The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_fault.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  *
    9  *
   10  * This code is derived from software contributed to Berkeley by
   11  * The Mach Operating System project at Carnegie-Mellon University.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1. Redistributions of source code must retain the above copyright
   17  *    notice, this list of conditions and the following disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  * 3. All advertising materials mentioning features or use of this software
   22  *    must display the following acknowledgement:
   23  *      This product includes software developed by the University of
   24  *      California, Berkeley and its contributors.
   25  * 4. Neither the name of the University nor the names of its contributors
   26  *    may be used to endorse or promote products derived from this software
   27  *    without specific prior written permission.
   28  *
   29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   39  * SUCH DAMAGE.
   40  *
   41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
   42  *
   43  *
   44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   45  * All rights reserved.
   46  *
   47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   48  *
   49  * Permission to use, copy, modify and distribute this software and
   50  * its documentation is hereby granted, provided that both the copyright
   51  * notice and this permission notice appear in all copies of the
   52  * software, derivative works or modified versions, and any portions
   53  * thereof, and that both notices appear in supporting documentation.
   54  *
   55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   58  *
   59  * Carnegie Mellon requests users of this software to return to
   60  *
   61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   62  *  School of Computer Science
   63  *  Carnegie Mellon University
   64  *  Pittsburgh PA 15213-3890
   65  *
   66  * any improvements or extensions that they make and grant Carnegie the
   67  * rights to redistribute these changes.
   68  */
   69 
   70 /*
   71  *      Page fault handling module.
   72  */
   73 
   74 #include <sys/cdefs.h>
   75 __FBSDID("$FreeBSD: releng/10.0/sys/vm/vm_fault.c 255608 2013-09-16 06:25:54Z kib $");
   76 
   77 #include "opt_ktrace.h"
   78 #include "opt_vm.h"
   79 
   80 #include <sys/param.h>
   81 #include <sys/systm.h>
   82 #include <sys/kernel.h>
   83 #include <sys/lock.h>
   84 #include <sys/proc.h>
   85 #include <sys/resourcevar.h>
   86 #include <sys/rwlock.h>
   87 #include <sys/sysctl.h>
   88 #include <sys/vmmeter.h>
   89 #include <sys/vnode.h>
   90 #ifdef KTRACE
   91 #include <sys/ktrace.h>
   92 #endif
   93 
   94 #include <vm/vm.h>
   95 #include <vm/vm_param.h>
   96 #include <vm/pmap.h>
   97 #include <vm/vm_map.h>
   98 #include <vm/vm_object.h>
   99 #include <vm/vm_page.h>
  100 #include <vm/vm_pageout.h>
  101 #include <vm/vm_kern.h>
  102 #include <vm/vm_pager.h>
  103 #include <vm/vm_extern.h>
  104 
  105 #define PFBAK 4
  106 #define PFFOR 4
  107 #define PAGEORDER_SIZE (PFBAK+PFFOR)
  108 
  109 static int prefault_pageorder[] = {
  110         -1 * PAGE_SIZE, 1 * PAGE_SIZE,
  111         -2 * PAGE_SIZE, 2 * PAGE_SIZE,
  112         -3 * PAGE_SIZE, 3 * PAGE_SIZE,
  113         -4 * PAGE_SIZE, 4 * PAGE_SIZE
  114 };
  115 
  116 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
  117 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
  118 
  119 #define VM_FAULT_READ_BEHIND    8
  120 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
  121 #define VM_FAULT_NINCR          (VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
  122 #define VM_FAULT_SUM            (VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
  123 #define VM_FAULT_CACHE_BEHIND   (VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
  124 
  125 struct faultstate {
  126         vm_page_t m;
  127         vm_object_t object;
  128         vm_pindex_t pindex;
  129         vm_page_t first_m;
  130         vm_object_t     first_object;
  131         vm_pindex_t first_pindex;
  132         vm_map_t map;
  133         vm_map_entry_t entry;
  134         int lookup_still_valid;
  135         struct vnode *vp;
  136 };
  137 
  138 static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
  139 
  140 static inline void
  141 release_page(struct faultstate *fs)
  142 {
  143 
  144         vm_page_xunbusy(fs->m);
  145         vm_page_lock(fs->m);
  146         vm_page_deactivate(fs->m);
  147         vm_page_unlock(fs->m);
  148         fs->m = NULL;
  149 }
  150 
  151 static inline void
  152 unlock_map(struct faultstate *fs)
  153 {
  154 
  155         if (fs->lookup_still_valid) {
  156                 vm_map_lookup_done(fs->map, fs->entry);
  157                 fs->lookup_still_valid = FALSE;
  158         }
  159 }
  160 
  161 static void
  162 unlock_and_deallocate(struct faultstate *fs)
  163 {
  164 
  165         vm_object_pip_wakeup(fs->object);
  166         VM_OBJECT_WUNLOCK(fs->object);
  167         if (fs->object != fs->first_object) {
  168                 VM_OBJECT_WLOCK(fs->first_object);
  169                 vm_page_lock(fs->first_m);
  170                 vm_page_free(fs->first_m);
  171                 vm_page_unlock(fs->first_m);
  172                 vm_object_pip_wakeup(fs->first_object);
  173                 VM_OBJECT_WUNLOCK(fs->first_object);
  174                 fs->first_m = NULL;
  175         }
  176         vm_object_deallocate(fs->first_object);
  177         unlock_map(fs); 
  178         if (fs->vp != NULL) { 
  179                 vput(fs->vp);
  180                 fs->vp = NULL;
  181         }
  182 }
  183 
  184 /*
  185  * TRYPAGER - used by vm_fault to calculate whether the pager for the
  186  *            current object *might* contain the page.
  187  *
  188  *            default objects are zero-fill, there is no real pager.
  189  */
  190 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
  191                         ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
  192 
  193 /*
  194  *      vm_fault:
  195  *
  196  *      Handle a page fault occurring at the given address,
  197  *      requiring the given permissions, in the map specified.
  198  *      If successful, the page is inserted into the
  199  *      associated physical map.
  200  *
  201  *      NOTE: the given address should be truncated to the
  202  *      proper page address.
  203  *
  204  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
  205  *      a standard error specifying why the fault is fatal is returned.
  206  *
  207  *      The map in question must be referenced, and remains so.
  208  *      Caller may hold no locks.
  209  */
  210 int
  211 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
  212     int fault_flags)
  213 {
  214         struct thread *td;
  215         int result;
  216 
  217         td = curthread;
  218         if ((td->td_pflags & TDP_NOFAULTING) != 0)
  219                 return (KERN_PROTECTION_FAILURE);
  220 #ifdef KTRACE
  221         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
  222                 ktrfault(vaddr, fault_type);
  223 #endif
  224         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
  225             NULL);
  226 #ifdef KTRACE
  227         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
  228                 ktrfaultend(result);
  229 #endif
  230         return (result);
  231 }
  232 
  233 int
  234 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
  235     int fault_flags, vm_page_t *m_hold)
  236 {
  237         vm_prot_t prot;
  238         long ahead, behind;
  239         int alloc_req, era, faultcount, nera, reqpage, result;
  240         boolean_t growstack, is_first_object_locked, wired;
  241         int map_generation;
  242         vm_object_t next_object;
  243         vm_page_t marray[VM_FAULT_READ_MAX];
  244         int hardfault;
  245         struct faultstate fs;
  246         struct vnode *vp;
  247         int locked, error;
  248 
  249         hardfault = 0;
  250         growstack = TRUE;
  251         PCPU_INC(cnt.v_vm_faults);
  252         fs.vp = NULL;
  253         faultcount = reqpage = 0;
  254 
  255 RetryFault:;
  256 
  257         /*
  258          * Find the backing store object and offset into it to begin the
  259          * search.
  260          */
  261         fs.map = map;
  262         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
  263             &fs.first_object, &fs.first_pindex, &prot, &wired);
  264         if (result != KERN_SUCCESS) {
  265                 if (growstack && result == KERN_INVALID_ADDRESS &&
  266                     map != kernel_map) {
  267                         result = vm_map_growstack(curproc, vaddr);
  268                         if (result != KERN_SUCCESS)
  269                                 return (KERN_FAILURE);
  270                         growstack = FALSE;
  271                         goto RetryFault;
  272                 }
  273                 return (result);
  274         }
  275 
  276         map_generation = fs.map->timestamp;
  277 
  278         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
  279                 panic("vm_fault: fault on nofault entry, addr: %lx",
  280                     (u_long)vaddr);
  281         }
  282 
  283         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
  284             fs.entry->wiring_thread != curthread) {
  285                 vm_map_unlock_read(fs.map);
  286                 vm_map_lock(fs.map);
  287                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
  288                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
  289                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
  290                         vm_map_unlock_and_wait(fs.map, 0);
  291                 } else
  292                         vm_map_unlock(fs.map);
  293                 goto RetryFault;
  294         }
  295 
  296         /*
  297          * Make a reference to this object to prevent its disposal while we
  298          * are messing with it.  Once we have the reference, the map is free
  299          * to be diddled.  Since objects reference their shadows (and copies),
  300          * they will stay around as well.
  301          *
  302          * Bump the paging-in-progress count to prevent size changes (e.g. 
  303          * truncation operations) during I/O.  This must be done after
  304          * obtaining the vnode lock in order to avoid possible deadlocks.
  305          */
  306         VM_OBJECT_WLOCK(fs.first_object);
  307         vm_object_reference_locked(fs.first_object);
  308         vm_object_pip_add(fs.first_object, 1);
  309 
  310         fs.lookup_still_valid = TRUE;
  311 
  312         if (wired)
  313                 fault_type = prot | (fault_type & VM_PROT_COPY);
  314 
  315         fs.first_m = NULL;
  316 
  317         /*
  318          * Search for the page at object/offset.
  319          */
  320         fs.object = fs.first_object;
  321         fs.pindex = fs.first_pindex;
  322         while (TRUE) {
  323                 /*
  324                  * If the object is dead, we stop here
  325                  */
  326                 if (fs.object->flags & OBJ_DEAD) {
  327                         unlock_and_deallocate(&fs);
  328                         return (KERN_PROTECTION_FAILURE);
  329                 }
  330 
  331                 /*
  332                  * See if page is resident
  333                  */
  334                 fs.m = vm_page_lookup(fs.object, fs.pindex);
  335                 if (fs.m != NULL) {
  336                         /*
  337                          * Wait/Retry if the page is busy.  We have to do this
  338                          * if the page is either exclusive or shared busy
  339                          * because the vm_pager may be using read busy for
  340                          * pageouts (and even pageins if it is the vnode
  341                          * pager), and we could end up trying to pagein and
  342                          * pageout the same page simultaneously.
  343                          *
  344                          * We can theoretically allow the busy case on a read
  345                          * fault if the page is marked valid, but since such
  346                          * pages are typically already pmap'd, putting that
  347                          * special case in might be more effort then it is 
  348                          * worth.  We cannot under any circumstances mess
  349                          * around with a shared busied page except, perhaps,
  350                          * to pmap it.
  351                          */
  352                         if (vm_page_busied(fs.m)) {
  353                                 /*
  354                                  * Reference the page before unlocking and
  355                                  * sleeping so that the page daemon is less
  356                                  * likely to reclaim it. 
  357                                  */
  358                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
  359                                 if (fs.object != fs.first_object) {
  360                                         if (!VM_OBJECT_TRYWLOCK(
  361                                             fs.first_object)) {
  362                                                 VM_OBJECT_WUNLOCK(fs.object);
  363                                                 VM_OBJECT_WLOCK(fs.first_object);
  364                                                 VM_OBJECT_WLOCK(fs.object);
  365                                         }
  366                                         vm_page_lock(fs.first_m);
  367                                         vm_page_free(fs.first_m);
  368                                         vm_page_unlock(fs.first_m);
  369                                         vm_object_pip_wakeup(fs.first_object);
  370                                         VM_OBJECT_WUNLOCK(fs.first_object);
  371                                         fs.first_m = NULL;
  372                                 }
  373                                 unlock_map(&fs);
  374                                 if (fs.m == vm_page_lookup(fs.object,
  375                                     fs.pindex)) {
  376                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
  377                                 }
  378                                 vm_object_pip_wakeup(fs.object);
  379                                 VM_OBJECT_WUNLOCK(fs.object);
  380                                 PCPU_INC(cnt.v_intrans);
  381                                 vm_object_deallocate(fs.first_object);
  382                                 goto RetryFault;
  383                         }
  384                         vm_page_lock(fs.m);
  385                         vm_page_remque(fs.m);
  386                         vm_page_unlock(fs.m);
  387 
  388                         /*
  389                          * Mark page busy for other processes, and the 
  390                          * pagedaemon.  If it still isn't completely valid
  391                          * (readable), jump to readrest, else break-out ( we
  392                          * found the page ).
  393                          */
  394                         vm_page_xbusy(fs.m);
  395                         if (fs.m->valid != VM_PAGE_BITS_ALL)
  396                                 goto readrest;
  397                         break;
  398                 }
  399 
  400                 /*
  401                  * Page is not resident, If this is the search termination
  402                  * or the pager might contain the page, allocate a new page.
  403                  */
  404                 if (TRYPAGER || fs.object == fs.first_object) {
  405                         if (fs.pindex >= fs.object->size) {
  406                                 unlock_and_deallocate(&fs);
  407                                 return (KERN_PROTECTION_FAILURE);
  408                         }
  409 
  410                         /*
  411                          * Allocate a new page for this object/offset pair.
  412                          *
  413                          * Unlocked read of the p_flag is harmless. At
  414                          * worst, the P_KILLED might be not observed
  415                          * there, and allocation can fail, causing
  416                          * restart and new reading of the p_flag.
  417                          */
  418                         fs.m = NULL;
  419                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
  420 #if VM_NRESERVLEVEL > 0
  421                                 if ((fs.object->flags & OBJ_COLORED) == 0) {
  422                                         fs.object->flags |= OBJ_COLORED;
  423                                         fs.object->pg_color = atop(vaddr) -
  424                                             fs.pindex;
  425                                 }
  426 #endif
  427                                 alloc_req = P_KILLED(curproc) ?
  428                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
  429                                 if (fs.object->type != OBJT_VNODE &&
  430                                     fs.object->backing_object == NULL)
  431                                         alloc_req |= VM_ALLOC_ZERO;
  432                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
  433                                     alloc_req);
  434                         }
  435                         if (fs.m == NULL) {
  436                                 unlock_and_deallocate(&fs);
  437                                 VM_WAITPFAULT;
  438                                 goto RetryFault;
  439                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
  440                                 break;
  441                 }
  442 
  443 readrest:
  444                 /*
  445                  * We have found a valid page or we have allocated a new page.
  446                  * The page thus may not be valid or may not be entirely 
  447                  * valid.
  448                  *
  449                  * Attempt to fault-in the page if there is a chance that the
  450                  * pager has it, and potentially fault in additional pages
  451                  * at the same time.
  452                  */
  453                 if (TRYPAGER) {
  454                         int rv;
  455                         u_char behavior = vm_map_entry_behavior(fs.entry);
  456 
  457                         if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
  458                             P_KILLED(curproc)) {
  459                                 behind = 0;
  460                                 ahead = 0;
  461                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
  462                                 behind = 0;
  463                                 ahead = atop(fs.entry->end - vaddr) - 1;
  464                                 if (ahead > VM_FAULT_READ_AHEAD_MAX)
  465                                         ahead = VM_FAULT_READ_AHEAD_MAX;
  466                                 if (fs.pindex == fs.entry->next_read)
  467                                         vm_fault_cache_behind(&fs,
  468                                             VM_FAULT_READ_MAX);
  469                         } else {
  470                                 /*
  471                                  * If this is a sequential page fault, then
  472                                  * arithmetically increase the number of pages
  473                                  * in the read-ahead window.  Otherwise, reset
  474                                  * the read-ahead window to its smallest size.
  475                                  */
  476                                 behind = atop(vaddr - fs.entry->start);
  477                                 if (behind > VM_FAULT_READ_BEHIND)
  478                                         behind = VM_FAULT_READ_BEHIND;
  479                                 ahead = atop(fs.entry->end - vaddr) - 1;
  480                                 era = fs.entry->read_ahead;
  481                                 if (fs.pindex == fs.entry->next_read) {
  482                                         nera = era + behind;
  483                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
  484                                                 nera = VM_FAULT_READ_AHEAD_MAX;
  485                                         behind = 0;
  486                                         if (ahead > nera)
  487                                                 ahead = nera;
  488                                         if (era == VM_FAULT_READ_AHEAD_MAX)
  489                                                 vm_fault_cache_behind(&fs,
  490                                                     VM_FAULT_CACHE_BEHIND);
  491                                 } else if (ahead > VM_FAULT_READ_AHEAD_MIN)
  492                                         ahead = VM_FAULT_READ_AHEAD_MIN;
  493                                 if (era != ahead)
  494                                         fs.entry->read_ahead = ahead;
  495                         }
  496 
  497                         /*
  498                          * Call the pager to retrieve the data, if any, after
  499                          * releasing the lock on the map.  We hold a ref on
  500                          * fs.object and the pages are exclusive busied.
  501                          */
  502                         unlock_map(&fs);
  503 
  504                         if (fs.object->type == OBJT_VNODE) {
  505                                 vp = fs.object->handle;
  506                                 if (vp == fs.vp)
  507                                         goto vnode_locked;
  508                                 else if (fs.vp != NULL) {
  509                                         vput(fs.vp);
  510                                         fs.vp = NULL;
  511                                 }
  512                                 locked = VOP_ISLOCKED(vp);
  513 
  514                                 if (locked != LK_EXCLUSIVE)
  515                                         locked = LK_SHARED;
  516                                 /* Do not sleep for vnode lock while fs.m is busy */
  517                                 error = vget(vp, locked | LK_CANRECURSE |
  518                                     LK_NOWAIT, curthread);
  519                                 if (error != 0) {
  520                                         vhold(vp);
  521                                         release_page(&fs);
  522                                         unlock_and_deallocate(&fs);
  523                                         error = vget(vp, locked | LK_RETRY |
  524                                             LK_CANRECURSE, curthread);
  525                                         vdrop(vp);
  526                                         fs.vp = vp;
  527                                         KASSERT(error == 0,
  528                                             ("vm_fault: vget failed"));
  529                                         goto RetryFault;
  530                                 }
  531                                 fs.vp = vp;
  532                         }
  533 vnode_locked:
  534                         KASSERT(fs.vp == NULL || !fs.map->system_map,
  535                             ("vm_fault: vnode-backed object mapped by system map"));
  536 
  537                         /*
  538                          * now we find out if any other pages should be paged
  539                          * in at this time this routine checks to see if the
  540                          * pages surrounding this fault reside in the same
  541                          * object as the page for this fault.  If they do,
  542                          * then they are faulted in also into the object.  The
  543                          * array "marray" returned contains an array of
  544                          * vm_page_t structs where one of them is the
  545                          * vm_page_t passed to the routine.  The reqpage
  546                          * return value is the index into the marray for the
  547                          * vm_page_t passed to the routine.
  548                          *
  549                          * fs.m plus the additional pages are exclusive busied.
  550                          */
  551                         faultcount = vm_fault_additional_pages(
  552                             fs.m, behind, ahead, marray, &reqpage);
  553 
  554                         rv = faultcount ?
  555                             vm_pager_get_pages(fs.object, marray, faultcount,
  556                                 reqpage) : VM_PAGER_FAIL;
  557 
  558                         if (rv == VM_PAGER_OK) {
  559                                 /*
  560                                  * Found the page. Leave it busy while we play
  561                                  * with it.
  562                                  */
  563 
  564                                 /*
  565                                  * Relookup in case pager changed page. Pager
  566                                  * is responsible for disposition of old page
  567                                  * if moved.
  568                                  */
  569                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
  570                                 if (!fs.m) {
  571                                         unlock_and_deallocate(&fs);
  572                                         goto RetryFault;
  573                                 }
  574 
  575                                 hardfault++;
  576                                 break; /* break to PAGE HAS BEEN FOUND */
  577                         }
  578                         /*
  579                          * Remove the bogus page (which does not exist at this
  580                          * object/offset); before doing so, we must get back
  581                          * our object lock to preserve our invariant.
  582                          *
  583                          * Also wake up any other process that may want to bring
  584                          * in this page.
  585                          *
  586                          * If this is the top-level object, we must leave the
  587                          * busy page to prevent another process from rushing
  588                          * past us, and inserting the page in that object at
  589                          * the same time that we are.
  590                          */
  591                         if (rv == VM_PAGER_ERROR)
  592                                 printf("vm_fault: pager read error, pid %d (%s)\n",
  593                                     curproc->p_pid, curproc->p_comm);
  594                         /*
  595                          * Data outside the range of the pager or an I/O error
  596                          */
  597                         /*
  598                          * XXX - the check for kernel_map is a kludge to work
  599                          * around having the machine panic on a kernel space
  600                          * fault w/ I/O error.
  601                          */
  602                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
  603                                 (rv == VM_PAGER_BAD)) {
  604                                 vm_page_lock(fs.m);
  605                                 vm_page_free(fs.m);
  606                                 vm_page_unlock(fs.m);
  607                                 fs.m = NULL;
  608                                 unlock_and_deallocate(&fs);
  609                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
  610                         }
  611                         if (fs.object != fs.first_object) {
  612                                 vm_page_lock(fs.m);
  613                                 vm_page_free(fs.m);
  614                                 vm_page_unlock(fs.m);
  615                                 fs.m = NULL;
  616                                 /*
  617                                  * XXX - we cannot just fall out at this
  618                                  * point, m has been freed and is invalid!
  619                                  */
  620                         }
  621                 }
  622 
  623                 /*
  624                  * We get here if the object has default pager (or unwiring) 
  625                  * or the pager doesn't have the page.
  626                  */
  627                 if (fs.object == fs.first_object)
  628                         fs.first_m = fs.m;
  629 
  630                 /*
  631                  * Move on to the next object.  Lock the next object before
  632                  * unlocking the current one.
  633                  */
  634                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
  635                 next_object = fs.object->backing_object;
  636                 if (next_object == NULL) {
  637                         /*
  638                          * If there's no object left, fill the page in the top
  639                          * object with zeros.
  640                          */
  641                         if (fs.object != fs.first_object) {
  642                                 vm_object_pip_wakeup(fs.object);
  643                                 VM_OBJECT_WUNLOCK(fs.object);
  644 
  645                                 fs.object = fs.first_object;
  646                                 fs.pindex = fs.first_pindex;
  647                                 fs.m = fs.first_m;
  648                                 VM_OBJECT_WLOCK(fs.object);
  649                         }
  650                         fs.first_m = NULL;
  651 
  652                         /*
  653                          * Zero the page if necessary and mark it valid.
  654                          */
  655                         if ((fs.m->flags & PG_ZERO) == 0) {
  656                                 pmap_zero_page(fs.m);
  657                         } else {
  658                                 PCPU_INC(cnt.v_ozfod);
  659                         }
  660                         PCPU_INC(cnt.v_zfod);
  661                         fs.m->valid = VM_PAGE_BITS_ALL;
  662                         break;  /* break to PAGE HAS BEEN FOUND */
  663                 } else {
  664                         KASSERT(fs.object != next_object,
  665                             ("object loop %p", next_object));
  666                         VM_OBJECT_WLOCK(next_object);
  667                         vm_object_pip_add(next_object, 1);
  668                         if (fs.object != fs.first_object)
  669                                 vm_object_pip_wakeup(fs.object);
  670                         VM_OBJECT_WUNLOCK(fs.object);
  671                         fs.object = next_object;
  672                 }
  673         }
  674 
  675         vm_page_assert_xbusied(fs.m);
  676 
  677         /*
  678          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
  679          * is held.]
  680          */
  681 
  682         /*
  683          * If the page is being written, but isn't already owned by the
  684          * top-level object, we have to copy it into a new page owned by the
  685          * top-level object.
  686          */
  687         if (fs.object != fs.first_object) {
  688                 /*
  689                  * We only really need to copy if we want to write it.
  690                  */
  691                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
  692                         /*
  693                          * This allows pages to be virtually copied from a 
  694                          * backing_object into the first_object, where the 
  695                          * backing object has no other refs to it, and cannot
  696                          * gain any more refs.  Instead of a bcopy, we just 
  697                          * move the page from the backing object to the 
  698                          * first object.  Note that we must mark the page 
  699                          * dirty in the first object so that it will go out 
  700                          * to swap when needed.
  701                          */
  702                         is_first_object_locked = FALSE;
  703                         if (
  704                                 /*
  705                                  * Only one shadow object
  706                                  */
  707                                 (fs.object->shadow_count == 1) &&
  708                                 /*
  709                                  * No COW refs, except us
  710                                  */
  711                                 (fs.object->ref_count == 1) &&
  712                                 /*
  713                                  * No one else can look this object up
  714                                  */
  715                                 (fs.object->handle == NULL) &&
  716                                 /*
  717                                  * No other ways to look the object up
  718                                  */
  719                                 ((fs.object->type == OBJT_DEFAULT) ||
  720                                  (fs.object->type == OBJT_SWAP)) &&
  721                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
  722                                 /*
  723                                  * We don't chase down the shadow chain
  724                                  */
  725                             fs.object == fs.first_object->backing_object) {
  726                                 /*
  727                                  * get rid of the unnecessary page
  728                                  */
  729                                 vm_page_lock(fs.first_m);
  730                                 vm_page_free(fs.first_m);
  731                                 vm_page_unlock(fs.first_m);
  732                                 /*
  733                                  * grab the page and put it into the 
  734                                  * process'es object.  The page is 
  735                                  * automatically made dirty.
  736                                  */
  737                                 if (vm_page_rename(fs.m, fs.first_object,
  738                                     fs.first_pindex)) {
  739                                         unlock_and_deallocate(&fs);
  740                                         goto RetryFault;
  741                                 }
  742                                 vm_page_xbusy(fs.m);
  743                                 fs.first_m = fs.m;
  744                                 fs.m = NULL;
  745                                 PCPU_INC(cnt.v_cow_optim);
  746                         } else {
  747                                 /*
  748                                  * Oh, well, lets copy it.
  749                                  */
  750                                 pmap_copy_page(fs.m, fs.first_m);
  751                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
  752                                 if (wired && (fault_flags &
  753                                     VM_FAULT_CHANGE_WIRING) == 0) {
  754                                         vm_page_lock(fs.first_m);
  755                                         vm_page_wire(fs.first_m);
  756                                         vm_page_unlock(fs.first_m);
  757                                         
  758                                         vm_page_lock(fs.m);
  759                                         vm_page_unwire(fs.m, FALSE);
  760                                         vm_page_unlock(fs.m);
  761                                 }
  762                                 /*
  763                                  * We no longer need the old page or object.
  764                                  */
  765                                 release_page(&fs);
  766                         }
  767                         /*
  768                          * fs.object != fs.first_object due to above 
  769                          * conditional
  770                          */
  771                         vm_object_pip_wakeup(fs.object);
  772                         VM_OBJECT_WUNLOCK(fs.object);
  773                         /*
  774                          * Only use the new page below...
  775                          */
  776                         fs.object = fs.first_object;
  777                         fs.pindex = fs.first_pindex;
  778                         fs.m = fs.first_m;
  779                         if (!is_first_object_locked)
  780                                 VM_OBJECT_WLOCK(fs.object);
  781                         PCPU_INC(cnt.v_cow_faults);
  782                         curthread->td_cow++;
  783                 } else {
  784                         prot &= ~VM_PROT_WRITE;
  785                 }
  786         }
  787 
  788         /*
  789          * We must verify that the maps have not changed since our last
  790          * lookup.
  791          */
  792         if (!fs.lookup_still_valid) {
  793                 vm_object_t retry_object;
  794                 vm_pindex_t retry_pindex;
  795                 vm_prot_t retry_prot;
  796 
  797                 if (!vm_map_trylock_read(fs.map)) {
  798                         release_page(&fs);
  799                         unlock_and_deallocate(&fs);
  800                         goto RetryFault;
  801                 }
  802                 fs.lookup_still_valid = TRUE;
  803                 if (fs.map->timestamp != map_generation) {
  804                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
  805                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
  806 
  807                         /*
  808                          * If we don't need the page any longer, put it on the inactive
  809                          * list (the easiest thing to do here).  If no one needs it,
  810                          * pageout will grab it eventually.
  811                          */
  812                         if (result != KERN_SUCCESS) {
  813                                 release_page(&fs);
  814                                 unlock_and_deallocate(&fs);
  815 
  816                                 /*
  817                                  * If retry of map lookup would have blocked then
  818                                  * retry fault from start.
  819                                  */
  820                                 if (result == KERN_FAILURE)
  821                                         goto RetryFault;
  822                                 return (result);
  823                         }
  824                         if ((retry_object != fs.first_object) ||
  825                             (retry_pindex != fs.first_pindex)) {
  826                                 release_page(&fs);
  827                                 unlock_and_deallocate(&fs);
  828                                 goto RetryFault;
  829                         }
  830 
  831                         /*
  832                          * Check whether the protection has changed or the object has
  833                          * been copied while we left the map unlocked. Changing from
  834                          * read to write permission is OK - we leave the page
  835                          * write-protected, and catch the write fault. Changing from
  836                          * write to read permission means that we can't mark the page
  837                          * write-enabled after all.
  838                          */
  839                         prot &= retry_prot;
  840                 }
  841         }
  842         /*
  843          * If the page was filled by a pager, update the map entry's
  844          * last read offset.  Since the pager does not return the
  845          * actual set of pages that it read, this update is based on
  846          * the requested set.  Typically, the requested and actual
  847          * sets are the same.
  848          *
  849          * XXX The following assignment modifies the map
  850          * without holding a write lock on it.
  851          */
  852         if (hardfault)
  853                 fs.entry->next_read = fs.pindex + faultcount - reqpage;
  854 
  855         if ((prot & VM_PROT_WRITE) != 0 ||
  856             (fault_flags & VM_FAULT_DIRTY) != 0) {
  857                 vm_object_set_writeable_dirty(fs.object);
  858 
  859                 /*
  860                  * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
  861                  * if the page is already dirty to prevent data written with
  862                  * the expectation of being synced from not being synced.
  863                  * Likewise if this entry does not request NOSYNC then make
  864                  * sure the page isn't marked NOSYNC.  Applications sharing
  865                  * data should use the same flags to avoid ping ponging.
  866                  */
  867                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
  868                         if (fs.m->dirty == 0)
  869                                 fs.m->oflags |= VPO_NOSYNC;
  870                 } else {
  871                         fs.m->oflags &= ~VPO_NOSYNC;
  872                 }
  873 
  874                 /*
  875                  * If the fault is a write, we know that this page is being
  876                  * written NOW so dirty it explicitly to save on 
  877                  * pmap_is_modified() calls later.
  878                  *
  879                  * Also tell the backing pager, if any, that it should remove
  880                  * any swap backing since the page is now dirty.
  881                  */
  882                 if (((fault_type & VM_PROT_WRITE) != 0 &&
  883                     (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) ||
  884                     (fault_flags & VM_FAULT_DIRTY) != 0) {
  885                         vm_page_dirty(fs.m);
  886                         vm_pager_page_unswapped(fs.m);
  887                 }
  888         }
  889 
  890         vm_page_assert_xbusied(fs.m);
  891 
  892         /*
  893          * Page must be completely valid or it is not fit to
  894          * map into user space.  vm_pager_get_pages() ensures this.
  895          */
  896         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
  897             ("vm_fault: page %p partially invalid", fs.m));
  898         VM_OBJECT_WUNLOCK(fs.object);
  899 
  900         /*
  901          * Put this page into the physical map.  We had to do the unlock above
  902          * because pmap_enter() may sleep.  We don't put the page
  903          * back on the active queue until later so that the pageout daemon
  904          * won't find it (yet).
  905          */
  906         pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
  907         if ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 && wired == 0)
  908                 vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
  909         VM_OBJECT_WLOCK(fs.object);
  910         vm_page_lock(fs.m);
  911 
  912         /*
  913          * If the page is not wired down, then put it where the pageout daemon
  914          * can find it.
  915          */
  916         if (fault_flags & VM_FAULT_CHANGE_WIRING) {
  917                 if (wired)
  918                         vm_page_wire(fs.m);
  919                 else
  920                         vm_page_unwire(fs.m, 1);
  921         } else
  922                 vm_page_activate(fs.m);
  923         if (m_hold != NULL) {
  924                 *m_hold = fs.m;
  925                 vm_page_hold(fs.m);
  926         }
  927         vm_page_unlock(fs.m);
  928         vm_page_xunbusy(fs.m);
  929 
  930         /*
  931          * Unlock everything, and return
  932          */
  933         unlock_and_deallocate(&fs);
  934         if (hardfault) {
  935                 PCPU_INC(cnt.v_io_faults);
  936                 curthread->td_ru.ru_majflt++;
  937         } else 
  938                 curthread->td_ru.ru_minflt++;
  939 
  940         return (KERN_SUCCESS);
  941 }
  942 
  943 /*
  944  * Speed up the reclamation of up to "distance" pages that precede the
  945  * faulting pindex within the first object of the shadow chain.
  946  */
  947 static void
  948 vm_fault_cache_behind(const struct faultstate *fs, int distance)
  949 {
  950         vm_object_t first_object, object;
  951         vm_page_t m, m_prev;
  952         vm_pindex_t pindex;
  953 
  954         object = fs->object;
  955         VM_OBJECT_ASSERT_WLOCKED(object);
  956         first_object = fs->first_object;
  957         if (first_object != object) {
  958                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
  959                         VM_OBJECT_WUNLOCK(object);
  960                         VM_OBJECT_WLOCK(first_object);
  961                         VM_OBJECT_WLOCK(object);
  962                 }
  963         }
  964         /* Neither fictitious nor unmanaged pages can be cached. */
  965         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
  966                 if (fs->first_pindex < distance)
  967                         pindex = 0;
  968                 else
  969                         pindex = fs->first_pindex - distance;
  970                 if (pindex < OFF_TO_IDX(fs->entry->offset))
  971                         pindex = OFF_TO_IDX(fs->entry->offset);
  972                 m = first_object != object ? fs->first_m : fs->m;
  973                 vm_page_assert_xbusied(m);
  974                 m_prev = vm_page_prev(m);
  975                 while ((m = m_prev) != NULL && m->pindex >= pindex &&
  976                     m->valid == VM_PAGE_BITS_ALL) {
  977                         m_prev = vm_page_prev(m);
  978                         if (vm_page_busied(m))
  979                                 continue;
  980                         vm_page_lock(m);
  981                         if (m->hold_count == 0 && m->wire_count == 0) {
  982                                 pmap_remove_all(m);
  983                                 vm_page_aflag_clear(m, PGA_REFERENCED);
  984                                 if (m->dirty != 0)
  985                                         vm_page_deactivate(m);
  986                                 else
  987                                         vm_page_cache(m);
  988                         }
  989                         vm_page_unlock(m);
  990                 }
  991         }
  992         if (first_object != object)
  993                 VM_OBJECT_WUNLOCK(first_object);
  994 }
  995 
  996 /*
  997  * vm_fault_prefault provides a quick way of clustering
  998  * pagefaults into a processes address space.  It is a "cousin"
  999  * of vm_map_pmap_enter, except it runs at page fault time instead
 1000  * of mmap time.
 1001  */
 1002 static void
 1003 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
 1004 {
 1005         int i;
 1006         vm_offset_t addr, starta;
 1007         vm_pindex_t pindex;
 1008         vm_page_t m;
 1009         vm_object_t object;
 1010 
 1011         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
 1012                 return;
 1013 
 1014         object = entry->object.vm_object;
 1015 
 1016         starta = addra - PFBAK * PAGE_SIZE;
 1017         if (starta < entry->start) {
 1018                 starta = entry->start;
 1019         } else if (starta > addra) {
 1020                 starta = 0;
 1021         }
 1022 
 1023         for (i = 0; i < PAGEORDER_SIZE; i++) {
 1024                 vm_object_t backing_object, lobject;
 1025 
 1026                 addr = addra + prefault_pageorder[i];
 1027                 if (addr > addra + (PFFOR * PAGE_SIZE))
 1028                         addr = 0;
 1029 
 1030                 if (addr < starta || addr >= entry->end)
 1031                         continue;
 1032 
 1033                 if (!pmap_is_prefaultable(pmap, addr))
 1034                         continue;
 1035 
 1036                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
 1037                 lobject = object;
 1038                 VM_OBJECT_RLOCK(lobject);
 1039                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
 1040                     lobject->type == OBJT_DEFAULT &&
 1041                     (backing_object = lobject->backing_object) != NULL) {
 1042                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
 1043                             0, ("vm_fault_prefault: unaligned object offset"));
 1044                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
 1045                         VM_OBJECT_RLOCK(backing_object);
 1046                         VM_OBJECT_RUNLOCK(lobject);
 1047                         lobject = backing_object;
 1048                 }
 1049                 /*
 1050                  * give-up when a page is not in memory
 1051                  */
 1052                 if (m == NULL) {
 1053                         VM_OBJECT_RUNLOCK(lobject);
 1054                         break;
 1055                 }
 1056                 if (m->valid == VM_PAGE_BITS_ALL &&
 1057                     (m->flags & PG_FICTITIOUS) == 0)
 1058                         pmap_enter_quick(pmap, addr, m, entry->protection);
 1059                 VM_OBJECT_RUNLOCK(lobject);
 1060         }
 1061 }
 1062 
 1063 /*
 1064  * Hold each of the physical pages that are mapped by the specified range of
 1065  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
 1066  * and allow the specified types of access, "prot".  If all of the implied
 1067  * pages are successfully held, then the number of held pages is returned
 1068  * together with pointers to those pages in the array "ma".  However, if any
 1069  * of the pages cannot be held, -1 is returned.
 1070  */
 1071 int
 1072 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
 1073     vm_prot_t prot, vm_page_t *ma, int max_count)
 1074 {
 1075         vm_offset_t end, va;
 1076         vm_page_t *mp;
 1077         int count;
 1078         boolean_t pmap_failed;
 1079 
 1080         if (len == 0)
 1081                 return (0);
 1082         end = round_page(addr + len);   
 1083         addr = trunc_page(addr);
 1084 
 1085         /*
 1086          * Check for illegal addresses.
 1087          */
 1088         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
 1089                 return (-1);
 1090 
 1091         count = howmany(end - addr, PAGE_SIZE);
 1092         if (count > max_count)
 1093                 panic("vm_fault_quick_hold_pages: count > max_count");
 1094 
 1095         /*
 1096          * Most likely, the physical pages are resident in the pmap, so it is
 1097          * faster to try pmap_extract_and_hold() first.
 1098          */
 1099         pmap_failed = FALSE;
 1100         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
 1101                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
 1102                 if (*mp == NULL)
 1103                         pmap_failed = TRUE;
 1104                 else if ((prot & VM_PROT_WRITE) != 0 &&
 1105                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
 1106                         /*
 1107                          * Explicitly dirty the physical page.  Otherwise, the
 1108                          * caller's changes may go unnoticed because they are
 1109                          * performed through an unmanaged mapping or by a DMA
 1110                          * operation.
 1111                          *
 1112                          * The object lock is not held here.
 1113                          * See vm_page_clear_dirty_mask().
 1114                          */
 1115                         vm_page_dirty(*mp);
 1116                 }
 1117         }
 1118         if (pmap_failed) {
 1119                 /*
 1120                  * One or more pages could not be held by the pmap.  Either no
 1121                  * page was mapped at the specified virtual address or that
 1122                  * mapping had insufficient permissions.  Attempt to fault in
 1123                  * and hold these pages.
 1124                  */
 1125                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
 1126                         if (*mp == NULL && vm_fault_hold(map, va, prot,
 1127                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
 1128                                 goto error;
 1129         }
 1130         return (count);
 1131 error:  
 1132         for (mp = ma; mp < ma + count; mp++)
 1133                 if (*mp != NULL) {
 1134                         vm_page_lock(*mp);
 1135                         vm_page_unhold(*mp);
 1136                         vm_page_unlock(*mp);
 1137                 }
 1138         return (-1);
 1139 }
 1140 
 1141 /*
 1142  *      vm_fault_wire:
 1143  *
 1144  *      Wire down a range of virtual addresses in a map.
 1145  */
 1146 int
 1147 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
 1148     boolean_t fictitious)
 1149 {
 1150         vm_offset_t va;
 1151         int rv;
 1152 
 1153         /*
 1154          * We simulate a fault to get the page and enter it in the physical
 1155          * map.  For user wiring, we only ask for read access on currently
 1156          * read-only sections.
 1157          */
 1158         for (va = start; va < end; va += PAGE_SIZE) {
 1159                 rv = vm_fault(map, va, VM_PROT_NONE, VM_FAULT_CHANGE_WIRING);
 1160                 if (rv) {
 1161                         if (va != start)
 1162                                 vm_fault_unwire(map, start, va, fictitious);
 1163                         return (rv);
 1164                 }
 1165         }
 1166         return (KERN_SUCCESS);
 1167 }
 1168 
 1169 /*
 1170  *      vm_fault_unwire:
 1171  *
 1172  *      Unwire a range of virtual addresses in a map.
 1173  */
 1174 void
 1175 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
 1176     boolean_t fictitious)
 1177 {
 1178         vm_paddr_t pa;
 1179         vm_offset_t va;
 1180         vm_page_t m;
 1181         pmap_t pmap;
 1182 
 1183         pmap = vm_map_pmap(map);
 1184 
 1185         /*
 1186          * Since the pages are wired down, we must be able to get their
 1187          * mappings from the physical map system.
 1188          */
 1189         for (va = start; va < end; va += PAGE_SIZE) {
 1190                 pa = pmap_extract(pmap, va);
 1191                 if (pa != 0) {
 1192                         pmap_change_wiring(pmap, va, FALSE);
 1193                         if (!fictitious) {
 1194                                 m = PHYS_TO_VM_PAGE(pa);
 1195                                 vm_page_lock(m);
 1196                                 vm_page_unwire(m, TRUE);
 1197                                 vm_page_unlock(m);
 1198                         }
 1199                 }
 1200         }
 1201 }
 1202 
 1203 /*
 1204  *      Routine:
 1205  *              vm_fault_copy_entry
 1206  *      Function:
 1207  *              Create new shadow object backing dst_entry with private copy of
 1208  *              all underlying pages. When src_entry is equal to dst_entry,
 1209  *              function implements COW for wired-down map entry. Otherwise,
 1210  *              it forks wired entry into dst_map.
 1211  *
 1212  *      In/out conditions:
 1213  *              The source and destination maps must be locked for write.
 1214  *              The source map entry must be wired down (or be a sharing map
 1215  *              entry corresponding to a main map entry that is wired down).
 1216  */
 1217 void
 1218 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
 1219     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
 1220     vm_ooffset_t *fork_charge)
 1221 {
 1222         vm_object_t backing_object, dst_object, object, src_object;
 1223         vm_pindex_t dst_pindex, pindex, src_pindex;
 1224         vm_prot_t access, prot;
 1225         vm_offset_t vaddr;
 1226         vm_page_t dst_m;
 1227         vm_page_t src_m;
 1228         boolean_t src_readonly, upgrade;
 1229 
 1230 #ifdef  lint
 1231         src_map++;
 1232 #endif  /* lint */
 1233 
 1234         upgrade = src_entry == dst_entry;
 1235 
 1236         src_object = src_entry->object.vm_object;
 1237         src_pindex = OFF_TO_IDX(src_entry->offset);
 1238         src_readonly = (src_entry->protection & VM_PROT_WRITE) == 0;
 1239 
 1240         /*
 1241          * Create the top-level object for the destination entry. (Doesn't
 1242          * actually shadow anything - we copy the pages directly.)
 1243          */
 1244         dst_object = vm_object_allocate(OBJT_DEFAULT,
 1245             OFF_TO_IDX(dst_entry->end - dst_entry->start));
 1246 #if VM_NRESERVLEVEL > 0
 1247         dst_object->flags |= OBJ_COLORED;
 1248         dst_object->pg_color = atop(dst_entry->start);
 1249 #endif
 1250 
 1251         VM_OBJECT_WLOCK(dst_object);
 1252         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
 1253             ("vm_fault_copy_entry: vm_object not NULL"));
 1254         dst_entry->object.vm_object = dst_object;
 1255         dst_entry->offset = 0;
 1256         dst_object->charge = dst_entry->end - dst_entry->start;
 1257         if (fork_charge != NULL) {
 1258                 KASSERT(dst_entry->cred == NULL,
 1259                     ("vm_fault_copy_entry: leaked swp charge"));
 1260                 dst_object->cred = curthread->td_ucred;
 1261                 crhold(dst_object->cred);
 1262                 *fork_charge += dst_object->charge;
 1263         } else {
 1264                 dst_object->cred = dst_entry->cred;
 1265                 dst_entry->cred = NULL;
 1266         }
 1267         access = prot = dst_entry->protection;
 1268         /*
 1269          * If not an upgrade, then enter the mappings in the pmap as
 1270          * read and/or execute accesses.  Otherwise, enter them as
 1271          * write accesses.
 1272          *
 1273          * A writeable large page mapping is only created if all of
 1274          * the constituent small page mappings are modified. Marking
 1275          * PTEs as modified on inception allows promotion to happen
 1276          * without taking potentially large number of soft faults.
 1277          */
 1278         if (!upgrade)
 1279                 access &= ~VM_PROT_WRITE;
 1280 
 1281         /*
 1282          * Loop through all of the virtual pages within the entry's
 1283          * range, copying each page from the source object to the
 1284          * destination object.  Since the source is wired, those pages
 1285          * must exist.  In contrast, the destination is pageable.
 1286          * Since the destination object does share any backing storage
 1287          * with the source object, all of its pages must be dirtied,
 1288          * regardless of whether they can be written.
 1289          */
 1290         for (vaddr = dst_entry->start, dst_pindex = 0;
 1291             vaddr < dst_entry->end;
 1292             vaddr += PAGE_SIZE, dst_pindex++) {
 1293 
 1294                 /*
 1295                  * Allocate a page in the destination object.
 1296                  */
 1297                 do {
 1298                         dst_m = vm_page_alloc(dst_object, dst_pindex,
 1299                             VM_ALLOC_NORMAL);
 1300                         if (dst_m == NULL) {
 1301                                 VM_OBJECT_WUNLOCK(dst_object);
 1302                                 VM_WAIT;
 1303                                 VM_OBJECT_WLOCK(dst_object);
 1304                         }
 1305                 } while (dst_m == NULL);
 1306 
 1307                 /*
 1308                  * Find the page in the source object, and copy it in.
 1309                  * (Because the source is wired down, the page will be in
 1310                  * memory.)
 1311                  */
 1312                 VM_OBJECT_RLOCK(src_object);
 1313                 object = src_object;
 1314                 pindex = src_pindex + dst_pindex;
 1315                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
 1316                     src_readonly &&
 1317                     (backing_object = object->backing_object) != NULL) {
 1318                         /*
 1319                          * Allow fallback to backing objects if we are reading.
 1320                          */
 1321                         VM_OBJECT_RLOCK(backing_object);
 1322                         pindex += OFF_TO_IDX(object->backing_object_offset);
 1323                         VM_OBJECT_RUNLOCK(object);
 1324                         object = backing_object;
 1325                 }
 1326                 if (src_m == NULL)
 1327                         panic("vm_fault_copy_wired: page missing");
 1328                 pmap_copy_page(src_m, dst_m);
 1329                 VM_OBJECT_RUNLOCK(object);
 1330                 dst_m->valid = VM_PAGE_BITS_ALL;
 1331                 dst_m->dirty = VM_PAGE_BITS_ALL;
 1332                 VM_OBJECT_WUNLOCK(dst_object);
 1333 
 1334                 /*
 1335                  * Enter it in the pmap. If a wired, copy-on-write
 1336                  * mapping is being replaced by a write-enabled
 1337                  * mapping, then wire that new mapping.
 1338                  */
 1339                 pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade);
 1340 
 1341                 /*
 1342                  * Mark it no longer busy, and put it on the active list.
 1343                  */
 1344                 VM_OBJECT_WLOCK(dst_object);
 1345                 
 1346                 if (upgrade) {
 1347                         vm_page_lock(src_m);
 1348                         vm_page_unwire(src_m, 0);
 1349                         vm_page_unlock(src_m);
 1350 
 1351                         vm_page_lock(dst_m);
 1352                         vm_page_wire(dst_m);
 1353                         vm_page_unlock(dst_m);
 1354                 } else {
 1355                         vm_page_lock(dst_m);
 1356                         vm_page_activate(dst_m);
 1357                         vm_page_unlock(dst_m);
 1358                 }
 1359                 vm_page_xunbusy(dst_m);
 1360         }
 1361         VM_OBJECT_WUNLOCK(dst_object);
 1362         if (upgrade) {
 1363                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
 1364                 vm_object_deallocate(src_object);
 1365         }
 1366 }
 1367 
 1368 
 1369 /*
 1370  * This routine checks around the requested page for other pages that
 1371  * might be able to be faulted in.  This routine brackets the viable
 1372  * pages for the pages to be paged in.
 1373  *
 1374  * Inputs:
 1375  *      m, rbehind, rahead
 1376  *
 1377  * Outputs:
 1378  *  marray (array of vm_page_t), reqpage (index of requested page)
 1379  *
 1380  * Return value:
 1381  *  number of pages in marray
 1382  */
 1383 static int
 1384 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
 1385         vm_page_t m;
 1386         int rbehind;
 1387         int rahead;
 1388         vm_page_t *marray;
 1389         int *reqpage;
 1390 {
 1391         int i,j;
 1392         vm_object_t object;
 1393         vm_pindex_t pindex, startpindex, endpindex, tpindex;
 1394         vm_page_t rtm;
 1395         int cbehind, cahead;
 1396 
 1397         VM_OBJECT_ASSERT_WLOCKED(m->object);
 1398 
 1399         object = m->object;
 1400         pindex = m->pindex;
 1401         cbehind = cahead = 0;
 1402 
 1403         /*
 1404          * if the requested page is not available, then give up now
 1405          */
 1406         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
 1407                 return 0;
 1408         }
 1409 
 1410         if ((cbehind == 0) && (cahead == 0)) {
 1411                 *reqpage = 0;
 1412                 marray[0] = m;
 1413                 return 1;
 1414         }
 1415 
 1416         if (rahead > cahead) {
 1417                 rahead = cahead;
 1418         }
 1419 
 1420         if (rbehind > cbehind) {
 1421                 rbehind = cbehind;
 1422         }
 1423 
 1424         /*
 1425          * scan backward for the read behind pages -- in memory 
 1426          */
 1427         if (pindex > 0) {
 1428                 if (rbehind > pindex) {
 1429                         rbehind = pindex;
 1430                         startpindex = 0;
 1431                 } else {
 1432                         startpindex = pindex - rbehind;
 1433                 }
 1434 
 1435                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
 1436                     rtm->pindex >= startpindex)
 1437                         startpindex = rtm->pindex + 1;
 1438 
 1439                 /* tpindex is unsigned; beware of numeric underflow. */
 1440                 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
 1441                     tpindex < pindex; i++, tpindex--) {
 1442 
 1443                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
 1444                             VM_ALLOC_IFNOTCACHED);
 1445                         if (rtm == NULL) {
 1446                                 /*
 1447                                  * Shift the allocated pages to the
 1448                                  * beginning of the array.
 1449                                  */
 1450                                 for (j = 0; j < i; j++) {
 1451                                         marray[j] = marray[j + tpindex + 1 -
 1452                                             startpindex];
 1453                                 }
 1454                                 break;
 1455                         }
 1456 
 1457                         marray[tpindex - startpindex] = rtm;
 1458                 }
 1459         } else {
 1460                 startpindex = 0;
 1461                 i = 0;
 1462         }
 1463 
 1464         marray[i] = m;
 1465         /* page offset of the required page */
 1466         *reqpage = i;
 1467 
 1468         tpindex = pindex + 1;
 1469         i++;
 1470 
 1471         /*
 1472          * scan forward for the read ahead pages
 1473          */
 1474         endpindex = tpindex + rahead;
 1475         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
 1476                 endpindex = rtm->pindex;
 1477         if (endpindex > object->size)
 1478                 endpindex = object->size;
 1479 
 1480         for (; tpindex < endpindex; i++, tpindex++) {
 1481 
 1482                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
 1483                     VM_ALLOC_IFNOTCACHED);
 1484                 if (rtm == NULL) {
 1485                         break;
 1486                 }
 1487 
 1488                 marray[i] = rtm;
 1489         }
 1490 
 1491         /* return number of pages */
 1492         return i;
 1493 }
 1494 
 1495 /*
 1496  * Block entry into the machine-independent layer's page fault handler by
 1497  * the calling thread.  Subsequent calls to vm_fault() by that thread will
 1498  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
 1499  * spurious page faults. 
 1500  */
 1501 int
 1502 vm_fault_disable_pagefaults(void)
 1503 {
 1504 
 1505         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
 1506 }
 1507 
 1508 void
 1509 vm_fault_enable_pagefaults(int save)
 1510 {
 1511 
 1512         curthread_pflags_restore(save);
 1513 }

Cache object: ca65ab5a4263126322924e3d00e83e5b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.