The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_fault.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  *
    9  *
   10  * This code is derived from software contributed to Berkeley by
   11  * The Mach Operating System project at Carnegie-Mellon University.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1. Redistributions of source code must retain the above copyright
   17  *    notice, this list of conditions and the following disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  * 3. All advertising materials mentioning features or use of this software
   22  *    must display the following acknowledgement:
   23  *      This product includes software developed by the University of
   24  *      California, Berkeley and its contributors.
   25  * 4. Neither the name of the University nor the names of its contributors
   26  *    may be used to endorse or promote products derived from this software
   27  *    without specific prior written permission.
   28  *
   29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   39  * SUCH DAMAGE.
   40  *
   41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
   42  *
   43  *
   44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   45  * All rights reserved.
   46  *
   47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   48  *
   49  * Permission to use, copy, modify and distribute this software and
   50  * its documentation is hereby granted, provided that both the copyright
   51  * notice and this permission notice appear in all copies of the
   52  * software, derivative works or modified versions, and any portions
   53  * thereof, and that both notices appear in supporting documentation.
   54  *
   55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   58  *
   59  * Carnegie Mellon requests users of this software to return to
   60  *
   61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   62  *  School of Computer Science
   63  *  Carnegie Mellon University
   64  *  Pittsburgh PA 15213-3890
   65  *
   66  * any improvements or extensions that they make and grant Carnegie the
   67  * rights to redistribute these changes.
   68  */
   69 
   70 /*
   71  *      Page fault handling module.
   72  */
   73 
   74 #include <sys/cdefs.h>
   75 __FBSDID("$FreeBSD: releng/10.3/sys/vm/vm_fault.c 307929 2016-10-25 16:45:55Z glebius $");
   76 
   77 #include "opt_ktrace.h"
   78 #include "opt_vm.h"
   79 
   80 #include <sys/param.h>
   81 #include <sys/systm.h>
   82 #include <sys/kernel.h>
   83 #include <sys/lock.h>
   84 #include <sys/proc.h>
   85 #include <sys/resourcevar.h>
   86 #include <sys/rwlock.h>
   87 #include <sys/sysctl.h>
   88 #include <sys/vmmeter.h>
   89 #include <sys/vnode.h>
   90 #ifdef KTRACE
   91 #include <sys/ktrace.h>
   92 #endif
   93 
   94 #include <vm/vm.h>
   95 #include <vm/vm_param.h>
   96 #include <vm/pmap.h>
   97 #include <vm/vm_map.h>
   98 #include <vm/vm_object.h>
   99 #include <vm/vm_page.h>
  100 #include <vm/vm_pageout.h>
  101 #include <vm/vm_kern.h>
  102 #include <vm/vm_pager.h>
  103 #include <vm/vm_extern.h>
  104 #include <vm/vm_reserv.h>
  105 
  106 #define PFBAK 4
  107 #define PFFOR 4
  108 
  109 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
  110 
  111 #define VM_FAULT_READ_BEHIND    8
  112 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
  113 #define VM_FAULT_NINCR          (VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
  114 #define VM_FAULT_SUM            (VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
  115 #define VM_FAULT_CACHE_BEHIND   (VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
  116 
  117 struct faultstate {
  118         vm_page_t m;
  119         vm_object_t object;
  120         vm_pindex_t pindex;
  121         vm_page_t first_m;
  122         vm_object_t     first_object;
  123         vm_pindex_t first_pindex;
  124         vm_map_t map;
  125         vm_map_entry_t entry;
  126         int lookup_still_valid;
  127         struct vnode *vp;
  128 };
  129 
  130 static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
  131 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
  132             int faultcount, int reqpage);
  133 
  134 static inline void
  135 release_page(struct faultstate *fs)
  136 {
  137 
  138         vm_page_xunbusy(fs->m);
  139         vm_page_lock(fs->m);
  140         vm_page_deactivate(fs->m);
  141         vm_page_unlock(fs->m);
  142         fs->m = NULL;
  143 }
  144 
  145 static inline void
  146 unlock_map(struct faultstate *fs)
  147 {
  148 
  149         if (fs->lookup_still_valid) {
  150                 vm_map_lookup_done(fs->map, fs->entry);
  151                 fs->lookup_still_valid = FALSE;
  152         }
  153 }
  154 
  155 static void
  156 unlock_and_deallocate(struct faultstate *fs)
  157 {
  158 
  159         vm_object_pip_wakeup(fs->object);
  160         VM_OBJECT_WUNLOCK(fs->object);
  161         if (fs->object != fs->first_object) {
  162                 VM_OBJECT_WLOCK(fs->first_object);
  163                 vm_page_lock(fs->first_m);
  164                 vm_page_free(fs->first_m);
  165                 vm_page_unlock(fs->first_m);
  166                 vm_object_pip_wakeup(fs->first_object);
  167                 VM_OBJECT_WUNLOCK(fs->first_object);
  168                 fs->first_m = NULL;
  169         }
  170         vm_object_deallocate(fs->first_object);
  171         unlock_map(fs); 
  172         if (fs->vp != NULL) { 
  173                 vput(fs->vp);
  174                 fs->vp = NULL;
  175         }
  176 }
  177 
  178 static void
  179 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
  180     vm_prot_t fault_type, int fault_flags, boolean_t set_wd)
  181 {
  182         boolean_t need_dirty;
  183 
  184         if (((prot & VM_PROT_WRITE) == 0 &&
  185             (fault_flags & VM_FAULT_DIRTY) == 0) ||
  186             (m->oflags & VPO_UNMANAGED) != 0)
  187                 return;
  188 
  189         VM_OBJECT_ASSERT_LOCKED(m->object);
  190 
  191         need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
  192             (fault_flags & VM_FAULT_WIRE) == 0) ||
  193             (fault_flags & VM_FAULT_DIRTY) != 0;
  194 
  195         if (set_wd)
  196                 vm_object_set_writeable_dirty(m->object);
  197         else
  198                 /*
  199                  * If two callers of vm_fault_dirty() with set_wd ==
  200                  * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
  201                  * flag set, other with flag clear, race, it is
  202                  * possible for the no-NOSYNC thread to see m->dirty
  203                  * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
  204                  * around manipulation of VPO_NOSYNC and
  205                  * vm_page_dirty() call, to avoid the race and keep
  206                  * m->oflags consistent.
  207                  */
  208                 vm_page_lock(m);
  209 
  210         /*
  211          * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
  212          * if the page is already dirty to prevent data written with
  213          * the expectation of being synced from not being synced.
  214          * Likewise if this entry does not request NOSYNC then make
  215          * sure the page isn't marked NOSYNC.  Applications sharing
  216          * data should use the same flags to avoid ping ponging.
  217          */
  218         if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
  219                 if (m->dirty == 0) {
  220                         m->oflags |= VPO_NOSYNC;
  221                 }
  222         } else {
  223                 m->oflags &= ~VPO_NOSYNC;
  224         }
  225 
  226         /*
  227          * If the fault is a write, we know that this page is being
  228          * written NOW so dirty it explicitly to save on
  229          * pmap_is_modified() calls later.
  230          *
  231          * Also tell the backing pager, if any, that it should remove
  232          * any swap backing since the page is now dirty.
  233          */
  234         if (need_dirty)
  235                 vm_page_dirty(m);
  236         if (!set_wd)
  237                 vm_page_unlock(m);
  238         if (need_dirty)
  239                 vm_pager_page_unswapped(m);
  240 }
  241 
  242 /*
  243  *      vm_fault:
  244  *
  245  *      Handle a page fault occurring at the given address,
  246  *      requiring the given permissions, in the map specified.
  247  *      If successful, the page is inserted into the
  248  *      associated physical map.
  249  *
  250  *      NOTE: the given address should be truncated to the
  251  *      proper page address.
  252  *
  253  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
  254  *      a standard error specifying why the fault is fatal is returned.
  255  *
  256  *      The map in question must be referenced, and remains so.
  257  *      Caller may hold no locks.
  258  */
  259 int
  260 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
  261     int fault_flags)
  262 {
  263         struct thread *td;
  264         int result;
  265 
  266         td = curthread;
  267         if ((td->td_pflags & TDP_NOFAULTING) != 0)
  268                 return (KERN_PROTECTION_FAILURE);
  269 #ifdef KTRACE
  270         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
  271                 ktrfault(vaddr, fault_type);
  272 #endif
  273         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
  274             NULL);
  275 #ifdef KTRACE
  276         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
  277                 ktrfaultend(result);
  278 #endif
  279         return (result);
  280 }
  281 
  282 int
  283 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
  284     int fault_flags, vm_page_t *m_hold)
  285 {
  286         vm_prot_t prot;
  287         long ahead, behind;
  288         int alloc_req, era, faultcount, nera, reqpage, result;
  289         boolean_t dead, growstack, is_first_object_locked, wired;
  290         int map_generation;
  291         vm_object_t next_object;
  292         vm_page_t marray[VM_FAULT_READ_MAX];
  293         int hardfault;
  294         struct faultstate fs;
  295         struct vnode *vp;
  296         vm_page_t m;
  297         int locked, error;
  298 
  299         hardfault = 0;
  300         growstack = TRUE;
  301         PCPU_INC(cnt.v_vm_faults);
  302         fs.vp = NULL;
  303         faultcount = reqpage = 0;
  304 
  305 RetryFault:;
  306 
  307         /*
  308          * Find the backing store object and offset into it to begin the
  309          * search.
  310          */
  311         fs.map = map;
  312         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
  313             &fs.first_object, &fs.first_pindex, &prot, &wired);
  314         if (result != KERN_SUCCESS) {
  315                 if (growstack && result == KERN_INVALID_ADDRESS &&
  316                     map != kernel_map) {
  317                         result = vm_map_growstack(curproc, vaddr);
  318                         if (result != KERN_SUCCESS)
  319                                 return (KERN_FAILURE);
  320                         growstack = FALSE;
  321                         goto RetryFault;
  322                 }
  323                 return (result);
  324         }
  325 
  326         map_generation = fs.map->timestamp;
  327 
  328         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
  329                 panic("vm_fault: fault on nofault entry, addr: %lx",
  330                     (u_long)vaddr);
  331         }
  332 
  333         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
  334             fs.entry->wiring_thread != curthread) {
  335                 vm_map_unlock_read(fs.map);
  336                 vm_map_lock(fs.map);
  337                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
  338                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
  339                         if (fs.vp != NULL) {
  340                                 vput(fs.vp);
  341                                 fs.vp = NULL;
  342                         }
  343                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
  344                         vm_map_unlock_and_wait(fs.map, 0);
  345                 } else
  346                         vm_map_unlock(fs.map);
  347                 goto RetryFault;
  348         }
  349 
  350         if (wired)
  351                 fault_type = prot | (fault_type & VM_PROT_COPY);
  352         else
  353                 KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
  354                     ("!wired && VM_FAULT_WIRE"));
  355 
  356         if (fs.vp == NULL /* avoid locked vnode leak */ &&
  357             (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
  358             /* avoid calling vm_object_set_writeable_dirty() */
  359             ((prot & VM_PROT_WRITE) == 0 ||
  360             (fs.first_object->type != OBJT_VNODE &&
  361             (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
  362             (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
  363                 VM_OBJECT_RLOCK(fs.first_object);
  364                 if ((prot & VM_PROT_WRITE) != 0 &&
  365                     (fs.first_object->type == OBJT_VNODE ||
  366                     (fs.first_object->flags & OBJ_TMPFS_NODE) != 0) &&
  367                     (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0)
  368                         goto fast_failed;
  369                 m = vm_page_lookup(fs.first_object, fs.first_pindex);
  370                 /* A busy page can be mapped for read|execute access. */
  371                 if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
  372                     vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
  373                         goto fast_failed;
  374                 result = pmap_enter(fs.map->pmap, vaddr, m, prot,
  375                    fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED :
  376                    0), 0);
  377                 if (result != KERN_SUCCESS)
  378                         goto fast_failed;
  379                 if (m_hold != NULL) {
  380                         *m_hold = m;
  381                         vm_page_lock(m);
  382                         vm_page_hold(m);
  383                         vm_page_unlock(m);
  384                 }
  385                 vm_fault_dirty(fs.entry, m, prot, fault_type, fault_flags,
  386                     FALSE);
  387                 VM_OBJECT_RUNLOCK(fs.first_object);
  388                 if (!wired)
  389                         vm_fault_prefault(&fs, vaddr, 0, 0);
  390                 vm_map_lookup_done(fs.map, fs.entry);
  391                 curthread->td_ru.ru_minflt++;
  392                 return (KERN_SUCCESS);
  393 fast_failed:
  394                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
  395                         VM_OBJECT_RUNLOCK(fs.first_object);
  396                         VM_OBJECT_WLOCK(fs.first_object);
  397                 }
  398         } else {
  399                 VM_OBJECT_WLOCK(fs.first_object);
  400         }
  401 
  402         /*
  403          * Make a reference to this object to prevent its disposal while we
  404          * are messing with it.  Once we have the reference, the map is free
  405          * to be diddled.  Since objects reference their shadows (and copies),
  406          * they will stay around as well.
  407          *
  408          * Bump the paging-in-progress count to prevent size changes (e.g. 
  409          * truncation operations) during I/O.  This must be done after
  410          * obtaining the vnode lock in order to avoid possible deadlocks.
  411          */
  412         vm_object_reference_locked(fs.first_object);
  413         vm_object_pip_add(fs.first_object, 1);
  414 
  415         fs.lookup_still_valid = TRUE;
  416 
  417         fs.first_m = NULL;
  418 
  419         /*
  420          * Search for the page at object/offset.
  421          */
  422         fs.object = fs.first_object;
  423         fs.pindex = fs.first_pindex;
  424         while (TRUE) {
  425                 /*
  426                  * If the object is marked for imminent termination,
  427                  * we retry here, since the collapse pass has raced
  428                  * with us.  Otherwise, if we see terminally dead
  429                  * object, return fail.
  430                  */
  431                 if ((fs.object->flags & OBJ_DEAD) != 0) {
  432                         dead = fs.object->type == OBJT_DEAD;
  433                         unlock_and_deallocate(&fs);
  434                         if (dead)
  435                                 return (KERN_PROTECTION_FAILURE);
  436                         pause("vmf_de", 1);
  437                         goto RetryFault;
  438                 }
  439 
  440                 /*
  441                  * See if page is resident
  442                  */
  443                 fs.m = vm_page_lookup(fs.object, fs.pindex);
  444                 if (fs.m != NULL) {
  445                         /*
  446                          * Wait/Retry if the page is busy.  We have to do this
  447                          * if the page is either exclusive or shared busy
  448                          * because the vm_pager may be using read busy for
  449                          * pageouts (and even pageins if it is the vnode
  450                          * pager), and we could end up trying to pagein and
  451                          * pageout the same page simultaneously.
  452                          *
  453                          * We can theoretically allow the busy case on a read
  454                          * fault if the page is marked valid, but since such
  455                          * pages are typically already pmap'd, putting that
  456                          * special case in might be more effort then it is 
  457                          * worth.  We cannot under any circumstances mess
  458                          * around with a shared busied page except, perhaps,
  459                          * to pmap it.
  460                          */
  461                         if (vm_page_busied(fs.m)) {
  462                                 /*
  463                                  * Reference the page before unlocking and
  464                                  * sleeping so that the page daemon is less
  465                                  * likely to reclaim it. 
  466                                  */
  467                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
  468                                 if (fs.object != fs.first_object) {
  469                                         if (!VM_OBJECT_TRYWLOCK(
  470                                             fs.first_object)) {
  471                                                 VM_OBJECT_WUNLOCK(fs.object);
  472                                                 VM_OBJECT_WLOCK(fs.first_object);
  473                                                 VM_OBJECT_WLOCK(fs.object);
  474                                         }
  475                                         vm_page_lock(fs.first_m);
  476                                         vm_page_free(fs.first_m);
  477                                         vm_page_unlock(fs.first_m);
  478                                         vm_object_pip_wakeup(fs.first_object);
  479                                         VM_OBJECT_WUNLOCK(fs.first_object);
  480                                         fs.first_m = NULL;
  481                                 }
  482                                 unlock_map(&fs);
  483                                 if (fs.m == vm_page_lookup(fs.object,
  484                                     fs.pindex)) {
  485                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
  486                                 }
  487                                 vm_object_pip_wakeup(fs.object);
  488                                 VM_OBJECT_WUNLOCK(fs.object);
  489                                 PCPU_INC(cnt.v_intrans);
  490                                 vm_object_deallocate(fs.first_object);
  491                                 goto RetryFault;
  492                         }
  493                         vm_page_lock(fs.m);
  494                         vm_page_remque(fs.m);
  495                         vm_page_unlock(fs.m);
  496 
  497                         /*
  498                          * Mark page busy for other processes, and the 
  499                          * pagedaemon.  If it still isn't completely valid
  500                          * (readable), jump to readrest, else break-out ( we
  501                          * found the page ).
  502                          */
  503                         vm_page_xbusy(fs.m);
  504                         if (fs.m->valid != VM_PAGE_BITS_ALL)
  505                                 goto readrest;
  506                         break;
  507                 }
  508 
  509                 /*
  510                  * Page is not resident.  If this is the search termination
  511                  * or the pager might contain the page, allocate a new page.
  512                  * Default objects are zero-fill, there is no real pager.
  513                  */
  514                 if (fs.object->type != OBJT_DEFAULT ||
  515                     fs.object == fs.first_object) {
  516                         if (fs.pindex >= fs.object->size) {
  517                                 unlock_and_deallocate(&fs);
  518                                 return (KERN_PROTECTION_FAILURE);
  519                         }
  520 
  521                         /*
  522                          * Allocate a new page for this object/offset pair.
  523                          *
  524                          * Unlocked read of the p_flag is harmless. At
  525                          * worst, the P_KILLED might be not observed
  526                          * there, and allocation can fail, causing
  527                          * restart and new reading of the p_flag.
  528                          */
  529                         fs.m = NULL;
  530                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
  531 #if VM_NRESERVLEVEL > 0
  532                                 if ((fs.object->flags & OBJ_COLORED) == 0) {
  533                                         fs.object->flags |= OBJ_COLORED;
  534                                         fs.object->pg_color = atop(vaddr) -
  535                                             fs.pindex;
  536                                 }
  537 #endif
  538                                 alloc_req = P_KILLED(curproc) ?
  539                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
  540                                 if (fs.object->type != OBJT_VNODE &&
  541                                     fs.object->backing_object == NULL)
  542                                         alloc_req |= VM_ALLOC_ZERO;
  543                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
  544                                     alloc_req);
  545                         }
  546                         if (fs.m == NULL) {
  547                                 unlock_and_deallocate(&fs);
  548                                 VM_WAITPFAULT;
  549                                 goto RetryFault;
  550                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
  551                                 break;
  552                 }
  553 
  554 readrest:
  555                 /*
  556                  * We have found a valid page or we have allocated a new page.
  557                  * The page thus may not be valid or may not be entirely 
  558                  * valid.
  559                  *
  560                  * Attempt to fault-in the page if there is a chance that the
  561                  * pager has it, and potentially fault in additional pages
  562                  * at the same time.  For default objects simply provide
  563                  * zero-filled pages.
  564                  */
  565                 if (fs.object->type != OBJT_DEFAULT) {
  566                         int rv;
  567                         u_char behavior = vm_map_entry_behavior(fs.entry);
  568 
  569                         if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
  570                             P_KILLED(curproc)) {
  571                                 behind = 0;
  572                                 ahead = 0;
  573                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
  574                                 behind = 0;
  575                                 ahead = atop(fs.entry->end - vaddr) - 1;
  576                                 if (ahead > VM_FAULT_READ_AHEAD_MAX)
  577                                         ahead = VM_FAULT_READ_AHEAD_MAX;
  578                                 if (fs.pindex == fs.entry->next_read)
  579                                         vm_fault_cache_behind(&fs,
  580                                             VM_FAULT_READ_MAX);
  581                         } else {
  582                                 /*
  583                                  * If this is a sequential page fault, then
  584                                  * arithmetically increase the number of pages
  585                                  * in the read-ahead window.  Otherwise, reset
  586                                  * the read-ahead window to its smallest size.
  587                                  */
  588                                 behind = atop(vaddr - fs.entry->start);
  589                                 if (behind > VM_FAULT_READ_BEHIND)
  590                                         behind = VM_FAULT_READ_BEHIND;
  591                                 ahead = atop(fs.entry->end - vaddr) - 1;
  592                                 era = fs.entry->read_ahead;
  593                                 if (fs.pindex == fs.entry->next_read) {
  594                                         nera = era + behind;
  595                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
  596                                                 nera = VM_FAULT_READ_AHEAD_MAX;
  597                                         behind = 0;
  598                                         if (ahead > nera)
  599                                                 ahead = nera;
  600                                         if (era == VM_FAULT_READ_AHEAD_MAX)
  601                                                 vm_fault_cache_behind(&fs,
  602                                                     VM_FAULT_CACHE_BEHIND);
  603                                 } else if (ahead > VM_FAULT_READ_AHEAD_MIN)
  604                                         ahead = VM_FAULT_READ_AHEAD_MIN;
  605                                 if (era != ahead)
  606                                         fs.entry->read_ahead = ahead;
  607                         }
  608 
  609                         /*
  610                          * Call the pager to retrieve the data, if any, after
  611                          * releasing the lock on the map.  We hold a ref on
  612                          * fs.object and the pages are exclusive busied.
  613                          */
  614                         unlock_map(&fs);
  615 
  616                         if (fs.object->type == OBJT_VNODE) {
  617                                 vp = fs.object->handle;
  618                                 if (vp == fs.vp)
  619                                         goto vnode_locked;
  620                                 else if (fs.vp != NULL) {
  621                                         vput(fs.vp);
  622                                         fs.vp = NULL;
  623                                 }
  624                                 locked = VOP_ISLOCKED(vp);
  625 
  626                                 if (locked != LK_EXCLUSIVE)
  627                                         locked = LK_SHARED;
  628                                 /* Do not sleep for vnode lock while fs.m is busy */
  629                                 error = vget(vp, locked | LK_CANRECURSE |
  630                                     LK_NOWAIT, curthread);
  631                                 if (error != 0) {
  632                                         vhold(vp);
  633                                         release_page(&fs);
  634                                         unlock_and_deallocate(&fs);
  635                                         error = vget(vp, locked | LK_RETRY |
  636                                             LK_CANRECURSE, curthread);
  637                                         vdrop(vp);
  638                                         fs.vp = vp;
  639                                         KASSERT(error == 0,
  640                                             ("vm_fault: vget failed"));
  641                                         goto RetryFault;
  642                                 }
  643                                 fs.vp = vp;
  644                         }
  645 vnode_locked:
  646                         KASSERT(fs.vp == NULL || !fs.map->system_map,
  647                             ("vm_fault: vnode-backed object mapped by system map"));
  648 
  649                         /*
  650                          * now we find out if any other pages should be paged
  651                          * in at this time this routine checks to see if the
  652                          * pages surrounding this fault reside in the same
  653                          * object as the page for this fault.  If they do,
  654                          * then they are faulted in also into the object.  The
  655                          * array "marray" returned contains an array of
  656                          * vm_page_t structs where one of them is the
  657                          * vm_page_t passed to the routine.  The reqpage
  658                          * return value is the index into the marray for the
  659                          * vm_page_t passed to the routine.
  660                          *
  661                          * fs.m plus the additional pages are exclusive busied.
  662                          */
  663                         faultcount = vm_fault_additional_pages(
  664                             fs.m, behind, ahead, marray, &reqpage);
  665 
  666                         rv = faultcount ?
  667                             vm_pager_get_pages(fs.object, marray, faultcount,
  668                                 reqpage) : VM_PAGER_FAIL;
  669 
  670                         if (rv == VM_PAGER_OK) {
  671                                 /*
  672                                  * Found the page. Leave it busy while we play
  673                                  * with it.
  674                                  */
  675 
  676                                 /*
  677                                  * Relookup in case pager changed page. Pager
  678                                  * is responsible for disposition of old page
  679                                  * if moved.
  680                                  */
  681                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
  682                                 if (!fs.m) {
  683                                         unlock_and_deallocate(&fs);
  684                                         goto RetryFault;
  685                                 }
  686 
  687                                 hardfault++;
  688                                 break; /* break to PAGE HAS BEEN FOUND */
  689                         }
  690                         /*
  691                          * Remove the bogus page (which does not exist at this
  692                          * object/offset); before doing so, we must get back
  693                          * our object lock to preserve our invariant.
  694                          *
  695                          * Also wake up any other process that may want to bring
  696                          * in this page.
  697                          *
  698                          * If this is the top-level object, we must leave the
  699                          * busy page to prevent another process from rushing
  700                          * past us, and inserting the page in that object at
  701                          * the same time that we are.
  702                          */
  703                         if (rv == VM_PAGER_ERROR)
  704                                 printf("vm_fault: pager read error, pid %d (%s)\n",
  705                                     curproc->p_pid, curproc->p_comm);
  706                         /*
  707                          * Data outside the range of the pager or an I/O error
  708                          */
  709                         /*
  710                          * XXX - the check for kernel_map is a kludge to work
  711                          * around having the machine panic on a kernel space
  712                          * fault w/ I/O error.
  713                          */
  714                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
  715                                 (rv == VM_PAGER_BAD)) {
  716                                 vm_page_lock(fs.m);
  717                                 vm_page_free(fs.m);
  718                                 vm_page_unlock(fs.m);
  719                                 fs.m = NULL;
  720                                 unlock_and_deallocate(&fs);
  721                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
  722                         }
  723                         if (fs.object != fs.first_object) {
  724                                 vm_page_lock(fs.m);
  725                                 vm_page_free(fs.m);
  726                                 vm_page_unlock(fs.m);
  727                                 fs.m = NULL;
  728                                 /*
  729                                  * XXX - we cannot just fall out at this
  730                                  * point, m has been freed and is invalid!
  731                                  */
  732                         }
  733                 }
  734 
  735                 /*
  736                  * We get here if the object has default pager (or unwiring) 
  737                  * or the pager doesn't have the page.
  738                  */
  739                 if (fs.object == fs.first_object)
  740                         fs.first_m = fs.m;
  741 
  742                 /*
  743                  * Move on to the next object.  Lock the next object before
  744                  * unlocking the current one.
  745                  */
  746                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
  747                 next_object = fs.object->backing_object;
  748                 if (next_object == NULL) {
  749                         /*
  750                          * If there's no object left, fill the page in the top
  751                          * object with zeros.
  752                          */
  753                         if (fs.object != fs.first_object) {
  754                                 vm_object_pip_wakeup(fs.object);
  755                                 VM_OBJECT_WUNLOCK(fs.object);
  756 
  757                                 fs.object = fs.first_object;
  758                                 fs.pindex = fs.first_pindex;
  759                                 fs.m = fs.first_m;
  760                                 VM_OBJECT_WLOCK(fs.object);
  761                         }
  762                         fs.first_m = NULL;
  763 
  764                         /*
  765                          * Zero the page if necessary and mark it valid.
  766                          */
  767                         if ((fs.m->flags & PG_ZERO) == 0) {
  768                                 pmap_zero_page(fs.m);
  769                         } else {
  770                                 PCPU_INC(cnt.v_ozfod);
  771                         }
  772                         PCPU_INC(cnt.v_zfod);
  773                         fs.m->valid = VM_PAGE_BITS_ALL;
  774                         /* Don't try to prefault neighboring pages. */
  775                         faultcount = 1;
  776                         break;  /* break to PAGE HAS BEEN FOUND */
  777                 } else {
  778                         KASSERT(fs.object != next_object,
  779                             ("object loop %p", next_object));
  780                         VM_OBJECT_WLOCK(next_object);
  781                         vm_object_pip_add(next_object, 1);
  782                         if (fs.object != fs.first_object)
  783                                 vm_object_pip_wakeup(fs.object);
  784                         VM_OBJECT_WUNLOCK(fs.object);
  785                         fs.object = next_object;
  786                 }
  787         }
  788 
  789         vm_page_assert_xbusied(fs.m);
  790 
  791         /*
  792          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
  793          * is held.]
  794          */
  795 
  796         /*
  797          * If the page is being written, but isn't already owned by the
  798          * top-level object, we have to copy it into a new page owned by the
  799          * top-level object.
  800          */
  801         if (fs.object != fs.first_object) {
  802                 /*
  803                  * We only really need to copy if we want to write it.
  804                  */
  805                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
  806                         /*
  807                          * This allows pages to be virtually copied from a 
  808                          * backing_object into the first_object, where the 
  809                          * backing object has no other refs to it, and cannot
  810                          * gain any more refs.  Instead of a bcopy, we just 
  811                          * move the page from the backing object to the 
  812                          * first object.  Note that we must mark the page 
  813                          * dirty in the first object so that it will go out 
  814                          * to swap when needed.
  815                          */
  816                         is_first_object_locked = FALSE;
  817                         if (
  818                                 /*
  819                                  * Only one shadow object
  820                                  */
  821                                 (fs.object->shadow_count == 1) &&
  822                                 /*
  823                                  * No COW refs, except us
  824                                  */
  825                                 (fs.object->ref_count == 1) &&
  826                                 /*
  827                                  * No one else can look this object up
  828                                  */
  829                                 (fs.object->handle == NULL) &&
  830                                 /*
  831                                  * No other ways to look the object up
  832                                  */
  833                                 ((fs.object->type == OBJT_DEFAULT) ||
  834                                  (fs.object->type == OBJT_SWAP)) &&
  835                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
  836                                 /*
  837                                  * We don't chase down the shadow chain
  838                                  */
  839                             fs.object == fs.first_object->backing_object) {
  840                                 /*
  841                                  * get rid of the unnecessary page
  842                                  */
  843                                 vm_page_lock(fs.first_m);
  844                                 vm_page_free(fs.first_m);
  845                                 vm_page_unlock(fs.first_m);
  846                                 /*
  847                                  * grab the page and put it into the 
  848                                  * process'es object.  The page is 
  849                                  * automatically made dirty.
  850                                  */
  851                                 if (vm_page_rename(fs.m, fs.first_object,
  852                                     fs.first_pindex)) {
  853                                         unlock_and_deallocate(&fs);
  854                                         goto RetryFault;
  855                                 }
  856 #if VM_NRESERVLEVEL > 0
  857                                 /*
  858                                  * Rename the reservation.
  859                                  */
  860                                 vm_reserv_rename(fs.m, fs.first_object,
  861                                     fs.object, OFF_TO_IDX(
  862                                     fs.first_object->backing_object_offset));
  863 #endif
  864                                 vm_page_xbusy(fs.m);
  865                                 fs.first_m = fs.m;
  866                                 fs.m = NULL;
  867                                 PCPU_INC(cnt.v_cow_optim);
  868                         } else {
  869                                 /*
  870                                  * Oh, well, lets copy it.
  871                                  */
  872                                 pmap_copy_page(fs.m, fs.first_m);
  873                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
  874                                 if (wired && (fault_flags &
  875                                     VM_FAULT_WIRE) == 0) {
  876                                         vm_page_lock(fs.first_m);
  877                                         vm_page_wire(fs.first_m);
  878                                         vm_page_unlock(fs.first_m);
  879                                         
  880                                         vm_page_lock(fs.m);
  881                                         vm_page_unwire(fs.m, FALSE);
  882                                         vm_page_unlock(fs.m);
  883                                 }
  884                                 /*
  885                                  * We no longer need the old page or object.
  886                                  */
  887                                 release_page(&fs);
  888                         }
  889                         /*
  890                          * fs.object != fs.first_object due to above 
  891                          * conditional
  892                          */
  893                         vm_object_pip_wakeup(fs.object);
  894                         VM_OBJECT_WUNLOCK(fs.object);
  895                         /*
  896                          * Only use the new page below...
  897                          */
  898                         fs.object = fs.first_object;
  899                         fs.pindex = fs.first_pindex;
  900                         fs.m = fs.first_m;
  901                         if (!is_first_object_locked)
  902                                 VM_OBJECT_WLOCK(fs.object);
  903                         PCPU_INC(cnt.v_cow_faults);
  904                         curthread->td_cow++;
  905                 } else {
  906                         prot &= ~VM_PROT_WRITE;
  907                 }
  908         }
  909 
  910         /*
  911          * We must verify that the maps have not changed since our last
  912          * lookup.
  913          */
  914         if (!fs.lookup_still_valid) {
  915                 vm_object_t retry_object;
  916                 vm_pindex_t retry_pindex;
  917                 vm_prot_t retry_prot;
  918 
  919                 if (!vm_map_trylock_read(fs.map)) {
  920                         release_page(&fs);
  921                         unlock_and_deallocate(&fs);
  922                         goto RetryFault;
  923                 }
  924                 fs.lookup_still_valid = TRUE;
  925                 if (fs.map->timestamp != map_generation) {
  926                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
  927                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
  928 
  929                         /*
  930                          * If we don't need the page any longer, put it on the inactive
  931                          * list (the easiest thing to do here).  If no one needs it,
  932                          * pageout will grab it eventually.
  933                          */
  934                         if (result != KERN_SUCCESS) {
  935                                 release_page(&fs);
  936                                 unlock_and_deallocate(&fs);
  937 
  938                                 /*
  939                                  * If retry of map lookup would have blocked then
  940                                  * retry fault from start.
  941                                  */
  942                                 if (result == KERN_FAILURE)
  943                                         goto RetryFault;
  944                                 return (result);
  945                         }
  946                         if ((retry_object != fs.first_object) ||
  947                             (retry_pindex != fs.first_pindex)) {
  948                                 release_page(&fs);
  949                                 unlock_and_deallocate(&fs);
  950                                 goto RetryFault;
  951                         }
  952 
  953                         /*
  954                          * Check whether the protection has changed or the object has
  955                          * been copied while we left the map unlocked. Changing from
  956                          * read to write permission is OK - we leave the page
  957                          * write-protected, and catch the write fault. Changing from
  958                          * write to read permission means that we can't mark the page
  959                          * write-enabled after all.
  960                          */
  961                         prot &= retry_prot;
  962                 }
  963         }
  964         /*
  965          * If the page was filled by a pager, update the map entry's
  966          * last read offset.  Since the pager does not return the
  967          * actual set of pages that it read, this update is based on
  968          * the requested set.  Typically, the requested and actual
  969          * sets are the same.
  970          *
  971          * XXX The following assignment modifies the map
  972          * without holding a write lock on it.
  973          */
  974         if (hardfault)
  975                 fs.entry->next_read = fs.pindex + faultcount - reqpage;
  976 
  977         vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, TRUE);
  978         vm_page_assert_xbusied(fs.m);
  979 
  980         /*
  981          * Page must be completely valid or it is not fit to
  982          * map into user space.  vm_pager_get_pages() ensures this.
  983          */
  984         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
  985             ("vm_fault: page %p partially invalid", fs.m));
  986         VM_OBJECT_WUNLOCK(fs.object);
  987 
  988         /*
  989          * Put this page into the physical map.  We had to do the unlock above
  990          * because pmap_enter() may sleep.  We don't put the page
  991          * back on the active queue until later so that the pageout daemon
  992          * won't find it (yet).
  993          */
  994         pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
  995             fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
  996         if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
  997             wired == 0)
  998                 vm_fault_prefault(&fs, vaddr, faultcount, reqpage);
  999         VM_OBJECT_WLOCK(fs.object);
 1000         vm_page_lock(fs.m);
 1001 
 1002         /*
 1003          * If the page is not wired down, then put it where the pageout daemon
 1004          * can find it.
 1005          */
 1006         if ((fault_flags & VM_FAULT_WIRE) != 0) {
 1007                 KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
 1008                 vm_page_wire(fs.m);
 1009         } else
 1010                 vm_page_activate(fs.m);
 1011         if (m_hold != NULL) {
 1012                 *m_hold = fs.m;
 1013                 vm_page_hold(fs.m);
 1014         }
 1015         vm_page_unlock(fs.m);
 1016         vm_page_xunbusy(fs.m);
 1017 
 1018         /*
 1019          * Unlock everything, and return
 1020          */
 1021         unlock_and_deallocate(&fs);
 1022         if (hardfault) {
 1023                 PCPU_INC(cnt.v_io_faults);
 1024                 curthread->td_ru.ru_majflt++;
 1025         } else 
 1026                 curthread->td_ru.ru_minflt++;
 1027 
 1028         return (KERN_SUCCESS);
 1029 }
 1030 
 1031 /*
 1032  * Speed up the reclamation of up to "distance" pages that precede the
 1033  * faulting pindex within the first object of the shadow chain.
 1034  */
 1035 static void
 1036 vm_fault_cache_behind(const struct faultstate *fs, int distance)
 1037 {
 1038         vm_object_t first_object, object;
 1039         vm_page_t m, m_prev;
 1040         vm_pindex_t pindex;
 1041 
 1042         object = fs->object;
 1043         VM_OBJECT_ASSERT_WLOCKED(object);
 1044         first_object = fs->first_object;
 1045         if (first_object != object) {
 1046                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
 1047                         VM_OBJECT_WUNLOCK(object);
 1048                         VM_OBJECT_WLOCK(first_object);
 1049                         VM_OBJECT_WLOCK(object);
 1050                 }
 1051         }
 1052         /* Neither fictitious nor unmanaged pages can be cached. */
 1053         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
 1054                 if (fs->first_pindex < distance)
 1055                         pindex = 0;
 1056                 else
 1057                         pindex = fs->first_pindex - distance;
 1058                 if (pindex < OFF_TO_IDX(fs->entry->offset))
 1059                         pindex = OFF_TO_IDX(fs->entry->offset);
 1060                 m = first_object != object ? fs->first_m : fs->m;
 1061                 vm_page_assert_xbusied(m);
 1062                 m_prev = vm_page_prev(m);
 1063                 while ((m = m_prev) != NULL && m->pindex >= pindex &&
 1064                     m->valid == VM_PAGE_BITS_ALL) {
 1065                         m_prev = vm_page_prev(m);
 1066                         if (vm_page_busied(m))
 1067                                 continue;
 1068                         vm_page_lock(m);
 1069                         if (m->hold_count == 0 && m->wire_count == 0) {
 1070                                 pmap_remove_all(m);
 1071                                 vm_page_aflag_clear(m, PGA_REFERENCED);
 1072                                 if (m->dirty != 0)
 1073                                         vm_page_deactivate(m);
 1074                                 else
 1075                                         vm_page_cache(m);
 1076                         }
 1077                         vm_page_unlock(m);
 1078                 }
 1079         }
 1080         if (first_object != object)
 1081                 VM_OBJECT_WUNLOCK(first_object);
 1082 }
 1083 
 1084 /*
 1085  * vm_fault_prefault provides a quick way of clustering
 1086  * pagefaults into a processes address space.  It is a "cousin"
 1087  * of vm_map_pmap_enter, except it runs at page fault time instead
 1088  * of mmap time.
 1089  */
 1090 static void
 1091 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
 1092     int faultcount, int reqpage)
 1093 {
 1094         pmap_t pmap;
 1095         vm_map_entry_t entry;
 1096         vm_object_t backing_object, lobject;
 1097         vm_offset_t addr, starta;
 1098         vm_pindex_t pindex;
 1099         vm_page_t m;
 1100         int backward, forward, i;
 1101 
 1102         pmap = fs->map->pmap;
 1103         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
 1104                 return;
 1105 
 1106         if (faultcount > 0) {
 1107                 backward = reqpage;
 1108                 forward = faultcount - reqpage - 1;
 1109         } else {
 1110                 backward = PFBAK;
 1111                 forward = PFFOR;
 1112         }
 1113         entry = fs->entry;
 1114 
 1115         starta = addra - backward * PAGE_SIZE;
 1116         if (starta < entry->start) {
 1117                 starta = entry->start;
 1118         } else if (starta > addra) {
 1119                 starta = 0;
 1120         }
 1121 
 1122         /*
 1123          * Generate the sequence of virtual addresses that are candidates for
 1124          * prefaulting in an outward spiral from the faulting virtual address,
 1125          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
 1126          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
 1127          * If the candidate address doesn't have a backing physical page, then
 1128          * the loop immediately terminates.
 1129          */
 1130         for (i = 0; i < 2 * imax(backward, forward); i++) {
 1131                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
 1132                     PAGE_SIZE);
 1133                 if (addr > addra + forward * PAGE_SIZE)
 1134                         addr = 0;
 1135 
 1136                 if (addr < starta || addr >= entry->end)
 1137                         continue;
 1138 
 1139                 if (!pmap_is_prefaultable(pmap, addr))
 1140                         continue;
 1141 
 1142                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
 1143                 lobject = entry->object.vm_object;
 1144                 VM_OBJECT_RLOCK(lobject);
 1145                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
 1146                     lobject->type == OBJT_DEFAULT &&
 1147                     (backing_object = lobject->backing_object) != NULL) {
 1148                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
 1149                             0, ("vm_fault_prefault: unaligned object offset"));
 1150                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
 1151                         VM_OBJECT_RLOCK(backing_object);
 1152                         VM_OBJECT_RUNLOCK(lobject);
 1153                         lobject = backing_object;
 1154                 }
 1155                 if (m == NULL) {
 1156                         VM_OBJECT_RUNLOCK(lobject);
 1157                         break;
 1158                 }
 1159                 if (m->valid == VM_PAGE_BITS_ALL &&
 1160                     (m->flags & PG_FICTITIOUS) == 0)
 1161                         pmap_enter_quick(pmap, addr, m, entry->protection);
 1162                 VM_OBJECT_RUNLOCK(lobject);
 1163         }
 1164 }
 1165 
 1166 /*
 1167  * Hold each of the physical pages that are mapped by the specified range of
 1168  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
 1169  * and allow the specified types of access, "prot".  If all of the implied
 1170  * pages are successfully held, then the number of held pages is returned
 1171  * together with pointers to those pages in the array "ma".  However, if any
 1172  * of the pages cannot be held, -1 is returned.
 1173  */
 1174 int
 1175 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
 1176     vm_prot_t prot, vm_page_t *ma, int max_count)
 1177 {
 1178         vm_offset_t end, va;
 1179         vm_page_t *mp;
 1180         int count;
 1181         boolean_t pmap_failed;
 1182 
 1183         if (len == 0)
 1184                 return (0);
 1185         end = round_page(addr + len);
 1186         addr = trunc_page(addr);
 1187 
 1188         /*
 1189          * Check for illegal addresses.
 1190          */
 1191         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
 1192                 return (-1);
 1193 
 1194         if (atop(end - addr) > max_count)
 1195                 panic("vm_fault_quick_hold_pages: count > max_count");
 1196         count = atop(end - addr);
 1197 
 1198         /*
 1199          * Most likely, the physical pages are resident in the pmap, so it is
 1200          * faster to try pmap_extract_and_hold() first.
 1201          */
 1202         pmap_failed = FALSE;
 1203         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
 1204                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
 1205                 if (*mp == NULL)
 1206                         pmap_failed = TRUE;
 1207                 else if ((prot & VM_PROT_WRITE) != 0 &&
 1208                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
 1209                         /*
 1210                          * Explicitly dirty the physical page.  Otherwise, the
 1211                          * caller's changes may go unnoticed because they are
 1212                          * performed through an unmanaged mapping or by a DMA
 1213                          * operation.
 1214                          *
 1215                          * The object lock is not held here.
 1216                          * See vm_page_clear_dirty_mask().
 1217                          */
 1218                         vm_page_dirty(*mp);
 1219                 }
 1220         }
 1221         if (pmap_failed) {
 1222                 /*
 1223                  * One or more pages could not be held by the pmap.  Either no
 1224                  * page was mapped at the specified virtual address or that
 1225                  * mapping had insufficient permissions.  Attempt to fault in
 1226                  * and hold these pages.
 1227                  */
 1228                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
 1229                         if (*mp == NULL && vm_fault_hold(map, va, prot,
 1230                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
 1231                                 goto error;
 1232         }
 1233         return (count);
 1234 error:  
 1235         for (mp = ma; mp < ma + count; mp++)
 1236                 if (*mp != NULL) {
 1237                         vm_page_lock(*mp);
 1238                         vm_page_unhold(*mp);
 1239                         vm_page_unlock(*mp);
 1240                 }
 1241         return (-1);
 1242 }
 1243 
 1244 /*
 1245  *      Routine:
 1246  *              vm_fault_copy_entry
 1247  *      Function:
 1248  *              Create new shadow object backing dst_entry with private copy of
 1249  *              all underlying pages. When src_entry is equal to dst_entry,
 1250  *              function implements COW for wired-down map entry. Otherwise,
 1251  *              it forks wired entry into dst_map.
 1252  *
 1253  *      In/out conditions:
 1254  *              The source and destination maps must be locked for write.
 1255  *              The source map entry must be wired down (or be a sharing map
 1256  *              entry corresponding to a main map entry that is wired down).
 1257  */
 1258 void
 1259 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
 1260     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
 1261     vm_ooffset_t *fork_charge)
 1262 {
 1263         vm_object_t backing_object, dst_object, object, src_object;
 1264         vm_pindex_t dst_pindex, pindex, src_pindex;
 1265         vm_prot_t access, prot;
 1266         vm_offset_t vaddr;
 1267         vm_page_t dst_m;
 1268         vm_page_t src_m;
 1269         boolean_t upgrade;
 1270 
 1271 #ifdef  lint
 1272         src_map++;
 1273 #endif  /* lint */
 1274 
 1275         upgrade = src_entry == dst_entry;
 1276         access = prot = dst_entry->protection;
 1277 
 1278         src_object = src_entry->object.vm_object;
 1279         src_pindex = OFF_TO_IDX(src_entry->offset);
 1280 
 1281         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
 1282                 dst_object = src_object;
 1283                 vm_object_reference(dst_object);
 1284         } else {
 1285                 /*
 1286                  * Create the top-level object for the destination entry. (Doesn't
 1287                  * actually shadow anything - we copy the pages directly.)
 1288                  */
 1289                 dst_object = vm_object_allocate(OBJT_DEFAULT,
 1290                     OFF_TO_IDX(dst_entry->end - dst_entry->start));
 1291 #if VM_NRESERVLEVEL > 0
 1292                 dst_object->flags |= OBJ_COLORED;
 1293                 dst_object->pg_color = atop(dst_entry->start);
 1294 #endif
 1295         }
 1296 
 1297         VM_OBJECT_WLOCK(dst_object);
 1298         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
 1299             ("vm_fault_copy_entry: vm_object not NULL"));
 1300         if (src_object != dst_object) {
 1301                 dst_entry->object.vm_object = dst_object;
 1302                 dst_entry->offset = 0;
 1303                 dst_object->charge = dst_entry->end - dst_entry->start;
 1304         }
 1305         if (fork_charge != NULL) {
 1306                 KASSERT(dst_entry->cred == NULL,
 1307                     ("vm_fault_copy_entry: leaked swp charge"));
 1308                 dst_object->cred = curthread->td_ucred;
 1309                 crhold(dst_object->cred);
 1310                 *fork_charge += dst_object->charge;
 1311         } else if (dst_object->cred == NULL) {
 1312                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
 1313                     dst_entry));
 1314                 dst_object->cred = dst_entry->cred;
 1315                 dst_entry->cred = NULL;
 1316         }
 1317 
 1318         /*
 1319          * If not an upgrade, then enter the mappings in the pmap as
 1320          * read and/or execute accesses.  Otherwise, enter them as
 1321          * write accesses.
 1322          *
 1323          * A writeable large page mapping is only created if all of
 1324          * the constituent small page mappings are modified. Marking
 1325          * PTEs as modified on inception allows promotion to happen
 1326          * without taking potentially large number of soft faults.
 1327          */
 1328         if (!upgrade)
 1329                 access &= ~VM_PROT_WRITE;
 1330 
 1331         /*
 1332          * Loop through all of the virtual pages within the entry's
 1333          * range, copying each page from the source object to the
 1334          * destination object.  Since the source is wired, those pages
 1335          * must exist.  In contrast, the destination is pageable.
 1336          * Since the destination object does share any backing storage
 1337          * with the source object, all of its pages must be dirtied,
 1338          * regardless of whether they can be written.
 1339          */
 1340         for (vaddr = dst_entry->start, dst_pindex = 0;
 1341             vaddr < dst_entry->end;
 1342             vaddr += PAGE_SIZE, dst_pindex++) {
 1343 again:
 1344                 /*
 1345                  * Find the page in the source object, and copy it in.
 1346                  * Because the source is wired down, the page will be
 1347                  * in memory.
 1348                  */
 1349                 if (src_object != dst_object)
 1350                         VM_OBJECT_RLOCK(src_object);
 1351                 object = src_object;
 1352                 pindex = src_pindex + dst_pindex;
 1353                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
 1354                     (backing_object = object->backing_object) != NULL) {
 1355                         /*
 1356                          * Unless the source mapping is read-only or
 1357                          * it is presently being upgraded from
 1358                          * read-only, the first object in the shadow
 1359                          * chain should provide all of the pages.  In
 1360                          * other words, this loop body should never be
 1361                          * executed when the source mapping is already
 1362                          * read/write.
 1363                          */
 1364                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
 1365                             upgrade,
 1366                             ("vm_fault_copy_entry: main object missing page"));
 1367 
 1368                         VM_OBJECT_RLOCK(backing_object);
 1369                         pindex += OFF_TO_IDX(object->backing_object_offset);
 1370                         if (object != dst_object)
 1371                                 VM_OBJECT_RUNLOCK(object);
 1372                         object = backing_object;
 1373                 }
 1374                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
 1375 
 1376                 if (object != dst_object) {
 1377                         /*
 1378                          * Allocate a page in the destination object.
 1379                          */
 1380                         dst_m = vm_page_alloc(dst_object, (src_object ==
 1381                             dst_object ? src_pindex : 0) + dst_pindex,
 1382                             VM_ALLOC_NORMAL);
 1383                         if (dst_m == NULL) {
 1384                                 VM_OBJECT_WUNLOCK(dst_object);
 1385                                 VM_OBJECT_RUNLOCK(object);
 1386                                 VM_WAIT;
 1387                                 VM_OBJECT_WLOCK(dst_object);
 1388                                 goto again;
 1389                         }
 1390                         pmap_copy_page(src_m, dst_m);
 1391                         VM_OBJECT_RUNLOCK(object);
 1392                         dst_m->valid = VM_PAGE_BITS_ALL;
 1393                         dst_m->dirty = VM_PAGE_BITS_ALL;
 1394                 } else {
 1395                         dst_m = src_m;
 1396                         if (vm_page_sleep_if_busy(dst_m, "fltupg"))
 1397                                 goto again;
 1398                         vm_page_xbusy(dst_m);
 1399                         KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
 1400                             ("invalid dst page %p", dst_m));
 1401                 }
 1402                 VM_OBJECT_WUNLOCK(dst_object);
 1403 
 1404                 /*
 1405                  * Enter it in the pmap. If a wired, copy-on-write
 1406                  * mapping is being replaced by a write-enabled
 1407                  * mapping, then wire that new mapping.
 1408                  */
 1409                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
 1410                     access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
 1411 
 1412                 /*
 1413                  * Mark it no longer busy, and put it on the active list.
 1414                  */
 1415                 VM_OBJECT_WLOCK(dst_object);
 1416                 
 1417                 if (upgrade) {
 1418                         if (src_m != dst_m) {
 1419                                 vm_page_lock(src_m);
 1420                                 vm_page_unwire(src_m, 0);
 1421                                 vm_page_unlock(src_m);
 1422                                 vm_page_lock(dst_m);
 1423                                 vm_page_wire(dst_m);
 1424                                 vm_page_unlock(dst_m);
 1425                         } else {
 1426                                 KASSERT(dst_m->wire_count > 0,
 1427                                     ("dst_m %p is not wired", dst_m));
 1428                         }
 1429                 } else {
 1430                         vm_page_lock(dst_m);
 1431                         vm_page_activate(dst_m);
 1432                         vm_page_unlock(dst_m);
 1433                 }
 1434                 vm_page_xunbusy(dst_m);
 1435         }
 1436         VM_OBJECT_WUNLOCK(dst_object);
 1437         if (upgrade) {
 1438                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
 1439                 vm_object_deallocate(src_object);
 1440         }
 1441 }
 1442 
 1443 
 1444 /*
 1445  * This routine checks around the requested page for other pages that
 1446  * might be able to be faulted in.  This routine brackets the viable
 1447  * pages for the pages to be paged in.
 1448  *
 1449  * Inputs:
 1450  *      m, rbehind, rahead
 1451  *
 1452  * Outputs:
 1453  *  marray (array of vm_page_t), reqpage (index of requested page)
 1454  *
 1455  * Return value:
 1456  *  number of pages in marray
 1457  */
 1458 static int
 1459 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
 1460         vm_page_t m;
 1461         int rbehind;
 1462         int rahead;
 1463         vm_page_t *marray;
 1464         int *reqpage;
 1465 {
 1466         int i,j;
 1467         vm_object_t object;
 1468         vm_pindex_t pindex, startpindex, endpindex, tpindex;
 1469         vm_page_t rtm;
 1470         int cbehind, cahead;
 1471 
 1472         VM_OBJECT_ASSERT_WLOCKED(m->object);
 1473 
 1474         object = m->object;
 1475         pindex = m->pindex;
 1476         cbehind = cahead = 0;
 1477 
 1478         /*
 1479          * if the requested page is not available, then give up now
 1480          */
 1481         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
 1482                 return 0;
 1483         }
 1484 
 1485         if ((cbehind == 0) && (cahead == 0)) {
 1486                 *reqpage = 0;
 1487                 marray[0] = m;
 1488                 return 1;
 1489         }
 1490 
 1491         if (rahead > cahead) {
 1492                 rahead = cahead;
 1493         }
 1494 
 1495         if (rbehind > cbehind) {
 1496                 rbehind = cbehind;
 1497         }
 1498 
 1499         /*
 1500          * scan backward for the read behind pages -- in memory 
 1501          */
 1502         if (pindex > 0) {
 1503                 if (rbehind > pindex) {
 1504                         rbehind = pindex;
 1505                         startpindex = 0;
 1506                 } else {
 1507                         startpindex = pindex - rbehind;
 1508                 }
 1509 
 1510                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
 1511                     rtm->pindex >= startpindex)
 1512                         startpindex = rtm->pindex + 1;
 1513 
 1514                 /* tpindex is unsigned; beware of numeric underflow. */
 1515                 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
 1516                     tpindex < pindex; i++, tpindex--) {
 1517 
 1518                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
 1519                             VM_ALLOC_IFNOTCACHED);
 1520                         if (rtm == NULL) {
 1521                                 /*
 1522                                  * Shift the allocated pages to the
 1523                                  * beginning of the array.
 1524                                  */
 1525                                 for (j = 0; j < i; j++) {
 1526                                         marray[j] = marray[j + tpindex + 1 -
 1527                                             startpindex];
 1528                                 }
 1529                                 break;
 1530                         }
 1531 
 1532                         marray[tpindex - startpindex] = rtm;
 1533                 }
 1534         } else {
 1535                 startpindex = 0;
 1536                 i = 0;
 1537         }
 1538 
 1539         marray[i] = m;
 1540         /* page offset of the required page */
 1541         *reqpage = i;
 1542 
 1543         tpindex = pindex + 1;
 1544         i++;
 1545 
 1546         /*
 1547          * scan forward for the read ahead pages
 1548          */
 1549         endpindex = tpindex + rahead;
 1550         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
 1551                 endpindex = rtm->pindex;
 1552         if (endpindex > object->size)
 1553                 endpindex = object->size;
 1554 
 1555         for (; tpindex < endpindex; i++, tpindex++) {
 1556 
 1557                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
 1558                     VM_ALLOC_IFNOTCACHED);
 1559                 if (rtm == NULL) {
 1560                         break;
 1561                 }
 1562 
 1563                 marray[i] = rtm;
 1564         }
 1565 
 1566         /* return number of pages */
 1567         return i;
 1568 }
 1569 
 1570 /*
 1571  * Block entry into the machine-independent layer's page fault handler by
 1572  * the calling thread.  Subsequent calls to vm_fault() by that thread will
 1573  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
 1574  * spurious page faults. 
 1575  */
 1576 int
 1577 vm_fault_disable_pagefaults(void)
 1578 {
 1579 
 1580         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
 1581 }
 1582 
 1583 void
 1584 vm_fault_enable_pagefaults(int save)
 1585 {
 1586 
 1587         curthread_pflags_restore(save);
 1588 }

Cache object: 18a09a024dad2f67a8a01bd0b3b0c67e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.