The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_fault.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  *
    9  *
   10  * This code is derived from software contributed to Berkeley by
   11  * The Mach Operating System project at Carnegie-Mellon University.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1. Redistributions of source code must retain the above copyright
   17  *    notice, this list of conditions and the following disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  * 3. All advertising materials mentioning features or use of this software
   22  *    must display the following acknowledgement:
   23  *      This product includes software developed by the University of
   24  *      California, Berkeley and its contributors.
   25  * 4. Neither the name of the University nor the names of its contributors
   26  *    may be used to endorse or promote products derived from this software
   27  *    without specific prior written permission.
   28  *
   29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   39  * SUCH DAMAGE.
   40  *
   41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
   42  *
   43  *
   44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   45  * All rights reserved.
   46  *
   47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   48  *
   49  * Permission to use, copy, modify and distribute this software and
   50  * its documentation is hereby granted, provided that both the copyright
   51  * notice and this permission notice appear in all copies of the
   52  * software, derivative works or modified versions, and any portions
   53  * thereof, and that both notices appear in supporting documentation.
   54  *
   55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   58  *
   59  * Carnegie Mellon requests users of this software to return to
   60  *
   61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   62  *  School of Computer Science
   63  *  Carnegie Mellon University
   64  *  Pittsburgh PA 15213-3890
   65  *
   66  * any improvements or extensions that they make and grant Carnegie the
   67  * rights to redistribute these changes.
   68  */
   69 
   70 /*
   71  *      Page fault handling module.
   72  */
   73 
   74 #include <sys/cdefs.h>
   75 __FBSDID("$FreeBSD: releng/10.2/sys/vm/vm_fault.c 282456 2015-05-05 08:12:24Z kib $");
   76 
   77 #include "opt_ktrace.h"
   78 #include "opt_vm.h"
   79 
   80 #include <sys/param.h>
   81 #include <sys/systm.h>
   82 #include <sys/kernel.h>
   83 #include <sys/lock.h>
   84 #include <sys/proc.h>
   85 #include <sys/resourcevar.h>
   86 #include <sys/rwlock.h>
   87 #include <sys/sysctl.h>
   88 #include <sys/vmmeter.h>
   89 #include <sys/vnode.h>
   90 #ifdef KTRACE
   91 #include <sys/ktrace.h>
   92 #endif
   93 
   94 #include <vm/vm.h>
   95 #include <vm/vm_param.h>
   96 #include <vm/pmap.h>
   97 #include <vm/vm_map.h>
   98 #include <vm/vm_object.h>
   99 #include <vm/vm_page.h>
  100 #include <vm/vm_pageout.h>
  101 #include <vm/vm_kern.h>
  102 #include <vm/vm_pager.h>
  103 #include <vm/vm_extern.h>
  104 #include <vm/vm_reserv.h>
  105 
  106 #define PFBAK 4
  107 #define PFFOR 4
  108 
  109 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
  110 
  111 #define VM_FAULT_READ_BEHIND    8
  112 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
  113 #define VM_FAULT_NINCR          (VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
  114 #define VM_FAULT_SUM            (VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
  115 #define VM_FAULT_CACHE_BEHIND   (VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
  116 
  117 struct faultstate {
  118         vm_page_t m;
  119         vm_object_t object;
  120         vm_pindex_t pindex;
  121         vm_page_t first_m;
  122         vm_object_t     first_object;
  123         vm_pindex_t first_pindex;
  124         vm_map_t map;
  125         vm_map_entry_t entry;
  126         int lookup_still_valid;
  127         struct vnode *vp;
  128 };
  129 
  130 static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
  131 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
  132             int faultcount, int reqpage);
  133 
  134 static inline void
  135 release_page(struct faultstate *fs)
  136 {
  137 
  138         vm_page_xunbusy(fs->m);
  139         vm_page_lock(fs->m);
  140         vm_page_deactivate(fs->m);
  141         vm_page_unlock(fs->m);
  142         fs->m = NULL;
  143 }
  144 
  145 static inline void
  146 unlock_map(struct faultstate *fs)
  147 {
  148 
  149         if (fs->lookup_still_valid) {
  150                 vm_map_lookup_done(fs->map, fs->entry);
  151                 fs->lookup_still_valid = FALSE;
  152         }
  153 }
  154 
  155 static void
  156 unlock_and_deallocate(struct faultstate *fs)
  157 {
  158 
  159         vm_object_pip_wakeup(fs->object);
  160         VM_OBJECT_WUNLOCK(fs->object);
  161         if (fs->object != fs->first_object) {
  162                 VM_OBJECT_WLOCK(fs->first_object);
  163                 vm_page_lock(fs->first_m);
  164                 vm_page_free(fs->first_m);
  165                 vm_page_unlock(fs->first_m);
  166                 vm_object_pip_wakeup(fs->first_object);
  167                 VM_OBJECT_WUNLOCK(fs->first_object);
  168                 fs->first_m = NULL;
  169         }
  170         vm_object_deallocate(fs->first_object);
  171         unlock_map(fs); 
  172         if (fs->vp != NULL) { 
  173                 vput(fs->vp);
  174                 fs->vp = NULL;
  175         }
  176 }
  177 
  178 static void
  179 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
  180     vm_prot_t fault_type, int fault_flags, boolean_t set_wd)
  181 {
  182         boolean_t need_dirty;
  183 
  184         if (((prot & VM_PROT_WRITE) == 0 &&
  185             (fault_flags & VM_FAULT_DIRTY) == 0) ||
  186             (m->oflags & VPO_UNMANAGED) != 0)
  187                 return;
  188 
  189         VM_OBJECT_ASSERT_LOCKED(m->object);
  190 
  191         need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
  192             (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) ||
  193             (fault_flags & VM_FAULT_DIRTY) != 0;
  194 
  195         if (set_wd)
  196                 vm_object_set_writeable_dirty(m->object);
  197         else
  198                 /*
  199                  * If two callers of vm_fault_dirty() with set_wd ==
  200                  * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
  201                  * flag set, other with flag clear, race, it is
  202                  * possible for the no-NOSYNC thread to see m->dirty
  203                  * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
  204                  * around manipulation of VPO_NOSYNC and
  205                  * vm_page_dirty() call, to avoid the race and keep
  206                  * m->oflags consistent.
  207                  */
  208                 vm_page_lock(m);
  209 
  210         /*
  211          * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
  212          * if the page is already dirty to prevent data written with
  213          * the expectation of being synced from not being synced.
  214          * Likewise if this entry does not request NOSYNC then make
  215          * sure the page isn't marked NOSYNC.  Applications sharing
  216          * data should use the same flags to avoid ping ponging.
  217          */
  218         if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
  219                 if (m->dirty == 0) {
  220                         m->oflags |= VPO_NOSYNC;
  221                 }
  222         } else {
  223                 m->oflags &= ~VPO_NOSYNC;
  224         }
  225 
  226         /*
  227          * If the fault is a write, we know that this page is being
  228          * written NOW so dirty it explicitly to save on
  229          * pmap_is_modified() calls later.
  230          *
  231          * Also tell the backing pager, if any, that it should remove
  232          * any swap backing since the page is now dirty.
  233          */
  234         if (need_dirty)
  235                 vm_page_dirty(m);
  236         if (!set_wd)
  237                 vm_page_unlock(m);
  238         if (need_dirty)
  239                 vm_pager_page_unswapped(m);
  240 }
  241 
  242 /*
  243  * TRYPAGER - used by vm_fault to calculate whether the pager for the
  244  *            current object *might* contain the page.
  245  *
  246  *            default objects are zero-fill, there is no real pager.
  247  */
  248 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
  249                         ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
  250 
  251 /*
  252  *      vm_fault:
  253  *
  254  *      Handle a page fault occurring at the given address,
  255  *      requiring the given permissions, in the map specified.
  256  *      If successful, the page is inserted into the
  257  *      associated physical map.
  258  *
  259  *      NOTE: the given address should be truncated to the
  260  *      proper page address.
  261  *
  262  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
  263  *      a standard error specifying why the fault is fatal is returned.
  264  *
  265  *      The map in question must be referenced, and remains so.
  266  *      Caller may hold no locks.
  267  */
  268 int
  269 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
  270     int fault_flags)
  271 {
  272         struct thread *td;
  273         int result;
  274 
  275         td = curthread;
  276         if ((td->td_pflags & TDP_NOFAULTING) != 0)
  277                 return (KERN_PROTECTION_FAILURE);
  278 #ifdef KTRACE
  279         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
  280                 ktrfault(vaddr, fault_type);
  281 #endif
  282         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
  283             NULL);
  284 #ifdef KTRACE
  285         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
  286                 ktrfaultend(result);
  287 #endif
  288         return (result);
  289 }
  290 
  291 int
  292 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
  293     int fault_flags, vm_page_t *m_hold)
  294 {
  295         vm_prot_t prot;
  296         long ahead, behind;
  297         int alloc_req, era, faultcount, nera, reqpage, result;
  298         boolean_t growstack, is_first_object_locked, wired;
  299         int map_generation;
  300         vm_object_t next_object;
  301         vm_page_t marray[VM_FAULT_READ_MAX];
  302         int hardfault;
  303         struct faultstate fs;
  304         struct vnode *vp;
  305         vm_page_t m;
  306         int locked, error;
  307 
  308         hardfault = 0;
  309         growstack = TRUE;
  310         PCPU_INC(cnt.v_vm_faults);
  311         fs.vp = NULL;
  312         faultcount = reqpage = 0;
  313 
  314 RetryFault:;
  315 
  316         /*
  317          * Find the backing store object and offset into it to begin the
  318          * search.
  319          */
  320         fs.map = map;
  321         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
  322             &fs.first_object, &fs.first_pindex, &prot, &wired);
  323         if (result != KERN_SUCCESS) {
  324                 if (growstack && result == KERN_INVALID_ADDRESS &&
  325                     map != kernel_map) {
  326                         result = vm_map_growstack(curproc, vaddr);
  327                         if (result != KERN_SUCCESS)
  328                                 return (KERN_FAILURE);
  329                         growstack = FALSE;
  330                         goto RetryFault;
  331                 }
  332                 return (result);
  333         }
  334 
  335         map_generation = fs.map->timestamp;
  336 
  337         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
  338                 panic("vm_fault: fault on nofault entry, addr: %lx",
  339                     (u_long)vaddr);
  340         }
  341 
  342         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
  343             fs.entry->wiring_thread != curthread) {
  344                 vm_map_unlock_read(fs.map);
  345                 vm_map_lock(fs.map);
  346                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
  347                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
  348                         if (fs.vp != NULL) {
  349                                 vput(fs.vp);
  350                                 fs.vp = NULL;
  351                         }
  352                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
  353                         vm_map_unlock_and_wait(fs.map, 0);
  354                 } else
  355                         vm_map_unlock(fs.map);
  356                 goto RetryFault;
  357         }
  358 
  359         if (wired)
  360                 fault_type = prot | (fault_type & VM_PROT_COPY);
  361 
  362         if (fs.vp == NULL /* avoid locked vnode leak */ &&
  363             (fault_flags & (VM_FAULT_CHANGE_WIRING | VM_FAULT_DIRTY)) == 0 &&
  364             /* avoid calling vm_object_set_writeable_dirty() */
  365             ((prot & VM_PROT_WRITE) == 0 ||
  366             (fs.first_object->type != OBJT_VNODE &&
  367             (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
  368             (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
  369                 VM_OBJECT_RLOCK(fs.first_object);
  370                 if ((prot & VM_PROT_WRITE) != 0 &&
  371                     (fs.first_object->type == OBJT_VNODE ||
  372                     (fs.first_object->flags & OBJ_TMPFS_NODE) != 0) &&
  373                     (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0)
  374                         goto fast_failed;
  375                 m = vm_page_lookup(fs.first_object, fs.first_pindex);
  376                 /* A busy page can be mapped for read|execute access. */
  377                 if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
  378                     vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
  379                         goto fast_failed;
  380                 result = pmap_enter(fs.map->pmap, vaddr, m, prot,
  381                    fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED :
  382                    0), 0);
  383                 if (result != KERN_SUCCESS)
  384                         goto fast_failed;
  385                 if (m_hold != NULL) {
  386                         *m_hold = m;
  387                         vm_page_lock(m);
  388                         vm_page_hold(m);
  389                         vm_page_unlock(m);
  390                 }
  391                 vm_fault_dirty(fs.entry, m, prot, fault_type, fault_flags,
  392                     FALSE);
  393                 VM_OBJECT_RUNLOCK(fs.first_object);
  394                 if (!wired)
  395                         vm_fault_prefault(&fs, vaddr, 0, 0);
  396                 vm_map_lookup_done(fs.map, fs.entry);
  397                 curthread->td_ru.ru_minflt++;
  398                 return (KERN_SUCCESS);
  399 fast_failed:
  400                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
  401                         VM_OBJECT_RUNLOCK(fs.first_object);
  402                         VM_OBJECT_WLOCK(fs.first_object);
  403                 }
  404         } else {
  405                 VM_OBJECT_WLOCK(fs.first_object);
  406         }
  407 
  408         /*
  409          * Make a reference to this object to prevent its disposal while we
  410          * are messing with it.  Once we have the reference, the map is free
  411          * to be diddled.  Since objects reference their shadows (and copies),
  412          * they will stay around as well.
  413          *
  414          * Bump the paging-in-progress count to prevent size changes (e.g. 
  415          * truncation operations) during I/O.  This must be done after
  416          * obtaining the vnode lock in order to avoid possible deadlocks.
  417          */
  418         vm_object_reference_locked(fs.first_object);
  419         vm_object_pip_add(fs.first_object, 1);
  420 
  421         fs.lookup_still_valid = TRUE;
  422 
  423         fs.first_m = NULL;
  424 
  425         /*
  426          * Search for the page at object/offset.
  427          */
  428         fs.object = fs.first_object;
  429         fs.pindex = fs.first_pindex;
  430         while (TRUE) {
  431                 /*
  432                  * If the object is dead, we stop here
  433                  */
  434                 if (fs.object->flags & OBJ_DEAD) {
  435                         unlock_and_deallocate(&fs);
  436                         return (KERN_PROTECTION_FAILURE);
  437                 }
  438 
  439                 /*
  440                  * See if page is resident
  441                  */
  442                 fs.m = vm_page_lookup(fs.object, fs.pindex);
  443                 if (fs.m != NULL) {
  444                         /*
  445                          * Wait/Retry if the page is busy.  We have to do this
  446                          * if the page is either exclusive or shared busy
  447                          * because the vm_pager may be using read busy for
  448                          * pageouts (and even pageins if it is the vnode
  449                          * pager), and we could end up trying to pagein and
  450                          * pageout the same page simultaneously.
  451                          *
  452                          * We can theoretically allow the busy case on a read
  453                          * fault if the page is marked valid, but since such
  454                          * pages are typically already pmap'd, putting that
  455                          * special case in might be more effort then it is 
  456                          * worth.  We cannot under any circumstances mess
  457                          * around with a shared busied page except, perhaps,
  458                          * to pmap it.
  459                          */
  460                         if (vm_page_busied(fs.m)) {
  461                                 /*
  462                                  * Reference the page before unlocking and
  463                                  * sleeping so that the page daemon is less
  464                                  * likely to reclaim it. 
  465                                  */
  466                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
  467                                 if (fs.object != fs.first_object) {
  468                                         if (!VM_OBJECT_TRYWLOCK(
  469                                             fs.first_object)) {
  470                                                 VM_OBJECT_WUNLOCK(fs.object);
  471                                                 VM_OBJECT_WLOCK(fs.first_object);
  472                                                 VM_OBJECT_WLOCK(fs.object);
  473                                         }
  474                                         vm_page_lock(fs.first_m);
  475                                         vm_page_free(fs.first_m);
  476                                         vm_page_unlock(fs.first_m);
  477                                         vm_object_pip_wakeup(fs.first_object);
  478                                         VM_OBJECT_WUNLOCK(fs.first_object);
  479                                         fs.first_m = NULL;
  480                                 }
  481                                 unlock_map(&fs);
  482                                 if (fs.m == vm_page_lookup(fs.object,
  483                                     fs.pindex)) {
  484                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
  485                                 }
  486                                 vm_object_pip_wakeup(fs.object);
  487                                 VM_OBJECT_WUNLOCK(fs.object);
  488                                 PCPU_INC(cnt.v_intrans);
  489                                 vm_object_deallocate(fs.first_object);
  490                                 goto RetryFault;
  491                         }
  492                         vm_page_lock(fs.m);
  493                         vm_page_remque(fs.m);
  494                         vm_page_unlock(fs.m);
  495 
  496                         /*
  497                          * Mark page busy for other processes, and the 
  498                          * pagedaemon.  If it still isn't completely valid
  499                          * (readable), jump to readrest, else break-out ( we
  500                          * found the page ).
  501                          */
  502                         vm_page_xbusy(fs.m);
  503                         if (fs.m->valid != VM_PAGE_BITS_ALL)
  504                                 goto readrest;
  505                         break;
  506                 }
  507 
  508                 /*
  509                  * Page is not resident, If this is the search termination
  510                  * or the pager might contain the page, allocate a new page.
  511                  */
  512                 if (TRYPAGER || fs.object == fs.first_object) {
  513                         if (fs.pindex >= fs.object->size) {
  514                                 unlock_and_deallocate(&fs);
  515                                 return (KERN_PROTECTION_FAILURE);
  516                         }
  517 
  518                         /*
  519                          * Allocate a new page for this object/offset pair.
  520                          *
  521                          * Unlocked read of the p_flag is harmless. At
  522                          * worst, the P_KILLED might be not observed
  523                          * there, and allocation can fail, causing
  524                          * restart and new reading of the p_flag.
  525                          */
  526                         fs.m = NULL;
  527                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
  528 #if VM_NRESERVLEVEL > 0
  529                                 if ((fs.object->flags & OBJ_COLORED) == 0) {
  530                                         fs.object->flags |= OBJ_COLORED;
  531                                         fs.object->pg_color = atop(vaddr) -
  532                                             fs.pindex;
  533                                 }
  534 #endif
  535                                 alloc_req = P_KILLED(curproc) ?
  536                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
  537                                 if (fs.object->type != OBJT_VNODE &&
  538                                     fs.object->backing_object == NULL)
  539                                         alloc_req |= VM_ALLOC_ZERO;
  540                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
  541                                     alloc_req);
  542                         }
  543                         if (fs.m == NULL) {
  544                                 unlock_and_deallocate(&fs);
  545                                 VM_WAITPFAULT;
  546                                 goto RetryFault;
  547                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
  548                                 break;
  549                 }
  550 
  551 readrest:
  552                 /*
  553                  * We have found a valid page or we have allocated a new page.
  554                  * The page thus may not be valid or may not be entirely 
  555                  * valid.
  556                  *
  557                  * Attempt to fault-in the page if there is a chance that the
  558                  * pager has it, and potentially fault in additional pages
  559                  * at the same time.
  560                  */
  561                 if (TRYPAGER) {
  562                         int rv;
  563                         u_char behavior = vm_map_entry_behavior(fs.entry);
  564 
  565                         if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
  566                             P_KILLED(curproc)) {
  567                                 behind = 0;
  568                                 ahead = 0;
  569                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
  570                                 behind = 0;
  571                                 ahead = atop(fs.entry->end - vaddr) - 1;
  572                                 if (ahead > VM_FAULT_READ_AHEAD_MAX)
  573                                         ahead = VM_FAULT_READ_AHEAD_MAX;
  574                                 if (fs.pindex == fs.entry->next_read)
  575                                         vm_fault_cache_behind(&fs,
  576                                             VM_FAULT_READ_MAX);
  577                         } else {
  578                                 /*
  579                                  * If this is a sequential page fault, then
  580                                  * arithmetically increase the number of pages
  581                                  * in the read-ahead window.  Otherwise, reset
  582                                  * the read-ahead window to its smallest size.
  583                                  */
  584                                 behind = atop(vaddr - fs.entry->start);
  585                                 if (behind > VM_FAULT_READ_BEHIND)
  586                                         behind = VM_FAULT_READ_BEHIND;
  587                                 ahead = atop(fs.entry->end - vaddr) - 1;
  588                                 era = fs.entry->read_ahead;
  589                                 if (fs.pindex == fs.entry->next_read) {
  590                                         nera = era + behind;
  591                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
  592                                                 nera = VM_FAULT_READ_AHEAD_MAX;
  593                                         behind = 0;
  594                                         if (ahead > nera)
  595                                                 ahead = nera;
  596                                         if (era == VM_FAULT_READ_AHEAD_MAX)
  597                                                 vm_fault_cache_behind(&fs,
  598                                                     VM_FAULT_CACHE_BEHIND);
  599                                 } else if (ahead > VM_FAULT_READ_AHEAD_MIN)
  600                                         ahead = VM_FAULT_READ_AHEAD_MIN;
  601                                 if (era != ahead)
  602                                         fs.entry->read_ahead = ahead;
  603                         }
  604 
  605                         /*
  606                          * Call the pager to retrieve the data, if any, after
  607                          * releasing the lock on the map.  We hold a ref on
  608                          * fs.object and the pages are exclusive busied.
  609                          */
  610                         unlock_map(&fs);
  611 
  612                         if (fs.object->type == OBJT_VNODE) {
  613                                 vp = fs.object->handle;
  614                                 if (vp == fs.vp)
  615                                         goto vnode_locked;
  616                                 else if (fs.vp != NULL) {
  617                                         vput(fs.vp);
  618                                         fs.vp = NULL;
  619                                 }
  620                                 locked = VOP_ISLOCKED(vp);
  621 
  622                                 if (locked != LK_EXCLUSIVE)
  623                                         locked = LK_SHARED;
  624                                 /* Do not sleep for vnode lock while fs.m is busy */
  625                                 error = vget(vp, locked | LK_CANRECURSE |
  626                                     LK_NOWAIT, curthread);
  627                                 if (error != 0) {
  628                                         vhold(vp);
  629                                         release_page(&fs);
  630                                         unlock_and_deallocate(&fs);
  631                                         error = vget(vp, locked | LK_RETRY |
  632                                             LK_CANRECURSE, curthread);
  633                                         vdrop(vp);
  634                                         fs.vp = vp;
  635                                         KASSERT(error == 0,
  636                                             ("vm_fault: vget failed"));
  637                                         goto RetryFault;
  638                                 }
  639                                 fs.vp = vp;
  640                         }
  641 vnode_locked:
  642                         KASSERT(fs.vp == NULL || !fs.map->system_map,
  643                             ("vm_fault: vnode-backed object mapped by system map"));
  644 
  645                         /*
  646                          * now we find out if any other pages should be paged
  647                          * in at this time this routine checks to see if the
  648                          * pages surrounding this fault reside in the same
  649                          * object as the page for this fault.  If they do,
  650                          * then they are faulted in also into the object.  The
  651                          * array "marray" returned contains an array of
  652                          * vm_page_t structs where one of them is the
  653                          * vm_page_t passed to the routine.  The reqpage
  654                          * return value is the index into the marray for the
  655                          * vm_page_t passed to the routine.
  656                          *
  657                          * fs.m plus the additional pages are exclusive busied.
  658                          */
  659                         faultcount = vm_fault_additional_pages(
  660                             fs.m, behind, ahead, marray, &reqpage);
  661 
  662                         rv = faultcount ?
  663                             vm_pager_get_pages(fs.object, marray, faultcount,
  664                                 reqpage) : VM_PAGER_FAIL;
  665 
  666                         if (rv == VM_PAGER_OK) {
  667                                 /*
  668                                  * Found the page. Leave it busy while we play
  669                                  * with it.
  670                                  */
  671 
  672                                 /*
  673                                  * Relookup in case pager changed page. Pager
  674                                  * is responsible for disposition of old page
  675                                  * if moved.
  676                                  */
  677                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
  678                                 if (!fs.m) {
  679                                         unlock_and_deallocate(&fs);
  680                                         goto RetryFault;
  681                                 }
  682 
  683                                 hardfault++;
  684                                 break; /* break to PAGE HAS BEEN FOUND */
  685                         }
  686                         /*
  687                          * Remove the bogus page (which does not exist at this
  688                          * object/offset); before doing so, we must get back
  689                          * our object lock to preserve our invariant.
  690                          *
  691                          * Also wake up any other process that may want to bring
  692                          * in this page.
  693                          *
  694                          * If this is the top-level object, we must leave the
  695                          * busy page to prevent another process from rushing
  696                          * past us, and inserting the page in that object at
  697                          * the same time that we are.
  698                          */
  699                         if (rv == VM_PAGER_ERROR)
  700                                 printf("vm_fault: pager read error, pid %d (%s)\n",
  701                                     curproc->p_pid, curproc->p_comm);
  702                         /*
  703                          * Data outside the range of the pager or an I/O error
  704                          */
  705                         /*
  706                          * XXX - the check for kernel_map is a kludge to work
  707                          * around having the machine panic on a kernel space
  708                          * fault w/ I/O error.
  709                          */
  710                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
  711                                 (rv == VM_PAGER_BAD)) {
  712                                 vm_page_lock(fs.m);
  713                                 vm_page_free(fs.m);
  714                                 vm_page_unlock(fs.m);
  715                                 fs.m = NULL;
  716                                 unlock_and_deallocate(&fs);
  717                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
  718                         }
  719                         if (fs.object != fs.first_object) {
  720                                 vm_page_lock(fs.m);
  721                                 vm_page_free(fs.m);
  722                                 vm_page_unlock(fs.m);
  723                                 fs.m = NULL;
  724                                 /*
  725                                  * XXX - we cannot just fall out at this
  726                                  * point, m has been freed and is invalid!
  727                                  */
  728                         }
  729                 }
  730 
  731                 /*
  732                  * We get here if the object has default pager (or unwiring) 
  733                  * or the pager doesn't have the page.
  734                  */
  735                 if (fs.object == fs.first_object)
  736                         fs.first_m = fs.m;
  737 
  738                 /*
  739                  * Move on to the next object.  Lock the next object before
  740                  * unlocking the current one.
  741                  */
  742                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
  743                 next_object = fs.object->backing_object;
  744                 if (next_object == NULL) {
  745                         /*
  746                          * If there's no object left, fill the page in the top
  747                          * object with zeros.
  748                          */
  749                         if (fs.object != fs.first_object) {
  750                                 vm_object_pip_wakeup(fs.object);
  751                                 VM_OBJECT_WUNLOCK(fs.object);
  752 
  753                                 fs.object = fs.first_object;
  754                                 fs.pindex = fs.first_pindex;
  755                                 fs.m = fs.first_m;
  756                                 VM_OBJECT_WLOCK(fs.object);
  757                         }
  758                         fs.first_m = NULL;
  759 
  760                         /*
  761                          * Zero the page if necessary and mark it valid.
  762                          */
  763                         if ((fs.m->flags & PG_ZERO) == 0) {
  764                                 pmap_zero_page(fs.m);
  765                         } else {
  766                                 PCPU_INC(cnt.v_ozfod);
  767                         }
  768                         PCPU_INC(cnt.v_zfod);
  769                         fs.m->valid = VM_PAGE_BITS_ALL;
  770                         /* Don't try to prefault neighboring pages. */
  771                         faultcount = 1;
  772                         break;  /* break to PAGE HAS BEEN FOUND */
  773                 } else {
  774                         KASSERT(fs.object != next_object,
  775                             ("object loop %p", next_object));
  776                         VM_OBJECT_WLOCK(next_object);
  777                         vm_object_pip_add(next_object, 1);
  778                         if (fs.object != fs.first_object)
  779                                 vm_object_pip_wakeup(fs.object);
  780                         VM_OBJECT_WUNLOCK(fs.object);
  781                         fs.object = next_object;
  782                 }
  783         }
  784 
  785         vm_page_assert_xbusied(fs.m);
  786 
  787         /*
  788          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
  789          * is held.]
  790          */
  791 
  792         /*
  793          * If the page is being written, but isn't already owned by the
  794          * top-level object, we have to copy it into a new page owned by the
  795          * top-level object.
  796          */
  797         if (fs.object != fs.first_object) {
  798                 /*
  799                  * We only really need to copy if we want to write it.
  800                  */
  801                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
  802                         /*
  803                          * This allows pages to be virtually copied from a 
  804                          * backing_object into the first_object, where the 
  805                          * backing object has no other refs to it, and cannot
  806                          * gain any more refs.  Instead of a bcopy, we just 
  807                          * move the page from the backing object to the 
  808                          * first object.  Note that we must mark the page 
  809                          * dirty in the first object so that it will go out 
  810                          * to swap when needed.
  811                          */
  812                         is_first_object_locked = FALSE;
  813                         if (
  814                                 /*
  815                                  * Only one shadow object
  816                                  */
  817                                 (fs.object->shadow_count == 1) &&
  818                                 /*
  819                                  * No COW refs, except us
  820                                  */
  821                                 (fs.object->ref_count == 1) &&
  822                                 /*
  823                                  * No one else can look this object up
  824                                  */
  825                                 (fs.object->handle == NULL) &&
  826                                 /*
  827                                  * No other ways to look the object up
  828                                  */
  829                                 ((fs.object->type == OBJT_DEFAULT) ||
  830                                  (fs.object->type == OBJT_SWAP)) &&
  831                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
  832                                 /*
  833                                  * We don't chase down the shadow chain
  834                                  */
  835                             fs.object == fs.first_object->backing_object) {
  836                                 /*
  837                                  * get rid of the unnecessary page
  838                                  */
  839                                 vm_page_lock(fs.first_m);
  840                                 vm_page_free(fs.first_m);
  841                                 vm_page_unlock(fs.first_m);
  842                                 /*
  843                                  * grab the page and put it into the 
  844                                  * process'es object.  The page is 
  845                                  * automatically made dirty.
  846                                  */
  847                                 if (vm_page_rename(fs.m, fs.first_object,
  848                                     fs.first_pindex)) {
  849                                         unlock_and_deallocate(&fs);
  850                                         goto RetryFault;
  851                                 }
  852 #if VM_NRESERVLEVEL > 0
  853                                 /*
  854                                  * Rename the reservation.
  855                                  */
  856                                 vm_reserv_rename(fs.m, fs.first_object,
  857                                     fs.object, OFF_TO_IDX(
  858                                     fs.first_object->backing_object_offset));
  859 #endif
  860                                 vm_page_xbusy(fs.m);
  861                                 fs.first_m = fs.m;
  862                                 fs.m = NULL;
  863                                 PCPU_INC(cnt.v_cow_optim);
  864                         } else {
  865                                 /*
  866                                  * Oh, well, lets copy it.
  867                                  */
  868                                 pmap_copy_page(fs.m, fs.first_m);
  869                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
  870                                 if (wired && (fault_flags &
  871                                     VM_FAULT_CHANGE_WIRING) == 0) {
  872                                         vm_page_lock(fs.first_m);
  873                                         vm_page_wire(fs.first_m);
  874                                         vm_page_unlock(fs.first_m);
  875                                         
  876                                         vm_page_lock(fs.m);
  877                                         vm_page_unwire(fs.m, FALSE);
  878                                         vm_page_unlock(fs.m);
  879                                 }
  880                                 /*
  881                                  * We no longer need the old page or object.
  882                                  */
  883                                 release_page(&fs);
  884                         }
  885                         /*
  886                          * fs.object != fs.first_object due to above 
  887                          * conditional
  888                          */
  889                         vm_object_pip_wakeup(fs.object);
  890                         VM_OBJECT_WUNLOCK(fs.object);
  891                         /*
  892                          * Only use the new page below...
  893                          */
  894                         fs.object = fs.first_object;
  895                         fs.pindex = fs.first_pindex;
  896                         fs.m = fs.first_m;
  897                         if (!is_first_object_locked)
  898                                 VM_OBJECT_WLOCK(fs.object);
  899                         PCPU_INC(cnt.v_cow_faults);
  900                         curthread->td_cow++;
  901                 } else {
  902                         prot &= ~VM_PROT_WRITE;
  903                 }
  904         }
  905 
  906         /*
  907          * We must verify that the maps have not changed since our last
  908          * lookup.
  909          */
  910         if (!fs.lookup_still_valid) {
  911                 vm_object_t retry_object;
  912                 vm_pindex_t retry_pindex;
  913                 vm_prot_t retry_prot;
  914 
  915                 if (!vm_map_trylock_read(fs.map)) {
  916                         release_page(&fs);
  917                         unlock_and_deallocate(&fs);
  918                         goto RetryFault;
  919                 }
  920                 fs.lookup_still_valid = TRUE;
  921                 if (fs.map->timestamp != map_generation) {
  922                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
  923                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
  924 
  925                         /*
  926                          * If we don't need the page any longer, put it on the inactive
  927                          * list (the easiest thing to do here).  If no one needs it,
  928                          * pageout will grab it eventually.
  929                          */
  930                         if (result != KERN_SUCCESS) {
  931                                 release_page(&fs);
  932                                 unlock_and_deallocate(&fs);
  933 
  934                                 /*
  935                                  * If retry of map lookup would have blocked then
  936                                  * retry fault from start.
  937                                  */
  938                                 if (result == KERN_FAILURE)
  939                                         goto RetryFault;
  940                                 return (result);
  941                         }
  942                         if ((retry_object != fs.first_object) ||
  943                             (retry_pindex != fs.first_pindex)) {
  944                                 release_page(&fs);
  945                                 unlock_and_deallocate(&fs);
  946                                 goto RetryFault;
  947                         }
  948 
  949                         /*
  950                          * Check whether the protection has changed or the object has
  951                          * been copied while we left the map unlocked. Changing from
  952                          * read to write permission is OK - we leave the page
  953                          * write-protected, and catch the write fault. Changing from
  954                          * write to read permission means that we can't mark the page
  955                          * write-enabled after all.
  956                          */
  957                         prot &= retry_prot;
  958                 }
  959         }
  960         /*
  961          * If the page was filled by a pager, update the map entry's
  962          * last read offset.  Since the pager does not return the
  963          * actual set of pages that it read, this update is based on
  964          * the requested set.  Typically, the requested and actual
  965          * sets are the same.
  966          *
  967          * XXX The following assignment modifies the map
  968          * without holding a write lock on it.
  969          */
  970         if (hardfault)
  971                 fs.entry->next_read = fs.pindex + faultcount - reqpage;
  972 
  973         vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, TRUE);
  974         vm_page_assert_xbusied(fs.m);
  975 
  976         /*
  977          * Page must be completely valid or it is not fit to
  978          * map into user space.  vm_pager_get_pages() ensures this.
  979          */
  980         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
  981             ("vm_fault: page %p partially invalid", fs.m));
  982         VM_OBJECT_WUNLOCK(fs.object);
  983 
  984         /*
  985          * Put this page into the physical map.  We had to do the unlock above
  986          * because pmap_enter() may sleep.  We don't put the page
  987          * back on the active queue until later so that the pageout daemon
  988          * won't find it (yet).
  989          */
  990         pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
  991             fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
  992         if (faultcount != 1 && (fault_flags & VM_FAULT_CHANGE_WIRING) == 0 &&
  993             wired == 0)
  994                 vm_fault_prefault(&fs, vaddr, faultcount, reqpage);
  995         VM_OBJECT_WLOCK(fs.object);
  996         vm_page_lock(fs.m);
  997 
  998         /*
  999          * If the page is not wired down, then put it where the pageout daemon
 1000          * can find it.
 1001          */
 1002         if (fault_flags & VM_FAULT_CHANGE_WIRING) {
 1003                 if (wired)
 1004                         vm_page_wire(fs.m);
 1005                 else
 1006                         vm_page_unwire(fs.m, 1);
 1007         } else
 1008                 vm_page_activate(fs.m);
 1009         if (m_hold != NULL) {
 1010                 *m_hold = fs.m;
 1011                 vm_page_hold(fs.m);
 1012         }
 1013         vm_page_unlock(fs.m);
 1014         vm_page_xunbusy(fs.m);
 1015 
 1016         /*
 1017          * Unlock everything, and return
 1018          */
 1019         unlock_and_deallocate(&fs);
 1020         if (hardfault) {
 1021                 PCPU_INC(cnt.v_io_faults);
 1022                 curthread->td_ru.ru_majflt++;
 1023         } else 
 1024                 curthread->td_ru.ru_minflt++;
 1025 
 1026         return (KERN_SUCCESS);
 1027 }
 1028 
 1029 /*
 1030  * Speed up the reclamation of up to "distance" pages that precede the
 1031  * faulting pindex within the first object of the shadow chain.
 1032  */
 1033 static void
 1034 vm_fault_cache_behind(const struct faultstate *fs, int distance)
 1035 {
 1036         vm_object_t first_object, object;
 1037         vm_page_t m, m_prev;
 1038         vm_pindex_t pindex;
 1039 
 1040         object = fs->object;
 1041         VM_OBJECT_ASSERT_WLOCKED(object);
 1042         first_object = fs->first_object;
 1043         if (first_object != object) {
 1044                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
 1045                         VM_OBJECT_WUNLOCK(object);
 1046                         VM_OBJECT_WLOCK(first_object);
 1047                         VM_OBJECT_WLOCK(object);
 1048                 }
 1049         }
 1050         /* Neither fictitious nor unmanaged pages can be cached. */
 1051         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
 1052                 if (fs->first_pindex < distance)
 1053                         pindex = 0;
 1054                 else
 1055                         pindex = fs->first_pindex - distance;
 1056                 if (pindex < OFF_TO_IDX(fs->entry->offset))
 1057                         pindex = OFF_TO_IDX(fs->entry->offset);
 1058                 m = first_object != object ? fs->first_m : fs->m;
 1059                 vm_page_assert_xbusied(m);
 1060                 m_prev = vm_page_prev(m);
 1061                 while ((m = m_prev) != NULL && m->pindex >= pindex &&
 1062                     m->valid == VM_PAGE_BITS_ALL) {
 1063                         m_prev = vm_page_prev(m);
 1064                         if (vm_page_busied(m))
 1065                                 continue;
 1066                         vm_page_lock(m);
 1067                         if (m->hold_count == 0 && m->wire_count == 0) {
 1068                                 pmap_remove_all(m);
 1069                                 vm_page_aflag_clear(m, PGA_REFERENCED);
 1070                                 if (m->dirty != 0)
 1071                                         vm_page_deactivate(m);
 1072                                 else
 1073                                         vm_page_cache(m);
 1074                         }
 1075                         vm_page_unlock(m);
 1076                 }
 1077         }
 1078         if (first_object != object)
 1079                 VM_OBJECT_WUNLOCK(first_object);
 1080 }
 1081 
 1082 /*
 1083  * vm_fault_prefault provides a quick way of clustering
 1084  * pagefaults into a processes address space.  It is a "cousin"
 1085  * of vm_map_pmap_enter, except it runs at page fault time instead
 1086  * of mmap time.
 1087  */
 1088 static void
 1089 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
 1090     int faultcount, int reqpage)
 1091 {
 1092         pmap_t pmap;
 1093         vm_map_entry_t entry;
 1094         vm_object_t backing_object, lobject;
 1095         vm_offset_t addr, starta;
 1096         vm_pindex_t pindex;
 1097         vm_page_t m;
 1098         int backward, forward, i;
 1099 
 1100         pmap = fs->map->pmap;
 1101         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
 1102                 return;
 1103 
 1104         if (faultcount > 0) {
 1105                 backward = reqpage;
 1106                 forward = faultcount - reqpage - 1;
 1107         } else {
 1108                 backward = PFBAK;
 1109                 forward = PFFOR;
 1110         }
 1111         entry = fs->entry;
 1112 
 1113         starta = addra - backward * PAGE_SIZE;
 1114         if (starta < entry->start) {
 1115                 starta = entry->start;
 1116         } else if (starta > addra) {
 1117                 starta = 0;
 1118         }
 1119 
 1120         /*
 1121          * Generate the sequence of virtual addresses that are candidates for
 1122          * prefaulting in an outward spiral from the faulting virtual address,
 1123          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
 1124          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
 1125          * If the candidate address doesn't have a backing physical page, then
 1126          * the loop immediately terminates.
 1127          */
 1128         for (i = 0; i < 2 * imax(backward, forward); i++) {
 1129                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
 1130                     PAGE_SIZE);
 1131                 if (addr > addra + forward * PAGE_SIZE)
 1132                         addr = 0;
 1133 
 1134                 if (addr < starta || addr >= entry->end)
 1135                         continue;
 1136 
 1137                 if (!pmap_is_prefaultable(pmap, addr))
 1138                         continue;
 1139 
 1140                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
 1141                 lobject = entry->object.vm_object;
 1142                 VM_OBJECT_RLOCK(lobject);
 1143                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
 1144                     lobject->type == OBJT_DEFAULT &&
 1145                     (backing_object = lobject->backing_object) != NULL) {
 1146                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
 1147                             0, ("vm_fault_prefault: unaligned object offset"));
 1148                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
 1149                         VM_OBJECT_RLOCK(backing_object);
 1150                         VM_OBJECT_RUNLOCK(lobject);
 1151                         lobject = backing_object;
 1152                 }
 1153                 if (m == NULL) {
 1154                         VM_OBJECT_RUNLOCK(lobject);
 1155                         break;
 1156                 }
 1157                 if (m->valid == VM_PAGE_BITS_ALL &&
 1158                     (m->flags & PG_FICTITIOUS) == 0)
 1159                         pmap_enter_quick(pmap, addr, m, entry->protection);
 1160                 VM_OBJECT_RUNLOCK(lobject);
 1161         }
 1162 }
 1163 
 1164 /*
 1165  * Hold each of the physical pages that are mapped by the specified range of
 1166  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
 1167  * and allow the specified types of access, "prot".  If all of the implied
 1168  * pages are successfully held, then the number of held pages is returned
 1169  * together with pointers to those pages in the array "ma".  However, if any
 1170  * of the pages cannot be held, -1 is returned.
 1171  */
 1172 int
 1173 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
 1174     vm_prot_t prot, vm_page_t *ma, int max_count)
 1175 {
 1176         vm_offset_t end, va;
 1177         vm_page_t *mp;
 1178         int count;
 1179         boolean_t pmap_failed;
 1180 
 1181         if (len == 0)
 1182                 return (0);
 1183         end = round_page(addr + len);
 1184         addr = trunc_page(addr);
 1185 
 1186         /*
 1187          * Check for illegal addresses.
 1188          */
 1189         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
 1190                 return (-1);
 1191 
 1192         if (atop(end - addr) > max_count)
 1193                 panic("vm_fault_quick_hold_pages: count > max_count");
 1194         count = atop(end - addr);
 1195 
 1196         /*
 1197          * Most likely, the physical pages are resident in the pmap, so it is
 1198          * faster to try pmap_extract_and_hold() first.
 1199          */
 1200         pmap_failed = FALSE;
 1201         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
 1202                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
 1203                 if (*mp == NULL)
 1204                         pmap_failed = TRUE;
 1205                 else if ((prot & VM_PROT_WRITE) != 0 &&
 1206                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
 1207                         /*
 1208                          * Explicitly dirty the physical page.  Otherwise, the
 1209                          * caller's changes may go unnoticed because they are
 1210                          * performed through an unmanaged mapping or by a DMA
 1211                          * operation.
 1212                          *
 1213                          * The object lock is not held here.
 1214                          * See vm_page_clear_dirty_mask().
 1215                          */
 1216                         vm_page_dirty(*mp);
 1217                 }
 1218         }
 1219         if (pmap_failed) {
 1220                 /*
 1221                  * One or more pages could not be held by the pmap.  Either no
 1222                  * page was mapped at the specified virtual address or that
 1223                  * mapping had insufficient permissions.  Attempt to fault in
 1224                  * and hold these pages.
 1225                  */
 1226                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
 1227                         if (*mp == NULL && vm_fault_hold(map, va, prot,
 1228                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
 1229                                 goto error;
 1230         }
 1231         return (count);
 1232 error:  
 1233         for (mp = ma; mp < ma + count; mp++)
 1234                 if (*mp != NULL) {
 1235                         vm_page_lock(*mp);
 1236                         vm_page_unhold(*mp);
 1237                         vm_page_unlock(*mp);
 1238                 }
 1239         return (-1);
 1240 }
 1241 
 1242 /*
 1243  *      Routine:
 1244  *              vm_fault_copy_entry
 1245  *      Function:
 1246  *              Create new shadow object backing dst_entry with private copy of
 1247  *              all underlying pages. When src_entry is equal to dst_entry,
 1248  *              function implements COW for wired-down map entry. Otherwise,
 1249  *              it forks wired entry into dst_map.
 1250  *
 1251  *      In/out conditions:
 1252  *              The source and destination maps must be locked for write.
 1253  *              The source map entry must be wired down (or be a sharing map
 1254  *              entry corresponding to a main map entry that is wired down).
 1255  */
 1256 void
 1257 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
 1258     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
 1259     vm_ooffset_t *fork_charge)
 1260 {
 1261         vm_object_t backing_object, dst_object, object, src_object;
 1262         vm_pindex_t dst_pindex, pindex, src_pindex;
 1263         vm_prot_t access, prot;
 1264         vm_offset_t vaddr;
 1265         vm_page_t dst_m;
 1266         vm_page_t src_m;
 1267         boolean_t upgrade;
 1268 
 1269 #ifdef  lint
 1270         src_map++;
 1271 #endif  /* lint */
 1272 
 1273         upgrade = src_entry == dst_entry;
 1274         access = prot = dst_entry->protection;
 1275 
 1276         src_object = src_entry->object.vm_object;
 1277         src_pindex = OFF_TO_IDX(src_entry->offset);
 1278 
 1279         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
 1280                 dst_object = src_object;
 1281                 vm_object_reference(dst_object);
 1282         } else {
 1283                 /*
 1284                  * Create the top-level object for the destination entry. (Doesn't
 1285                  * actually shadow anything - we copy the pages directly.)
 1286                  */
 1287                 dst_object = vm_object_allocate(OBJT_DEFAULT,
 1288                     OFF_TO_IDX(dst_entry->end - dst_entry->start));
 1289 #if VM_NRESERVLEVEL > 0
 1290                 dst_object->flags |= OBJ_COLORED;
 1291                 dst_object->pg_color = atop(dst_entry->start);
 1292 #endif
 1293         }
 1294 
 1295         VM_OBJECT_WLOCK(dst_object);
 1296         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
 1297             ("vm_fault_copy_entry: vm_object not NULL"));
 1298         if (src_object != dst_object) {
 1299                 dst_entry->object.vm_object = dst_object;
 1300                 dst_entry->offset = 0;
 1301                 dst_object->charge = dst_entry->end - dst_entry->start;
 1302         }
 1303         if (fork_charge != NULL) {
 1304                 KASSERT(dst_entry->cred == NULL,
 1305                     ("vm_fault_copy_entry: leaked swp charge"));
 1306                 dst_object->cred = curthread->td_ucred;
 1307                 crhold(dst_object->cred);
 1308                 *fork_charge += dst_object->charge;
 1309         } else if (dst_object->cred == NULL) {
 1310                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
 1311                     dst_entry));
 1312                 dst_object->cred = dst_entry->cred;
 1313                 dst_entry->cred = NULL;
 1314         }
 1315 
 1316         /*
 1317          * If not an upgrade, then enter the mappings in the pmap as
 1318          * read and/or execute accesses.  Otherwise, enter them as
 1319          * write accesses.
 1320          *
 1321          * A writeable large page mapping is only created if all of
 1322          * the constituent small page mappings are modified. Marking
 1323          * PTEs as modified on inception allows promotion to happen
 1324          * without taking potentially large number of soft faults.
 1325          */
 1326         if (!upgrade)
 1327                 access &= ~VM_PROT_WRITE;
 1328 
 1329         /*
 1330          * Loop through all of the virtual pages within the entry's
 1331          * range, copying each page from the source object to the
 1332          * destination object.  Since the source is wired, those pages
 1333          * must exist.  In contrast, the destination is pageable.
 1334          * Since the destination object does share any backing storage
 1335          * with the source object, all of its pages must be dirtied,
 1336          * regardless of whether they can be written.
 1337          */
 1338         for (vaddr = dst_entry->start, dst_pindex = 0;
 1339             vaddr < dst_entry->end;
 1340             vaddr += PAGE_SIZE, dst_pindex++) {
 1341 again:
 1342                 /*
 1343                  * Find the page in the source object, and copy it in.
 1344                  * Because the source is wired down, the page will be
 1345                  * in memory.
 1346                  */
 1347                 if (src_object != dst_object)
 1348                         VM_OBJECT_RLOCK(src_object);
 1349                 object = src_object;
 1350                 pindex = src_pindex + dst_pindex;
 1351                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
 1352                     (backing_object = object->backing_object) != NULL) {
 1353                         /*
 1354                          * Unless the source mapping is read-only or
 1355                          * it is presently being upgraded from
 1356                          * read-only, the first object in the shadow
 1357                          * chain should provide all of the pages.  In
 1358                          * other words, this loop body should never be
 1359                          * executed when the source mapping is already
 1360                          * read/write.
 1361                          */
 1362                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
 1363                             upgrade,
 1364                             ("vm_fault_copy_entry: main object missing page"));
 1365 
 1366                         VM_OBJECT_RLOCK(backing_object);
 1367                         pindex += OFF_TO_IDX(object->backing_object_offset);
 1368                         if (object != dst_object)
 1369                                 VM_OBJECT_RUNLOCK(object);
 1370                         object = backing_object;
 1371                 }
 1372                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
 1373 
 1374                 if (object != dst_object) {
 1375                         /*
 1376                          * Allocate a page in the destination object.
 1377                          */
 1378                         dst_m = vm_page_alloc(dst_object, (src_object ==
 1379                             dst_object ? src_pindex : 0) + dst_pindex,
 1380                             VM_ALLOC_NORMAL);
 1381                         if (dst_m == NULL) {
 1382                                 VM_OBJECT_WUNLOCK(dst_object);
 1383                                 VM_OBJECT_RUNLOCK(object);
 1384                                 VM_WAIT;
 1385                                 VM_OBJECT_WLOCK(dst_object);
 1386                                 goto again;
 1387                         }
 1388                         pmap_copy_page(src_m, dst_m);
 1389                         VM_OBJECT_RUNLOCK(object);
 1390                         dst_m->valid = VM_PAGE_BITS_ALL;
 1391                         dst_m->dirty = VM_PAGE_BITS_ALL;
 1392                 } else {
 1393                         dst_m = src_m;
 1394                         if (vm_page_sleep_if_busy(dst_m, "fltupg"))
 1395                                 goto again;
 1396                         vm_page_xbusy(dst_m);
 1397                         KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
 1398                             ("invalid dst page %p", dst_m));
 1399                 }
 1400                 VM_OBJECT_WUNLOCK(dst_object);
 1401 
 1402                 /*
 1403                  * Enter it in the pmap. If a wired, copy-on-write
 1404                  * mapping is being replaced by a write-enabled
 1405                  * mapping, then wire that new mapping.
 1406                  */
 1407                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
 1408                     access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
 1409 
 1410                 /*
 1411                  * Mark it no longer busy, and put it on the active list.
 1412                  */
 1413                 VM_OBJECT_WLOCK(dst_object);
 1414                 
 1415                 if (upgrade) {
 1416                         if (src_m != dst_m) {
 1417                                 vm_page_lock(src_m);
 1418                                 vm_page_unwire(src_m, 0);
 1419                                 vm_page_unlock(src_m);
 1420                                 vm_page_lock(dst_m);
 1421                                 vm_page_wire(dst_m);
 1422                                 vm_page_unlock(dst_m);
 1423                         } else {
 1424                                 KASSERT(dst_m->wire_count > 0,
 1425                                     ("dst_m %p is not wired", dst_m));
 1426                         }
 1427                 } else {
 1428                         vm_page_lock(dst_m);
 1429                         vm_page_activate(dst_m);
 1430                         vm_page_unlock(dst_m);
 1431                 }
 1432                 vm_page_xunbusy(dst_m);
 1433         }
 1434         VM_OBJECT_WUNLOCK(dst_object);
 1435         if (upgrade) {
 1436                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
 1437                 vm_object_deallocate(src_object);
 1438         }
 1439 }
 1440 
 1441 
 1442 /*
 1443  * This routine checks around the requested page for other pages that
 1444  * might be able to be faulted in.  This routine brackets the viable
 1445  * pages for the pages to be paged in.
 1446  *
 1447  * Inputs:
 1448  *      m, rbehind, rahead
 1449  *
 1450  * Outputs:
 1451  *  marray (array of vm_page_t), reqpage (index of requested page)
 1452  *
 1453  * Return value:
 1454  *  number of pages in marray
 1455  */
 1456 static int
 1457 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
 1458         vm_page_t m;
 1459         int rbehind;
 1460         int rahead;
 1461         vm_page_t *marray;
 1462         int *reqpage;
 1463 {
 1464         int i,j;
 1465         vm_object_t object;
 1466         vm_pindex_t pindex, startpindex, endpindex, tpindex;
 1467         vm_page_t rtm;
 1468         int cbehind, cahead;
 1469 
 1470         VM_OBJECT_ASSERT_WLOCKED(m->object);
 1471 
 1472         object = m->object;
 1473         pindex = m->pindex;
 1474         cbehind = cahead = 0;
 1475 
 1476         /*
 1477          * if the requested page is not available, then give up now
 1478          */
 1479         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
 1480                 return 0;
 1481         }
 1482 
 1483         if ((cbehind == 0) && (cahead == 0)) {
 1484                 *reqpage = 0;
 1485                 marray[0] = m;
 1486                 return 1;
 1487         }
 1488 
 1489         if (rahead > cahead) {
 1490                 rahead = cahead;
 1491         }
 1492 
 1493         if (rbehind > cbehind) {
 1494                 rbehind = cbehind;
 1495         }
 1496 
 1497         /*
 1498          * scan backward for the read behind pages -- in memory 
 1499          */
 1500         if (pindex > 0) {
 1501                 if (rbehind > pindex) {
 1502                         rbehind = pindex;
 1503                         startpindex = 0;
 1504                 } else {
 1505                         startpindex = pindex - rbehind;
 1506                 }
 1507 
 1508                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
 1509                     rtm->pindex >= startpindex)
 1510                         startpindex = rtm->pindex + 1;
 1511 
 1512                 /* tpindex is unsigned; beware of numeric underflow. */
 1513                 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
 1514                     tpindex < pindex; i++, tpindex--) {
 1515 
 1516                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
 1517                             VM_ALLOC_IFNOTCACHED);
 1518                         if (rtm == NULL) {
 1519                                 /*
 1520                                  * Shift the allocated pages to the
 1521                                  * beginning of the array.
 1522                                  */
 1523                                 for (j = 0; j < i; j++) {
 1524                                         marray[j] = marray[j + tpindex + 1 -
 1525                                             startpindex];
 1526                                 }
 1527                                 break;
 1528                         }
 1529 
 1530                         marray[tpindex - startpindex] = rtm;
 1531                 }
 1532         } else {
 1533                 startpindex = 0;
 1534                 i = 0;
 1535         }
 1536 
 1537         marray[i] = m;
 1538         /* page offset of the required page */
 1539         *reqpage = i;
 1540 
 1541         tpindex = pindex + 1;
 1542         i++;
 1543 
 1544         /*
 1545          * scan forward for the read ahead pages
 1546          */
 1547         endpindex = tpindex + rahead;
 1548         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
 1549                 endpindex = rtm->pindex;
 1550         if (endpindex > object->size)
 1551                 endpindex = object->size;
 1552 
 1553         for (; tpindex < endpindex; i++, tpindex++) {
 1554 
 1555                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
 1556                     VM_ALLOC_IFNOTCACHED);
 1557                 if (rtm == NULL) {
 1558                         break;
 1559                 }
 1560 
 1561                 marray[i] = rtm;
 1562         }
 1563 
 1564         /* return number of pages */
 1565         return i;
 1566 }
 1567 
 1568 /*
 1569  * Block entry into the machine-independent layer's page fault handler by
 1570  * the calling thread.  Subsequent calls to vm_fault() by that thread will
 1571  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
 1572  * spurious page faults. 
 1573  */
 1574 int
 1575 vm_fault_disable_pagefaults(void)
 1576 {
 1577 
 1578         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
 1579 }
 1580 
 1581 void
 1582 vm_fault_enable_pagefaults(int save)
 1583 {
 1584 
 1585         curthread_pflags_restore(save);
 1586 }

Cache object: 73e49cb24c85de999d2ecfc0179d267c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.