PAGER_BAD is the backdoor for a pager to request
493 * normal fault handling.
494 */
495 vm_fault_restore_map_lock(fs);
496 if (fs->map->timestamp != fs->map_generation)
497 return (FAULT_RESTART);
498 return (FAULT_CONTINUE);
499 }
500 if (rv != VM_PAGER_OK)
501 return (FAULT_FAILURE); /* AKA SIGSEGV */
502
503 /* Ensure that the driver is obeying the interface. */
504 MPASS(pager_first <= pager_last);
505 MPASS(fs->first_pindex <= pager_last);
506 MPASS(fs->first_pindex >= pager_first);
507 MPASS(pager_last < fs->first_object->size);
508
509 vm_fault_restore_map_lock(fs);
510 bdry_idx = (fs->entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
511 MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
512 if (fs->map->timestamp != fs->map_generation) {
513 if (bdry_idx == 0) {
514 vm_fault_populate_cleanup(fs->first_object, pager_first,
515 pager_last);
516 } else {
517 m = vm_page_lookup(fs->first_object, pager_first);
518 if (m != fs->m)
519 vm_page_xunbusy(m);
520 }
521 return (FAULT_RESTART);
522 }
523
524 /*
525 * The map is unchanged after our last unlock. Process the fault.
526 *
527 * First, the special case of largepage mappings, where
528 * populate only busies the first page in superpage run.
529 */
530 if (bdry_idx != 0) {
531 KASSERT(PMAP_HAS_LARGEPAGES,
532 ("missing pmap support for large pages"));
533 m = vm_page_lookup(fs->first_object, pager_first);
534 vm_fault_populate_check_page(m);
535 VM_OBJECT_WUNLOCK(fs->first_object);
536 vaddr = fs->entry->start + IDX_TO_OFF(pager_first) -
537 fs->entry->offset;
538 /* assert alignment for entry */
539 KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0,
540 ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx",
541 (uintmax_t)fs->entry->start, (uintmax_t)pager_first,
542 (uintmax_t)fs->entry->offset, (uintmax_t)vaddr));
543 KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0,
544 ("unaligned superpage m %p %#jx", m,
545 (uintmax_t)VM_PAGE_TO_PHYS(m)));
546 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot,
547 fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) |
548 PMAP_ENTER_LARGEPAGE, bdry_idx);
549 VM_OBJECT_WLOCK(fs->first_object);
550 vm_page_xunbusy(m);
551 if (rv != KERN_SUCCESS) {
552 res = FAULT_FAILURE;
553 goto out;
554 }
555 if ((fs->fault_flags & VM_FAULT_WIRE) != 0) {
556 for (i = 0; i < atop(pagesizes[bdry_idx]); i++)
557 vm_page_wire(m + i);
558 }
559 if (fs->m_hold != NULL) {
560 *fs->m_hold = m + (fs->first_pindex - pager_first);
561 vm_page_wire(*fs->m_hold);
562 }
563 goto out;
564 }
565
566 /*
567 * The range [pager_first, pager_last] that is given to the
568 * pager is only a hint. The pager may populate any range
569 * within the object that includes the requested page index.
570 * In case the pager expanded the range, clip it to fit into
571 * the map entry.
572 */
573 map_first = OFF_TO_IDX(fs->entry->offset);
574 if (map_first > pager_first) {
575 vm_fault_populate_cleanup(fs->first_object, pager_first,
576 map_first - 1);
577 pager_first = map_first;
578 }
579 map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
580 if (map_last < pager_last) {
581 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
582 pager_last);
583 pager_last = map_last;
584 }
585 for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
586 pidx <= pager_last;
587 pidx += npages, m = vm_page_next(&m[npages - 1])) {
588 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
589
590 psind = m->psind;
591 if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
592 pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
593 !pmap_ps_enabled(fs->map->pmap) || fs->wired))
594 psind = 0;
595
596 npages = atop(pagesizes[psind]);
597 for (i = 0; i < npages; i++) {
598 vm_fault_populate_check_page(&m[i]);
599 vm_fault_dirty(fs, &m[i]);
600 }
601 VM_OBJECT_WUNLOCK(fs->first_object);
602 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
603 (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
604
605 /*
606 * pmap_enter() may fail for a superpage mapping if additional
607 * protection policies prevent the full mapping.
608 * For example, this will happen on amd64 if the entire
609 * address range does not share the same userspace protection
610 * key. Revert to single-page mappings if this happens.
611 */
612 MPASS(rv == KERN_SUCCESS ||
613 (psind > 0 && rv == KERN_PROTECTION_FAILURE));
614 if (__predict_false(psind > 0 &&
615 rv == KERN_PROTECTION_FAILURE)) {
616 MPASS(!fs->wired);
617 for (i = 0; i < npages; i++) {
618 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
619 &m[i], fs->prot, fs->fault_type, 0);
620 MPASS(rv == KERN_SUCCESS);
621 }
622 }
623
624 VM_OBJECT_WLOCK(fs->first_object);
625 for (i = 0; i < npages; i++) {
626 if ((fs->fault_flags & VM_FAULT_WIRE) != 0 &&
627 m[i].pindex == fs->first_pindex)
628 vm_page_wire(&m[i]);
629 else
630 vm_page_activate(&m[i]);
631 if (fs->m_hold != NULL &&
632 m[i].pindex == fs->first_pindex) {
633 (*fs->m_hold) = &m[i];
634 vm_page_wire(&m[i]);
635 }
636 vm_page_xunbusy(&m[i]);
637 }
638 }
639 out:
640 curthread->td_ru.ru_majflt++;
641 return (res);
642 }
643
644 static int prot_fault_translation;
645 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
646 &prot_fault_translation, 0,
647 "Control signal to deliver on protection fault");
648
649 /* compat definition to keep common code for signal translation */
650 #define UCODE_PAGEFLT 12
651 #ifdef T_PAGEFLT
652 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
653 #endif
654
655 /*
656 * vm_fault_trap:
657 *
658 * Handle a page fault occurring at the given address,
659 * requiring the given permissions, in the map specified.
660 * If successful, the page is inserted into the
661 * associated physical map.
662 *
663 * NOTE: the given address should be truncated to the
664 * proper page address.
665 *
666 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
667 * a standard error specifying why the fault is fatal is returned.
668 *
669 * The map in question must be referenced, and remains so.
670 * Caller may hold no locks.
671 */
672 int
673 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
674 int fault_flags, int *signo, int *ucode)
675 {
676 int result;
677
678 MPASS(signo == NULL || ucode != NULL);
679 #ifdef KTRACE
680 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
681 ktrfault(vaddr, fault_type);
682 #endif
683 result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
684 NULL);
685 KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
686 result == KERN_INVALID_ADDRESS ||
687 result == KERN_RESOURCE_SHORTAGE ||
688 result == KERN_PROTECTION_FAILURE ||
689 result == KERN_OUT_OF_BOUNDS,
690 ("Unexpected Mach error %d from vm_fault()", result));
691 #ifdef KTRACE
692 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
693 ktrfaultend(result);
694 #endif
695 if (result != KERN_SUCCESS && signo != NULL) {
696 switch (result) {
697 case KERN_FAILURE:
698 case KERN_INVALID_ADDRESS:
699 *signo = SIGSEGV;
700 *ucode = SEGV_MAPERR;
701 break;
702 case KERN_RESOURCE_SHORTAGE:
703 *signo = SIGBUS;
704 *ucode = BUS_OOMERR;
705 break;
706 case KERN_OUT_OF_BOUNDS:
707 *signo = SIGBUS;
708 *ucode = BUS_OBJERR;
709 break;
710 case KERN_PROTECTION_FAILURE:
711 if (prot_fault_translation == 0) {
712 /*
713 * Autodetect. This check also covers
714 * the images without the ABI-tag ELF
715 * note.
716 */
717 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
718 curproc->p_osrel >= P_OSREL_SIGSEGV) {
719 *signo = SIGSEGV;
720 *ucode = SEGV_ACCERR;
721 } else {
722 *signo = SIGBUS;
723 *ucode = UCODE_PAGEFLT;
724 }
725 } else if (prot_fault_translation == 1) {
726 /* Always compat mode. */
727 *signo = SIGBUS;
728 *ucode = UCODE_PAGEFLT;
729 } else {
730 /* Always SIGSEGV mode. */
731 *signo = SIGSEGV;
732 *ucode = SEGV_ACCERR;
733 }
734 break;
735 default:
736 KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
737 result));
738 break;
739 }
740 }
741 return (result);
742 }
743
744 static enum fault_status
745 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
746 {
747 struct vnode *vp;
748 int error, locked;
749
750 if (fs->object->type != OBJT_VNODE)
751 return (FAULT_CONTINUE);
752 vp = fs->object->handle;
753 if (vp == fs->vp) {
754 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
755 return (FAULT_CONTINUE);
756 }
757
758 /*
759 * Perform an unlock in case the desired vnode changed while
760 * the map was unlocked during a retry.
761 */
762 unlock_vp(fs);
763
764 locked = VOP_ISLOCKED(vp);
765 if (locked != LK_EXCLUSIVE)
766 locked = LK_SHARED;
767
768 /*
769 * We must not sleep acquiring the vnode lock while we have
770 * the page exclusive busied or the object's
771 * paging-in-progress count incremented. Otherwise, we could
772 * deadlock.
773 */
774 error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT);
775 if (error == 0) {
776 fs->vp = vp;
777 return (FAULT_CONTINUE);
778 }
779
780 vhold(vp);
781 if (objlocked)
782 unlock_and_deallocate(fs);
783 else
784 fault_deallocate(fs);
785 error = vget(vp, locked | LK_RETRY | LK_CANRECURSE);
786 vdrop(vp);
787 fs->vp = vp;
788 KASSERT(error == 0, ("vm_fault: vget failed %d", error));
789 return (FAULT_RESTART);
790 }
791
792 /*
793 * Calculate the desired readahead. Handle drop-behind.
794 *
795 * Returns the number of readahead blocks to pass to the pager.
796 */
797 static int
798 vm_fault_readahead(struct faultstate *fs)
799 {
800 int era, nera;
801 u_char behavior;
802
803 KASSERT(fs->lookup_still_valid, ("map unlocked"));
804 era = fs->entry->read_ahead;
805 behavior = vm_map_entry_behavior(fs->entry);
806 if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
807 nera = 0;
808 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
809 nera = VM_FAULT_READ_AHEAD_MAX;
810 if (fs->vaddr == fs->entry->next_read)
811 vm_fault_dontneed(fs, fs->vaddr, nera);
812 } else if (fs->vaddr == fs->entry->next_read) {
813 /*
814 * This is a sequential fault. Arithmetically
815 * increase the requested number of pages in
816 * the read-ahead window. The requested
817 * number of pages is "# of sequential faults
818 * x (read ahead min + 1) + read ahead min"
819 */
820 nera = VM_FAULT_READ_AHEAD_MIN;
821 if (era > 0) {
822 nera += era + 1;
823 if (nera > VM_FAULT_READ_AHEAD_MAX)
824 nera = VM_FAULT_READ_AHEAD_MAX;
825 }
826 if (era == VM_FAULT_READ_AHEAD_MAX)
827 vm_fault_dontneed(fs, fs->vaddr, nera);
828 } else {
829 /*
830 * This is a non-sequential fault.
831 */
832 nera = 0;
833 }
834 if (era != nera) {
835 /*
836 * A read lock on the map suffices to update
837 * the read ahead count safely.
838 */
839 fs->entry->read_ahead = nera;
840 }
841
842 return (nera);
843 }
844
845 static int
846 vm_fault_lookup(struct faultstate *fs)
847 {
848 int result;
849
850 KASSERT(!fs->lookup_still_valid,
851 ("vm_fault_lookup: Map already locked."));
852 result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
853 VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
854 &fs->first_pindex, &fs->prot, &fs->wired);
855 if (result != KERN_SUCCESS) {
856 unlock_vp(fs);
857 return (result);
858 }
859
860 fs->map_generation = fs->map->timestamp;
861
862 if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
863 panic("%s: fault on nofault entry, addr: %#lx",
864 __func__, (u_long)fs->vaddr);
865 }
866
867 if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
868 fs->entry->wiring_thread != curthread) {
869 vm_map_unlock_read(fs->map);
870 vm_map_lock(fs->map);
871 if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
872 (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
873 unlock_vp(fs);
874 fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
875 vm_map_unlock_and_wait(fs->map, 0);
876 } else
877 vm_map_unlock(fs->map);
878 return (KERN_RESOURCE_SHORTAGE);
879 }
880
881 MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
882
883 if (fs->wired)
884 fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
885 else
886 KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
887 ("!fs->wired && VM_FAULT_WIRE"));
888 fs->lookup_still_valid = true;
889
890 return (KERN_SUCCESS);
891 }
892
893 static int
894 vm_fault_relookup(struct faultstate *fs)
895 {
896 vm_object_t retry_object;
897 vm_pindex_t retry_pindex;
898 vm_prot_t retry_prot;
899 int result;
900
901 if (!vm_map_trylock_read(fs->map))
902 return (KERN_RESTART);
903
904 fs->lookup_still_valid = true;
905 if (fs->map->timestamp == fs->map_generation)
906 return (KERN_SUCCESS);
907
908 result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
909 &fs->entry, &retry_object, &retry_pindex, &retry_prot,
910 &fs->wired);
911 if (result != KERN_SUCCESS) {
912 /*
913 * If retry of map lookup would have blocked then
914 * retry fault from start.
915 */
916 if (result == KERN_FAILURE)
917 return (KERN_RESTART);
918 return (result);
919 }
920 if (retry_object != fs->first_object ||
921 retry_pindex != fs->first_pindex)
922 return (KERN_RESTART);
923
924 /*
925 * Check whether the protection has changed or the object has
926 * been copied while we left the map unlocked. Changing from
927 * read to write permission is OK - we leave the page
928 * write-protected, and catch the write fault. Changing from
929 * write to read permission means that we can't mark the page
930 * write-enabled after all.
931 */
932 fs->prot &= retry_prot;
933 fs->fault_type &= retry_prot;
934 if (fs->prot == 0)
935 return (KERN_RESTART);
936
937 /* Reassert because wired may have changed. */
938 KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
939 ("!wired && VM_FAULT_WIRE"));
940
941 return (KERN_SUCCESS);
942 }
943
944 static void
945 vm_fault_cow(struct faultstate *fs)
946 {
947 bool is_first_object_locked;
948
949 KASSERT(fs->object != fs->first_object,
950 ("source and target COW objects are identical"));
951
952 /*
953 * This allows pages to be virtually copied from a backing_object
954 * into the first_object, where the backing object has no other
955 * refs to it, and cannot gain any more refs. Instead of a bcopy,
956 * we just move the page from the backing object to the first
957 * object. Note that we must mark the page dirty in the first
958 * object so that it will go out to swap when needed.
959 */
960 is_first_object_locked = false;
961 if (
962 /*
963 * Only one shadow object and no other refs.
964 */
965 fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
966 /*
967 * No other ways to look the object up
968 */
969 fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 &&
970 /*
971 * We don't chase down the shadow chain and we can acquire locks.
972 */
973 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) &&
974 fs->object == fs->first_object->backing_object &&
975 VM_OBJECT_TRYWLOCK(fs->object)) {
976 /*
977 * Remove but keep xbusy for replace. fs->m is moved into
978 * fs->first_object and left busy while fs->first_m is
979 * conditionally freed.
980 */
981 vm_page_remove_xbusy(fs->m);
982 vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
983 fs->first_m);
984 vm_page_dirty(fs->m);
985 #if VM_NRESERVLEVEL > 0
986 /*
987 * Rename the reservation.
988 */
989 vm_reserv_rename(fs->m, fs->first_object, fs->object,
990 OFF_TO_IDX(fs->first_object->backing_object_offset));
991 #endif
992 VM_OBJECT_WUNLOCK(fs->object);
993 VM_OBJECT_WUNLOCK(fs->first_object);
994 fs->first_m = fs->m;
995 fs->m = NULL;
996 VM_CNT_INC(v_cow_optim);
997 } else {
998 if (is_first_object_locked)
999 VM_OBJECT_WUNLOCK(fs->first_object);
1000 /*
1001 * Oh, well, lets copy it.
1002 */
1003 pmap_copy_page(fs->m, fs->first_m);
1004 vm_page_valid(fs->first_m);
1005 if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
1006 vm_page_wire(fs->first_m);
1007 vm_page_unwire(fs->m, PQ_INACTIVE);
1008 }
1009 /*
1010 * Save the cow page to be released after
1011 * pmap_enter is complete.
1012 */
1013 fs->m_cow = fs->m;
1014 fs->m = NULL;
1015
1016 /*
1017 * Typically, the shadow object is either private to this
1018 * address space (OBJ_ONEMAPPING) or its pages are read only.
1019 * In the highly unusual case where the pages of a shadow object
1020 * are read/write shared between this and other address spaces,
1021 * we need to ensure that any pmap-level mappings to the
1022 * original, copy-on-write page from the backing object are
1023 * removed from those other address spaces.
1024 *
1025 * The flag check is racy, but this is tolerable: if
1026 * OBJ_ONEMAPPING is cleared after the check, the busy state
1027 * ensures that new mappings of m_cow can't be created.
1028 * pmap_enter() will replace an existing mapping in the current
1029 * address space. If OBJ_ONEMAPPING is set after the check,
1030 * removing mappings will at worse trigger some unnecessary page
1031 * faults.
1032 */
1033 vm_page_assert_xbusied(fs->m_cow);
1034 if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0)
1035 pmap_remove_all(fs->m_cow);
1036 }
1037
1038 vm_object_pip_wakeup(fs->object);
1039
1040 /*
1041 * Only use the new page below...
1042 */
1043 fs->object = fs->first_object;
1044 fs->pindex = fs->first_pindex;
1045 fs->m = fs->first_m;
1046 VM_CNT_INC(v_cow_faults);
1047 curthread->td_cow++;
1048 }
1049
1050 static bool
1051 vm_fault_next(struct faultstate *fs)
1052 {
1053 vm_object_t next_object;
1054
1055 /*
1056 * The requested page does not exist at this object/
1057 * offset. Remove the invalid page from the object,
1058 * waking up anyone waiting for it, and continue on to
1059 * the next object. However, if this is the top-level
1060 * object, we must leave the busy page in place to
1061 * prevent another process from rushing past us, and
1062 * inserting the page in that object at the same time
1063 * that we are.
1064 */
1065 if (fs->object == fs->first_object) {
1066 fs->first_m = fs->m;
1067 fs->m = NULL;
1068 } else
1069 fault_page_free(&fs->m);
1070
1071 /*
1072 * Move on to the next object. Lock the next object before
1073 * unlocking the current one.
1074 */
1075 VM_OBJECT_ASSERT_WLOCKED(fs->object);
1076 next_object = fs->object->backing_object;
1077 if (next_object == NULL)
1078 return (false);
1079 MPASS(fs->first_m != NULL);
1080 KASSERT(fs->object != next_object, ("object loop %p", next_object));
1081 VM_OBJECT_WLOCK(next_object);
1082 vm_object_pip_add(next_object, 1);
1083 if (fs->object != fs->first_object)
1084 vm_object_pip_wakeup(fs->object);
1085 fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1086 VM_OBJECT_WUNLOCK(fs->object);
1087 fs->object = next_object;
1088
1089 return (true);
1090 }
1091
1092 static void
1093 vm_fault_zerofill(struct faultstate *fs)
1094 {
1095
1096 /*
1097 * If there's no object left, fill the page in the top
1098 * object with zeros.
1099 */
1100 if (fs->object != fs->first_object) {
1101 vm_object_pip_wakeup(fs->object);
1102 fs->object = fs->first_object;
1103 fs->pindex = fs->first_pindex;
1104 }
1105 MPASS(fs->first_m != NULL);
1106 MPASS(fs->m == NULL);
1107 fs->m = fs->first_m;
1108 fs->first_m = NULL;
1109
1110 /*
1111 * Zero the page if necessary and mark it valid.
1112 */
1113 if ((fs->m->flags & PG_ZERO) == 0) {
1114 pmap_zero_page(fs->m);
1115 } else {
1116 VM_CNT_INC(v_ozfod);
1117 }
1118 VM_CNT_INC(v_zfod);
1119 vm_page_valid(fs->m);
1120 }
1121
1122 /*
1123 * Initiate page fault after timeout. Returns true if caller should
1124 * do vm_waitpfault() after the call.
1125 */
1126 static bool
1127 vm_fault_allocate_oom(struct faultstate *fs)
1128 {
1129 struct timeval now;
1130
1131 unlock_and_deallocate(fs);
1132 if (vm_pfault_oom_attempts < 0)
1133 return (true);
1134 if (!fs->oom_started) {
1135 fs->oom_started = true;
1136 getmicrotime(&fs->oom_start_time);
1137 return (true);
1138 }
1139
1140 getmicrotime(&now);
1141 timevalsub(&now, &fs->oom_start_time);
1142 if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait)
1143 return (true);
1144
1145 if (bootverbose)
1146 printf(
1147 "proc %d (%s) failed to alloc page on fault, starting OOM\n",
1148 curproc->p_pid, curproc->p_comm);
1149 vm_pageout_oom(VM_OOM_MEM_PF);
1150 fs->oom_started = false;
1151 return (false);
1152 }
1153
1154 /*
1155 * Allocate a page directly or via the object populate method.
1156 */
1157 static enum fault_status
1158 vm_fault_allocate(struct faultstate *fs)
1159 {
1160 struct domainset *dset;
1161 enum fault_status res;
1162
1163 if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
1164 res = vm_fault_lock_vnode(fs, true);
1165 MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART);
1166 if (res == FAULT_RESTART)
1167 return (res);
1168 }
1169
1170 if (fs->pindex >= fs->object->size) {
1171 unlock_and_deallocate(fs);
1172 return (FAULT_OUT_OF_BOUNDS);
1173 }
1174
1175 if (fs->object == fs->first_object &&
1176 (fs->first_object->flags & OBJ_POPULATE) != 0 &&
1177 fs->first_object->shadow_count == 0) {
1178 res = vm_fault_populate(fs);
1179 switch (res) {
1180 case FAULT_SUCCESS:
1181 case FAULT_FAILURE:
1182 case FAULT_RESTART:
1183 unlock_and_deallocate(fs);
1184 return (res);
1185 case FAULT_CONTINUE:
1186 /*
1187 * Pager's populate() method
1188 * returned VM_PAGER_BAD.
1189 */
1190 break;
1191 default:
1192 panic("inconsistent return codes");
1193 }
1194 }
1195
1196 /*
1197 * Allocate a new page for this object/offset pair.
1198 *
1199 * If the process has a fatal signal pending, prioritize the allocation
1200 * with the expectation that the process will exit shortly and free some
1201 * pages. In particular, the signal may have been posted by the page
1202 * daemon in an attempt to resolve an out-of-memory condition.
1203 *
1204 * The unlocked read of the p_flag is harmless. At worst, the P_KILLED
1205 * might be not observed here, and allocation fails, causing a restart
1206 * and new reading of the p_flag.
1207 */
1208 dset = fs->object->domain.dr_policy;
1209 if (dset == NULL)
1210 dset = curthread->td_domain.dr_policy;
1211 if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
1212 #if VM_NRESERVLEVEL > 0
1213 vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
1214 #endif
1215 if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) {
1216 unlock_and_deallocate(fs);
1217 return (FAULT_FAILURE);
1218 }
1219 fs->m = vm_page_alloc(fs->object, fs->pindex,
1220 P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0);
1221 }
1222 if (fs->m == NULL) {
1223 if (vm_fault_allocate_oom(fs))
1224 vm_waitpfault(dset, vm_pfault_oom_wait * hz);
1225 return (FAULT_RESTART);
1226 }
1227 fs->oom_started = false;
1228
1229 return (FAULT_CONTINUE);
1230 }
1231
1232 /*
1233 * Call the pager to retrieve the page if there is a chance
1234 * that the pager has it, and potentially retrieve additional
1235 * pages at the same time.
1236 */
1237 static enum fault_status
1238 vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp)
1239 {
1240 vm_offset_t e_end, e_start;
1241 int ahead, behind, cluster_offset, rv;
1242 enum fault_status status;
1243 u_char behavior;
1244
1245 /*
1246 * Prepare for unlocking the map. Save the map
1247 * entry's start and end addresses, which are used to
1248 * optimize the size of the pager operation below.
1249 * Even if the map entry's addresses change after
1250 * unlocking the map, using the saved addresses is
1251 * safe.
1252 */
1253 e_start = fs->entry->start;
1254 e_end = fs->entry->end;
1255 behavior = vm_map_entry_behavior(fs->entry);
1256
1257 /*
1258 * If the pager for the current object might have
1259 * the page, then determine the number of additional
1260 * pages to read and potentially reprioritize
1261 * previously read pages for earlier reclamation.
1262 * These operations should only be performed once per
1263 * page fault. Even if the current pager doesn't
1264 * have the page, the number of additional pages to
1265 * read will apply to subsequent objects in the
1266 * shadow chain.
1267 */
1268 if (fs->nera == -1 && !P_KILLED(curproc))
1269 fs->nera = vm_fault_readahead(fs);
1270
1271 /*
1272 * Release the map lock before locking the vnode or
1273 * sleeping in the pager. (If the current object has
1274 * a shadow, then an earlier iteration of this loop
1275 * may have already unlocked the map.)
1276 */
1277 unlock_map(fs);
1278
1279 status = vm_fault_lock_vnode(fs, false);
1280 MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART);
1281 if (status == FAULT_RESTART)
1282 return (status);
1283 KASSERT(fs->vp == NULL || !fs->map->system_map,
1284 ("vm_fault: vnode-backed object mapped by system map"));
1285
1286 /*
1287 * Page in the requested page and hint the pager,
1288 * that it may bring up surrounding pages.
1289 */
1290 if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1291 P_KILLED(curproc)) {
1292 behind = 0;
1293 ahead = 0;
1294 } else {
1295 /* Is this a sequential fault? */
1296 if (fs->nera > 0) {
1297 behind = 0;
1298 ahead = fs->nera;
1299 } else {
1300 /*
1301 * Request a cluster of pages that is
1302 * aligned to a VM_FAULT_READ_DEFAULT
1303 * page offset boundary within the
1304 * object. Alignment to a page offset
1305 * boundary is more likely to coincide
1306 * with the underlying file system
1307 * block than alignment to a virtual
1308 * address boundary.
1309 */
1310 cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
1311 behind = ulmin(cluster_offset,
1312 atop(fs->vaddr - e_start));
1313 ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
1314 }
1315 ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
1316 }
1317 *behindp = behind;
1318 *aheadp = ahead;
1319 rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
1320 if (rv == VM_PAGER_OK)
1321 return (FAULT_HARD);
1322 if (rv == VM_PAGER_ERROR)
1323 printf("vm_fault: pager read error, pid %d (%s)\n",
1324 curproc->p_pid, curproc->p_comm);
1325 /*
1326 * If an I/O error occurred or the requested page was
1327 * outside the range of the pager, clean up and return
1328 * an error.
1329 */
1330 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
1331 VM_OBJECT_WLOCK(fs->object);
1332 fault_page_free(&fs->m);
1333 unlock_and_deallocate(fs);
1334 return (FAULT_OUT_OF_BOUNDS);
1335 }
1336 KASSERT(rv == VM_PAGER_FAIL,
1337 ("%s: unexpected pager error %d", __func__, rv));
1338 return (FAULT_CONTINUE);
1339 }
1340
1341 /*
1342 * Wait/Retry if the page is busy. We have to do this if the page is
1343 * either exclusive or shared busy because the vm_pager may be using
1344 * read busy for pageouts (and even pageins if it is the vnode pager),
1345 * and we could end up trying to pagein and pageout the same page
1346 * simultaneously.
1347 *
1348 * We can theoretically allow the busy case on a read fault if the page
1349 * is marked valid, but since such pages are typically already pmap'd,
1350 * putting that special case in might be more effort then it is worth.
1351 * We cannot under any circumstances mess around with a shared busied
1352 * page except, perhaps, to pmap it.
1353 */
1354 static void
1355 vm_fault_busy_sleep(struct faultstate *fs)
1356 {
1357 /*
1358 * Reference the page before unlocking and
1359 * sleeping so that the page daemon is less
1360 * likely to reclaim it.
1361 */
1362 vm_page_aflag_set(fs->m, PGA_REFERENCED);
1363 if (fs->object != fs->first_object) {
1364 fault_page_release(&fs->first_m);
1365 vm_object_pip_wakeup(fs->first_object);
1366 }
1367 vm_object_pip_wakeup(fs->object);
1368 unlock_map(fs);
1369 if (fs->m != vm_page_lookup(fs->object, fs->pindex) ||
1370 !vm_page_busy_sleep(fs->m, "vmpfw", 0))
1371 VM_OBJECT_WUNLOCK(fs->object);
1372 VM_CNT_INC(v_intrans);
1373 vm_object_deallocate(fs->first_object);
1374 }
1375
1376 /*
1377 * Handle page lookup, populate, allocate, page-in for the current
1378 * object.
1379 *
1380 * The object is locked on entry and will remain locked with a return
1381 * code of FAULT_CONTINUE so that fault may follow the shadow chain.
1382 * Otherwise, the object will be unlocked upon return.
1383 */
1384 static enum fault_status
1385 vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp)
1386 {
1387 enum fault_status res;
1388 bool dead;
1389
1390 /*
1391 * If the object is marked for imminent termination, we retry
1392 * here, since the collapse pass has raced with us. Otherwise,
1393 * if we see terminally dead object, return fail.
1394 */
1395 if ((fs->object->flags & OBJ_DEAD) != 0) {
1396 dead = fs->object->type == OBJT_DEAD;
1397 unlock_and_deallocate(fs);
1398 if (dead)
1399 return (FAULT_PROTECTION_FAILURE);
1400 pause("vmf_de", 1);
1401 return (FAULT_RESTART);
1402 }
1403
1404 /*
1405 * See if the page is resident.
1406 */
1407 fs->m = vm_page_lookup(fs->object, fs->pindex);
1408 if (fs->m != NULL) {
1409 if (!vm_page_tryxbusy(fs->m)) {
1410 vm_fault_busy_sleep(fs);
1411 return (FAULT_RESTART);
1412 }
1413
1414 /*
1415 * The page is marked busy for other processes and the
1416 * pagedaemon. If it is still completely valid we are
1417 * done.
1418 */
1419 if (vm_page_all_valid(fs->m)) {
1420 VM_OBJECT_WUNLOCK(fs->object);
1421 return (FAULT_SOFT);
1422 }
1423 }
1424 VM_OBJECT_ASSERT_WLOCKED(fs->object);
1425
1426 /*
1427 * Page is not resident. If the pager might contain the page
1428 * or this is the beginning of the search, allocate a new
1429 * page.
1430 */
1431 if (fs->m == NULL && (fault_object_needs_getpages(fs->object) ||
1432 fs->object == fs->first_object)) {
1433 res = vm_fault_allocate(fs);
1434 if (res != FAULT_CONTINUE)
1435 return (res);
1436 }
1437
1438 /*
1439 * Default objects have no pager so no exclusive busy exists
1440 * to protect this page in the chain. Skip to the next
1441 * object without dropping the lock to preserve atomicity of
1442 * shadow faults.
1443 */
1444 if (fault_object_needs_getpages(fs->object)) {
1445 /*
1446 * At this point, we have either allocated a new page
1447 * or found an existing page that is only partially
1448 * valid.
1449 *
1450 * We hold a reference on the current object and the
1451 * page is exclusive busied. The exclusive busy
1452 * prevents simultaneous faults and collapses while
1453 * the object lock is dropped.
1454 */
1455 VM_OBJECT_WUNLOCK(fs->object);
1456 res = vm_fault_getpages(fs, behindp, aheadp);
1457 if (res == FAULT_CONTINUE)
1458 VM_OBJECT_WLOCK(fs->object);
1459 } else {
1460 res = FAULT_CONTINUE;
1461 }
1462 return (res);
1463 }
1464
1465 int
1466 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1467 int fault_flags, vm_page_t *m_hold)
1468 {
1469 struct faultstate fs;
1470 int ahead, behind, faultcount, rv;
1471 enum fault_status res;
1472 bool hardfault;
1473
1474 VM_CNT_INC(v_vm_faults);
1475
1476 if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
1477 return (KERN_PROTECTION_FAILURE);
1478
1479 fs.vp = NULL;
1480 fs.vaddr = vaddr;
1481 fs.m_hold = m_hold;
1482 fs.fault_flags = fault_flags;
1483 fs.map = map;
1484 fs.lookup_still_valid = false;
1485 fs.oom_started = false;
1486 fs.nera = -1;
1487 faultcount = 0;
1488 hardfault = false;
1489
1490 RetryFault:
1491 fs.fault_type = fault_type;
1492
1493 /*
1494 * Find the backing store object and offset into it to begin the
1495 * search.
1496 */
1497 rv = vm_fault_lookup(&fs);
1498 if (rv != KERN_SUCCESS) {
1499 if (rv == KERN_RESOURCE_SHORTAGE)
1500 goto RetryFault;
1501 return (rv);
1502 }
1503
1504 /*
1505 * Try to avoid lock contention on the top-level object through
1506 * special-case handling of some types of page faults, specifically,
1507 * those that are mapping an existing page from the top-level object.
1508 * Under this condition, a read lock on the object suffices, allowing
1509 * multiple page faults of a similar type to run in parallel.
1510 */
1511 if (fs.vp == NULL /* avoid locked vnode leak */ &&
1512 (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 &&
1513 (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
1514 VM_OBJECT_RLOCK(fs.first_object);
1515 res = vm_fault_soft_fast(&fs);
1516 if (res == FAULT_SUCCESS)
1517 return (KERN_SUCCESS);
1518 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
1519 VM_OBJECT_RUNLOCK(fs.first_object);
1520 VM_OBJECT_WLOCK(fs.first_object);
1521 }
1522 } else {
1523 VM_OBJECT_WLOCK(fs.first_object);
1524 }
1525
1526 /*
1527 * Make a reference to this object to prevent its disposal while we
1528 * are messing with it. Once we have the reference, the map is free
1529 * to be diddled. Since objects reference their shadows (and copies),
1530 * they will stay around as well.
1531 *
1532 * Bump the paging-in-progress count to prevent size changes (e.g.
1533 * truncation operations) during I/O.
1534 */
1535 vm_object_reference_locked(fs.first_object);
1536 vm_object_pip_add(fs.first_object, 1);
1537
1538 fs.m_cow = fs.m = fs.first_m = NULL;
1539
1540 /*
1541 * Search for the page at object/offset.
1542 */
1543 fs.object = fs.first_object;
1544 fs.pindex = fs.first_pindex;
1545
1546 if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) {
1547 res = vm_fault_allocate(&fs);
1548 switch (res) {
1549 case FAULT_RESTART:
1550 goto RetryFault;
1551 case FAULT_SUCCESS:
1552 return (KERN_SUCCESS);
1553 case FAULT_FAILURE:
1554 return (KERN_FAILURE);
1555 case FAULT_OUT_OF_BOUNDS:
1556 return (KERN_OUT_OF_BOUNDS);
1557 case FAULT_CONTINUE:
1558 break;
1559 default:
1560 panic("vm_fault: Unhandled status %d", res);
1561 }
1562 }
1563
1564 while (TRUE) {
1565 KASSERT(fs.m == NULL,
1566 ("page still set %p at loop start", fs.m));
1567
1568 res = vm_fault_object(&fs, &behind, &ahead);
1569 switch (res) {
1570 case FAULT_SOFT:
1571 goto found;
1572 case FAULT_HARD:
1573 faultcount = behind + 1 + ahead;
1574 hardfault = true;
1575 goto found;
1576 case FAULT_RESTART:
1577 goto RetryFault;
1578 case FAULT_SUCCESS:
1579 return (KERN_SUCCESS);
1580 case FAULT_FAILURE:
1581 return (KERN_FAILURE);
1582 case FAULT_OUT_OF_BOUNDS:
1583 return (KERN_OUT_OF_BOUNDS);
1584 case FAULT_PROTECTION_FAILURE:
1585 return (KERN_PROTECTION_FAILURE);
1586 case FAULT_CONTINUE:
1587 break;
1588 default:
1589 panic("vm_fault: Unhandled status %d", res);
1590 }
1591
1592 /*
1593 * The page was not found in the current object. Try to
1594 * traverse into a backing object or zero fill if none is
1595 * found.
1596 */
1597 if (vm_fault_next(&fs))
1598 continue;
1599 if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) {
1600 if (fs.first_object == fs.object)
1601 fault_page_free(&fs.first_m);
1602 unlock_and_deallocate(&fs);
1603 return (KERN_OUT_OF_BOUNDS);
1604 }
1605 VM_OBJECT_WUNLOCK(fs.object);
1606 vm_fault_zerofill(&fs);
1607 /* Don't try to prefault neighboring pages. */
1608 faultcount = 1;
1609 break;
1610 }
1611
1612 found:
1613 /*
1614 * A valid page has been found and exclusively busied. The
1615 * object lock must no longer be held.
1616 */
1617 vm_page_assert_xbusied(fs.m);
1618 VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1619
1620 /*
1621 * If the page is being written, but isn't already owned by the
1622 * top-level object, we have to copy it into a new page owned by the
1623 * top-level object.
1624 */
1625 if (fs.object != fs.first_object) {
1626 /*
1627 * We only really need to copy if we want to write it.
1628 */
1629 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1630 vm_fault_cow(&fs);
1631 /*
1632 * We only try to prefault read-only mappings to the
1633 * neighboring pages when this copy-on-write fault is
1634 * a hard fault. In other cases, trying to prefault
1635 * is typically wasted effort.
1636 */
1637 if (faultcount == 0)
1638 faultcount = 1;
1639
1640 } else {
1641 fs.prot &= ~VM_PROT_WRITE;
1642 }
1643 }
1644
1645 /*
1646 * We must verify that the maps have not changed since our last
1647 * lookup.
1648 */
1649 if (!fs.lookup_still_valid) {
1650 rv = vm_fault_relookup(&fs);
1651 if (rv != KERN_SUCCESS) {
1652 fault_deallocate(&fs);
1653 if (rv == KERN_RESTART)
1654 goto RetryFault;
1655 return (rv);
1656 }
1657 }
1658 VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1659
1660 /*
1661 * If the page was filled by a pager, save the virtual address that
1662 * should be faulted on next under a sequential access pattern to the
1663 * map entry. A read lock on the map suffices to update this address
1664 * safely.
1665 */
1666 if (hardfault)
1667 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1668
1669 /*
1670 * Page must be completely valid or it is not fit to
1671 * map into user space. vm_pager_get_pages() ensures this.
1672 */
1673 vm_page_assert_xbusied(fs.m);
1674 KASSERT(vm_page_all_valid(fs.m),
1675 ("vm_fault: page %p partially invalid", fs.m));
1676
1677 vm_fault_dirty(&fs, fs.m);
1678
1679 /*
1680 * Put this page into the physical map. We had to do the unlock above
1681 * because pmap_enter() may sleep. We don't put the page
1682 * back on the active queue until later so that the pageout daemon
1683 * won't find it (yet).
1684 */
1685 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1686 fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
1687 if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
1688 fs.wired == 0)
1689 vm_fault_prefault(&fs, vaddr,
1690 faultcount > 0 ? behind : PFBAK,
1691 faultcount > 0 ? ahead : PFFOR, false);
1692
1693 /*
1694 * If the page is not wired down, then put it where the pageout daemon
1695 * can find it.
1696 */
1697 if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
1698 vm_page_wire(fs.m);
1699 else
1700 vm_page_activate(fs.m);
1701 if (fs.m_hold != NULL) {
1702 (*fs.m_hold) = fs.m;
1703 vm_page_wire(fs.m);
1704 }
1705 vm_page_xunbusy(fs.m);
1706 fs.m = NULL;
1707
1708 /*
1709 * Unlock everything, and return
1710 */
1711 fault_deallocate(&fs);
1712 if (hardfault) {
1713 VM_CNT_INC(v_io_faults);
1714 curthread->td_ru.ru_majflt++;
1715 #ifdef RACCT
1716 if (racct_enable && fs.object->type == OBJT_VNODE) {
1717 PROC_LOCK(curproc);
1718 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1719 racct_add_force(curproc, RACCT_WRITEBPS,
1720 PAGE_SIZE + behind * PAGE_SIZE);
1721 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1722 } else {
1723 racct_add_force(curproc, RACCT_READBPS,
1724 PAGE_SIZE + ahead * PAGE_SIZE);
1725 racct_add_force(curproc, RACCT_READIOPS, 1);
1726 }
1727 PROC_UNLOCK(curproc);
1728 }
1729 #endif
1730 } else
1731 curthread->td_ru.ru_minflt++;
1732
1733 return (KERN_SUCCESS);
1734 }
1735
1736 /*
1737 * Speed up the reclamation of pages that precede the faulting pindex within
1738 * the first object of the shadow chain. Essentially, perform the equivalent
1739 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1740 * the faulting pindex by the cluster size when the pages read by vm_fault()
1741 * cross a cluster-size boundary. The cluster size is the greater of the
1742 * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1743 *
1744 * When "fs->first_object" is a shadow object, the pages in the backing object
1745 * that precede the faulting pindex are deactivated by vm_fault(). So, this
1746 * function must only be concerned with pages in the first object.
1747 */
1748 static void
1749 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1750 {
1751 vm_map_entry_t entry;
1752 vm_object_t first_object;
1753 vm_offset_t end, start;
1754 vm_page_t m, m_next;
1755 vm_pindex_t pend, pstart;
1756 vm_size_t size;
1757
1758 VM_OBJECT_ASSERT_UNLOCKED(fs->object);
1759 first_object = fs->first_object;
1760 /* Neither fictitious nor unmanaged pages can be reclaimed. */
1761 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1762 VM_OBJECT_RLOCK(first_object);
1763 size = VM_FAULT_DONTNEED_MIN;
1764 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1765 size = pagesizes[1];
1766 end = rounddown2(vaddr, size);
1767 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1768 (entry = fs->entry)->start < end) {
1769 if (end - entry->start < size)
1770 start = entry->start;
1771 else
1772 start = end - size;
1773 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1774 pstart = OFF_TO_IDX(entry->offset) + atop(start -
1775 entry->start);
1776 m_next = vm_page_find_least(first_object, pstart);
1777 pend = OFF_TO_IDX(entry->offset) + atop(end -
1778 entry->start);
1779 while ((m = m_next) != NULL && m->pindex < pend) {
1780 m_next = TAILQ_NEXT(m, listq);
1781 if (!vm_page_all_valid(m) ||
1782 vm_page_busied(m))
1783 continue;
1784
1785 /*
1786 * Don't clear PGA_REFERENCED, since it would
1787 * likely represent a reference by a different
1788 * process.
1789 *
1790 * Typically, at this point, prefetched pages
1791 * are still in the inactive queue. Only
1792 * pages that triggered page faults are in the
1793 * active queue. The test for whether the page
1794 * is in the inactive queue is racy; in the
1795 * worst case we will requeue the page
1796 * unnecessarily.
1797 */
1798 if (!vm_page_inactive(m))
1799 vm_page_deactivate(m);
1800 }
1801 }
1802 VM_OBJECT_RUNLOCK(first_object);
1803 }
1804 }
1805
1806 /*
1807 * vm_fault_prefault provides a quick way of clustering
1808 * pagefaults into a processes address space. It is a "cousin"
1809 * of vm_map_pmap_enter, except it runs at page fault time instead
1810 * of mmap time.
1811 */
1812 static void
1813 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1814 int backward, int forward, bool obj_locked)
1815 {
1816 pmap_t pmap;
1817 vm_map_entry_t entry;
1818 vm_object_t backing_object, lobject;
1819 vm_offset_t addr, starta;
1820 vm_pindex_t pindex;
1821 vm_page_t m;
1822 int i;
1823
1824 pmap = fs->map->pmap;
1825 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1826 return;
1827
1828 entry = fs->entry;
1829
1830 if (addra < backward * PAGE_SIZE) {
1831 starta = entry->start;
1832 } else {
1833 starta = addra - backward * PAGE_SIZE;
1834 if (starta < entry->start)
1835 starta = entry->start;
1836 }
1837
1838 /*
1839 * Generate the sequence of virtual addresses that are candidates for
1840 * prefaulting in an outward spiral from the faulting virtual address,
1841 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra
1842 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1843 * If the candidate address doesn't have a backing physical page, then
1844 * the loop immediately terminates.
1845 */
1846 for (i = 0; i < 2 * imax(backward, forward); i++) {
1847 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1848 PAGE_SIZE);
1849 if (addr > addra + forward * PAGE_SIZE)
1850 addr = 0;
1851
1852 if (addr < starta || addr >= entry->end)
1853 continue;
1854
1855 if (!pmap_is_prefaultable(pmap, addr))
1856 continue;
1857
1858 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1859 lobject = entry->object.vm_object;
1860 if (!obj_locked)
1861 VM_OBJECT_RLOCK(lobject);
1862 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1863 !fault_object_needs_getpages(lobject) &&
1864 (backing_object = lobject->backing_object) != NULL) {
1865 KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1866 0, ("vm_fault_prefault: unaligned object offset"));
1867 pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1868 VM_OBJECT_RLOCK(backing_object);
1869 if (!obj_locked || lobject != entry->object.vm_object)
1870 VM_OBJECT_RUNLOCK(lobject);
1871 lobject = backing_object;
1872 }
1873 if (m == NULL) {
1874 if (!obj_locked || lobject != entry->object.vm_object)
1875 VM_OBJECT_RUNLOCK(lobject);
1876 break;
1877 }
1878 if (vm_page_all_valid(m) &&
1879 (m->flags & PG_FICTITIOUS) == 0)
1880 pmap_enter_quick(pmap, addr, m, entry->protection);
1881 if (!obj_locked || lobject != entry->object.vm_object)
1882 VM_OBJECT_RUNLOCK(lobject);
1883 }
1884 }
1885
1886 /*
1887 * Hold each of the physical pages that are mapped by the specified range of
1888 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1889 * and allow the specified types of access, "prot". If all of the implied
1890 * pages are successfully held, then the number of held pages is returned
1891 * together with pointers to those pages in the array "ma". However, if any
1892 * of the pages cannot be held, -1 is returned.
1893 */
1894 int
1895 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1896 vm_prot_t prot, vm_page_t *ma, int max_count)
1897 {
1898 vm_offset_t end, va;
1899 vm_page_t *mp;
1900 int count;
1901 boolean_t pmap_failed;
1902
1903 if (len == 0)
1904 return (0);
1905 end = round_page(addr + len);
1906 addr = trunc_page(addr);
1907
1908 if (!vm_map_range_valid(map, addr, end))
1909 return (-1);
1910
1911 if (atop(end - addr) > max_count)
1912 panic("vm_fault_quick_hold_pages: count > max_count");
1913 count = atop(end - addr);
1914
1915 /*
1916 * Most likely, the physical pages are resident in the pmap, so it is
1917 * faster to try pmap_extract_and_hold() first.
1918 */
1919 pmap_failed = FALSE;
1920 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1921 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1922 if (*mp == NULL)
1923 pmap_failed = TRUE;
1924 else if ((prot & VM_PROT_WRITE) != 0 &&
1925 (*mp)->dirty != VM_PAGE_BITS_ALL) {
1926 /*
1927 * Explicitly dirty the physical page. Otherwise, the
1928 * caller's changes may go unnoticed because they are
1929 * performed through an unmanaged mapping or by a DMA
1930 * operation.
1931 *
1932 * The object lock is not held here.
1933 * See vm_page_clear_dirty_mask().
1934 */
1935 vm_page_dirty(*mp);
1936 }
1937 }
1938 if (pmap_failed) {
1939 /*
1940 * One or more pages could not be held by the pmap. Either no
1941 * page was mapped at the specified virtual address or that
1942 * mapping had insufficient permissions. Attempt to fault in
1943 * and hold these pages.
1944 *
1945 * If vm_fault_disable_pagefaults() was called,
1946 * i.e., TDP_NOFAULTING is set, we must not sleep nor
1947 * acquire MD VM locks, which means we must not call
1948 * vm_fault(). Some (out of tree) callers mark
1949 * too wide a code area with vm_fault_disable_pagefaults()
1950 * already, use the VM_PROT_QUICK_NOFAULT flag to request
1951 * the proper behaviour explicitly.
1952 */
1953 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
1954 (curthread->td_pflags & TDP_NOFAULTING) != 0)
1955 goto error;
1956 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1957 if (*mp == NULL && vm_fault(map, va, prot,
1958 VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1959 goto error;
1960 }
1961 return (count);
1962 error:
1963 for (mp = ma; mp < ma + count; mp++)
1964 if (*mp != NULL)
1965 vm_page_unwire(*mp, PQ_INACTIVE);
1966 return (-1);
1967 }
1968
1969 /*
1970 * Routine:
1971 * vm_fault_copy_entry
1972 * Function:
1973 * Create new object backing dst_entry with private copy of all
1974 * underlying pages. When src_entry is equal to dst_entry, function
1975 * implements COW for wired-down map entry. Otherwise, it forks
1976 * wired entry into dst_map.
1977 *
1978 * In/out conditions:
1979 * The source and destination maps must be locked for write.
1980 * The source map entry must be wired down (or be a sharing map
1981 * entry corresponding to a main map entry that is wired down).
1982 */
1983 void
1984 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused,
1985 vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1986 vm_ooffset_t *fork_charge)
1987 {
1988 vm_object_t backing_object, dst_object, object, src_object;
1989 vm_pindex_t dst_pindex, pindex, src_pindex;
1990 vm_prot_t access, prot;
1991 vm_offset_t vaddr;
1992 vm_page_t dst_m;
1993 vm_page_t src_m;
1994 bool upgrade;
1995
1996 upgrade = src_entry == dst_entry;
1997 KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1998 ("vm_fault_copy_entry: vm_object not NULL"));
1999
2000 /*
2001 * If not an upgrade, then enter the mappings in the pmap as
2002 * read and/or execute accesses. Otherwise, enter them as
2003 * write accesses.
2004 *
2005 * A writeable large page mapping is only created if all of
2006 * the constituent small page mappings are modified. Marking
2007 * PTEs as modified on inception allows promotion to happen
2008 * without taking potentially large number of soft faults.
2009 */
2010 access = prot = dst_entry->protection;
2011 if (!upgrade)
2012 access &= ~VM_PROT_WRITE;
2013
2014 src_object = src_entry->object.vm_object;
2015 src_pindex = OFF_TO_IDX(src_entry->offset);
2016
2017 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2018 dst_object = src_object;
2019 vm_object_reference(dst_object);
2020 } else {
2021 /*
2022 * Create the top-level object for the destination entry.
2023 * Doesn't actually shadow anything - we copy the pages
2024 * directly.
2025 */
2026 dst_object = vm_object_allocate_anon(atop(dst_entry->end -
2027 dst_entry->start), NULL, NULL, 0);
2028 #if VM_NRESERVLEVEL > 0
2029 dst_object->flags |= OBJ_COLORED;
2030 dst_object->pg_color = atop(dst_entry->start);
2031 #endif
2032 dst_object->domain = src_object->domain;
2033 dst_object->charge = dst_entry->end - dst_entry->start;
2034
2035 dst_entry->object.vm_object = dst_object;
2036 dst_entry->offset = 0;
2037 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
2038 }
2039
2040 VM_OBJECT_WLOCK(dst_object);
2041 if (fork_charge != NULL) {
2042 KASSERT(dst_entry->cred == NULL,
2043 ("vm_fault_copy_entry: leaked swp charge"));
2044 dst_object->cred = curthread->td_ucred;
2045 crhold(dst_object->cred);
2046 *fork_charge += dst_object->charge;
2047 } else if ((dst_object->flags & OBJ_SWAP) != 0 &&
2048 dst_object->cred == NULL) {
2049 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
2050 dst_entry));
2051 dst_object->cred = dst_entry->cred;
2052 dst_entry->cred = NULL;
2053 }
2054
2055 /*
2056 * Loop through all of the virtual pages within the entry's
2057 * range, copying each page from the source object to the
2058 * destination object. Since the source is wired, those pages
2059 * must exist. In contrast, the destination is pageable.
2060 * Since the destination object doesn't share any backing storage
2061 * with the source object, all of its pages must be dirtied,
2062 * regardless of whether they can be written.
2063 */
2064 for (vaddr = dst_entry->start, dst_pindex = 0;
2065 vaddr < dst_entry->end;
2066 vaddr += PAGE_SIZE, dst_pindex++) {
2067 again:
2068 /*
2069 * Find the page in the source object, and copy it in.
2070 * Because the source is wired down, the page will be
2071 * in memory.
2072 */
2073 if (src_object != dst_object)
2074 VM_OBJECT_RLOCK(src_object);
2075 object = src_object;
2076 pindex = src_pindex + dst_pindex;
2077 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
2078 (backing_object = object->backing_object) != NULL) {
2079 /*
2080 * Unless the source mapping is read-only or
2081 * it is presently being upgraded from
2082 * read-only, the first object in the shadow
2083 * chain should provide all of the pages. In
2084 * other words, this loop body should never be
2085 * executed when the source mapping is already
2086 * read/write.
2087 */
2088 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
2089 upgrade,
2090 ("vm_fault_copy_entry: main object missing page"));
2091
2092 VM_OBJECT_RLOCK(backing_object);
2093 pindex += OFF_TO_IDX(object->backing_object_offset);
2094 if (object != dst_object)
2095 VM_OBJECT_RUNLOCK(object);
2096 object = backing_object;
2097 }
2098 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
2099
2100 if (object != dst_object) {
2101 /*
2102 * Allocate a page in the destination object.
2103 */
2104 dst_m = vm_page_alloc(dst_object, (src_object ==
2105 dst_object ? src_pindex : 0) + dst_pindex,
2106 VM_ALLOC_NORMAL);
2107 if (dst_m == NULL) {
2108 VM_OBJECT_WUNLOCK(dst_object);
2109 VM_OBJECT_RUNLOCK(object);
2110 vm_wait(dst_object);
2111 VM_OBJECT_WLOCK(dst_object);
2112 goto again;
2113 }
2114
2115 /*
2116 * See the comment in vm_fault_cow().
2117 */
2118 if (src_object == dst_object &&
2119 (object->flags & OBJ_ONEMAPPING) == 0)
2120 pmap_remove_all(src_m);
2121 pmap_copy_page(src_m, dst_m);
2122
2123 /*
2124 * The object lock does not guarantee that "src_m" will
2125 * transition from invalid to valid, but it does ensure
2126 * that "src_m" will not transition from valid to
2127 * invalid.
2128 */
2129 dst_m->dirty = dst_m->valid = src_m->valid;
2130 VM_OBJECT_RUNLOCK(object);
2131 } else {
2132 dst_m = src_m;
2133 if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0)
2134 goto again;
2135 if (dst_m->pindex >= dst_object->size) {
2136 /*
2137 * We are upgrading. Index can occur
2138 * out of bounds if the object type is
2139 * vnode and the file was truncated.
2140 */
2141 vm_page_xunbusy(dst_m);
2142 break;
2143 }
2144 }
2145
2146 /*
2147 * Enter it in the pmap. If a wired, copy-on-write
2148 * mapping is being replaced by a write-enabled
2149 * mapping, then wire that new mapping.
2150 *
2151 * The page can be invalid if the user called
2152 * msync(MS_INVALIDATE) or truncated the backing vnode
2153 * or shared memory object. In this case, do not
2154 * insert it into pmap, but still do the copy so that
2155 * all copies of the wired map entry have similar
2156 * backing pages.
2157 */
2158 if (vm_page_all_valid(dst_m)) {
2159 VM_OBJECT_WUNLOCK(dst_object);
2160 pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
2161 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
2162 VM_OBJECT_WLOCK(dst_object);
2163 }
2164
2165 /*
2166 * Mark it no longer busy, and put it on the active list.
2167 */
2168 if (upgrade) {
2169 if (src_m != dst_m) {
2170 vm_page_unwire(src_m, PQ_INACTIVE);
2171 vm_page_wire(dst_m);
2172 } else {
2173 KASSERT(vm_page_wired(dst_m),
2174 ("dst_m %p is not wired", dst_m));
2175 }
2176 } else {
2177 vm_page_activate(dst_m);
2178 }
2179 vm_page_xunbusy(dst_m);
2180 }
2181 VM_OBJECT_WUNLOCK(dst_object);
2182 if (upgrade) {
2183 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
2184 vm_object_deallocate(src_object);
2185 }
2186 }
2187
2188 /*
2189 * Block entry into the machine-independent layer's page fault handler by
2190 * the calling thread. Subsequent calls to vm_fault() by that thread will
2191 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of
2192 * spurious page faults.
2193 */
2194 int
2195 vm_fault_disable_pagefaults(void)
2196 {
2197
2198 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
2199 }
2200
2201 void
2202 vm_fault_enable_pagefaults(int save)
2203 {
2204
2205 curthread_pflags_restore(save);
2206 }
Cache object: 6c17abc729857f8058f4e3d923465005
|