The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_fault.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  *
    9  *
   10  * This code is derived from software contributed to Berkeley by
   11  * The Mach Operating System project at Carnegie-Mellon University.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1. Redistributions of source code must retain the above copyright
   17  *    notice, this list of conditions and the following disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  * 3. All advertising materials mentioning features or use of this software
   22  *    must display the following acknowledgement:
   23  *      This product includes software developed by the University of
   24  *      California, Berkeley and its contributors.
   25  * 4. Neither the name of the University nor the names of its contributors
   26  *    may be used to endorse or promote products derived from this software
   27  *    without specific prior written permission.
   28  *
   29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   39  * SUCH DAMAGE.
   40  *
   41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
   42  *
   43  *
   44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   45  * All rights reserved.
   46  *
   47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   48  *
   49  * Permission to use, copy, modify and distribute this software and
   50  * its documentation is hereby granted, provided that both the copyright
   51  * notice and this permission notice appear in all copies of the
   52  * software, derivative works or modified versions, and any portions
   53  * thereof, and that both notices appear in supporting documentation.
   54  *
   55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   58  *
   59  * Carnegie Mellon requests users of this software to return to
   60  *
   61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   62  *  School of Computer Science
   63  *  Carnegie Mellon University
   64  *  Pittsburgh PA 15213-3890
   65  *
   66  * any improvements or extensions that they make and grant Carnegie the
   67  * rights to redistribute these changes.
   68  */
   69 
   70 /*
   71  *      Page fault handling module.
   72  */
   73 
   74 #include <sys/cdefs.h>
   75 __FBSDID("$FreeBSD$");
   76 
   77 #include "opt_ktrace.h"
   78 #include "opt_vm.h"
   79 
   80 #include <sys/param.h>
   81 #include <sys/systm.h>
   82 #include <sys/kernel.h>
   83 #include <sys/lock.h>
   84 #include <sys/proc.h>
   85 #include <sys/resourcevar.h>
   86 #include <sys/rwlock.h>
   87 #include <sys/sysctl.h>
   88 #include <sys/vmmeter.h>
   89 #include <sys/vnode.h>
   90 #ifdef KTRACE
   91 #include <sys/ktrace.h>
   92 #endif
   93 
   94 #include <vm/vm.h>
   95 #include <vm/vm_param.h>
   96 #include <vm/pmap.h>
   97 #include <vm/vm_map.h>
   98 #include <vm/vm_object.h>
   99 #include <vm/vm_page.h>
  100 #include <vm/vm_pageout.h>
  101 #include <vm/vm_kern.h>
  102 #include <vm/vm_pager.h>
  103 #include <vm/vm_extern.h>
  104 #include <vm/vm_reserv.h>
  105 
  106 #define PFBAK 4
  107 #define PFFOR 4
  108 
  109 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
  110 
  111 #define VM_FAULT_READ_BEHIND    8
  112 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
  113 #define VM_FAULT_NINCR          (VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
  114 #define VM_FAULT_SUM            (VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
  115 #define VM_FAULT_CACHE_BEHIND   (VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
  116 
  117 struct faultstate {
  118         vm_page_t m;
  119         vm_object_t object;
  120         vm_pindex_t pindex;
  121         vm_page_t first_m;
  122         vm_object_t     first_object;
  123         vm_pindex_t first_pindex;
  124         vm_map_t map;
  125         vm_map_entry_t entry;
  126         int lookup_still_valid;
  127         int map_generation;
  128         struct vnode *vp;
  129 };
  130 
  131 static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
  132 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
  133             int faultcount, int reqpage);
  134 
  135 static inline void
  136 release_page(struct faultstate *fs)
  137 {
  138 
  139         vm_page_xunbusy(fs->m);
  140         vm_page_lock(fs->m);
  141         vm_page_deactivate(fs->m);
  142         vm_page_unlock(fs->m);
  143         fs->m = NULL;
  144 }
  145 
  146 static inline void
  147 unlock_map(struct faultstate *fs)
  148 {
  149 
  150         if (fs->lookup_still_valid) {
  151                 vm_map_lookup_done(fs->map, fs->entry);
  152                 fs->lookup_still_valid = FALSE;
  153         }
  154 }
  155 
  156 static void
  157 unlock_vp(struct faultstate *fs)
  158 {
  159 
  160         if (fs->vp != NULL) {
  161                 vput(fs->vp);
  162                 fs->vp = NULL;
  163         }
  164 }
  165 
  166 static void
  167 unlock_and_deallocate(struct faultstate *fs)
  168 {
  169 
  170         vm_object_pip_wakeup(fs->object);
  171         VM_OBJECT_WUNLOCK(fs->object);
  172         if (fs->object != fs->first_object) {
  173                 VM_OBJECT_WLOCK(fs->first_object);
  174                 vm_page_lock(fs->first_m);
  175                 vm_page_free(fs->first_m);
  176                 vm_page_unlock(fs->first_m);
  177                 vm_object_pip_wakeup(fs->first_object);
  178                 VM_OBJECT_WUNLOCK(fs->first_object);
  179                 fs->first_m = NULL;
  180         }
  181         vm_object_deallocate(fs->first_object);
  182         unlock_map(fs);
  183         unlock_vp(fs);
  184 }
  185 
  186 static void
  187 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
  188     vm_prot_t fault_type, int fault_flags, bool set_wd)
  189 {
  190         bool need_dirty;
  191 
  192         if (((prot & VM_PROT_WRITE) == 0 &&
  193             (fault_flags & VM_FAULT_DIRTY) == 0) ||
  194             (m->oflags & VPO_UNMANAGED) != 0)
  195                 return;
  196 
  197         VM_OBJECT_ASSERT_LOCKED(m->object);
  198 
  199         need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
  200             (fault_flags & VM_FAULT_WIRE) == 0) ||
  201             (fault_flags & VM_FAULT_DIRTY) != 0;
  202 
  203         if (set_wd)
  204                 vm_object_set_writeable_dirty(m->object);
  205         else
  206                 /*
  207                  * If two callers of vm_fault_dirty() with set_wd ==
  208                  * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
  209                  * flag set, other with flag clear, race, it is
  210                  * possible for the no-NOSYNC thread to see m->dirty
  211                  * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
  212                  * around manipulation of VPO_NOSYNC and
  213                  * vm_page_dirty() call, to avoid the race and keep
  214                  * m->oflags consistent.
  215                  */
  216                 vm_page_lock(m);
  217 
  218         /*
  219          * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
  220          * if the page is already dirty to prevent data written with
  221          * the expectation of being synced from not being synced.
  222          * Likewise if this entry does not request NOSYNC then make
  223          * sure the page isn't marked NOSYNC.  Applications sharing
  224          * data should use the same flags to avoid ping ponging.
  225          */
  226         if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
  227                 if (m->dirty == 0) {
  228                         m->oflags |= VPO_NOSYNC;
  229                 }
  230         } else {
  231                 m->oflags &= ~VPO_NOSYNC;
  232         }
  233 
  234         /*
  235          * If the fault is a write, we know that this page is being
  236          * written NOW so dirty it explicitly to save on
  237          * pmap_is_modified() calls later.
  238          *
  239          * Also tell the backing pager, if any, that it should remove
  240          * any swap backing since the page is now dirty.
  241          */
  242         if (need_dirty)
  243                 vm_page_dirty(m);
  244         if (!set_wd)
  245                 vm_page_unlock(m);
  246         if (need_dirty)
  247                 vm_pager_page_unswapped(m);
  248 }
  249 
  250 static void
  251 vm_fault_fill_hold(vm_page_t *m_hold, vm_page_t m)
  252 {
  253 
  254         if (m_hold != NULL) {
  255                 *m_hold = m;
  256                 vm_page_lock(m);
  257                 vm_page_hold(m);
  258                 vm_page_unlock(m);
  259         }
  260 }
  261 
  262 /*
  263  * Unlocks fs.first_object and fs.map on success.
  264  */
  265 static int
  266 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
  267     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
  268 {
  269         vm_page_t m;
  270         int rv;
  271 
  272         MPASS(fs->vp == NULL);
  273         m = vm_page_lookup(fs->first_object, fs->first_pindex);
  274         /* A busy page can be mapped for read|execute access. */
  275         if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
  276             vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
  277                 return (KERN_FAILURE);
  278         rv = pmap_enter(fs->map->pmap, vaddr, m, prot, fault_type |
  279             PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), 0);
  280         if (rv != KERN_SUCCESS)
  281                 return (rv);
  282         vm_fault_fill_hold(m_hold, m);
  283         vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false);
  284         VM_OBJECT_RUNLOCK(fs->first_object);
  285         if (!wired)
  286                 vm_fault_prefault(fs, vaddr, 0, 0);
  287         vm_map_lookup_done(fs->map, fs->entry);
  288         curthread->td_ru.ru_minflt++;
  289         return (KERN_SUCCESS);
  290 }
  291 
  292 /*
  293  *      vm_fault:
  294  *
  295  *      Handle a page fault occurring at the given address,
  296  *      requiring the given permissions, in the map specified.
  297  *      If successful, the page is inserted into the
  298  *      associated physical map.
  299  *
  300  *      NOTE: the given address should be truncated to the
  301  *      proper page address.
  302  *
  303  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
  304  *      a standard error specifying why the fault is fatal is returned.
  305  *
  306  *      The map in question must be referenced, and remains so.
  307  *      Caller may hold no locks.
  308  */
  309 int
  310 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
  311     int fault_flags)
  312 {
  313         struct thread *td;
  314         int result;
  315 
  316         td = curthread;
  317         if ((td->td_pflags & TDP_NOFAULTING) != 0)
  318                 return (KERN_PROTECTION_FAILURE);
  319 #ifdef KTRACE
  320         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
  321                 ktrfault(vaddr, fault_type);
  322 #endif
  323         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
  324             NULL);
  325 #ifdef KTRACE
  326         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
  327                 ktrfaultend(result);
  328 #endif
  329         return (result);
  330 }
  331 
  332 int
  333 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
  334     int fault_flags, vm_page_t *m_hold)
  335 {
  336         vm_prot_t prot;
  337         long ahead, behind;
  338         int alloc_req, era, faultcount, nera, reqpage, result;
  339         boolean_t dead, is_first_object_locked, wired;
  340         vm_object_t next_object;
  341         vm_page_t marray[VM_FAULT_READ_MAX];
  342         int hardfault;
  343         struct faultstate fs;
  344         struct vnode *vp;
  345         int locked, error;
  346 
  347         hardfault = 0;
  348         PCPU_INC(cnt.v_vm_faults);
  349         fs.vp = NULL;
  350         faultcount = reqpage = 0;
  351 
  352 RetryFault:;
  353 
  354         /*
  355          * Find the backing store object and offset into it to begin the
  356          * search.
  357          */
  358         fs.map = map;
  359         result = vm_map_lookup(&fs.map, vaddr, fault_type |
  360             VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object,
  361             &fs.first_pindex, &prot, &wired);
  362         if (result != KERN_SUCCESS) {
  363                 unlock_vp(&fs);
  364                 return (result);
  365         }
  366 
  367         fs.map_generation = fs.map->timestamp;
  368 
  369         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
  370                 panic("vm_fault: fault on nofault entry, addr: %lx",
  371                     (u_long)vaddr);
  372         }
  373 
  374         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
  375             fs.entry->wiring_thread != curthread) {
  376                 vm_map_unlock_read(fs.map);
  377                 vm_map_lock(fs.map);
  378                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
  379                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
  380                         unlock_vp(&fs);
  381                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
  382                         vm_map_unlock_and_wait(fs.map, 0);
  383                 } else
  384                         vm_map_unlock(fs.map);
  385                 goto RetryFault;
  386         }
  387 
  388         MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0);
  389 
  390         if (wired)
  391                 fault_type = prot | (fault_type & VM_PROT_COPY);
  392         else
  393                 KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
  394                     ("!wired && VM_FAULT_WIRE"));
  395 
  396         /*
  397          * Try to avoid lock contention on the top-level object through
  398          * special-case handling of some types of page faults, specifically,
  399          * those that are both (1) mapping an existing page from the top-
  400          * level object and (2) not having to mark that object as containing
  401          * dirty pages.  Under these conditions, a read lock on the top-level
  402          * object suffices, allowing multiple page faults of a similar type to
  403          * run in parallel on the same top-level object.
  404          */
  405         if (fs.vp == NULL /* avoid locked vnode leak */ &&
  406             (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
  407             /* avoid calling vm_object_set_writeable_dirty() */
  408             ((prot & VM_PROT_WRITE) == 0 ||
  409             (fs.first_object->type != OBJT_VNODE &&
  410             (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
  411             (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
  412                 VM_OBJECT_RLOCK(fs.first_object);
  413                 if ((prot & VM_PROT_WRITE) == 0 ||
  414                     (fs.first_object->type != OBJT_VNODE &&
  415                     (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
  416                     (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) {
  417                         result = vm_fault_soft_fast(&fs, vaddr, prot,
  418                             fault_type, fault_flags, wired, m_hold);
  419                         if (result == KERN_SUCCESS)
  420                                 return (result);
  421                 }
  422                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
  423                         VM_OBJECT_RUNLOCK(fs.first_object);
  424                         VM_OBJECT_WLOCK(fs.first_object);
  425                 }
  426         } else {
  427                 VM_OBJECT_WLOCK(fs.first_object);
  428         }
  429 
  430         /*
  431          * Make a reference to this object to prevent its disposal while we
  432          * are messing with it.  Once we have the reference, the map is free
  433          * to be diddled.  Since objects reference their shadows (and copies),
  434          * they will stay around as well.
  435          *
  436          * Bump the paging-in-progress count to prevent size changes (e.g. 
  437          * truncation operations) during I/O.  This must be done after
  438          * obtaining the vnode lock in order to avoid possible deadlocks.
  439          */
  440         vm_object_reference_locked(fs.first_object);
  441         vm_object_pip_add(fs.first_object, 1);
  442 
  443         fs.lookup_still_valid = TRUE;
  444 
  445         fs.first_m = NULL;
  446 
  447         /*
  448          * Search for the page at object/offset.
  449          */
  450         fs.object = fs.first_object;
  451         fs.pindex = fs.first_pindex;
  452         while (TRUE) {
  453                 /*
  454                  * If the object is marked for imminent termination,
  455                  * we retry here, since the collapse pass has raced
  456                  * with us.  Otherwise, if we see terminally dead
  457                  * object, return fail.
  458                  */
  459                 if ((fs.object->flags & OBJ_DEAD) != 0) {
  460                         dead = fs.object->type == OBJT_DEAD;
  461                         unlock_and_deallocate(&fs);
  462                         if (dead)
  463                                 return (KERN_PROTECTION_FAILURE);
  464                         pause("vmf_de", 1);
  465                         goto RetryFault;
  466                 }
  467 
  468                 /*
  469                  * See if page is resident
  470                  */
  471                 fs.m = vm_page_lookup(fs.object, fs.pindex);
  472                 if (fs.m != NULL) {
  473                         /*
  474                          * Wait/Retry if the page is busy.  We have to do this
  475                          * if the page is either exclusive or shared busy
  476                          * because the vm_pager may be using read busy for
  477                          * pageouts (and even pageins if it is the vnode
  478                          * pager), and we could end up trying to pagein and
  479                          * pageout the same page simultaneously.
  480                          *
  481                          * We can theoretically allow the busy case on a read
  482                          * fault if the page is marked valid, but since such
  483                          * pages are typically already pmap'd, putting that
  484                          * special case in might be more effort then it is 
  485                          * worth.  We cannot under any circumstances mess
  486                          * around with a shared busied page except, perhaps,
  487                          * to pmap it.
  488                          */
  489                         if (vm_page_busied(fs.m)) {
  490                                 /*
  491                                  * Reference the page before unlocking and
  492                                  * sleeping so that the page daemon is less
  493                                  * likely to reclaim it. 
  494                                  */
  495                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
  496                                 if (fs.object != fs.first_object) {
  497                                         if (!VM_OBJECT_TRYWLOCK(
  498                                             fs.first_object)) {
  499                                                 VM_OBJECT_WUNLOCK(fs.object);
  500                                                 VM_OBJECT_WLOCK(fs.first_object);
  501                                                 VM_OBJECT_WLOCK(fs.object);
  502                                         }
  503                                         vm_page_lock(fs.first_m);
  504                                         vm_page_free(fs.first_m);
  505                                         vm_page_unlock(fs.first_m);
  506                                         vm_object_pip_wakeup(fs.first_object);
  507                                         VM_OBJECT_WUNLOCK(fs.first_object);
  508                                         fs.first_m = NULL;
  509                                 }
  510                                 unlock_map(&fs);
  511                                 if (fs.m == vm_page_lookup(fs.object,
  512                                     fs.pindex)) {
  513                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
  514                                 }
  515                                 vm_object_pip_wakeup(fs.object);
  516                                 VM_OBJECT_WUNLOCK(fs.object);
  517                                 PCPU_INC(cnt.v_intrans);
  518                                 vm_object_deallocate(fs.first_object);
  519                                 goto RetryFault;
  520                         }
  521                         vm_page_lock(fs.m);
  522                         vm_page_remque(fs.m);
  523                         vm_page_unlock(fs.m);
  524 
  525                         /*
  526                          * Mark page busy for other processes, and the 
  527                          * pagedaemon.  If it still isn't completely valid
  528                          * (readable), jump to readrest, else break-out ( we
  529                          * found the page ).
  530                          */
  531                         vm_page_xbusy(fs.m);
  532                         if (fs.m->valid != VM_PAGE_BITS_ALL)
  533                                 goto readrest;
  534                         break;
  535                 }
  536 
  537                 /*
  538                  * Page is not resident.  If this is the search termination
  539                  * or the pager might contain the page, allocate a new page.
  540                  * Default objects are zero-fill, there is no real pager.
  541                  */
  542                 if (fs.object->type != OBJT_DEFAULT ||
  543                     fs.object == fs.first_object) {
  544                         if (fs.pindex >= fs.object->size) {
  545                                 unlock_and_deallocate(&fs);
  546                                 return (KERN_PROTECTION_FAILURE);
  547                         }
  548 
  549                         /*
  550                          * Allocate a new page for this object/offset pair.
  551                          *
  552                          * Unlocked read of the p_flag is harmless. At
  553                          * worst, the P_KILLED might be not observed
  554                          * there, and allocation can fail, causing
  555                          * restart and new reading of the p_flag.
  556                          */
  557                         fs.m = NULL;
  558                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
  559 #if VM_NRESERVLEVEL > 0
  560                                 if ((fs.object->flags & OBJ_COLORED) == 0) {
  561                                         fs.object->flags |= OBJ_COLORED;
  562                                         fs.object->pg_color = atop(vaddr) -
  563                                             fs.pindex;
  564                                 }
  565 #endif
  566                                 alloc_req = P_KILLED(curproc) ?
  567                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
  568                                 if (fs.object->type != OBJT_VNODE &&
  569                                     fs.object->backing_object == NULL)
  570                                         alloc_req |= VM_ALLOC_ZERO;
  571                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
  572                                     alloc_req);
  573                         }
  574                         if (fs.m == NULL) {
  575                                 unlock_and_deallocate(&fs);
  576                                 VM_WAITPFAULT;
  577                                 goto RetryFault;
  578                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
  579                                 break;
  580                 }
  581 
  582 readrest:
  583                 /*
  584                  * We have found a valid page or we have allocated a new page.
  585                  * The page thus may not be valid or may not be entirely 
  586                  * valid.
  587                  *
  588                  * Attempt to fault-in the page if there is a chance that the
  589                  * pager has it, and potentially fault in additional pages
  590                  * at the same time.  For default objects simply provide
  591                  * zero-filled pages.
  592                  */
  593                 if (fs.object->type != OBJT_DEFAULT) {
  594                         int rv;
  595                         u_char behavior = vm_map_entry_behavior(fs.entry);
  596 
  597                         if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
  598                             P_KILLED(curproc)) {
  599                                 behind = 0;
  600                                 ahead = 0;
  601                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
  602                                 behind = 0;
  603                                 ahead = atop(fs.entry->end - vaddr) - 1;
  604                                 if (ahead > VM_FAULT_READ_AHEAD_MAX)
  605                                         ahead = VM_FAULT_READ_AHEAD_MAX;
  606                                 if (fs.pindex == fs.entry->next_read)
  607                                         vm_fault_cache_behind(&fs,
  608                                             VM_FAULT_READ_MAX);
  609                         } else {
  610                                 /*
  611                                  * If this is a sequential page fault, then
  612                                  * arithmetically increase the number of pages
  613                                  * in the read-ahead window.  Otherwise, reset
  614                                  * the read-ahead window to its smallest size.
  615                                  */
  616                                 behind = atop(vaddr - fs.entry->start);
  617                                 if (behind > VM_FAULT_READ_BEHIND)
  618                                         behind = VM_FAULT_READ_BEHIND;
  619                                 ahead = atop(fs.entry->end - vaddr) - 1;
  620                                 era = fs.entry->read_ahead;
  621                                 if (fs.pindex == fs.entry->next_read) {
  622                                         nera = era + behind;
  623                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
  624                                                 nera = VM_FAULT_READ_AHEAD_MAX;
  625                                         behind = 0;
  626                                         if (ahead > nera)
  627                                                 ahead = nera;
  628                                         if (era == VM_FAULT_READ_AHEAD_MAX)
  629                                                 vm_fault_cache_behind(&fs,
  630                                                     VM_FAULT_CACHE_BEHIND);
  631                                 } else if (ahead > VM_FAULT_READ_AHEAD_MIN)
  632                                         ahead = VM_FAULT_READ_AHEAD_MIN;
  633                                 if (era != ahead)
  634                                         fs.entry->read_ahead = ahead;
  635                         }
  636 
  637                         /*
  638                          * Call the pager to retrieve the data, if any, after
  639                          * releasing the lock on the map.  We hold a ref on
  640                          * fs.object and the pages are exclusive busied.
  641                          */
  642                         unlock_map(&fs);
  643 
  644                         if (fs.object->type == OBJT_VNODE &&
  645                             (vp = fs.object->handle) != fs.vp) {
  646                                 unlock_vp(&fs);
  647                                 locked = VOP_ISLOCKED(vp);
  648 
  649                                 if (locked != LK_EXCLUSIVE)
  650                                         locked = LK_SHARED;
  651                                 /* Do not sleep for vnode lock while fs.m is busy */
  652                                 error = vget(vp, locked | LK_CANRECURSE |
  653                                     LK_NOWAIT, curthread);
  654                                 if (error != 0) {
  655                                         vhold(vp);
  656                                         release_page(&fs);
  657                                         unlock_and_deallocate(&fs);
  658                                         error = vget(vp, locked | LK_RETRY |
  659                                             LK_CANRECURSE, curthread);
  660                                         vdrop(vp);
  661                                         fs.vp = vp;
  662                                         KASSERT(error == 0,
  663                                             ("vm_fault: vget failed"));
  664                                         goto RetryFault;
  665                                 }
  666                                 fs.vp = vp;
  667                         }
  668                         KASSERT(fs.vp == NULL || !fs.map->system_map,
  669                             ("vm_fault: vnode-backed object mapped by system map"));
  670 
  671                         /*
  672                          * now we find out if any other pages should be paged
  673                          * in at this time this routine checks to see if the
  674                          * pages surrounding this fault reside in the same
  675                          * object as the page for this fault.  If they do,
  676                          * then they are faulted in also into the object.  The
  677                          * array "marray" returned contains an array of
  678                          * vm_page_t structs where one of them is the
  679                          * vm_page_t passed to the routine.  The reqpage
  680                          * return value is the index into the marray for the
  681                          * vm_page_t passed to the routine.
  682                          *
  683                          * fs.m plus the additional pages are exclusive busied.
  684                          */
  685                         faultcount = vm_fault_additional_pages(
  686                             fs.m, behind, ahead, marray, &reqpage);
  687 
  688                         rv = faultcount ?
  689                             vm_pager_get_pages(fs.object, marray, faultcount,
  690                                 reqpage) : VM_PAGER_FAIL;
  691 
  692                         if (rv == VM_PAGER_OK) {
  693                                 /*
  694                                  * Found the page. Leave it busy while we play
  695                                  * with it.
  696                                  */
  697 
  698                                 /*
  699                                  * Relookup in case pager changed page. Pager
  700                                  * is responsible for disposition of old page
  701                                  * if moved.
  702                                  */
  703                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
  704                                 if (!fs.m) {
  705                                         unlock_and_deallocate(&fs);
  706                                         goto RetryFault;
  707                                 }
  708 
  709                                 hardfault++;
  710                                 break; /* break to PAGE HAS BEEN FOUND */
  711                         }
  712                         /*
  713                          * Remove the bogus page (which does not exist at this
  714                          * object/offset); before doing so, we must get back
  715                          * our object lock to preserve our invariant.
  716                          *
  717                          * Also wake up any other process that may want to bring
  718                          * in this page.
  719                          *
  720                          * If this is the top-level object, we must leave the
  721                          * busy page to prevent another process from rushing
  722                          * past us, and inserting the page in that object at
  723                          * the same time that we are.
  724                          */
  725                         if (rv == VM_PAGER_ERROR)
  726                                 printf("vm_fault: pager read error, pid %d (%s)\n",
  727                                     curproc->p_pid, curproc->p_comm);
  728                         /*
  729                          * Data outside the range of the pager or an I/O error
  730                          */
  731                         /*
  732                          * XXX - the check for kernel_map is a kludge to work
  733                          * around having the machine panic on a kernel space
  734                          * fault w/ I/O error.
  735                          */
  736                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
  737                                 (rv == VM_PAGER_BAD)) {
  738                                 vm_page_lock(fs.m);
  739                                 vm_page_free(fs.m);
  740                                 vm_page_unlock(fs.m);
  741                                 fs.m = NULL;
  742                                 unlock_and_deallocate(&fs);
  743                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
  744                         }
  745                         if (fs.object != fs.first_object) {
  746                                 vm_page_lock(fs.m);
  747                                 vm_page_free(fs.m);
  748                                 vm_page_unlock(fs.m);
  749                                 fs.m = NULL;
  750                                 /*
  751                                  * XXX - we cannot just fall out at this
  752                                  * point, m has been freed and is invalid!
  753                                  */
  754                         }
  755                 }
  756 
  757                 /*
  758                  * We get here if the object has default pager (or unwiring) 
  759                  * or the pager doesn't have the page.
  760                  */
  761                 if (fs.object == fs.first_object)
  762                         fs.first_m = fs.m;
  763 
  764                 /*
  765                  * Move on to the next object.  Lock the next object before
  766                  * unlocking the current one.
  767                  */
  768                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
  769                 next_object = fs.object->backing_object;
  770                 if (next_object == NULL) {
  771                         /*
  772                          * If there's no object left, fill the page in the top
  773                          * object with zeros.
  774                          */
  775                         if (fs.object != fs.first_object) {
  776                                 vm_object_pip_wakeup(fs.object);
  777                                 VM_OBJECT_WUNLOCK(fs.object);
  778 
  779                                 fs.object = fs.first_object;
  780                                 fs.pindex = fs.first_pindex;
  781                                 fs.m = fs.first_m;
  782                                 VM_OBJECT_WLOCK(fs.object);
  783                         }
  784                         fs.first_m = NULL;
  785 
  786                         /*
  787                          * Zero the page if necessary and mark it valid.
  788                          */
  789                         if ((fs.m->flags & PG_ZERO) == 0) {
  790                                 pmap_zero_page(fs.m);
  791                         } else {
  792                                 PCPU_INC(cnt.v_ozfod);
  793                         }
  794                         PCPU_INC(cnt.v_zfod);
  795                         fs.m->valid = VM_PAGE_BITS_ALL;
  796                         /* Don't try to prefault neighboring pages. */
  797                         faultcount = 1;
  798                         break;  /* break to PAGE HAS BEEN FOUND */
  799                 } else {
  800                         KASSERT(fs.object != next_object,
  801                             ("object loop %p", next_object));
  802                         VM_OBJECT_WLOCK(next_object);
  803                         vm_object_pip_add(next_object, 1);
  804                         if (fs.object != fs.first_object)
  805                                 vm_object_pip_wakeup(fs.object);
  806                         VM_OBJECT_WUNLOCK(fs.object);
  807                         fs.object = next_object;
  808                 }
  809         }
  810 
  811         vm_page_assert_xbusied(fs.m);
  812 
  813         /*
  814          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
  815          * is held.]
  816          */
  817 
  818         /*
  819          * If the page is being written, but isn't already owned by the
  820          * top-level object, we have to copy it into a new page owned by the
  821          * top-level object.
  822          */
  823         if (fs.object != fs.first_object) {
  824                 /*
  825                  * We only really need to copy if we want to write it.
  826                  */
  827                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
  828                         /*
  829                          * This allows pages to be virtually copied from a 
  830                          * backing_object into the first_object, where the 
  831                          * backing object has no other refs to it, and cannot
  832                          * gain any more refs.  Instead of a bcopy, we just 
  833                          * move the page from the backing object to the 
  834                          * first object.  Note that we must mark the page 
  835                          * dirty in the first object so that it will go out 
  836                          * to swap when needed.
  837                          */
  838                         is_first_object_locked = FALSE;
  839                         if (
  840                                 /*
  841                                  * Only one shadow object
  842                                  */
  843                                 (fs.object->shadow_count == 1) &&
  844                                 /*
  845                                  * No COW refs, except us
  846                                  */
  847                                 (fs.object->ref_count == 1) &&
  848                                 /*
  849                                  * No one else can look this object up
  850                                  */
  851                                 (fs.object->handle == NULL) &&
  852                                 /*
  853                                  * No other ways to look the object up
  854                                  */
  855                                 ((fs.object->type == OBJT_DEFAULT) ||
  856                                  (fs.object->type == OBJT_SWAP)) &&
  857                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
  858                                 /*
  859                                  * We don't chase down the shadow chain
  860                                  */
  861                             fs.object == fs.first_object->backing_object) {
  862                                 /*
  863                                  * get rid of the unnecessary page
  864                                  */
  865                                 vm_page_lock(fs.first_m);
  866                                 vm_page_free(fs.first_m);
  867                                 vm_page_unlock(fs.first_m);
  868                                 /*
  869                                  * grab the page and put it into the 
  870                                  * process'es object.  The page is 
  871                                  * automatically made dirty.
  872                                  */
  873                                 if (vm_page_rename(fs.m, fs.first_object,
  874                                     fs.first_pindex)) {
  875                                         unlock_and_deallocate(&fs);
  876                                         goto RetryFault;
  877                                 }
  878 #if VM_NRESERVLEVEL > 0
  879                                 /*
  880                                  * Rename the reservation.
  881                                  */
  882                                 vm_reserv_rename(fs.m, fs.first_object,
  883                                     fs.object, OFF_TO_IDX(
  884                                     fs.first_object->backing_object_offset));
  885 #endif
  886                                 vm_page_xbusy(fs.m);
  887                                 fs.first_m = fs.m;
  888                                 fs.m = NULL;
  889                                 PCPU_INC(cnt.v_cow_optim);
  890                         } else {
  891                                 /*
  892                                  * Oh, well, lets copy it.
  893                                  */
  894                                 pmap_copy_page(fs.m, fs.first_m);
  895                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
  896                                 if ((fault_flags & VM_FAULT_WIRE) == 0) {
  897                                         prot &= ~VM_PROT_WRITE;
  898                                         fault_type &= ~VM_PROT_WRITE;
  899                                 }
  900                                 if (wired && (fault_flags &
  901                                     VM_FAULT_WIRE) == 0) {
  902                                         vm_page_lock(fs.first_m);
  903                                         vm_page_wire(fs.first_m);
  904                                         vm_page_unlock(fs.first_m);
  905                                         
  906                                         vm_page_lock(fs.m);
  907                                         vm_page_unwire(fs.m, FALSE);
  908                                         vm_page_unlock(fs.m);
  909                                 }
  910                                 /*
  911                                  * We no longer need the old page or object.
  912                                  */
  913                                 release_page(&fs);
  914                         }
  915                         /*
  916                          * fs.object != fs.first_object due to above 
  917                          * conditional
  918                          */
  919                         vm_object_pip_wakeup(fs.object);
  920                         VM_OBJECT_WUNLOCK(fs.object);
  921                         /*
  922                          * Only use the new page below...
  923                          */
  924                         fs.object = fs.first_object;
  925                         fs.pindex = fs.first_pindex;
  926                         fs.m = fs.first_m;
  927                         if (!is_first_object_locked)
  928                                 VM_OBJECT_WLOCK(fs.object);
  929                         PCPU_INC(cnt.v_cow_faults);
  930                         curthread->td_cow++;
  931                 } else {
  932                         prot &= ~VM_PROT_WRITE;
  933                 }
  934         }
  935 
  936         /*
  937          * We must verify that the maps have not changed since our last
  938          * lookup.
  939          */
  940         if (!fs.lookup_still_valid) {
  941                 vm_object_t retry_object;
  942                 vm_pindex_t retry_pindex;
  943                 vm_prot_t retry_prot;
  944 
  945                 if (!vm_map_trylock_read(fs.map)) {
  946                         release_page(&fs);
  947                         unlock_and_deallocate(&fs);
  948                         goto RetryFault;
  949                 }
  950                 fs.lookup_still_valid = TRUE;
  951                 if (fs.map->timestamp != fs.map_generation) {
  952                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
  953                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
  954 
  955                         /*
  956                          * If we don't need the page any longer, put it on the inactive
  957                          * list (the easiest thing to do here).  If no one needs it,
  958                          * pageout will grab it eventually.
  959                          */
  960                         if (result != KERN_SUCCESS) {
  961                                 release_page(&fs);
  962                                 unlock_and_deallocate(&fs);
  963 
  964                                 /*
  965                                  * If retry of map lookup would have blocked then
  966                                  * retry fault from start.
  967                                  */
  968                                 if (result == KERN_FAILURE)
  969                                         goto RetryFault;
  970                                 return (result);
  971                         }
  972                         if ((retry_object != fs.first_object) ||
  973                             (retry_pindex != fs.first_pindex)) {
  974                                 release_page(&fs);
  975                                 unlock_and_deallocate(&fs);
  976                                 goto RetryFault;
  977                         }
  978 
  979                         /*
  980                          * Check whether the protection has changed or the object has
  981                          * been copied while we left the map unlocked. Changing from
  982                          * read to write permission is OK - we leave the page
  983                          * write-protected, and catch the write fault. Changing from
  984                          * write to read permission means that we can't mark the page
  985                          * write-enabled after all.
  986                          */
  987                         prot &= retry_prot;
  988                 }
  989         }
  990         /*
  991          * If the page was filled by a pager, update the map entry's
  992          * last read offset.  Since the pager does not return the
  993          * actual set of pages that it read, this update is based on
  994          * the requested set.  Typically, the requested and actual
  995          * sets are the same.
  996          *
  997          * XXX The following assignment modifies the map
  998          * without holding a write lock on it.
  999          */
 1000         if (hardfault)
 1001                 fs.entry->next_read = fs.pindex + faultcount - reqpage;
 1002 
 1003         vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true);
 1004         vm_page_assert_xbusied(fs.m);
 1005 
 1006         /*
 1007          * Page must be completely valid or it is not fit to
 1008          * map into user space.  vm_pager_get_pages() ensures this.
 1009          */
 1010         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
 1011             ("vm_fault: page %p partially invalid", fs.m));
 1012         VM_OBJECT_WUNLOCK(fs.object);
 1013 
 1014         /*
 1015          * Put this page into the physical map.  We had to do the unlock above
 1016          * because pmap_enter() may sleep.  We don't put the page
 1017          * back on the active queue until later so that the pageout daemon
 1018          * won't find it (yet).
 1019          */
 1020         pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
 1021             fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
 1022         if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
 1023             wired == 0)
 1024                 vm_fault_prefault(&fs, vaddr, faultcount, reqpage);
 1025         VM_OBJECT_WLOCK(fs.object);
 1026         vm_page_lock(fs.m);
 1027 
 1028         /*
 1029          * If the page is not wired down, then put it where the pageout daemon
 1030          * can find it.
 1031          */
 1032         if ((fault_flags & VM_FAULT_WIRE) != 0) {
 1033                 KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
 1034                 vm_page_wire(fs.m);
 1035         } else
 1036                 vm_page_activate(fs.m);
 1037         if (m_hold != NULL) {
 1038                 *m_hold = fs.m;
 1039                 vm_page_hold(fs.m);
 1040         }
 1041         vm_page_unlock(fs.m);
 1042         vm_page_xunbusy(fs.m);
 1043 
 1044         /*
 1045          * Unlock everything, and return
 1046          */
 1047         unlock_and_deallocate(&fs);
 1048         if (hardfault) {
 1049                 PCPU_INC(cnt.v_io_faults);
 1050                 curthread->td_ru.ru_majflt++;
 1051         } else 
 1052                 curthread->td_ru.ru_minflt++;
 1053 
 1054         return (KERN_SUCCESS);
 1055 }
 1056 
 1057 /*
 1058  * Speed up the reclamation of up to "distance" pages that precede the
 1059  * faulting pindex within the first object of the shadow chain.
 1060  */
 1061 static void
 1062 vm_fault_cache_behind(const struct faultstate *fs, int distance)
 1063 {
 1064         vm_object_t first_object, object;
 1065         vm_page_t m, m_prev;
 1066         vm_pindex_t pindex;
 1067 
 1068         object = fs->object;
 1069         VM_OBJECT_ASSERT_WLOCKED(object);
 1070         first_object = fs->first_object;
 1071         if (first_object != object) {
 1072                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
 1073                         VM_OBJECT_WUNLOCK(object);
 1074                         VM_OBJECT_WLOCK(first_object);
 1075                         VM_OBJECT_WLOCK(object);
 1076                 }
 1077         }
 1078         /* Neither fictitious nor unmanaged pages can be cached. */
 1079         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
 1080                 if (fs->first_pindex < distance)
 1081                         pindex = 0;
 1082                 else
 1083                         pindex = fs->first_pindex - distance;
 1084                 if (pindex < OFF_TO_IDX(fs->entry->offset))
 1085                         pindex = OFF_TO_IDX(fs->entry->offset);
 1086                 m = first_object != object ? fs->first_m : fs->m;
 1087                 vm_page_assert_xbusied(m);
 1088                 m_prev = vm_page_prev(m);
 1089                 while ((m = m_prev) != NULL && m->pindex >= pindex &&
 1090                     m->valid == VM_PAGE_BITS_ALL) {
 1091                         m_prev = vm_page_prev(m);
 1092                         if (vm_page_busied(m))
 1093                                 continue;
 1094                         vm_page_lock(m);
 1095                         if (m->hold_count == 0 && m->wire_count == 0) {
 1096                                 pmap_remove_all(m);
 1097                                 vm_page_aflag_clear(m, PGA_REFERENCED);
 1098                                 if (m->dirty != 0)
 1099                                         vm_page_deactivate(m);
 1100                                 else
 1101                                         vm_page_cache(m);
 1102                         }
 1103                         vm_page_unlock(m);
 1104                 }
 1105         }
 1106         if (first_object != object)
 1107                 VM_OBJECT_WUNLOCK(first_object);
 1108 }
 1109 
 1110 /*
 1111  * vm_fault_prefault provides a quick way of clustering
 1112  * pagefaults into a processes address space.  It is a "cousin"
 1113  * of vm_map_pmap_enter, except it runs at page fault time instead
 1114  * of mmap time.
 1115  */
 1116 static void
 1117 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
 1118     int faultcount, int reqpage)
 1119 {
 1120         pmap_t pmap;
 1121         vm_map_entry_t entry;
 1122         vm_object_t backing_object, lobject;
 1123         vm_offset_t addr, starta;
 1124         vm_pindex_t pindex;
 1125         vm_page_t m;
 1126         int backward, forward, i;
 1127 
 1128         pmap = fs->map->pmap;
 1129         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
 1130                 return;
 1131 
 1132         if (faultcount > 0) {
 1133                 backward = reqpage;
 1134                 forward = faultcount - reqpage - 1;
 1135         } else {
 1136                 backward = PFBAK;
 1137                 forward = PFFOR;
 1138         }
 1139         entry = fs->entry;
 1140 
 1141         if (addra < backward * PAGE_SIZE) {
 1142                 starta = entry->start;
 1143         } else {
 1144                 starta = addra - backward * PAGE_SIZE;
 1145                 if (starta < entry->start)
 1146                         starta = entry->start;
 1147         }
 1148 
 1149         /*
 1150          * Generate the sequence of virtual addresses that are candidates for
 1151          * prefaulting in an outward spiral from the faulting virtual address,
 1152          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
 1153          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
 1154          * If the candidate address doesn't have a backing physical page, then
 1155          * the loop immediately terminates.
 1156          */
 1157         for (i = 0; i < 2 * imax(backward, forward); i++) {
 1158                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
 1159                     PAGE_SIZE);
 1160                 if (addr > addra + forward * PAGE_SIZE)
 1161                         addr = 0;
 1162 
 1163                 if (addr < starta || addr >= entry->end)
 1164                         continue;
 1165 
 1166                 if (!pmap_is_prefaultable(pmap, addr))
 1167                         continue;
 1168 
 1169                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
 1170                 lobject = entry->object.vm_object;
 1171                 VM_OBJECT_RLOCK(lobject);
 1172                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
 1173                     lobject->type == OBJT_DEFAULT &&
 1174                     (backing_object = lobject->backing_object) != NULL) {
 1175                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
 1176                             0, ("vm_fault_prefault: unaligned object offset"));
 1177                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
 1178                         VM_OBJECT_RLOCK(backing_object);
 1179                         VM_OBJECT_RUNLOCK(lobject);
 1180                         lobject = backing_object;
 1181                 }
 1182                 if (m == NULL) {
 1183                         VM_OBJECT_RUNLOCK(lobject);
 1184                         break;
 1185                 }
 1186                 if (m->valid == VM_PAGE_BITS_ALL &&
 1187                     (m->flags & PG_FICTITIOUS) == 0)
 1188                         pmap_enter_quick(pmap, addr, m, entry->protection);
 1189                 VM_OBJECT_RUNLOCK(lobject);
 1190         }
 1191 }
 1192 
 1193 /*
 1194  * Hold each of the physical pages that are mapped by the specified range of
 1195  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
 1196  * and allow the specified types of access, "prot".  If all of the implied
 1197  * pages are successfully held, then the number of held pages is returned
 1198  * together with pointers to those pages in the array "ma".  However, if any
 1199  * of the pages cannot be held, -1 is returned.
 1200  */
 1201 int
 1202 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
 1203     vm_prot_t prot, vm_page_t *ma, int max_count)
 1204 {
 1205         vm_offset_t end, va;
 1206         vm_page_t *mp;
 1207         int count;
 1208         boolean_t pmap_failed;
 1209 
 1210         if (len == 0)
 1211                 return (0);
 1212         end = round_page(addr + len);
 1213         addr = trunc_page(addr);
 1214 
 1215         /*
 1216          * Check for illegal addresses.
 1217          */
 1218         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
 1219                 return (-1);
 1220 
 1221         if (atop(end - addr) > max_count)
 1222                 panic("vm_fault_quick_hold_pages: count > max_count");
 1223         count = atop(end - addr);
 1224 
 1225         /*
 1226          * Most likely, the physical pages are resident in the pmap, so it is
 1227          * faster to try pmap_extract_and_hold() first.
 1228          */
 1229         pmap_failed = FALSE;
 1230         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
 1231                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
 1232                 if (*mp == NULL)
 1233                         pmap_failed = TRUE;
 1234                 else if ((prot & VM_PROT_WRITE) != 0 &&
 1235                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
 1236                         /*
 1237                          * Explicitly dirty the physical page.  Otherwise, the
 1238                          * caller's changes may go unnoticed because they are
 1239                          * performed through an unmanaged mapping or by a DMA
 1240                          * operation.
 1241                          *
 1242                          * The object lock is not held here.
 1243                          * See vm_page_clear_dirty_mask().
 1244                          */
 1245                         vm_page_dirty(*mp);
 1246                 }
 1247         }
 1248         if (pmap_failed) {
 1249                 /*
 1250                  * One or more pages could not be held by the pmap.  Either no
 1251                  * page was mapped at the specified virtual address or that
 1252                  * mapping had insufficient permissions.  Attempt to fault in
 1253                  * and hold these pages.
 1254                  */
 1255                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
 1256                         if (*mp == NULL && vm_fault_hold(map, va, prot,
 1257                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
 1258                                 goto error;
 1259         }
 1260         return (count);
 1261 error:  
 1262         for (mp = ma; mp < ma + count; mp++)
 1263                 if (*mp != NULL) {
 1264                         vm_page_lock(*mp);
 1265                         vm_page_unhold(*mp);
 1266                         vm_page_unlock(*mp);
 1267                 }
 1268         return (-1);
 1269 }
 1270 
 1271 /*
 1272  *      Routine:
 1273  *              vm_fault_copy_entry
 1274  *      Function:
 1275  *              Create new shadow object backing dst_entry with private copy of
 1276  *              all underlying pages. When src_entry is equal to dst_entry,
 1277  *              function implements COW for wired-down map entry. Otherwise,
 1278  *              it forks wired entry into dst_map.
 1279  *
 1280  *      In/out conditions:
 1281  *              The source and destination maps must be locked for write.
 1282  *              The source map entry must be wired down (or be a sharing map
 1283  *              entry corresponding to a main map entry that is wired down).
 1284  */
 1285 void
 1286 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
 1287     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
 1288     vm_ooffset_t *fork_charge)
 1289 {
 1290         vm_object_t backing_object, dst_object, object, src_object;
 1291         vm_pindex_t dst_pindex, pindex, src_pindex;
 1292         vm_prot_t access, prot;
 1293         vm_offset_t vaddr;
 1294         vm_page_t dst_m;
 1295         vm_page_t src_m;
 1296         boolean_t upgrade;
 1297 
 1298 #ifdef  lint
 1299         src_map++;
 1300 #endif  /* lint */
 1301 
 1302         upgrade = src_entry == dst_entry;
 1303         access = prot = dst_entry->protection;
 1304 
 1305         src_object = src_entry->object.vm_object;
 1306         src_pindex = OFF_TO_IDX(src_entry->offset);
 1307 
 1308         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
 1309                 dst_object = src_object;
 1310                 vm_object_reference(dst_object);
 1311         } else {
 1312                 /*
 1313                  * Create the top-level object for the destination entry. (Doesn't
 1314                  * actually shadow anything - we copy the pages directly.)
 1315                  */
 1316                 dst_object = vm_object_allocate(OBJT_DEFAULT,
 1317                     OFF_TO_IDX(dst_entry->end - dst_entry->start));
 1318 #if VM_NRESERVLEVEL > 0
 1319                 dst_object->flags |= OBJ_COLORED;
 1320                 dst_object->pg_color = atop(dst_entry->start);
 1321 #endif
 1322         }
 1323 
 1324         VM_OBJECT_WLOCK(dst_object);
 1325         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
 1326             ("vm_fault_copy_entry: vm_object not NULL"));
 1327         if (src_object != dst_object) {
 1328                 dst_entry->object.vm_object = dst_object;
 1329                 dst_entry->offset = 0;
 1330                 dst_object->charge = dst_entry->end - dst_entry->start;
 1331         }
 1332         if (fork_charge != NULL) {
 1333                 KASSERT(dst_entry->cred == NULL,
 1334                     ("vm_fault_copy_entry: leaked swp charge"));
 1335                 dst_object->cred = curthread->td_ucred;
 1336                 crhold(dst_object->cred);
 1337                 *fork_charge += dst_object->charge;
 1338         } else if (dst_object->cred == NULL) {
 1339                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
 1340                     dst_entry));
 1341                 dst_object->cred = dst_entry->cred;
 1342                 dst_entry->cred = NULL;
 1343         }
 1344 
 1345         /*
 1346          * If not an upgrade, then enter the mappings in the pmap as
 1347          * read and/or execute accesses.  Otherwise, enter them as
 1348          * write accesses.
 1349          *
 1350          * A writeable large page mapping is only created if all of
 1351          * the constituent small page mappings are modified. Marking
 1352          * PTEs as modified on inception allows promotion to happen
 1353          * without taking potentially large number of soft faults.
 1354          */
 1355         if (!upgrade)
 1356                 access &= ~VM_PROT_WRITE;
 1357 
 1358         /*
 1359          * Loop through all of the virtual pages within the entry's
 1360          * range, copying each page from the source object to the
 1361          * destination object.  Since the source is wired, those pages
 1362          * must exist.  In contrast, the destination is pageable.
 1363          * Since the destination object does share any backing storage
 1364          * with the source object, all of its pages must be dirtied,
 1365          * regardless of whether they can be written.
 1366          */
 1367         for (vaddr = dst_entry->start, dst_pindex = 0;
 1368             vaddr < dst_entry->end;
 1369             vaddr += PAGE_SIZE, dst_pindex++) {
 1370 again:
 1371                 /*
 1372                  * Find the page in the source object, and copy it in.
 1373                  * Because the source is wired down, the page will be
 1374                  * in memory.
 1375                  */
 1376                 if (src_object != dst_object)
 1377                         VM_OBJECT_RLOCK(src_object);
 1378                 object = src_object;
 1379                 pindex = src_pindex + dst_pindex;
 1380                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
 1381                     (backing_object = object->backing_object) != NULL) {
 1382                         /*
 1383                          * Unless the source mapping is read-only or
 1384                          * it is presently being upgraded from
 1385                          * read-only, the first object in the shadow
 1386                          * chain should provide all of the pages.  In
 1387                          * other words, this loop body should never be
 1388                          * executed when the source mapping is already
 1389                          * read/write.
 1390                          */
 1391                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
 1392                             upgrade,
 1393                             ("vm_fault_copy_entry: main object missing page"));
 1394 
 1395                         VM_OBJECT_RLOCK(backing_object);
 1396                         pindex += OFF_TO_IDX(object->backing_object_offset);
 1397                         if (object != dst_object)
 1398                                 VM_OBJECT_RUNLOCK(object);
 1399                         object = backing_object;
 1400                 }
 1401                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
 1402 
 1403                 if (object != dst_object) {
 1404                         /*
 1405                          * Allocate a page in the destination object.
 1406                          */
 1407                         dst_m = vm_page_alloc(dst_object, (src_object ==
 1408                             dst_object ? src_pindex : 0) + dst_pindex,
 1409                             VM_ALLOC_NORMAL);
 1410                         if (dst_m == NULL) {
 1411                                 VM_OBJECT_WUNLOCK(dst_object);
 1412                                 VM_OBJECT_RUNLOCK(object);
 1413                                 VM_WAIT;
 1414                                 VM_OBJECT_WLOCK(dst_object);
 1415                                 goto again;
 1416                         }
 1417                         pmap_copy_page(src_m, dst_m);
 1418                         VM_OBJECT_RUNLOCK(object);
 1419                         dst_m->valid = VM_PAGE_BITS_ALL;
 1420                         dst_m->dirty = VM_PAGE_BITS_ALL;
 1421                 } else {
 1422                         dst_m = src_m;
 1423                         if (vm_page_sleep_if_busy(dst_m, "fltupg"))
 1424                                 goto again;
 1425                         vm_page_xbusy(dst_m);
 1426                         KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
 1427                             ("invalid dst page %p", dst_m));
 1428                 }
 1429                 VM_OBJECT_WUNLOCK(dst_object);
 1430 
 1431                 /*
 1432                  * Enter it in the pmap. If a wired, copy-on-write
 1433                  * mapping is being replaced by a write-enabled
 1434                  * mapping, then wire that new mapping.
 1435                  */
 1436                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
 1437                     access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
 1438 
 1439                 /*
 1440                  * Mark it no longer busy, and put it on the active list.
 1441                  */
 1442                 VM_OBJECT_WLOCK(dst_object);
 1443                 
 1444                 if (upgrade) {
 1445                         if (src_m != dst_m) {
 1446                                 vm_page_lock(src_m);
 1447                                 vm_page_unwire(src_m, 0);
 1448                                 vm_page_unlock(src_m);
 1449                                 vm_page_lock(dst_m);
 1450                                 vm_page_wire(dst_m);
 1451                                 vm_page_unlock(dst_m);
 1452                         } else {
 1453                                 KASSERT(dst_m->wire_count > 0,
 1454                                     ("dst_m %p is not wired", dst_m));
 1455                         }
 1456                 } else {
 1457                         vm_page_lock(dst_m);
 1458                         vm_page_activate(dst_m);
 1459                         vm_page_unlock(dst_m);
 1460                 }
 1461                 vm_page_xunbusy(dst_m);
 1462         }
 1463         VM_OBJECT_WUNLOCK(dst_object);
 1464         if (upgrade) {
 1465                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
 1466                 vm_object_deallocate(src_object);
 1467         }
 1468 }
 1469 
 1470 
 1471 /*
 1472  * This routine checks around the requested page for other pages that
 1473  * might be able to be faulted in.  This routine brackets the viable
 1474  * pages for the pages to be paged in.
 1475  *
 1476  * Inputs:
 1477  *      m, rbehind, rahead
 1478  *
 1479  * Outputs:
 1480  *  marray (array of vm_page_t), reqpage (index of requested page)
 1481  *
 1482  * Return value:
 1483  *  number of pages in marray
 1484  */
 1485 static int
 1486 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
 1487         vm_page_t m;
 1488         int rbehind;
 1489         int rahead;
 1490         vm_page_t *marray;
 1491         int *reqpage;
 1492 {
 1493         int i,j;
 1494         vm_object_t object;
 1495         vm_pindex_t pindex, startpindex, endpindex, tpindex;
 1496         vm_page_t rtm;
 1497         int cbehind, cahead;
 1498 
 1499         VM_OBJECT_ASSERT_WLOCKED(m->object);
 1500 
 1501         object = m->object;
 1502         pindex = m->pindex;
 1503         cbehind = cahead = 0;
 1504 
 1505         /*
 1506          * if the requested page is not available, then give up now
 1507          */
 1508         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
 1509                 return 0;
 1510         }
 1511 
 1512         if ((cbehind == 0) && (cahead == 0)) {
 1513                 *reqpage = 0;
 1514                 marray[0] = m;
 1515                 return 1;
 1516         }
 1517 
 1518         if (rahead > cahead) {
 1519                 rahead = cahead;
 1520         }
 1521 
 1522         if (rbehind > cbehind) {
 1523                 rbehind = cbehind;
 1524         }
 1525 
 1526         /*
 1527          * scan backward for the read behind pages -- in memory 
 1528          */
 1529         if (pindex > 0) {
 1530                 if (rbehind > pindex) {
 1531                         rbehind = pindex;
 1532                         startpindex = 0;
 1533                 } else {
 1534                         startpindex = pindex - rbehind;
 1535                 }
 1536 
 1537                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
 1538                     rtm->pindex >= startpindex)
 1539                         startpindex = rtm->pindex + 1;
 1540 
 1541                 /* tpindex is unsigned; beware of numeric underflow. */
 1542                 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
 1543                     tpindex < pindex; i++, tpindex--) {
 1544 
 1545                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
 1546                             VM_ALLOC_IFNOTCACHED);
 1547                         if (rtm == NULL) {
 1548                                 /*
 1549                                  * Shift the allocated pages to the
 1550                                  * beginning of the array.
 1551                                  */
 1552                                 for (j = 0; j < i; j++) {
 1553                                         marray[j] = marray[j + tpindex + 1 -
 1554                                             startpindex];
 1555                                 }
 1556                                 break;
 1557                         }
 1558 
 1559                         marray[tpindex - startpindex] = rtm;
 1560                 }
 1561         } else {
 1562                 startpindex = 0;
 1563                 i = 0;
 1564         }
 1565 
 1566         marray[i] = m;
 1567         /* page offset of the required page */
 1568         *reqpage = i;
 1569 
 1570         tpindex = pindex + 1;
 1571         i++;
 1572 
 1573         /*
 1574          * scan forward for the read ahead pages
 1575          */
 1576         endpindex = tpindex + rahead;
 1577         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
 1578                 endpindex = rtm->pindex;
 1579         if (endpindex > object->size)
 1580                 endpindex = object->size;
 1581 
 1582         for (; tpindex < endpindex; i++, tpindex++) {
 1583 
 1584                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
 1585                     VM_ALLOC_IFNOTCACHED);
 1586                 if (rtm == NULL) {
 1587                         break;
 1588                 }
 1589 
 1590                 marray[i] = rtm;
 1591         }
 1592 
 1593         /* return number of pages */
 1594         return i;
 1595 }
 1596 
 1597 /*
 1598  * Block entry into the machine-independent layer's page fault handler by
 1599  * the calling thread.  Subsequent calls to vm_fault() by that thread will
 1600  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
 1601  * spurious page faults. 
 1602  */
 1603 int
 1604 vm_fault_disable_pagefaults(void)
 1605 {
 1606 
 1607         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
 1608 }
 1609 
 1610 void
 1611 vm_fault_enable_pagefaults(int save)
 1612 {
 1613 
 1614         curthread_pflags_restore(save);
 1615 }

Cache object: cd215021c62f9bc550a00f5a7ef7321a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.