FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_fault.c
1 /*-
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94
42 *
43 *
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
46 *
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
62 * School of Computer Science
63 * Carnegie Mellon University
64 * Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70 /*
71 * Page fault handling module.
72 */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD: releng/10.0/sys/vm/vm_fault.c 255608 2013-09-16 06:25:54Z kib $");
76
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/rwlock.h>
87 #include <sys/sysctl.h>
88 #include <sys/vmmeter.h>
89 #include <sys/vnode.h>
90 #ifdef KTRACE
91 #include <sys/ktrace.h>
92 #endif
93
94 #include <vm/vm.h>
95 #include <vm/vm_param.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_kern.h>
102 #include <vm/vm_pager.h>
103 #include <vm/vm_extern.h>
104
105 #define PFBAK 4
106 #define PFFOR 4
107 #define PAGEORDER_SIZE (PFBAK+PFFOR)
108
109 static int prefault_pageorder[] = {
110 -1 * PAGE_SIZE, 1 * PAGE_SIZE,
111 -2 * PAGE_SIZE, 2 * PAGE_SIZE,
112 -3 * PAGE_SIZE, 3 * PAGE_SIZE,
113 -4 * PAGE_SIZE, 4 * PAGE_SIZE
114 };
115
116 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
117 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
118
119 #define VM_FAULT_READ_BEHIND 8
120 #define VM_FAULT_READ_MAX (1 + VM_FAULT_READ_AHEAD_MAX)
121 #define VM_FAULT_NINCR (VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
122 #define VM_FAULT_SUM (VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
123 #define VM_FAULT_CACHE_BEHIND (VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
124
125 struct faultstate {
126 vm_page_t m;
127 vm_object_t object;
128 vm_pindex_t pindex;
129 vm_page_t first_m;
130 vm_object_t first_object;
131 vm_pindex_t first_pindex;
132 vm_map_t map;
133 vm_map_entry_t entry;
134 int lookup_still_valid;
135 struct vnode *vp;
136 };
137
138 static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
139
140 static inline void
141 release_page(struct faultstate *fs)
142 {
143
144 vm_page_xunbusy(fs->m);
145 vm_page_lock(fs->m);
146 vm_page_deactivate(fs->m);
147 vm_page_unlock(fs->m);
148 fs->m = NULL;
149 }
150
151 static inline void
152 unlock_map(struct faultstate *fs)
153 {
154
155 if (fs->lookup_still_valid) {
156 vm_map_lookup_done(fs->map, fs->entry);
157 fs->lookup_still_valid = FALSE;
158 }
159 }
160
161 static void
162 unlock_and_deallocate(struct faultstate *fs)
163 {
164
165 vm_object_pip_wakeup(fs->object);
166 VM_OBJECT_WUNLOCK(fs->object);
167 if (fs->object != fs->first_object) {
168 VM_OBJECT_WLOCK(fs->first_object);
169 vm_page_lock(fs->first_m);
170 vm_page_free(fs->first_m);
171 vm_page_unlock(fs->first_m);
172 vm_object_pip_wakeup(fs->first_object);
173 VM_OBJECT_WUNLOCK(fs->first_object);
174 fs->first_m = NULL;
175 }
176 vm_object_deallocate(fs->first_object);
177 unlock_map(fs);
178 if (fs->vp != NULL) {
179 vput(fs->vp);
180 fs->vp = NULL;
181 }
182 }
183
184 /*
185 * TRYPAGER - used by vm_fault to calculate whether the pager for the
186 * current object *might* contain the page.
187 *
188 * default objects are zero-fill, there is no real pager.
189 */
190 #define TRYPAGER (fs.object->type != OBJT_DEFAULT && \
191 ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
192
193 /*
194 * vm_fault:
195 *
196 * Handle a page fault occurring at the given address,
197 * requiring the given permissions, in the map specified.
198 * If successful, the page is inserted into the
199 * associated physical map.
200 *
201 * NOTE: the given address should be truncated to the
202 * proper page address.
203 *
204 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
205 * a standard error specifying why the fault is fatal is returned.
206 *
207 * The map in question must be referenced, and remains so.
208 * Caller may hold no locks.
209 */
210 int
211 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
212 int fault_flags)
213 {
214 struct thread *td;
215 int result;
216
217 td = curthread;
218 if ((td->td_pflags & TDP_NOFAULTING) != 0)
219 return (KERN_PROTECTION_FAILURE);
220 #ifdef KTRACE
221 if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
222 ktrfault(vaddr, fault_type);
223 #endif
224 result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
225 NULL);
226 #ifdef KTRACE
227 if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
228 ktrfaultend(result);
229 #endif
230 return (result);
231 }
232
233 int
234 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
235 int fault_flags, vm_page_t *m_hold)
236 {
237 vm_prot_t prot;
238 long ahead, behind;
239 int alloc_req, era, faultcount, nera, reqpage, result;
240 boolean_t growstack, is_first_object_locked, wired;
241 int map_generation;
242 vm_object_t next_object;
243 vm_page_t marray[VM_FAULT_READ_MAX];
244 int hardfault;
245 struct faultstate fs;
246 struct vnode *vp;
247 int locked, error;
248
249 hardfault = 0;
250 growstack = TRUE;
251 PCPU_INC(cnt.v_vm_faults);
252 fs.vp = NULL;
253 faultcount = reqpage = 0;
254
255 RetryFault:;
256
257 /*
258 * Find the backing store object and offset into it to begin the
259 * search.
260 */
261 fs.map = map;
262 result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
263 &fs.first_object, &fs.first_pindex, &prot, &wired);
264 if (result != KERN_SUCCESS) {
265 if (growstack && result == KERN_INVALID_ADDRESS &&
266 map != kernel_map) {
267 result = vm_map_growstack(curproc, vaddr);
268 if (result != KERN_SUCCESS)
269 return (KERN_FAILURE);
270 growstack = FALSE;
271 goto RetryFault;
272 }
273 return (result);
274 }
275
276 map_generation = fs.map->timestamp;
277
278 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
279 panic("vm_fault: fault on nofault entry, addr: %lx",
280 (u_long)vaddr);
281 }
282
283 if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
284 fs.entry->wiring_thread != curthread) {
285 vm_map_unlock_read(fs.map);
286 vm_map_lock(fs.map);
287 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
288 (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
289 fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
290 vm_map_unlock_and_wait(fs.map, 0);
291 } else
292 vm_map_unlock(fs.map);
293 goto RetryFault;
294 }
295
296 /*
297 * Make a reference to this object to prevent its disposal while we
298 * are messing with it. Once we have the reference, the map is free
299 * to be diddled. Since objects reference their shadows (and copies),
300 * they will stay around as well.
301 *
302 * Bump the paging-in-progress count to prevent size changes (e.g.
303 * truncation operations) during I/O. This must be done after
304 * obtaining the vnode lock in order to avoid possible deadlocks.
305 */
306 VM_OBJECT_WLOCK(fs.first_object);
307 vm_object_reference_locked(fs.first_object);
308 vm_object_pip_add(fs.first_object, 1);
309
310 fs.lookup_still_valid = TRUE;
311
312 if (wired)
313 fault_type = prot | (fault_type & VM_PROT_COPY);
314
315 fs.first_m = NULL;
316
317 /*
318 * Search for the page at object/offset.
319 */
320 fs.object = fs.first_object;
321 fs.pindex = fs.first_pindex;
322 while (TRUE) {
323 /*
324 * If the object is dead, we stop here
325 */
326 if (fs.object->flags & OBJ_DEAD) {
327 unlock_and_deallocate(&fs);
328 return (KERN_PROTECTION_FAILURE);
329 }
330
331 /*
332 * See if page is resident
333 */
334 fs.m = vm_page_lookup(fs.object, fs.pindex);
335 if (fs.m != NULL) {
336 /*
337 * Wait/Retry if the page is busy. We have to do this
338 * if the page is either exclusive or shared busy
339 * because the vm_pager may be using read busy for
340 * pageouts (and even pageins if it is the vnode
341 * pager), and we could end up trying to pagein and
342 * pageout the same page simultaneously.
343 *
344 * We can theoretically allow the busy case on a read
345 * fault if the page is marked valid, but since such
346 * pages are typically already pmap'd, putting that
347 * special case in might be more effort then it is
348 * worth. We cannot under any circumstances mess
349 * around with a shared busied page except, perhaps,
350 * to pmap it.
351 */
352 if (vm_page_busied(fs.m)) {
353 /*
354 * Reference the page before unlocking and
355 * sleeping so that the page daemon is less
356 * likely to reclaim it.
357 */
358 vm_page_aflag_set(fs.m, PGA_REFERENCED);
359 if (fs.object != fs.first_object) {
360 if (!VM_OBJECT_TRYWLOCK(
361 fs.first_object)) {
362 VM_OBJECT_WUNLOCK(fs.object);
363 VM_OBJECT_WLOCK(fs.first_object);
364 VM_OBJECT_WLOCK(fs.object);
365 }
366 vm_page_lock(fs.first_m);
367 vm_page_free(fs.first_m);
368 vm_page_unlock(fs.first_m);
369 vm_object_pip_wakeup(fs.first_object);
370 VM_OBJECT_WUNLOCK(fs.first_object);
371 fs.first_m = NULL;
372 }
373 unlock_map(&fs);
374 if (fs.m == vm_page_lookup(fs.object,
375 fs.pindex)) {
376 vm_page_sleep_if_busy(fs.m, "vmpfw");
377 }
378 vm_object_pip_wakeup(fs.object);
379 VM_OBJECT_WUNLOCK(fs.object);
380 PCPU_INC(cnt.v_intrans);
381 vm_object_deallocate(fs.first_object);
382 goto RetryFault;
383 }
384 vm_page_lock(fs.m);
385 vm_page_remque(fs.m);
386 vm_page_unlock(fs.m);
387
388 /*
389 * Mark page busy for other processes, and the
390 * pagedaemon. If it still isn't completely valid
391 * (readable), jump to readrest, else break-out ( we
392 * found the page ).
393 */
394 vm_page_xbusy(fs.m);
395 if (fs.m->valid != VM_PAGE_BITS_ALL)
396 goto readrest;
397 break;
398 }
399
400 /*
401 * Page is not resident, If this is the search termination
402 * or the pager might contain the page, allocate a new page.
403 */
404 if (TRYPAGER || fs.object == fs.first_object) {
405 if (fs.pindex >= fs.object->size) {
406 unlock_and_deallocate(&fs);
407 return (KERN_PROTECTION_FAILURE);
408 }
409
410 /*
411 * Allocate a new page for this object/offset pair.
412 *
413 * Unlocked read of the p_flag is harmless. At
414 * worst, the P_KILLED might be not observed
415 * there, and allocation can fail, causing
416 * restart and new reading of the p_flag.
417 */
418 fs.m = NULL;
419 if (!vm_page_count_severe() || P_KILLED(curproc)) {
420 #if VM_NRESERVLEVEL > 0
421 if ((fs.object->flags & OBJ_COLORED) == 0) {
422 fs.object->flags |= OBJ_COLORED;
423 fs.object->pg_color = atop(vaddr) -
424 fs.pindex;
425 }
426 #endif
427 alloc_req = P_KILLED(curproc) ?
428 VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
429 if (fs.object->type != OBJT_VNODE &&
430 fs.object->backing_object == NULL)
431 alloc_req |= VM_ALLOC_ZERO;
432 fs.m = vm_page_alloc(fs.object, fs.pindex,
433 alloc_req);
434 }
435 if (fs.m == NULL) {
436 unlock_and_deallocate(&fs);
437 VM_WAITPFAULT;
438 goto RetryFault;
439 } else if (fs.m->valid == VM_PAGE_BITS_ALL)
440 break;
441 }
442
443 readrest:
444 /*
445 * We have found a valid page or we have allocated a new page.
446 * The page thus may not be valid or may not be entirely
447 * valid.
448 *
449 * Attempt to fault-in the page if there is a chance that the
450 * pager has it, and potentially fault in additional pages
451 * at the same time.
452 */
453 if (TRYPAGER) {
454 int rv;
455 u_char behavior = vm_map_entry_behavior(fs.entry);
456
457 if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
458 P_KILLED(curproc)) {
459 behind = 0;
460 ahead = 0;
461 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
462 behind = 0;
463 ahead = atop(fs.entry->end - vaddr) - 1;
464 if (ahead > VM_FAULT_READ_AHEAD_MAX)
465 ahead = VM_FAULT_READ_AHEAD_MAX;
466 if (fs.pindex == fs.entry->next_read)
467 vm_fault_cache_behind(&fs,
468 VM_FAULT_READ_MAX);
469 } else {
470 /*
471 * If this is a sequential page fault, then
472 * arithmetically increase the number of pages
473 * in the read-ahead window. Otherwise, reset
474 * the read-ahead window to its smallest size.
475 */
476 behind = atop(vaddr - fs.entry->start);
477 if (behind > VM_FAULT_READ_BEHIND)
478 behind = VM_FAULT_READ_BEHIND;
479 ahead = atop(fs.entry->end - vaddr) - 1;
480 era = fs.entry->read_ahead;
481 if (fs.pindex == fs.entry->next_read) {
482 nera = era + behind;
483 if (nera > VM_FAULT_READ_AHEAD_MAX)
484 nera = VM_FAULT_READ_AHEAD_MAX;
485 behind = 0;
486 if (ahead > nera)
487 ahead = nera;
488 if (era == VM_FAULT_READ_AHEAD_MAX)
489 vm_fault_cache_behind(&fs,
490 VM_FAULT_CACHE_BEHIND);
491 } else if (ahead > VM_FAULT_READ_AHEAD_MIN)
492 ahead = VM_FAULT_READ_AHEAD_MIN;
493 if (era != ahead)
494 fs.entry->read_ahead = ahead;
495 }
496
497 /*
498 * Call the pager to retrieve the data, if any, after
499 * releasing the lock on the map. We hold a ref on
500 * fs.object and the pages are exclusive busied.
501 */
502 unlock_map(&fs);
503
504 if (fs.object->type == OBJT_VNODE) {
505 vp = fs.object->handle;
506 if (vp == fs.vp)
507 goto vnode_locked;
508 else if (fs.vp != NULL) {
509 vput(fs.vp);
510 fs.vp = NULL;
511 }
512 locked = VOP_ISLOCKED(vp);
513
514 if (locked != LK_EXCLUSIVE)
515 locked = LK_SHARED;
516 /* Do not sleep for vnode lock while fs.m is busy */
517 error = vget(vp, locked | LK_CANRECURSE |
518 LK_NOWAIT, curthread);
519 if (error != 0) {
520 vhold(vp);
521 release_page(&fs);
522 unlock_and_deallocate(&fs);
523 error = vget(vp, locked | LK_RETRY |
524 LK_CANRECURSE, curthread);
525 vdrop(vp);
526 fs.vp = vp;
527 KASSERT(error == 0,
528 ("vm_fault: vget failed"));
529 goto RetryFault;
530 }
531 fs.vp = vp;
532 }
533 vnode_locked:
534 KASSERT(fs.vp == NULL || !fs.map->system_map,
535 ("vm_fault: vnode-backed object mapped by system map"));
536
537 /*
538 * now we find out if any other pages should be paged
539 * in at this time this routine checks to see if the
540 * pages surrounding this fault reside in the same
541 * object as the page for this fault. If they do,
542 * then they are faulted in also into the object. The
543 * array "marray" returned contains an array of
544 * vm_page_t structs where one of them is the
545 * vm_page_t passed to the routine. The reqpage
546 * return value is the index into the marray for the
547 * vm_page_t passed to the routine.
548 *
549 * fs.m plus the additional pages are exclusive busied.
550 */
551 faultcount = vm_fault_additional_pages(
552 fs.m, behind, ahead, marray, &reqpage);
553
554 rv = faultcount ?
555 vm_pager_get_pages(fs.object, marray, faultcount,
556 reqpage) : VM_PAGER_FAIL;
557
558 if (rv == VM_PAGER_OK) {
559 /*
560 * Found the page. Leave it busy while we play
561 * with it.
562 */
563
564 /*
565 * Relookup in case pager changed page. Pager
566 * is responsible for disposition of old page
567 * if moved.
568 */
569 fs.m = vm_page_lookup(fs.object, fs.pindex);
570 if (!fs.m) {
571 unlock_and_deallocate(&fs);
572 goto RetryFault;
573 }
574
575 hardfault++;
576 break; /* break to PAGE HAS BEEN FOUND */
577 }
578 /*
579 * Remove the bogus page (which does not exist at this
580 * object/offset); before doing so, we must get back
581 * our object lock to preserve our invariant.
582 *
583 * Also wake up any other process that may want to bring
584 * in this page.
585 *
586 * If this is the top-level object, we must leave the
587 * busy page to prevent another process from rushing
588 * past us, and inserting the page in that object at
589 * the same time that we are.
590 */
591 if (rv == VM_PAGER_ERROR)
592 printf("vm_fault: pager read error, pid %d (%s)\n",
593 curproc->p_pid, curproc->p_comm);
594 /*
595 * Data outside the range of the pager or an I/O error
596 */
597 /*
598 * XXX - the check for kernel_map is a kludge to work
599 * around having the machine panic on a kernel space
600 * fault w/ I/O error.
601 */
602 if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
603 (rv == VM_PAGER_BAD)) {
604 vm_page_lock(fs.m);
605 vm_page_free(fs.m);
606 vm_page_unlock(fs.m);
607 fs.m = NULL;
608 unlock_and_deallocate(&fs);
609 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
610 }
611 if (fs.object != fs.first_object) {
612 vm_page_lock(fs.m);
613 vm_page_free(fs.m);
614 vm_page_unlock(fs.m);
615 fs.m = NULL;
616 /*
617 * XXX - we cannot just fall out at this
618 * point, m has been freed and is invalid!
619 */
620 }
621 }
622
623 /*
624 * We get here if the object has default pager (or unwiring)
625 * or the pager doesn't have the page.
626 */
627 if (fs.object == fs.first_object)
628 fs.first_m = fs.m;
629
630 /*
631 * Move on to the next object. Lock the next object before
632 * unlocking the current one.
633 */
634 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
635 next_object = fs.object->backing_object;
636 if (next_object == NULL) {
637 /*
638 * If there's no object left, fill the page in the top
639 * object with zeros.
640 */
641 if (fs.object != fs.first_object) {
642 vm_object_pip_wakeup(fs.object);
643 VM_OBJECT_WUNLOCK(fs.object);
644
645 fs.object = fs.first_object;
646 fs.pindex = fs.first_pindex;
647 fs.m = fs.first_m;
648 VM_OBJECT_WLOCK(fs.object);
649 }
650 fs.first_m = NULL;
651
652 /*
653 * Zero the page if necessary and mark it valid.
654 */
655 if ((fs.m->flags & PG_ZERO) == 0) {
656 pmap_zero_page(fs.m);
657 } else {
658 PCPU_INC(cnt.v_ozfod);
659 }
660 PCPU_INC(cnt.v_zfod);
661 fs.m->valid = VM_PAGE_BITS_ALL;
662 break; /* break to PAGE HAS BEEN FOUND */
663 } else {
664 KASSERT(fs.object != next_object,
665 ("object loop %p", next_object));
666 VM_OBJECT_WLOCK(next_object);
667 vm_object_pip_add(next_object, 1);
668 if (fs.object != fs.first_object)
669 vm_object_pip_wakeup(fs.object);
670 VM_OBJECT_WUNLOCK(fs.object);
671 fs.object = next_object;
672 }
673 }
674
675 vm_page_assert_xbusied(fs.m);
676
677 /*
678 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
679 * is held.]
680 */
681
682 /*
683 * If the page is being written, but isn't already owned by the
684 * top-level object, we have to copy it into a new page owned by the
685 * top-level object.
686 */
687 if (fs.object != fs.first_object) {
688 /*
689 * We only really need to copy if we want to write it.
690 */
691 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
692 /*
693 * This allows pages to be virtually copied from a
694 * backing_object into the first_object, where the
695 * backing object has no other refs to it, and cannot
696 * gain any more refs. Instead of a bcopy, we just
697 * move the page from the backing object to the
698 * first object. Note that we must mark the page
699 * dirty in the first object so that it will go out
700 * to swap when needed.
701 */
702 is_first_object_locked = FALSE;
703 if (
704 /*
705 * Only one shadow object
706 */
707 (fs.object->shadow_count == 1) &&
708 /*
709 * No COW refs, except us
710 */
711 (fs.object->ref_count == 1) &&
712 /*
713 * No one else can look this object up
714 */
715 (fs.object->handle == NULL) &&
716 /*
717 * No other ways to look the object up
718 */
719 ((fs.object->type == OBJT_DEFAULT) ||
720 (fs.object->type == OBJT_SWAP)) &&
721 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
722 /*
723 * We don't chase down the shadow chain
724 */
725 fs.object == fs.first_object->backing_object) {
726 /*
727 * get rid of the unnecessary page
728 */
729 vm_page_lock(fs.first_m);
730 vm_page_free(fs.first_m);
731 vm_page_unlock(fs.first_m);
732 /*
733 * grab the page and put it into the
734 * process'es object. The page is
735 * automatically made dirty.
736 */
737 if (vm_page_rename(fs.m, fs.first_object,
738 fs.first_pindex)) {
739 unlock_and_deallocate(&fs);
740 goto RetryFault;
741 }
742 vm_page_xbusy(fs.m);
743 fs.first_m = fs.m;
744 fs.m = NULL;
745 PCPU_INC(cnt.v_cow_optim);
746 } else {
747 /*
748 * Oh, well, lets copy it.
749 */
750 pmap_copy_page(fs.m, fs.first_m);
751 fs.first_m->valid = VM_PAGE_BITS_ALL;
752 if (wired && (fault_flags &
753 VM_FAULT_CHANGE_WIRING) == 0) {
754 vm_page_lock(fs.first_m);
755 vm_page_wire(fs.first_m);
756 vm_page_unlock(fs.first_m);
757
758 vm_page_lock(fs.m);
759 vm_page_unwire(fs.m, FALSE);
760 vm_page_unlock(fs.m);
761 }
762 /*
763 * We no longer need the old page or object.
764 */
765 release_page(&fs);
766 }
767 /*
768 * fs.object != fs.first_object due to above
769 * conditional
770 */
771 vm_object_pip_wakeup(fs.object);
772 VM_OBJECT_WUNLOCK(fs.object);
773 /*
774 * Only use the new page below...
775 */
776 fs.object = fs.first_object;
777 fs.pindex = fs.first_pindex;
778 fs.m = fs.first_m;
779 if (!is_first_object_locked)
780 VM_OBJECT_WLOCK(fs.object);
781 PCPU_INC(cnt.v_cow_faults);
782 curthread->td_cow++;
783 } else {
784 prot &= ~VM_PROT_WRITE;
785 }
786 }
787
788 /*
789 * We must verify that the maps have not changed since our last
790 * lookup.
791 */
792 if (!fs.lookup_still_valid) {
793 vm_object_t retry_object;
794 vm_pindex_t retry_pindex;
795 vm_prot_t retry_prot;
796
797 if (!vm_map_trylock_read(fs.map)) {
798 release_page(&fs);
799 unlock_and_deallocate(&fs);
800 goto RetryFault;
801 }
802 fs.lookup_still_valid = TRUE;
803 if (fs.map->timestamp != map_generation) {
804 result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
805 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
806
807 /*
808 * If we don't need the page any longer, put it on the inactive
809 * list (the easiest thing to do here). If no one needs it,
810 * pageout will grab it eventually.
811 */
812 if (result != KERN_SUCCESS) {
813 release_page(&fs);
814 unlock_and_deallocate(&fs);
815
816 /*
817 * If retry of map lookup would have blocked then
818 * retry fault from start.
819 */
820 if (result == KERN_FAILURE)
821 goto RetryFault;
822 return (result);
823 }
824 if ((retry_object != fs.first_object) ||
825 (retry_pindex != fs.first_pindex)) {
826 release_page(&fs);
827 unlock_and_deallocate(&fs);
828 goto RetryFault;
829 }
830
831 /*
832 * Check whether the protection has changed or the object has
833 * been copied while we left the map unlocked. Changing from
834 * read to write permission is OK - we leave the page
835 * write-protected, and catch the write fault. Changing from
836 * write to read permission means that we can't mark the page
837 * write-enabled after all.
838 */
839 prot &= retry_prot;
840 }
841 }
842 /*
843 * If the page was filled by a pager, update the map entry's
844 * last read offset. Since the pager does not return the
845 * actual set of pages that it read, this update is based on
846 * the requested set. Typically, the requested and actual
847 * sets are the same.
848 *
849 * XXX The following assignment modifies the map
850 * without holding a write lock on it.
851 */
852 if (hardfault)
853 fs.entry->next_read = fs.pindex + faultcount - reqpage;
854
855 if ((prot & VM_PROT_WRITE) != 0 ||
856 (fault_flags & VM_FAULT_DIRTY) != 0) {
857 vm_object_set_writeable_dirty(fs.object);
858
859 /*
860 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
861 * if the page is already dirty to prevent data written with
862 * the expectation of being synced from not being synced.
863 * Likewise if this entry does not request NOSYNC then make
864 * sure the page isn't marked NOSYNC. Applications sharing
865 * data should use the same flags to avoid ping ponging.
866 */
867 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
868 if (fs.m->dirty == 0)
869 fs.m->oflags |= VPO_NOSYNC;
870 } else {
871 fs.m->oflags &= ~VPO_NOSYNC;
872 }
873
874 /*
875 * If the fault is a write, we know that this page is being
876 * written NOW so dirty it explicitly to save on
877 * pmap_is_modified() calls later.
878 *
879 * Also tell the backing pager, if any, that it should remove
880 * any swap backing since the page is now dirty.
881 */
882 if (((fault_type & VM_PROT_WRITE) != 0 &&
883 (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) ||
884 (fault_flags & VM_FAULT_DIRTY) != 0) {
885 vm_page_dirty(fs.m);
886 vm_pager_page_unswapped(fs.m);
887 }
888 }
889
890 vm_page_assert_xbusied(fs.m);
891
892 /*
893 * Page must be completely valid or it is not fit to
894 * map into user space. vm_pager_get_pages() ensures this.
895 */
896 KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
897 ("vm_fault: page %p partially invalid", fs.m));
898 VM_OBJECT_WUNLOCK(fs.object);
899
900 /*
901 * Put this page into the physical map. We had to do the unlock above
902 * because pmap_enter() may sleep. We don't put the page
903 * back on the active queue until later so that the pageout daemon
904 * won't find it (yet).
905 */
906 pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
907 if ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 && wired == 0)
908 vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
909 VM_OBJECT_WLOCK(fs.object);
910 vm_page_lock(fs.m);
911
912 /*
913 * If the page is not wired down, then put it where the pageout daemon
914 * can find it.
915 */
916 if (fault_flags & VM_FAULT_CHANGE_WIRING) {
917 if (wired)
918 vm_page_wire(fs.m);
919 else
920 vm_page_unwire(fs.m, 1);
921 } else
922 vm_page_activate(fs.m);
923 if (m_hold != NULL) {
924 *m_hold = fs.m;
925 vm_page_hold(fs.m);
926 }
927 vm_page_unlock(fs.m);
928 vm_page_xunbusy(fs.m);
929
930 /*
931 * Unlock everything, and return
932 */
933 unlock_and_deallocate(&fs);
934 if (hardfault) {
935 PCPU_INC(cnt.v_io_faults);
936 curthread->td_ru.ru_majflt++;
937 } else
938 curthread->td_ru.ru_minflt++;
939
940 return (KERN_SUCCESS);
941 }
942
943 /*
944 * Speed up the reclamation of up to "distance" pages that precede the
945 * faulting pindex within the first object of the shadow chain.
946 */
947 static void
948 vm_fault_cache_behind(const struct faultstate *fs, int distance)
949 {
950 vm_object_t first_object, object;
951 vm_page_t m, m_prev;
952 vm_pindex_t pindex;
953
954 object = fs->object;
955 VM_OBJECT_ASSERT_WLOCKED(object);
956 first_object = fs->first_object;
957 if (first_object != object) {
958 if (!VM_OBJECT_TRYWLOCK(first_object)) {
959 VM_OBJECT_WUNLOCK(object);
960 VM_OBJECT_WLOCK(first_object);
961 VM_OBJECT_WLOCK(object);
962 }
963 }
964 /* Neither fictitious nor unmanaged pages can be cached. */
965 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
966 if (fs->first_pindex < distance)
967 pindex = 0;
968 else
969 pindex = fs->first_pindex - distance;
970 if (pindex < OFF_TO_IDX(fs->entry->offset))
971 pindex = OFF_TO_IDX(fs->entry->offset);
972 m = first_object != object ? fs->first_m : fs->m;
973 vm_page_assert_xbusied(m);
974 m_prev = vm_page_prev(m);
975 while ((m = m_prev) != NULL && m->pindex >= pindex &&
976 m->valid == VM_PAGE_BITS_ALL) {
977 m_prev = vm_page_prev(m);
978 if (vm_page_busied(m))
979 continue;
980 vm_page_lock(m);
981 if (m->hold_count == 0 && m->wire_count == 0) {
982 pmap_remove_all(m);
983 vm_page_aflag_clear(m, PGA_REFERENCED);
984 if (m->dirty != 0)
985 vm_page_deactivate(m);
986 else
987 vm_page_cache(m);
988 }
989 vm_page_unlock(m);
990 }
991 }
992 if (first_object != object)
993 VM_OBJECT_WUNLOCK(first_object);
994 }
995
996 /*
997 * vm_fault_prefault provides a quick way of clustering
998 * pagefaults into a processes address space. It is a "cousin"
999 * of vm_map_pmap_enter, except it runs at page fault time instead
1000 * of mmap time.
1001 */
1002 static void
1003 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
1004 {
1005 int i;
1006 vm_offset_t addr, starta;
1007 vm_pindex_t pindex;
1008 vm_page_t m;
1009 vm_object_t object;
1010
1011 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1012 return;
1013
1014 object = entry->object.vm_object;
1015
1016 starta = addra - PFBAK * PAGE_SIZE;
1017 if (starta < entry->start) {
1018 starta = entry->start;
1019 } else if (starta > addra) {
1020 starta = 0;
1021 }
1022
1023 for (i = 0; i < PAGEORDER_SIZE; i++) {
1024 vm_object_t backing_object, lobject;
1025
1026 addr = addra + prefault_pageorder[i];
1027 if (addr > addra + (PFFOR * PAGE_SIZE))
1028 addr = 0;
1029
1030 if (addr < starta || addr >= entry->end)
1031 continue;
1032
1033 if (!pmap_is_prefaultable(pmap, addr))
1034 continue;
1035
1036 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1037 lobject = object;
1038 VM_OBJECT_RLOCK(lobject);
1039 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1040 lobject->type == OBJT_DEFAULT &&
1041 (backing_object = lobject->backing_object) != NULL) {
1042 KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1043 0, ("vm_fault_prefault: unaligned object offset"));
1044 pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1045 VM_OBJECT_RLOCK(backing_object);
1046 VM_OBJECT_RUNLOCK(lobject);
1047 lobject = backing_object;
1048 }
1049 /*
1050 * give-up when a page is not in memory
1051 */
1052 if (m == NULL) {
1053 VM_OBJECT_RUNLOCK(lobject);
1054 break;
1055 }
1056 if (m->valid == VM_PAGE_BITS_ALL &&
1057 (m->flags & PG_FICTITIOUS) == 0)
1058 pmap_enter_quick(pmap, addr, m, entry->protection);
1059 VM_OBJECT_RUNLOCK(lobject);
1060 }
1061 }
1062
1063 /*
1064 * Hold each of the physical pages that are mapped by the specified range of
1065 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1066 * and allow the specified types of access, "prot". If all of the implied
1067 * pages are successfully held, then the number of held pages is returned
1068 * together with pointers to those pages in the array "ma". However, if any
1069 * of the pages cannot be held, -1 is returned.
1070 */
1071 int
1072 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1073 vm_prot_t prot, vm_page_t *ma, int max_count)
1074 {
1075 vm_offset_t end, va;
1076 vm_page_t *mp;
1077 int count;
1078 boolean_t pmap_failed;
1079
1080 if (len == 0)
1081 return (0);
1082 end = round_page(addr + len);
1083 addr = trunc_page(addr);
1084
1085 /*
1086 * Check for illegal addresses.
1087 */
1088 if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1089 return (-1);
1090
1091 count = howmany(end - addr, PAGE_SIZE);
1092 if (count > max_count)
1093 panic("vm_fault_quick_hold_pages: count > max_count");
1094
1095 /*
1096 * Most likely, the physical pages are resident in the pmap, so it is
1097 * faster to try pmap_extract_and_hold() first.
1098 */
1099 pmap_failed = FALSE;
1100 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1101 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1102 if (*mp == NULL)
1103 pmap_failed = TRUE;
1104 else if ((prot & VM_PROT_WRITE) != 0 &&
1105 (*mp)->dirty != VM_PAGE_BITS_ALL) {
1106 /*
1107 * Explicitly dirty the physical page. Otherwise, the
1108 * caller's changes may go unnoticed because they are
1109 * performed through an unmanaged mapping or by a DMA
1110 * operation.
1111 *
1112 * The object lock is not held here.
1113 * See vm_page_clear_dirty_mask().
1114 */
1115 vm_page_dirty(*mp);
1116 }
1117 }
1118 if (pmap_failed) {
1119 /*
1120 * One or more pages could not be held by the pmap. Either no
1121 * page was mapped at the specified virtual address or that
1122 * mapping had insufficient permissions. Attempt to fault in
1123 * and hold these pages.
1124 */
1125 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1126 if (*mp == NULL && vm_fault_hold(map, va, prot,
1127 VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1128 goto error;
1129 }
1130 return (count);
1131 error:
1132 for (mp = ma; mp < ma + count; mp++)
1133 if (*mp != NULL) {
1134 vm_page_lock(*mp);
1135 vm_page_unhold(*mp);
1136 vm_page_unlock(*mp);
1137 }
1138 return (-1);
1139 }
1140
1141 /*
1142 * vm_fault_wire:
1143 *
1144 * Wire down a range of virtual addresses in a map.
1145 */
1146 int
1147 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1148 boolean_t fictitious)
1149 {
1150 vm_offset_t va;
1151 int rv;
1152
1153 /*
1154 * We simulate a fault to get the page and enter it in the physical
1155 * map. For user wiring, we only ask for read access on currently
1156 * read-only sections.
1157 */
1158 for (va = start; va < end; va += PAGE_SIZE) {
1159 rv = vm_fault(map, va, VM_PROT_NONE, VM_FAULT_CHANGE_WIRING);
1160 if (rv) {
1161 if (va != start)
1162 vm_fault_unwire(map, start, va, fictitious);
1163 return (rv);
1164 }
1165 }
1166 return (KERN_SUCCESS);
1167 }
1168
1169 /*
1170 * vm_fault_unwire:
1171 *
1172 * Unwire a range of virtual addresses in a map.
1173 */
1174 void
1175 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1176 boolean_t fictitious)
1177 {
1178 vm_paddr_t pa;
1179 vm_offset_t va;
1180 vm_page_t m;
1181 pmap_t pmap;
1182
1183 pmap = vm_map_pmap(map);
1184
1185 /*
1186 * Since the pages are wired down, we must be able to get their
1187 * mappings from the physical map system.
1188 */
1189 for (va = start; va < end; va += PAGE_SIZE) {
1190 pa = pmap_extract(pmap, va);
1191 if (pa != 0) {
1192 pmap_change_wiring(pmap, va, FALSE);
1193 if (!fictitious) {
1194 m = PHYS_TO_VM_PAGE(pa);
1195 vm_page_lock(m);
1196 vm_page_unwire(m, TRUE);
1197 vm_page_unlock(m);
1198 }
1199 }
1200 }
1201 }
1202
1203 /*
1204 * Routine:
1205 * vm_fault_copy_entry
1206 * Function:
1207 * Create new shadow object backing dst_entry with private copy of
1208 * all underlying pages. When src_entry is equal to dst_entry,
1209 * function implements COW for wired-down map entry. Otherwise,
1210 * it forks wired entry into dst_map.
1211 *
1212 * In/out conditions:
1213 * The source and destination maps must be locked for write.
1214 * The source map entry must be wired down (or be a sharing map
1215 * entry corresponding to a main map entry that is wired down).
1216 */
1217 void
1218 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1219 vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1220 vm_ooffset_t *fork_charge)
1221 {
1222 vm_object_t backing_object, dst_object, object, src_object;
1223 vm_pindex_t dst_pindex, pindex, src_pindex;
1224 vm_prot_t access, prot;
1225 vm_offset_t vaddr;
1226 vm_page_t dst_m;
1227 vm_page_t src_m;
1228 boolean_t src_readonly, upgrade;
1229
1230 #ifdef lint
1231 src_map++;
1232 #endif /* lint */
1233
1234 upgrade = src_entry == dst_entry;
1235
1236 src_object = src_entry->object.vm_object;
1237 src_pindex = OFF_TO_IDX(src_entry->offset);
1238 src_readonly = (src_entry->protection & VM_PROT_WRITE) == 0;
1239
1240 /*
1241 * Create the top-level object for the destination entry. (Doesn't
1242 * actually shadow anything - we copy the pages directly.)
1243 */
1244 dst_object = vm_object_allocate(OBJT_DEFAULT,
1245 OFF_TO_IDX(dst_entry->end - dst_entry->start));
1246 #if VM_NRESERVLEVEL > 0
1247 dst_object->flags |= OBJ_COLORED;
1248 dst_object->pg_color = atop(dst_entry->start);
1249 #endif
1250
1251 VM_OBJECT_WLOCK(dst_object);
1252 KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1253 ("vm_fault_copy_entry: vm_object not NULL"));
1254 dst_entry->object.vm_object = dst_object;
1255 dst_entry->offset = 0;
1256 dst_object->charge = dst_entry->end - dst_entry->start;
1257 if (fork_charge != NULL) {
1258 KASSERT(dst_entry->cred == NULL,
1259 ("vm_fault_copy_entry: leaked swp charge"));
1260 dst_object->cred = curthread->td_ucred;
1261 crhold(dst_object->cred);
1262 *fork_charge += dst_object->charge;
1263 } else {
1264 dst_object->cred = dst_entry->cred;
1265 dst_entry->cred = NULL;
1266 }
1267 access = prot = dst_entry->protection;
1268 /*
1269 * If not an upgrade, then enter the mappings in the pmap as
1270 * read and/or execute accesses. Otherwise, enter them as
1271 * write accesses.
1272 *
1273 * A writeable large page mapping is only created if all of
1274 * the constituent small page mappings are modified. Marking
1275 * PTEs as modified on inception allows promotion to happen
1276 * without taking potentially large number of soft faults.
1277 */
1278 if (!upgrade)
1279 access &= ~VM_PROT_WRITE;
1280
1281 /*
1282 * Loop through all of the virtual pages within the entry's
1283 * range, copying each page from the source object to the
1284 * destination object. Since the source is wired, those pages
1285 * must exist. In contrast, the destination is pageable.
1286 * Since the destination object does share any backing storage
1287 * with the source object, all of its pages must be dirtied,
1288 * regardless of whether they can be written.
1289 */
1290 for (vaddr = dst_entry->start, dst_pindex = 0;
1291 vaddr < dst_entry->end;
1292 vaddr += PAGE_SIZE, dst_pindex++) {
1293
1294 /*
1295 * Allocate a page in the destination object.
1296 */
1297 do {
1298 dst_m = vm_page_alloc(dst_object, dst_pindex,
1299 VM_ALLOC_NORMAL);
1300 if (dst_m == NULL) {
1301 VM_OBJECT_WUNLOCK(dst_object);
1302 VM_WAIT;
1303 VM_OBJECT_WLOCK(dst_object);
1304 }
1305 } while (dst_m == NULL);
1306
1307 /*
1308 * Find the page in the source object, and copy it in.
1309 * (Because the source is wired down, the page will be in
1310 * memory.)
1311 */
1312 VM_OBJECT_RLOCK(src_object);
1313 object = src_object;
1314 pindex = src_pindex + dst_pindex;
1315 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1316 src_readonly &&
1317 (backing_object = object->backing_object) != NULL) {
1318 /*
1319 * Allow fallback to backing objects if we are reading.
1320 */
1321 VM_OBJECT_RLOCK(backing_object);
1322 pindex += OFF_TO_IDX(object->backing_object_offset);
1323 VM_OBJECT_RUNLOCK(object);
1324 object = backing_object;
1325 }
1326 if (src_m == NULL)
1327 panic("vm_fault_copy_wired: page missing");
1328 pmap_copy_page(src_m, dst_m);
1329 VM_OBJECT_RUNLOCK(object);
1330 dst_m->valid = VM_PAGE_BITS_ALL;
1331 dst_m->dirty = VM_PAGE_BITS_ALL;
1332 VM_OBJECT_WUNLOCK(dst_object);
1333
1334 /*
1335 * Enter it in the pmap. If a wired, copy-on-write
1336 * mapping is being replaced by a write-enabled
1337 * mapping, then wire that new mapping.
1338 */
1339 pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade);
1340
1341 /*
1342 * Mark it no longer busy, and put it on the active list.
1343 */
1344 VM_OBJECT_WLOCK(dst_object);
1345
1346 if (upgrade) {
1347 vm_page_lock(src_m);
1348 vm_page_unwire(src_m, 0);
1349 vm_page_unlock(src_m);
1350
1351 vm_page_lock(dst_m);
1352 vm_page_wire(dst_m);
1353 vm_page_unlock(dst_m);
1354 } else {
1355 vm_page_lock(dst_m);
1356 vm_page_activate(dst_m);
1357 vm_page_unlock(dst_m);
1358 }
1359 vm_page_xunbusy(dst_m);
1360 }
1361 VM_OBJECT_WUNLOCK(dst_object);
1362 if (upgrade) {
1363 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1364 vm_object_deallocate(src_object);
1365 }
1366 }
1367
1368
1369 /*
1370 * This routine checks around the requested page for other pages that
1371 * might be able to be faulted in. This routine brackets the viable
1372 * pages for the pages to be paged in.
1373 *
1374 * Inputs:
1375 * m, rbehind, rahead
1376 *
1377 * Outputs:
1378 * marray (array of vm_page_t), reqpage (index of requested page)
1379 *
1380 * Return value:
1381 * number of pages in marray
1382 */
1383 static int
1384 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1385 vm_page_t m;
1386 int rbehind;
1387 int rahead;
1388 vm_page_t *marray;
1389 int *reqpage;
1390 {
1391 int i,j;
1392 vm_object_t object;
1393 vm_pindex_t pindex, startpindex, endpindex, tpindex;
1394 vm_page_t rtm;
1395 int cbehind, cahead;
1396
1397 VM_OBJECT_ASSERT_WLOCKED(m->object);
1398
1399 object = m->object;
1400 pindex = m->pindex;
1401 cbehind = cahead = 0;
1402
1403 /*
1404 * if the requested page is not available, then give up now
1405 */
1406 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1407 return 0;
1408 }
1409
1410 if ((cbehind == 0) && (cahead == 0)) {
1411 *reqpage = 0;
1412 marray[0] = m;
1413 return 1;
1414 }
1415
1416 if (rahead > cahead) {
1417 rahead = cahead;
1418 }
1419
1420 if (rbehind > cbehind) {
1421 rbehind = cbehind;
1422 }
1423
1424 /*
1425 * scan backward for the read behind pages -- in memory
1426 */
1427 if (pindex > 0) {
1428 if (rbehind > pindex) {
1429 rbehind = pindex;
1430 startpindex = 0;
1431 } else {
1432 startpindex = pindex - rbehind;
1433 }
1434
1435 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1436 rtm->pindex >= startpindex)
1437 startpindex = rtm->pindex + 1;
1438
1439 /* tpindex is unsigned; beware of numeric underflow. */
1440 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1441 tpindex < pindex; i++, tpindex--) {
1442
1443 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1444 VM_ALLOC_IFNOTCACHED);
1445 if (rtm == NULL) {
1446 /*
1447 * Shift the allocated pages to the
1448 * beginning of the array.
1449 */
1450 for (j = 0; j < i; j++) {
1451 marray[j] = marray[j + tpindex + 1 -
1452 startpindex];
1453 }
1454 break;
1455 }
1456
1457 marray[tpindex - startpindex] = rtm;
1458 }
1459 } else {
1460 startpindex = 0;
1461 i = 0;
1462 }
1463
1464 marray[i] = m;
1465 /* page offset of the required page */
1466 *reqpage = i;
1467
1468 tpindex = pindex + 1;
1469 i++;
1470
1471 /*
1472 * scan forward for the read ahead pages
1473 */
1474 endpindex = tpindex + rahead;
1475 if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1476 endpindex = rtm->pindex;
1477 if (endpindex > object->size)
1478 endpindex = object->size;
1479
1480 for (; tpindex < endpindex; i++, tpindex++) {
1481
1482 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1483 VM_ALLOC_IFNOTCACHED);
1484 if (rtm == NULL) {
1485 break;
1486 }
1487
1488 marray[i] = rtm;
1489 }
1490
1491 /* return number of pages */
1492 return i;
1493 }
1494
1495 /*
1496 * Block entry into the machine-independent layer's page fault handler by
1497 * the calling thread. Subsequent calls to vm_fault() by that thread will
1498 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of
1499 * spurious page faults.
1500 */
1501 int
1502 vm_fault_disable_pagefaults(void)
1503 {
1504
1505 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1506 }
1507
1508 void
1509 vm_fault_enable_pagefaults(int save)
1510 {
1511
1512 curthread_pflags_restore(save);
1513 }
Cache object: ca65ab5a4263126322924e3d00e83e5b
|