FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_fault.c
1 /*-
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94
42 *
43 *
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
46 *
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
62 * School of Computer Science
63 * Carnegie Mellon University
64 * Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70 /*
71 * Page fault handling module.
72 */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/rwlock.h>
87 #include <sys/sysctl.h>
88 #include <sys/vmmeter.h>
89 #include <sys/vnode.h>
90 #ifdef KTRACE
91 #include <sys/ktrace.h>
92 #endif
93
94 #include <vm/vm.h>
95 #include <vm/vm_param.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_kern.h>
102 #include <vm/vm_pager.h>
103 #include <vm/vm_extern.h>
104 #include <vm/vm_reserv.h>
105
106 #define PFBAK 4
107 #define PFFOR 4
108
109 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
110
111 #define VM_FAULT_READ_BEHIND 8
112 #define VM_FAULT_READ_MAX (1 + VM_FAULT_READ_AHEAD_MAX)
113 #define VM_FAULT_NINCR (VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
114 #define VM_FAULT_SUM (VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
115 #define VM_FAULT_CACHE_BEHIND (VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
116
117 struct faultstate {
118 vm_page_t m;
119 vm_object_t object;
120 vm_pindex_t pindex;
121 vm_page_t first_m;
122 vm_object_t first_object;
123 vm_pindex_t first_pindex;
124 vm_map_t map;
125 vm_map_entry_t entry;
126 int lookup_still_valid;
127 int map_generation;
128 struct vnode *vp;
129 };
130
131 static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
132 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
133 int faultcount, int reqpage);
134
135 static inline void
136 release_page(struct faultstate *fs)
137 {
138
139 vm_page_xunbusy(fs->m);
140 vm_page_lock(fs->m);
141 vm_page_deactivate(fs->m);
142 vm_page_unlock(fs->m);
143 fs->m = NULL;
144 }
145
146 static inline void
147 unlock_map(struct faultstate *fs)
148 {
149
150 if (fs->lookup_still_valid) {
151 vm_map_lookup_done(fs->map, fs->entry);
152 fs->lookup_still_valid = FALSE;
153 }
154 }
155
156 static void
157 unlock_vp(struct faultstate *fs)
158 {
159
160 if (fs->vp != NULL) {
161 vput(fs->vp);
162 fs->vp = NULL;
163 }
164 }
165
166 static void
167 unlock_and_deallocate(struct faultstate *fs)
168 {
169
170 vm_object_pip_wakeup(fs->object);
171 VM_OBJECT_WUNLOCK(fs->object);
172 if (fs->object != fs->first_object) {
173 VM_OBJECT_WLOCK(fs->first_object);
174 vm_page_lock(fs->first_m);
175 vm_page_free(fs->first_m);
176 vm_page_unlock(fs->first_m);
177 vm_object_pip_wakeup(fs->first_object);
178 VM_OBJECT_WUNLOCK(fs->first_object);
179 fs->first_m = NULL;
180 }
181 vm_object_deallocate(fs->first_object);
182 unlock_map(fs);
183 unlock_vp(fs);
184 }
185
186 static void
187 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
188 vm_prot_t fault_type, int fault_flags, bool set_wd)
189 {
190 bool need_dirty;
191
192 if (((prot & VM_PROT_WRITE) == 0 &&
193 (fault_flags & VM_FAULT_DIRTY) == 0) ||
194 (m->oflags & VPO_UNMANAGED) != 0)
195 return;
196
197 VM_OBJECT_ASSERT_LOCKED(m->object);
198
199 need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
200 (fault_flags & VM_FAULT_WIRE) == 0) ||
201 (fault_flags & VM_FAULT_DIRTY) != 0;
202
203 if (set_wd)
204 vm_object_set_writeable_dirty(m->object);
205 else
206 /*
207 * If two callers of vm_fault_dirty() with set_wd ==
208 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
209 * flag set, other with flag clear, race, it is
210 * possible for the no-NOSYNC thread to see m->dirty
211 * != 0 and not clear VPO_NOSYNC. Take vm_page lock
212 * around manipulation of VPO_NOSYNC and
213 * vm_page_dirty() call, to avoid the race and keep
214 * m->oflags consistent.
215 */
216 vm_page_lock(m);
217
218 /*
219 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
220 * if the page is already dirty to prevent data written with
221 * the expectation of being synced from not being synced.
222 * Likewise if this entry does not request NOSYNC then make
223 * sure the page isn't marked NOSYNC. Applications sharing
224 * data should use the same flags to avoid ping ponging.
225 */
226 if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
227 if (m->dirty == 0) {
228 m->oflags |= VPO_NOSYNC;
229 }
230 } else {
231 m->oflags &= ~VPO_NOSYNC;
232 }
233
234 /*
235 * If the fault is a write, we know that this page is being
236 * written NOW so dirty it explicitly to save on
237 * pmap_is_modified() calls later.
238 *
239 * Also tell the backing pager, if any, that it should remove
240 * any swap backing since the page is now dirty.
241 */
242 if (need_dirty)
243 vm_page_dirty(m);
244 if (!set_wd)
245 vm_page_unlock(m);
246 if (need_dirty)
247 vm_pager_page_unswapped(m);
248 }
249
250 static void
251 vm_fault_fill_hold(vm_page_t *m_hold, vm_page_t m)
252 {
253
254 if (m_hold != NULL) {
255 *m_hold = m;
256 vm_page_lock(m);
257 vm_page_hold(m);
258 vm_page_unlock(m);
259 }
260 }
261
262 /*
263 * Unlocks fs.first_object and fs.map on success.
264 */
265 static int
266 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
267 int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
268 {
269 vm_page_t m;
270 int rv;
271
272 MPASS(fs->vp == NULL);
273 m = vm_page_lookup(fs->first_object, fs->first_pindex);
274 /* A busy page can be mapped for read|execute access. */
275 if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
276 vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
277 return (KERN_FAILURE);
278 rv = pmap_enter(fs->map->pmap, vaddr, m, prot, fault_type |
279 PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), 0);
280 if (rv != KERN_SUCCESS)
281 return (rv);
282 vm_fault_fill_hold(m_hold, m);
283 vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false);
284 VM_OBJECT_RUNLOCK(fs->first_object);
285 if (!wired)
286 vm_fault_prefault(fs, vaddr, 0, 0);
287 vm_map_lookup_done(fs->map, fs->entry);
288 curthread->td_ru.ru_minflt++;
289 return (KERN_SUCCESS);
290 }
291
292 /*
293 * vm_fault:
294 *
295 * Handle a page fault occurring at the given address,
296 * requiring the given permissions, in the map specified.
297 * If successful, the page is inserted into the
298 * associated physical map.
299 *
300 * NOTE: the given address should be truncated to the
301 * proper page address.
302 *
303 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
304 * a standard error specifying why the fault is fatal is returned.
305 *
306 * The map in question must be referenced, and remains so.
307 * Caller may hold no locks.
308 */
309 int
310 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
311 int fault_flags)
312 {
313 struct thread *td;
314 int result;
315
316 td = curthread;
317 if ((td->td_pflags & TDP_NOFAULTING) != 0)
318 return (KERN_PROTECTION_FAILURE);
319 #ifdef KTRACE
320 if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
321 ktrfault(vaddr, fault_type);
322 #endif
323 result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
324 NULL);
325 #ifdef KTRACE
326 if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
327 ktrfaultend(result);
328 #endif
329 return (result);
330 }
331
332 int
333 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
334 int fault_flags, vm_page_t *m_hold)
335 {
336 vm_prot_t prot;
337 long ahead, behind;
338 int alloc_req, era, faultcount, nera, reqpage, result;
339 boolean_t dead, is_first_object_locked, wired;
340 vm_object_t next_object;
341 vm_page_t marray[VM_FAULT_READ_MAX];
342 int hardfault;
343 struct faultstate fs;
344 struct vnode *vp;
345 int locked, error;
346
347 hardfault = 0;
348 PCPU_INC(cnt.v_vm_faults);
349 fs.vp = NULL;
350 faultcount = reqpage = 0;
351
352 RetryFault:;
353
354 /*
355 * Find the backing store object and offset into it to begin the
356 * search.
357 */
358 fs.map = map;
359 result = vm_map_lookup(&fs.map, vaddr, fault_type |
360 VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object,
361 &fs.first_pindex, &prot, &wired);
362 if (result != KERN_SUCCESS) {
363 unlock_vp(&fs);
364 return (result);
365 }
366
367 fs.map_generation = fs.map->timestamp;
368
369 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
370 panic("vm_fault: fault on nofault entry, addr: %lx",
371 (u_long)vaddr);
372 }
373
374 if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
375 fs.entry->wiring_thread != curthread) {
376 vm_map_unlock_read(fs.map);
377 vm_map_lock(fs.map);
378 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
379 (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
380 unlock_vp(&fs);
381 fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
382 vm_map_unlock_and_wait(fs.map, 0);
383 } else
384 vm_map_unlock(fs.map);
385 goto RetryFault;
386 }
387
388 MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0);
389
390 if (wired)
391 fault_type = prot | (fault_type & VM_PROT_COPY);
392 else
393 KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
394 ("!wired && VM_FAULT_WIRE"));
395
396 /*
397 * Try to avoid lock contention on the top-level object through
398 * special-case handling of some types of page faults, specifically,
399 * those that are both (1) mapping an existing page from the top-
400 * level object and (2) not having to mark that object as containing
401 * dirty pages. Under these conditions, a read lock on the top-level
402 * object suffices, allowing multiple page faults of a similar type to
403 * run in parallel on the same top-level object.
404 */
405 if (fs.vp == NULL /* avoid locked vnode leak */ &&
406 (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
407 /* avoid calling vm_object_set_writeable_dirty() */
408 ((prot & VM_PROT_WRITE) == 0 ||
409 (fs.first_object->type != OBJT_VNODE &&
410 (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
411 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
412 VM_OBJECT_RLOCK(fs.first_object);
413 if ((prot & VM_PROT_WRITE) == 0 ||
414 (fs.first_object->type != OBJT_VNODE &&
415 (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
416 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) {
417 result = vm_fault_soft_fast(&fs, vaddr, prot,
418 fault_type, fault_flags, wired, m_hold);
419 if (result == KERN_SUCCESS)
420 return (result);
421 }
422 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
423 VM_OBJECT_RUNLOCK(fs.first_object);
424 VM_OBJECT_WLOCK(fs.first_object);
425 }
426 } else {
427 VM_OBJECT_WLOCK(fs.first_object);
428 }
429
430 /*
431 * Make a reference to this object to prevent its disposal while we
432 * are messing with it. Once we have the reference, the map is free
433 * to be diddled. Since objects reference their shadows (and copies),
434 * they will stay around as well.
435 *
436 * Bump the paging-in-progress count to prevent size changes (e.g.
437 * truncation operations) during I/O. This must be done after
438 * obtaining the vnode lock in order to avoid possible deadlocks.
439 */
440 vm_object_reference_locked(fs.first_object);
441 vm_object_pip_add(fs.first_object, 1);
442
443 fs.lookup_still_valid = TRUE;
444
445 fs.first_m = NULL;
446
447 /*
448 * Search for the page at object/offset.
449 */
450 fs.object = fs.first_object;
451 fs.pindex = fs.first_pindex;
452 while (TRUE) {
453 /*
454 * If the object is marked for imminent termination,
455 * we retry here, since the collapse pass has raced
456 * with us. Otherwise, if we see terminally dead
457 * object, return fail.
458 */
459 if ((fs.object->flags & OBJ_DEAD) != 0) {
460 dead = fs.object->type == OBJT_DEAD;
461 unlock_and_deallocate(&fs);
462 if (dead)
463 return (KERN_PROTECTION_FAILURE);
464 pause("vmf_de", 1);
465 goto RetryFault;
466 }
467
468 /*
469 * See if page is resident
470 */
471 fs.m = vm_page_lookup(fs.object, fs.pindex);
472 if (fs.m != NULL) {
473 /*
474 * Wait/Retry if the page is busy. We have to do this
475 * if the page is either exclusive or shared busy
476 * because the vm_pager may be using read busy for
477 * pageouts (and even pageins if it is the vnode
478 * pager), and we could end up trying to pagein and
479 * pageout the same page simultaneously.
480 *
481 * We can theoretically allow the busy case on a read
482 * fault if the page is marked valid, but since such
483 * pages are typically already pmap'd, putting that
484 * special case in might be more effort then it is
485 * worth. We cannot under any circumstances mess
486 * around with a shared busied page except, perhaps,
487 * to pmap it.
488 */
489 if (vm_page_busied(fs.m)) {
490 /*
491 * Reference the page before unlocking and
492 * sleeping so that the page daemon is less
493 * likely to reclaim it.
494 */
495 vm_page_aflag_set(fs.m, PGA_REFERENCED);
496 if (fs.object != fs.first_object) {
497 if (!VM_OBJECT_TRYWLOCK(
498 fs.first_object)) {
499 VM_OBJECT_WUNLOCK(fs.object);
500 VM_OBJECT_WLOCK(fs.first_object);
501 VM_OBJECT_WLOCK(fs.object);
502 }
503 vm_page_lock(fs.first_m);
504 vm_page_free(fs.first_m);
505 vm_page_unlock(fs.first_m);
506 vm_object_pip_wakeup(fs.first_object);
507 VM_OBJECT_WUNLOCK(fs.first_object);
508 fs.first_m = NULL;
509 }
510 unlock_map(&fs);
511 if (fs.m == vm_page_lookup(fs.object,
512 fs.pindex)) {
513 vm_page_sleep_if_busy(fs.m, "vmpfw");
514 }
515 vm_object_pip_wakeup(fs.object);
516 VM_OBJECT_WUNLOCK(fs.object);
517 PCPU_INC(cnt.v_intrans);
518 vm_object_deallocate(fs.first_object);
519 goto RetryFault;
520 }
521 vm_page_lock(fs.m);
522 vm_page_remque(fs.m);
523 vm_page_unlock(fs.m);
524
525 /*
526 * Mark page busy for other processes, and the
527 * pagedaemon. If it still isn't completely valid
528 * (readable), jump to readrest, else break-out ( we
529 * found the page ).
530 */
531 vm_page_xbusy(fs.m);
532 if (fs.m->valid != VM_PAGE_BITS_ALL)
533 goto readrest;
534 break;
535 }
536
537 /*
538 * Page is not resident. If this is the search termination
539 * or the pager might contain the page, allocate a new page.
540 * Default objects are zero-fill, there is no real pager.
541 */
542 if (fs.object->type != OBJT_DEFAULT ||
543 fs.object == fs.first_object) {
544 if (fs.pindex >= fs.object->size) {
545 unlock_and_deallocate(&fs);
546 return (KERN_PROTECTION_FAILURE);
547 }
548
549 /*
550 * Allocate a new page for this object/offset pair.
551 *
552 * Unlocked read of the p_flag is harmless. At
553 * worst, the P_KILLED might be not observed
554 * there, and allocation can fail, causing
555 * restart and new reading of the p_flag.
556 */
557 fs.m = NULL;
558 if (!vm_page_count_severe() || P_KILLED(curproc)) {
559 #if VM_NRESERVLEVEL > 0
560 if ((fs.object->flags & OBJ_COLORED) == 0) {
561 fs.object->flags |= OBJ_COLORED;
562 fs.object->pg_color = atop(vaddr) -
563 fs.pindex;
564 }
565 #endif
566 alloc_req = P_KILLED(curproc) ?
567 VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
568 if (fs.object->type != OBJT_VNODE &&
569 fs.object->backing_object == NULL)
570 alloc_req |= VM_ALLOC_ZERO;
571 fs.m = vm_page_alloc(fs.object, fs.pindex,
572 alloc_req);
573 }
574 if (fs.m == NULL) {
575 unlock_and_deallocate(&fs);
576 VM_WAITPFAULT;
577 goto RetryFault;
578 } else if (fs.m->valid == VM_PAGE_BITS_ALL)
579 break;
580 }
581
582 readrest:
583 /*
584 * We have found a valid page or we have allocated a new page.
585 * The page thus may not be valid or may not be entirely
586 * valid.
587 *
588 * Attempt to fault-in the page if there is a chance that the
589 * pager has it, and potentially fault in additional pages
590 * at the same time. For default objects simply provide
591 * zero-filled pages.
592 */
593 if (fs.object->type != OBJT_DEFAULT) {
594 int rv;
595 u_char behavior = vm_map_entry_behavior(fs.entry);
596
597 if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
598 P_KILLED(curproc)) {
599 behind = 0;
600 ahead = 0;
601 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
602 behind = 0;
603 ahead = atop(fs.entry->end - vaddr) - 1;
604 if (ahead > VM_FAULT_READ_AHEAD_MAX)
605 ahead = VM_FAULT_READ_AHEAD_MAX;
606 if (fs.pindex == fs.entry->next_read)
607 vm_fault_cache_behind(&fs,
608 VM_FAULT_READ_MAX);
609 } else {
610 /*
611 * If this is a sequential page fault, then
612 * arithmetically increase the number of pages
613 * in the read-ahead window. Otherwise, reset
614 * the read-ahead window to its smallest size.
615 */
616 behind = atop(vaddr - fs.entry->start);
617 if (behind > VM_FAULT_READ_BEHIND)
618 behind = VM_FAULT_READ_BEHIND;
619 ahead = atop(fs.entry->end - vaddr) - 1;
620 era = fs.entry->read_ahead;
621 if (fs.pindex == fs.entry->next_read) {
622 nera = era + behind;
623 if (nera > VM_FAULT_READ_AHEAD_MAX)
624 nera = VM_FAULT_READ_AHEAD_MAX;
625 behind = 0;
626 if (ahead > nera)
627 ahead = nera;
628 if (era == VM_FAULT_READ_AHEAD_MAX)
629 vm_fault_cache_behind(&fs,
630 VM_FAULT_CACHE_BEHIND);
631 } else if (ahead > VM_FAULT_READ_AHEAD_MIN)
632 ahead = VM_FAULT_READ_AHEAD_MIN;
633 if (era != ahead)
634 fs.entry->read_ahead = ahead;
635 }
636
637 /*
638 * Call the pager to retrieve the data, if any, after
639 * releasing the lock on the map. We hold a ref on
640 * fs.object and the pages are exclusive busied.
641 */
642 unlock_map(&fs);
643
644 if (fs.object->type == OBJT_VNODE &&
645 (vp = fs.object->handle) != fs.vp) {
646 unlock_vp(&fs);
647 locked = VOP_ISLOCKED(vp);
648
649 if (locked != LK_EXCLUSIVE)
650 locked = LK_SHARED;
651 /* Do not sleep for vnode lock while fs.m is busy */
652 error = vget(vp, locked | LK_CANRECURSE |
653 LK_NOWAIT, curthread);
654 if (error != 0) {
655 vhold(vp);
656 release_page(&fs);
657 unlock_and_deallocate(&fs);
658 error = vget(vp, locked | LK_RETRY |
659 LK_CANRECURSE, curthread);
660 vdrop(vp);
661 fs.vp = vp;
662 KASSERT(error == 0,
663 ("vm_fault: vget failed"));
664 goto RetryFault;
665 }
666 fs.vp = vp;
667 }
668 KASSERT(fs.vp == NULL || !fs.map->system_map,
669 ("vm_fault: vnode-backed object mapped by system map"));
670
671 /*
672 * now we find out if any other pages should be paged
673 * in at this time this routine checks to see if the
674 * pages surrounding this fault reside in the same
675 * object as the page for this fault. If they do,
676 * then they are faulted in also into the object. The
677 * array "marray" returned contains an array of
678 * vm_page_t structs where one of them is the
679 * vm_page_t passed to the routine. The reqpage
680 * return value is the index into the marray for the
681 * vm_page_t passed to the routine.
682 *
683 * fs.m plus the additional pages are exclusive busied.
684 */
685 faultcount = vm_fault_additional_pages(
686 fs.m, behind, ahead, marray, &reqpage);
687
688 rv = faultcount ?
689 vm_pager_get_pages(fs.object, marray, faultcount,
690 reqpage) : VM_PAGER_FAIL;
691
692 if (rv == VM_PAGER_OK) {
693 /*
694 * Found the page. Leave it busy while we play
695 * with it.
696 */
697
698 /*
699 * Relookup in case pager changed page. Pager
700 * is responsible for disposition of old page
701 * if moved.
702 */
703 fs.m = vm_page_lookup(fs.object, fs.pindex);
704 if (!fs.m) {
705 unlock_and_deallocate(&fs);
706 goto RetryFault;
707 }
708
709 hardfault++;
710 break; /* break to PAGE HAS BEEN FOUND */
711 }
712 /*
713 * Remove the bogus page (which does not exist at this
714 * object/offset); before doing so, we must get back
715 * our object lock to preserve our invariant.
716 *
717 * Also wake up any other process that may want to bring
718 * in this page.
719 *
720 * If this is the top-level object, we must leave the
721 * busy page to prevent another process from rushing
722 * past us, and inserting the page in that object at
723 * the same time that we are.
724 */
725 if (rv == VM_PAGER_ERROR)
726 printf("vm_fault: pager read error, pid %d (%s)\n",
727 curproc->p_pid, curproc->p_comm);
728 /*
729 * Data outside the range of the pager or an I/O error
730 */
731 /*
732 * XXX - the check for kernel_map is a kludge to work
733 * around having the machine panic on a kernel space
734 * fault w/ I/O error.
735 */
736 if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
737 (rv == VM_PAGER_BAD)) {
738 vm_page_lock(fs.m);
739 vm_page_free(fs.m);
740 vm_page_unlock(fs.m);
741 fs.m = NULL;
742 unlock_and_deallocate(&fs);
743 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
744 }
745 if (fs.object != fs.first_object) {
746 vm_page_lock(fs.m);
747 vm_page_free(fs.m);
748 vm_page_unlock(fs.m);
749 fs.m = NULL;
750 /*
751 * XXX - we cannot just fall out at this
752 * point, m has been freed and is invalid!
753 */
754 }
755 }
756
757 /*
758 * We get here if the object has default pager (or unwiring)
759 * or the pager doesn't have the page.
760 */
761 if (fs.object == fs.first_object)
762 fs.first_m = fs.m;
763
764 /*
765 * Move on to the next object. Lock the next object before
766 * unlocking the current one.
767 */
768 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
769 next_object = fs.object->backing_object;
770 if (next_object == NULL) {
771 /*
772 * If there's no object left, fill the page in the top
773 * object with zeros.
774 */
775 if (fs.object != fs.first_object) {
776 vm_object_pip_wakeup(fs.object);
777 VM_OBJECT_WUNLOCK(fs.object);
778
779 fs.object = fs.first_object;
780 fs.pindex = fs.first_pindex;
781 fs.m = fs.first_m;
782 VM_OBJECT_WLOCK(fs.object);
783 }
784 fs.first_m = NULL;
785
786 /*
787 * Zero the page if necessary and mark it valid.
788 */
789 if ((fs.m->flags & PG_ZERO) == 0) {
790 pmap_zero_page(fs.m);
791 } else {
792 PCPU_INC(cnt.v_ozfod);
793 }
794 PCPU_INC(cnt.v_zfod);
795 fs.m->valid = VM_PAGE_BITS_ALL;
796 /* Don't try to prefault neighboring pages. */
797 faultcount = 1;
798 break; /* break to PAGE HAS BEEN FOUND */
799 } else {
800 KASSERT(fs.object != next_object,
801 ("object loop %p", next_object));
802 VM_OBJECT_WLOCK(next_object);
803 vm_object_pip_add(next_object, 1);
804 if (fs.object != fs.first_object)
805 vm_object_pip_wakeup(fs.object);
806 VM_OBJECT_WUNLOCK(fs.object);
807 fs.object = next_object;
808 }
809 }
810
811 vm_page_assert_xbusied(fs.m);
812
813 /*
814 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
815 * is held.]
816 */
817
818 /*
819 * If the page is being written, but isn't already owned by the
820 * top-level object, we have to copy it into a new page owned by the
821 * top-level object.
822 */
823 if (fs.object != fs.first_object) {
824 /*
825 * We only really need to copy if we want to write it.
826 */
827 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
828 /*
829 * This allows pages to be virtually copied from a
830 * backing_object into the first_object, where the
831 * backing object has no other refs to it, and cannot
832 * gain any more refs. Instead of a bcopy, we just
833 * move the page from the backing object to the
834 * first object. Note that we must mark the page
835 * dirty in the first object so that it will go out
836 * to swap when needed.
837 */
838 is_first_object_locked = FALSE;
839 if (
840 /*
841 * Only one shadow object
842 */
843 (fs.object->shadow_count == 1) &&
844 /*
845 * No COW refs, except us
846 */
847 (fs.object->ref_count == 1) &&
848 /*
849 * No one else can look this object up
850 */
851 (fs.object->handle == NULL) &&
852 /*
853 * No other ways to look the object up
854 */
855 ((fs.object->type == OBJT_DEFAULT) ||
856 (fs.object->type == OBJT_SWAP)) &&
857 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
858 /*
859 * We don't chase down the shadow chain
860 */
861 fs.object == fs.first_object->backing_object) {
862 /*
863 * get rid of the unnecessary page
864 */
865 vm_page_lock(fs.first_m);
866 vm_page_free(fs.first_m);
867 vm_page_unlock(fs.first_m);
868 /*
869 * grab the page and put it into the
870 * process'es object. The page is
871 * automatically made dirty.
872 */
873 if (vm_page_rename(fs.m, fs.first_object,
874 fs.first_pindex)) {
875 unlock_and_deallocate(&fs);
876 goto RetryFault;
877 }
878 #if VM_NRESERVLEVEL > 0
879 /*
880 * Rename the reservation.
881 */
882 vm_reserv_rename(fs.m, fs.first_object,
883 fs.object, OFF_TO_IDX(
884 fs.first_object->backing_object_offset));
885 #endif
886 vm_page_xbusy(fs.m);
887 fs.first_m = fs.m;
888 fs.m = NULL;
889 PCPU_INC(cnt.v_cow_optim);
890 } else {
891 /*
892 * Oh, well, lets copy it.
893 */
894 pmap_copy_page(fs.m, fs.first_m);
895 fs.first_m->valid = VM_PAGE_BITS_ALL;
896 if ((fault_flags & VM_FAULT_WIRE) == 0) {
897 prot &= ~VM_PROT_WRITE;
898 fault_type &= ~VM_PROT_WRITE;
899 }
900 if (wired && (fault_flags &
901 VM_FAULT_WIRE) == 0) {
902 vm_page_lock(fs.first_m);
903 vm_page_wire(fs.first_m);
904 vm_page_unlock(fs.first_m);
905
906 vm_page_lock(fs.m);
907 vm_page_unwire(fs.m, FALSE);
908 vm_page_unlock(fs.m);
909 }
910 /*
911 * We no longer need the old page or object.
912 */
913 release_page(&fs);
914 }
915 /*
916 * fs.object != fs.first_object due to above
917 * conditional
918 */
919 vm_object_pip_wakeup(fs.object);
920 VM_OBJECT_WUNLOCK(fs.object);
921 /*
922 * Only use the new page below...
923 */
924 fs.object = fs.first_object;
925 fs.pindex = fs.first_pindex;
926 fs.m = fs.first_m;
927 if (!is_first_object_locked)
928 VM_OBJECT_WLOCK(fs.object);
929 PCPU_INC(cnt.v_cow_faults);
930 curthread->td_cow++;
931 } else {
932 prot &= ~VM_PROT_WRITE;
933 }
934 }
935
936 /*
937 * We must verify that the maps have not changed since our last
938 * lookup.
939 */
940 if (!fs.lookup_still_valid) {
941 vm_object_t retry_object;
942 vm_pindex_t retry_pindex;
943 vm_prot_t retry_prot;
944
945 if (!vm_map_trylock_read(fs.map)) {
946 release_page(&fs);
947 unlock_and_deallocate(&fs);
948 goto RetryFault;
949 }
950 fs.lookup_still_valid = TRUE;
951 if (fs.map->timestamp != fs.map_generation) {
952 result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
953 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
954
955 /*
956 * If we don't need the page any longer, put it on the inactive
957 * list (the easiest thing to do here). If no one needs it,
958 * pageout will grab it eventually.
959 */
960 if (result != KERN_SUCCESS) {
961 release_page(&fs);
962 unlock_and_deallocate(&fs);
963
964 /*
965 * If retry of map lookup would have blocked then
966 * retry fault from start.
967 */
968 if (result == KERN_FAILURE)
969 goto RetryFault;
970 return (result);
971 }
972 if ((retry_object != fs.first_object) ||
973 (retry_pindex != fs.first_pindex)) {
974 release_page(&fs);
975 unlock_and_deallocate(&fs);
976 goto RetryFault;
977 }
978
979 /*
980 * Check whether the protection has changed or the object has
981 * been copied while we left the map unlocked. Changing from
982 * read to write permission is OK - we leave the page
983 * write-protected, and catch the write fault. Changing from
984 * write to read permission means that we can't mark the page
985 * write-enabled after all.
986 */
987 prot &= retry_prot;
988 }
989 }
990 /*
991 * If the page was filled by a pager, update the map entry's
992 * last read offset. Since the pager does not return the
993 * actual set of pages that it read, this update is based on
994 * the requested set. Typically, the requested and actual
995 * sets are the same.
996 *
997 * XXX The following assignment modifies the map
998 * without holding a write lock on it.
999 */
1000 if (hardfault)
1001 fs.entry->next_read = fs.pindex + faultcount - reqpage;
1002
1003 vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true);
1004 vm_page_assert_xbusied(fs.m);
1005
1006 /*
1007 * Page must be completely valid or it is not fit to
1008 * map into user space. vm_pager_get_pages() ensures this.
1009 */
1010 KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
1011 ("vm_fault: page %p partially invalid", fs.m));
1012 VM_OBJECT_WUNLOCK(fs.object);
1013
1014 /*
1015 * Put this page into the physical map. We had to do the unlock above
1016 * because pmap_enter() may sleep. We don't put the page
1017 * back on the active queue until later so that the pageout daemon
1018 * won't find it (yet).
1019 */
1020 pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1021 fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1022 if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1023 wired == 0)
1024 vm_fault_prefault(&fs, vaddr, faultcount, reqpage);
1025 VM_OBJECT_WLOCK(fs.object);
1026 vm_page_lock(fs.m);
1027
1028 /*
1029 * If the page is not wired down, then put it where the pageout daemon
1030 * can find it.
1031 */
1032 if ((fault_flags & VM_FAULT_WIRE) != 0) {
1033 KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
1034 vm_page_wire(fs.m);
1035 } else
1036 vm_page_activate(fs.m);
1037 if (m_hold != NULL) {
1038 *m_hold = fs.m;
1039 vm_page_hold(fs.m);
1040 }
1041 vm_page_unlock(fs.m);
1042 vm_page_xunbusy(fs.m);
1043
1044 /*
1045 * Unlock everything, and return
1046 */
1047 unlock_and_deallocate(&fs);
1048 if (hardfault) {
1049 PCPU_INC(cnt.v_io_faults);
1050 curthread->td_ru.ru_majflt++;
1051 } else
1052 curthread->td_ru.ru_minflt++;
1053
1054 return (KERN_SUCCESS);
1055 }
1056
1057 /*
1058 * Speed up the reclamation of up to "distance" pages that precede the
1059 * faulting pindex within the first object of the shadow chain.
1060 */
1061 static void
1062 vm_fault_cache_behind(const struct faultstate *fs, int distance)
1063 {
1064 vm_object_t first_object, object;
1065 vm_page_t m, m_prev;
1066 vm_pindex_t pindex;
1067
1068 object = fs->object;
1069 VM_OBJECT_ASSERT_WLOCKED(object);
1070 first_object = fs->first_object;
1071 if (first_object != object) {
1072 if (!VM_OBJECT_TRYWLOCK(first_object)) {
1073 VM_OBJECT_WUNLOCK(object);
1074 VM_OBJECT_WLOCK(first_object);
1075 VM_OBJECT_WLOCK(object);
1076 }
1077 }
1078 /* Neither fictitious nor unmanaged pages can be cached. */
1079 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1080 if (fs->first_pindex < distance)
1081 pindex = 0;
1082 else
1083 pindex = fs->first_pindex - distance;
1084 if (pindex < OFF_TO_IDX(fs->entry->offset))
1085 pindex = OFF_TO_IDX(fs->entry->offset);
1086 m = first_object != object ? fs->first_m : fs->m;
1087 vm_page_assert_xbusied(m);
1088 m_prev = vm_page_prev(m);
1089 while ((m = m_prev) != NULL && m->pindex >= pindex &&
1090 m->valid == VM_PAGE_BITS_ALL) {
1091 m_prev = vm_page_prev(m);
1092 if (vm_page_busied(m))
1093 continue;
1094 vm_page_lock(m);
1095 if (m->hold_count == 0 && m->wire_count == 0) {
1096 pmap_remove_all(m);
1097 vm_page_aflag_clear(m, PGA_REFERENCED);
1098 if (m->dirty != 0)
1099 vm_page_deactivate(m);
1100 else
1101 vm_page_cache(m);
1102 }
1103 vm_page_unlock(m);
1104 }
1105 }
1106 if (first_object != object)
1107 VM_OBJECT_WUNLOCK(first_object);
1108 }
1109
1110 /*
1111 * vm_fault_prefault provides a quick way of clustering
1112 * pagefaults into a processes address space. It is a "cousin"
1113 * of vm_map_pmap_enter, except it runs at page fault time instead
1114 * of mmap time.
1115 */
1116 static void
1117 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1118 int faultcount, int reqpage)
1119 {
1120 pmap_t pmap;
1121 vm_map_entry_t entry;
1122 vm_object_t backing_object, lobject;
1123 vm_offset_t addr, starta;
1124 vm_pindex_t pindex;
1125 vm_page_t m;
1126 int backward, forward, i;
1127
1128 pmap = fs->map->pmap;
1129 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1130 return;
1131
1132 if (faultcount > 0) {
1133 backward = reqpage;
1134 forward = faultcount - reqpage - 1;
1135 } else {
1136 backward = PFBAK;
1137 forward = PFFOR;
1138 }
1139 entry = fs->entry;
1140
1141 if (addra < backward * PAGE_SIZE) {
1142 starta = entry->start;
1143 } else {
1144 starta = addra - backward * PAGE_SIZE;
1145 if (starta < entry->start)
1146 starta = entry->start;
1147 }
1148
1149 /*
1150 * Generate the sequence of virtual addresses that are candidates for
1151 * prefaulting in an outward spiral from the faulting virtual address,
1152 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra
1153 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1154 * If the candidate address doesn't have a backing physical page, then
1155 * the loop immediately terminates.
1156 */
1157 for (i = 0; i < 2 * imax(backward, forward); i++) {
1158 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1159 PAGE_SIZE);
1160 if (addr > addra + forward * PAGE_SIZE)
1161 addr = 0;
1162
1163 if (addr < starta || addr >= entry->end)
1164 continue;
1165
1166 if (!pmap_is_prefaultable(pmap, addr))
1167 continue;
1168
1169 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1170 lobject = entry->object.vm_object;
1171 VM_OBJECT_RLOCK(lobject);
1172 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1173 lobject->type == OBJT_DEFAULT &&
1174 (backing_object = lobject->backing_object) != NULL) {
1175 KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1176 0, ("vm_fault_prefault: unaligned object offset"));
1177 pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1178 VM_OBJECT_RLOCK(backing_object);
1179 VM_OBJECT_RUNLOCK(lobject);
1180 lobject = backing_object;
1181 }
1182 if (m == NULL) {
1183 VM_OBJECT_RUNLOCK(lobject);
1184 break;
1185 }
1186 if (m->valid == VM_PAGE_BITS_ALL &&
1187 (m->flags & PG_FICTITIOUS) == 0)
1188 pmap_enter_quick(pmap, addr, m, entry->protection);
1189 VM_OBJECT_RUNLOCK(lobject);
1190 }
1191 }
1192
1193 /*
1194 * Hold each of the physical pages that are mapped by the specified range of
1195 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1196 * and allow the specified types of access, "prot". If all of the implied
1197 * pages are successfully held, then the number of held pages is returned
1198 * together with pointers to those pages in the array "ma". However, if any
1199 * of the pages cannot be held, -1 is returned.
1200 */
1201 int
1202 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1203 vm_prot_t prot, vm_page_t *ma, int max_count)
1204 {
1205 vm_offset_t end, va;
1206 vm_page_t *mp;
1207 int count;
1208 boolean_t pmap_failed;
1209
1210 if (len == 0)
1211 return (0);
1212 end = round_page(addr + len);
1213 addr = trunc_page(addr);
1214
1215 /*
1216 * Check for illegal addresses.
1217 */
1218 if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1219 return (-1);
1220
1221 if (atop(end - addr) > max_count)
1222 panic("vm_fault_quick_hold_pages: count > max_count");
1223 count = atop(end - addr);
1224
1225 /*
1226 * Most likely, the physical pages are resident in the pmap, so it is
1227 * faster to try pmap_extract_and_hold() first.
1228 */
1229 pmap_failed = FALSE;
1230 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1231 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1232 if (*mp == NULL)
1233 pmap_failed = TRUE;
1234 else if ((prot & VM_PROT_WRITE) != 0 &&
1235 (*mp)->dirty != VM_PAGE_BITS_ALL) {
1236 /*
1237 * Explicitly dirty the physical page. Otherwise, the
1238 * caller's changes may go unnoticed because they are
1239 * performed through an unmanaged mapping or by a DMA
1240 * operation.
1241 *
1242 * The object lock is not held here.
1243 * See vm_page_clear_dirty_mask().
1244 */
1245 vm_page_dirty(*mp);
1246 }
1247 }
1248 if (pmap_failed) {
1249 /*
1250 * One or more pages could not be held by the pmap. Either no
1251 * page was mapped at the specified virtual address or that
1252 * mapping had insufficient permissions. Attempt to fault in
1253 * and hold these pages.
1254 */
1255 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1256 if (*mp == NULL && vm_fault_hold(map, va, prot,
1257 VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1258 goto error;
1259 }
1260 return (count);
1261 error:
1262 for (mp = ma; mp < ma + count; mp++)
1263 if (*mp != NULL) {
1264 vm_page_lock(*mp);
1265 vm_page_unhold(*mp);
1266 vm_page_unlock(*mp);
1267 }
1268 return (-1);
1269 }
1270
1271 /*
1272 * Routine:
1273 * vm_fault_copy_entry
1274 * Function:
1275 * Create new shadow object backing dst_entry with private copy of
1276 * all underlying pages. When src_entry is equal to dst_entry,
1277 * function implements COW for wired-down map entry. Otherwise,
1278 * it forks wired entry into dst_map.
1279 *
1280 * In/out conditions:
1281 * The source and destination maps must be locked for write.
1282 * The source map entry must be wired down (or be a sharing map
1283 * entry corresponding to a main map entry that is wired down).
1284 */
1285 void
1286 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1287 vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1288 vm_ooffset_t *fork_charge)
1289 {
1290 vm_object_t backing_object, dst_object, object, src_object;
1291 vm_pindex_t dst_pindex, pindex, src_pindex;
1292 vm_prot_t access, prot;
1293 vm_offset_t vaddr;
1294 vm_page_t dst_m;
1295 vm_page_t src_m;
1296 boolean_t upgrade;
1297
1298 #ifdef lint
1299 src_map++;
1300 #endif /* lint */
1301
1302 upgrade = src_entry == dst_entry;
1303 access = prot = dst_entry->protection;
1304
1305 src_object = src_entry->object.vm_object;
1306 src_pindex = OFF_TO_IDX(src_entry->offset);
1307
1308 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1309 dst_object = src_object;
1310 vm_object_reference(dst_object);
1311 } else {
1312 /*
1313 * Create the top-level object for the destination entry. (Doesn't
1314 * actually shadow anything - we copy the pages directly.)
1315 */
1316 dst_object = vm_object_allocate(OBJT_DEFAULT,
1317 OFF_TO_IDX(dst_entry->end - dst_entry->start));
1318 #if VM_NRESERVLEVEL > 0
1319 dst_object->flags |= OBJ_COLORED;
1320 dst_object->pg_color = atop(dst_entry->start);
1321 #endif
1322 }
1323
1324 VM_OBJECT_WLOCK(dst_object);
1325 KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1326 ("vm_fault_copy_entry: vm_object not NULL"));
1327 if (src_object != dst_object) {
1328 dst_entry->object.vm_object = dst_object;
1329 dst_entry->offset = 0;
1330 dst_object->charge = dst_entry->end - dst_entry->start;
1331 }
1332 if (fork_charge != NULL) {
1333 KASSERT(dst_entry->cred == NULL,
1334 ("vm_fault_copy_entry: leaked swp charge"));
1335 dst_object->cred = curthread->td_ucred;
1336 crhold(dst_object->cred);
1337 *fork_charge += dst_object->charge;
1338 } else if (dst_object->cred == NULL) {
1339 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1340 dst_entry));
1341 dst_object->cred = dst_entry->cred;
1342 dst_entry->cred = NULL;
1343 }
1344
1345 /*
1346 * If not an upgrade, then enter the mappings in the pmap as
1347 * read and/or execute accesses. Otherwise, enter them as
1348 * write accesses.
1349 *
1350 * A writeable large page mapping is only created if all of
1351 * the constituent small page mappings are modified. Marking
1352 * PTEs as modified on inception allows promotion to happen
1353 * without taking potentially large number of soft faults.
1354 */
1355 if (!upgrade)
1356 access &= ~VM_PROT_WRITE;
1357
1358 /*
1359 * Loop through all of the virtual pages within the entry's
1360 * range, copying each page from the source object to the
1361 * destination object. Since the source is wired, those pages
1362 * must exist. In contrast, the destination is pageable.
1363 * Since the destination object does share any backing storage
1364 * with the source object, all of its pages must be dirtied,
1365 * regardless of whether they can be written.
1366 */
1367 for (vaddr = dst_entry->start, dst_pindex = 0;
1368 vaddr < dst_entry->end;
1369 vaddr += PAGE_SIZE, dst_pindex++) {
1370 again:
1371 /*
1372 * Find the page in the source object, and copy it in.
1373 * Because the source is wired down, the page will be
1374 * in memory.
1375 */
1376 if (src_object != dst_object)
1377 VM_OBJECT_RLOCK(src_object);
1378 object = src_object;
1379 pindex = src_pindex + dst_pindex;
1380 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1381 (backing_object = object->backing_object) != NULL) {
1382 /*
1383 * Unless the source mapping is read-only or
1384 * it is presently being upgraded from
1385 * read-only, the first object in the shadow
1386 * chain should provide all of the pages. In
1387 * other words, this loop body should never be
1388 * executed when the source mapping is already
1389 * read/write.
1390 */
1391 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1392 upgrade,
1393 ("vm_fault_copy_entry: main object missing page"));
1394
1395 VM_OBJECT_RLOCK(backing_object);
1396 pindex += OFF_TO_IDX(object->backing_object_offset);
1397 if (object != dst_object)
1398 VM_OBJECT_RUNLOCK(object);
1399 object = backing_object;
1400 }
1401 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1402
1403 if (object != dst_object) {
1404 /*
1405 * Allocate a page in the destination object.
1406 */
1407 dst_m = vm_page_alloc(dst_object, (src_object ==
1408 dst_object ? src_pindex : 0) + dst_pindex,
1409 VM_ALLOC_NORMAL);
1410 if (dst_m == NULL) {
1411 VM_OBJECT_WUNLOCK(dst_object);
1412 VM_OBJECT_RUNLOCK(object);
1413 VM_WAIT;
1414 VM_OBJECT_WLOCK(dst_object);
1415 goto again;
1416 }
1417 pmap_copy_page(src_m, dst_m);
1418 VM_OBJECT_RUNLOCK(object);
1419 dst_m->valid = VM_PAGE_BITS_ALL;
1420 dst_m->dirty = VM_PAGE_BITS_ALL;
1421 } else {
1422 dst_m = src_m;
1423 if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1424 goto again;
1425 vm_page_xbusy(dst_m);
1426 KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1427 ("invalid dst page %p", dst_m));
1428 }
1429 VM_OBJECT_WUNLOCK(dst_object);
1430
1431 /*
1432 * Enter it in the pmap. If a wired, copy-on-write
1433 * mapping is being replaced by a write-enabled
1434 * mapping, then wire that new mapping.
1435 */
1436 pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1437 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1438
1439 /*
1440 * Mark it no longer busy, and put it on the active list.
1441 */
1442 VM_OBJECT_WLOCK(dst_object);
1443
1444 if (upgrade) {
1445 if (src_m != dst_m) {
1446 vm_page_lock(src_m);
1447 vm_page_unwire(src_m, 0);
1448 vm_page_unlock(src_m);
1449 vm_page_lock(dst_m);
1450 vm_page_wire(dst_m);
1451 vm_page_unlock(dst_m);
1452 } else {
1453 KASSERT(dst_m->wire_count > 0,
1454 ("dst_m %p is not wired", dst_m));
1455 }
1456 } else {
1457 vm_page_lock(dst_m);
1458 vm_page_activate(dst_m);
1459 vm_page_unlock(dst_m);
1460 }
1461 vm_page_xunbusy(dst_m);
1462 }
1463 VM_OBJECT_WUNLOCK(dst_object);
1464 if (upgrade) {
1465 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1466 vm_object_deallocate(src_object);
1467 }
1468 }
1469
1470
1471 /*
1472 * This routine checks around the requested page for other pages that
1473 * might be able to be faulted in. This routine brackets the viable
1474 * pages for the pages to be paged in.
1475 *
1476 * Inputs:
1477 * m, rbehind, rahead
1478 *
1479 * Outputs:
1480 * marray (array of vm_page_t), reqpage (index of requested page)
1481 *
1482 * Return value:
1483 * number of pages in marray
1484 */
1485 static int
1486 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1487 vm_page_t m;
1488 int rbehind;
1489 int rahead;
1490 vm_page_t *marray;
1491 int *reqpage;
1492 {
1493 int i,j;
1494 vm_object_t object;
1495 vm_pindex_t pindex, startpindex, endpindex, tpindex;
1496 vm_page_t rtm;
1497 int cbehind, cahead;
1498
1499 VM_OBJECT_ASSERT_WLOCKED(m->object);
1500
1501 object = m->object;
1502 pindex = m->pindex;
1503 cbehind = cahead = 0;
1504
1505 /*
1506 * if the requested page is not available, then give up now
1507 */
1508 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1509 return 0;
1510 }
1511
1512 if ((cbehind == 0) && (cahead == 0)) {
1513 *reqpage = 0;
1514 marray[0] = m;
1515 return 1;
1516 }
1517
1518 if (rahead > cahead) {
1519 rahead = cahead;
1520 }
1521
1522 if (rbehind > cbehind) {
1523 rbehind = cbehind;
1524 }
1525
1526 /*
1527 * scan backward for the read behind pages -- in memory
1528 */
1529 if (pindex > 0) {
1530 if (rbehind > pindex) {
1531 rbehind = pindex;
1532 startpindex = 0;
1533 } else {
1534 startpindex = pindex - rbehind;
1535 }
1536
1537 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1538 rtm->pindex >= startpindex)
1539 startpindex = rtm->pindex + 1;
1540
1541 /* tpindex is unsigned; beware of numeric underflow. */
1542 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1543 tpindex < pindex; i++, tpindex--) {
1544
1545 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1546 VM_ALLOC_IFNOTCACHED);
1547 if (rtm == NULL) {
1548 /*
1549 * Shift the allocated pages to the
1550 * beginning of the array.
1551 */
1552 for (j = 0; j < i; j++) {
1553 marray[j] = marray[j + tpindex + 1 -
1554 startpindex];
1555 }
1556 break;
1557 }
1558
1559 marray[tpindex - startpindex] = rtm;
1560 }
1561 } else {
1562 startpindex = 0;
1563 i = 0;
1564 }
1565
1566 marray[i] = m;
1567 /* page offset of the required page */
1568 *reqpage = i;
1569
1570 tpindex = pindex + 1;
1571 i++;
1572
1573 /*
1574 * scan forward for the read ahead pages
1575 */
1576 endpindex = tpindex + rahead;
1577 if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1578 endpindex = rtm->pindex;
1579 if (endpindex > object->size)
1580 endpindex = object->size;
1581
1582 for (; tpindex < endpindex; i++, tpindex++) {
1583
1584 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1585 VM_ALLOC_IFNOTCACHED);
1586 if (rtm == NULL) {
1587 break;
1588 }
1589
1590 marray[i] = rtm;
1591 }
1592
1593 /* return number of pages */
1594 return i;
1595 }
1596
1597 /*
1598 * Block entry into the machine-independent layer's page fault handler by
1599 * the calling thread. Subsequent calls to vm_fault() by that thread will
1600 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of
1601 * spurious page faults.
1602 */
1603 int
1604 vm_fault_disable_pagefaults(void)
1605 {
1606
1607 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1608 }
1609
1610 void
1611 vm_fault_enable_pagefaults(int save)
1612 {
1613
1614 curthread_pflags_restore(save);
1615 }
Cache object: cd215021c62f9bc550a00f5a7ef7321a
|