The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_fault.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  *
    9  *
   10  * This code is derived from software contributed to Berkeley by
   11  * The Mach Operating System project at Carnegie-Mellon University.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1. Redistributions of source code must retain the above copyright
   17  *    notice, this list of conditions and the following disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  * 3. All advertising materials mentioning features or use of this software
   22  *    must display the following acknowledgement:
   23  *      This product includes software developed by the University of
   24  *      California, Berkeley and its contributors.
   25  * 4. Neither the name of the University nor the names of its contributors
   26  *    may be used to endorse or promote products derived from this software
   27  *    without specific prior written permission.
   28  *
   29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   39  * SUCH DAMAGE.
   40  *
   41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
   42  *
   43  *
   44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   45  * All rights reserved.
   46  *
   47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   48  *
   49  * Permission to use, copy, modify and distribute this software and
   50  * its documentation is hereby granted, provided that both the copyright
   51  * notice and this permission notice appear in all copies of the
   52  * software, derivative works or modified versions, and any portions
   53  * thereof, and that both notices appear in supporting documentation.
   54  *
   55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   58  *
   59  * Carnegie Mellon requests users of this software to return to
   60  *
   61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   62  *  School of Computer Science
   63  *  Carnegie Mellon University
   64  *  Pittsburgh PA 15213-3890
   65  *
   66  * any improvements or extensions that they make and grant Carnegie the
   67  * rights to redistribute these changes.
   68  */
   69 
   70 /*
   71  *      Page fault handling module.
   72  */
   73 
   74 #include <sys/cdefs.h>
   75 __FBSDID("$FreeBSD: releng/11.1/sys/vm/vm_fault.c 320763 2017-07-07 06:29:18Z kib $");
   76 
   77 #include "opt_ktrace.h"
   78 #include "opt_vm.h"
   79 
   80 #include <sys/param.h>
   81 #include <sys/systm.h>
   82 #include <sys/kernel.h>
   83 #include <sys/lock.h>
   84 #include <sys/mman.h>
   85 #include <sys/proc.h>
   86 #include <sys/racct.h>
   87 #include <sys/resourcevar.h>
   88 #include <sys/rwlock.h>
   89 #include <sys/sysctl.h>
   90 #include <sys/vmmeter.h>
   91 #include <sys/vnode.h>
   92 #ifdef KTRACE
   93 #include <sys/ktrace.h>
   94 #endif
   95 
   96 #include <vm/vm.h>
   97 #include <vm/vm_param.h>
   98 #include <vm/pmap.h>
   99 #include <vm/vm_map.h>
  100 #include <vm/vm_object.h>
  101 #include <vm/vm_page.h>
  102 #include <vm/vm_pageout.h>
  103 #include <vm/vm_kern.h>
  104 #include <vm/vm_pager.h>
  105 #include <vm/vm_extern.h>
  106 #include <vm/vm_reserv.h>
  107 
  108 #define PFBAK 4
  109 #define PFFOR 4
  110 
  111 #define VM_FAULT_READ_DEFAULT   (1 + VM_FAULT_READ_AHEAD_INIT)
  112 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
  113 
  114 #define VM_FAULT_DONTNEED_MIN   1048576
  115 
  116 struct faultstate {
  117         vm_page_t m;
  118         vm_object_t object;
  119         vm_pindex_t pindex;
  120         vm_page_t first_m;
  121         vm_object_t     first_object;
  122         vm_pindex_t first_pindex;
  123         vm_map_t map;
  124         vm_map_entry_t entry;
  125         int map_generation;
  126         bool lookup_still_valid;
  127         struct vnode *vp;
  128 };
  129 
  130 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
  131             int ahead);
  132 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
  133             int backward, int forward);
  134 
  135 static inline void
  136 release_page(struct faultstate *fs)
  137 {
  138 
  139         vm_page_xunbusy(fs->m);
  140         vm_page_lock(fs->m);
  141         vm_page_deactivate(fs->m);
  142         vm_page_unlock(fs->m);
  143         fs->m = NULL;
  144 }
  145 
  146 static inline void
  147 unlock_map(struct faultstate *fs)
  148 {
  149 
  150         if (fs->lookup_still_valid) {
  151                 vm_map_lookup_done(fs->map, fs->entry);
  152                 fs->lookup_still_valid = false;
  153         }
  154 }
  155 
  156 static void
  157 unlock_vp(struct faultstate *fs)
  158 {
  159 
  160         if (fs->vp != NULL) {
  161                 vput(fs->vp);
  162                 fs->vp = NULL;
  163         }
  164 }
  165 
  166 static void
  167 unlock_and_deallocate(struct faultstate *fs)
  168 {
  169 
  170         vm_object_pip_wakeup(fs->object);
  171         VM_OBJECT_WUNLOCK(fs->object);
  172         if (fs->object != fs->first_object) {
  173                 VM_OBJECT_WLOCK(fs->first_object);
  174                 vm_page_lock(fs->first_m);
  175                 vm_page_free(fs->first_m);
  176                 vm_page_unlock(fs->first_m);
  177                 vm_object_pip_wakeup(fs->first_object);
  178                 VM_OBJECT_WUNLOCK(fs->first_object);
  179                 fs->first_m = NULL;
  180         }
  181         vm_object_deallocate(fs->first_object);
  182         unlock_map(fs);
  183         unlock_vp(fs);
  184 }
  185 
  186 static void
  187 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
  188     vm_prot_t fault_type, int fault_flags, bool set_wd)
  189 {
  190         bool need_dirty;
  191 
  192         if (((prot & VM_PROT_WRITE) == 0 &&
  193             (fault_flags & VM_FAULT_DIRTY) == 0) ||
  194             (m->oflags & VPO_UNMANAGED) != 0)
  195                 return;
  196 
  197         VM_OBJECT_ASSERT_LOCKED(m->object);
  198 
  199         need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
  200             (fault_flags & VM_FAULT_WIRE) == 0) ||
  201             (fault_flags & VM_FAULT_DIRTY) != 0;
  202 
  203         if (set_wd)
  204                 vm_object_set_writeable_dirty(m->object);
  205         else
  206                 /*
  207                  * If two callers of vm_fault_dirty() with set_wd ==
  208                  * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
  209                  * flag set, other with flag clear, race, it is
  210                  * possible for the no-NOSYNC thread to see m->dirty
  211                  * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
  212                  * around manipulation of VPO_NOSYNC and
  213                  * vm_page_dirty() call, to avoid the race and keep
  214                  * m->oflags consistent.
  215                  */
  216                 vm_page_lock(m);
  217 
  218         /*
  219          * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
  220          * if the page is already dirty to prevent data written with
  221          * the expectation of being synced from not being synced.
  222          * Likewise if this entry does not request NOSYNC then make
  223          * sure the page isn't marked NOSYNC.  Applications sharing
  224          * data should use the same flags to avoid ping ponging.
  225          */
  226         if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
  227                 if (m->dirty == 0) {
  228                         m->oflags |= VPO_NOSYNC;
  229                 }
  230         } else {
  231                 m->oflags &= ~VPO_NOSYNC;
  232         }
  233 
  234         /*
  235          * If the fault is a write, we know that this page is being
  236          * written NOW so dirty it explicitly to save on
  237          * pmap_is_modified() calls later.
  238          *
  239          * Also tell the backing pager, if any, that it should remove
  240          * any swap backing since the page is now dirty.
  241          */
  242         if (need_dirty)
  243                 vm_page_dirty(m);
  244         if (!set_wd)
  245                 vm_page_unlock(m);
  246         if (need_dirty)
  247                 vm_pager_page_unswapped(m);
  248 }
  249 
  250 static void
  251 vm_fault_fill_hold(vm_page_t *m_hold, vm_page_t m)
  252 {
  253 
  254         if (m_hold != NULL) {
  255                 *m_hold = m;
  256                 vm_page_lock(m);
  257                 vm_page_hold(m);
  258                 vm_page_unlock(m);
  259         }
  260 }
  261 
  262 /*
  263  * Unlocks fs.first_object and fs.map on success.
  264  */
  265 static int
  266 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
  267     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
  268 {
  269         vm_page_t m;
  270         int rv;
  271 
  272         MPASS(fs->vp == NULL);
  273         m = vm_page_lookup(fs->first_object, fs->first_pindex);
  274         /* A busy page can be mapped for read|execute access. */
  275         if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
  276             vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
  277                 return (KERN_FAILURE);
  278         rv = pmap_enter(fs->map->pmap, vaddr, m, prot, fault_type |
  279             PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), 0);
  280         if (rv != KERN_SUCCESS)
  281                 return (rv);
  282         vm_fault_fill_hold(m_hold, m);
  283         vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false);
  284         VM_OBJECT_RUNLOCK(fs->first_object);
  285         if (!wired)
  286                 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR);
  287         vm_map_lookup_done(fs->map, fs->entry);
  288         curthread->td_ru.ru_minflt++;
  289         return (KERN_SUCCESS);
  290 }
  291 
  292 static void
  293 vm_fault_restore_map_lock(struct faultstate *fs)
  294 {
  295 
  296         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
  297         MPASS(fs->first_object->paging_in_progress > 0);
  298 
  299         if (!vm_map_trylock_read(fs->map)) {
  300                 VM_OBJECT_WUNLOCK(fs->first_object);
  301                 vm_map_lock_read(fs->map);
  302                 VM_OBJECT_WLOCK(fs->first_object);
  303         }
  304         fs->lookup_still_valid = true;
  305 }
  306 
  307 static void
  308 vm_fault_populate_check_page(vm_page_t m)
  309 {
  310 
  311         /*
  312          * Check each page to ensure that the pager is obeying the
  313          * interface: the page must be installed in the object, fully
  314          * valid, and exclusively busied.
  315          */
  316         MPASS(m != NULL);
  317         MPASS(m->valid == VM_PAGE_BITS_ALL);
  318         MPASS(vm_page_xbusied(m));
  319 }
  320 
  321 static void
  322 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
  323     vm_pindex_t last)
  324 {
  325         vm_page_t m;
  326         vm_pindex_t pidx;
  327 
  328         VM_OBJECT_ASSERT_WLOCKED(object);
  329         MPASS(first <= last);
  330         for (pidx = first, m = vm_page_lookup(object, pidx);
  331             pidx <= last; pidx++, m = vm_page_next(m)) {
  332                 vm_fault_populate_check_page(m);
  333                 vm_page_lock(m);
  334                 vm_page_deactivate(m);
  335                 vm_page_unlock(m);
  336                 vm_page_xunbusy(m);
  337         }
  338 }
  339 
  340 static int
  341 vm_fault_populate(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
  342     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
  343 {
  344         vm_page_t m;
  345         vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
  346         int rv;
  347 
  348         MPASS(fs->object == fs->first_object);
  349         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
  350         MPASS(fs->first_object->paging_in_progress > 0);
  351         MPASS(fs->first_object->backing_object == NULL);
  352         MPASS(fs->lookup_still_valid);
  353 
  354         pager_first = OFF_TO_IDX(fs->entry->offset);
  355         pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
  356         unlock_map(fs);
  357         unlock_vp(fs);
  358 
  359         /*
  360          * Call the pager (driver) populate() method.
  361          *
  362          * There is no guarantee that the method will be called again
  363          * if the current fault is for read, and a future fault is
  364          * for write.  Report the entry's maximum allowed protection
  365          * to the driver.
  366          */
  367         rv = vm_pager_populate(fs->first_object, fs->first_pindex,
  368             fault_type, fs->entry->max_protection, &pager_first, &pager_last);
  369 
  370         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
  371         if (rv == VM_PAGER_BAD) {
  372                 /*
  373                  * VM_PAGER_BAD is the backdoor for a pager to request
  374                  * normal fault handling.
  375                  */
  376                 vm_fault_restore_map_lock(fs);
  377                 if (fs->map->timestamp != fs->map_generation)
  378                         return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
  379                 return (KERN_NOT_RECEIVER);
  380         }
  381         if (rv != VM_PAGER_OK)
  382                 return (KERN_FAILURE); /* AKA SIGSEGV */
  383 
  384         /* Ensure that the driver is obeying the interface. */
  385         MPASS(pager_first <= pager_last);
  386         MPASS(fs->first_pindex <= pager_last);
  387         MPASS(fs->first_pindex >= pager_first);
  388         MPASS(pager_last < fs->first_object->size);
  389 
  390         vm_fault_restore_map_lock(fs);
  391         if (fs->map->timestamp != fs->map_generation) {
  392                 vm_fault_populate_cleanup(fs->first_object, pager_first,
  393                     pager_last);
  394                 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
  395         }
  396 
  397         /*
  398          * The map is unchanged after our last unlock.  Process the fault.
  399          *
  400          * The range [pager_first, pager_last] that is given to the
  401          * pager is only a hint.  The pager may populate any range
  402          * within the object that includes the requested page index.
  403          * In case the pager expanded the range, clip it to fit into
  404          * the map entry.
  405          */
  406         map_first = OFF_TO_IDX(fs->entry->offset);
  407         if (map_first > pager_first) {
  408                 vm_fault_populate_cleanup(fs->first_object, pager_first,
  409                     map_first - 1);
  410                 pager_first = map_first;
  411         }
  412         map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
  413         if (map_last < pager_last) {
  414                 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
  415                     pager_last);
  416                 pager_last = map_last;
  417         }
  418         for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
  419             pidx <= pager_last; pidx++, m = vm_page_next(m)) {
  420                 vm_fault_populate_check_page(m);
  421                 vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags,
  422                     true);
  423                 VM_OBJECT_WUNLOCK(fs->first_object);
  424                 pmap_enter(fs->map->pmap, fs->entry->start + IDX_TO_OFF(pidx) -
  425                     fs->entry->offset, m, prot, fault_type | (wired ?
  426                     PMAP_ENTER_WIRED : 0), 0);
  427                 VM_OBJECT_WLOCK(fs->first_object);
  428                 if (pidx == fs->first_pindex)
  429                         vm_fault_fill_hold(m_hold, m);
  430                 vm_page_lock(m);
  431                 if ((fault_flags & VM_FAULT_WIRE) != 0) {
  432                         KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
  433                         vm_page_wire(m);
  434                 } else {
  435                         vm_page_activate(m);
  436                 }
  437                 vm_page_unlock(m);
  438                 vm_page_xunbusy(m);
  439         }
  440         curthread->td_ru.ru_majflt++;
  441         return (KERN_SUCCESS);
  442 }
  443 
  444 /*
  445  *      vm_fault:
  446  *
  447  *      Handle a page fault occurring at the given address,
  448  *      requiring the given permissions, in the map specified.
  449  *      If successful, the page is inserted into the
  450  *      associated physical map.
  451  *
  452  *      NOTE: the given address should be truncated to the
  453  *      proper page address.
  454  *
  455  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
  456  *      a standard error specifying why the fault is fatal is returned.
  457  *
  458  *      The map in question must be referenced, and remains so.
  459  *      Caller may hold no locks.
  460  */
  461 int
  462 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
  463     int fault_flags)
  464 {
  465         struct thread *td;
  466         int result;
  467 
  468         td = curthread;
  469         if ((td->td_pflags & TDP_NOFAULTING) != 0)
  470                 return (KERN_PROTECTION_FAILURE);
  471 #ifdef KTRACE
  472         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
  473                 ktrfault(vaddr, fault_type);
  474 #endif
  475         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
  476             NULL);
  477 #ifdef KTRACE
  478         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
  479                 ktrfaultend(result);
  480 #endif
  481         return (result);
  482 }
  483 
  484 int
  485 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
  486     int fault_flags, vm_page_t *m_hold)
  487 {
  488         struct faultstate fs;
  489         struct vnode *vp;
  490         vm_object_t next_object, retry_object;
  491         vm_offset_t e_end, e_start;
  492         vm_pindex_t retry_pindex;
  493         vm_prot_t prot, retry_prot;
  494         int ahead, alloc_req, behind, cluster_offset, error, era, faultcount;
  495         int locked, nera, result, rv;
  496         u_char behavior;
  497         boolean_t wired;        /* Passed by reference. */
  498         bool dead, hardfault, is_first_object_locked;
  499 
  500         PCPU_INC(cnt.v_vm_faults);
  501         fs.vp = NULL;
  502         faultcount = 0;
  503         nera = -1;
  504         hardfault = false;
  505 
  506 RetryFault:;
  507 
  508         /*
  509          * Find the backing store object and offset into it to begin the
  510          * search.
  511          */
  512         fs.map = map;
  513         result = vm_map_lookup(&fs.map, vaddr, fault_type |
  514             VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object,
  515             &fs.first_pindex, &prot, &wired);
  516         if (result != KERN_SUCCESS) {
  517                 unlock_vp(&fs);
  518                 return (result);
  519         }
  520 
  521         fs.map_generation = fs.map->timestamp;
  522 
  523         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
  524                 panic("vm_fault: fault on nofault entry, addr: %lx",
  525                     (u_long)vaddr);
  526         }
  527 
  528         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
  529             fs.entry->wiring_thread != curthread) {
  530                 vm_map_unlock_read(fs.map);
  531                 vm_map_lock(fs.map);
  532                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
  533                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
  534                         unlock_vp(&fs);
  535                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
  536                         vm_map_unlock_and_wait(fs.map, 0);
  537                 } else
  538                         vm_map_unlock(fs.map);
  539                 goto RetryFault;
  540         }
  541 
  542         MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0);
  543 
  544         if (wired)
  545                 fault_type = prot | (fault_type & VM_PROT_COPY);
  546         else
  547                 KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
  548                     ("!wired && VM_FAULT_WIRE"));
  549 
  550         /*
  551          * Try to avoid lock contention on the top-level object through
  552          * special-case handling of some types of page faults, specifically,
  553          * those that are both (1) mapping an existing page from the top-
  554          * level object and (2) not having to mark that object as containing
  555          * dirty pages.  Under these conditions, a read lock on the top-level
  556          * object suffices, allowing multiple page faults of a similar type to
  557          * run in parallel on the same top-level object.
  558          */
  559         if (fs.vp == NULL /* avoid locked vnode leak */ &&
  560             (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
  561             /* avoid calling vm_object_set_writeable_dirty() */
  562             ((prot & VM_PROT_WRITE) == 0 ||
  563             (fs.first_object->type != OBJT_VNODE &&
  564             (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
  565             (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
  566                 VM_OBJECT_RLOCK(fs.first_object);
  567                 if ((prot & VM_PROT_WRITE) == 0 ||
  568                     (fs.first_object->type != OBJT_VNODE &&
  569                     (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
  570                     (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) {
  571                         rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type,
  572                             fault_flags, wired, m_hold);
  573                         if (rv == KERN_SUCCESS)
  574                                 return (rv);
  575                 }
  576                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
  577                         VM_OBJECT_RUNLOCK(fs.first_object);
  578                         VM_OBJECT_WLOCK(fs.first_object);
  579                 }
  580         } else {
  581                 VM_OBJECT_WLOCK(fs.first_object);
  582         }
  583 
  584         /*
  585          * Make a reference to this object to prevent its disposal while we
  586          * are messing with it.  Once we have the reference, the map is free
  587          * to be diddled.  Since objects reference their shadows (and copies),
  588          * they will stay around as well.
  589          *
  590          * Bump the paging-in-progress count to prevent size changes (e.g. 
  591          * truncation operations) during I/O.
  592          */
  593         vm_object_reference_locked(fs.first_object);
  594         vm_object_pip_add(fs.first_object, 1);
  595 
  596         fs.lookup_still_valid = true;
  597 
  598         fs.first_m = NULL;
  599 
  600         /*
  601          * Search for the page at object/offset.
  602          */
  603         fs.object = fs.first_object;
  604         fs.pindex = fs.first_pindex;
  605         while (TRUE) {
  606                 /*
  607                  * If the object is marked for imminent termination,
  608                  * we retry here, since the collapse pass has raced
  609                  * with us.  Otherwise, if we see terminally dead
  610                  * object, return fail.
  611                  */
  612                 if ((fs.object->flags & OBJ_DEAD) != 0) {
  613                         dead = fs.object->type == OBJT_DEAD;
  614                         unlock_and_deallocate(&fs);
  615                         if (dead)
  616                                 return (KERN_PROTECTION_FAILURE);
  617                         pause("vmf_de", 1);
  618                         goto RetryFault;
  619                 }
  620 
  621                 /*
  622                  * See if page is resident
  623                  */
  624                 fs.m = vm_page_lookup(fs.object, fs.pindex);
  625                 if (fs.m != NULL) {
  626                         /*
  627                          * Wait/Retry if the page is busy.  We have to do this
  628                          * if the page is either exclusive or shared busy
  629                          * because the vm_pager may be using read busy for
  630                          * pageouts (and even pageins if it is the vnode
  631                          * pager), and we could end up trying to pagein and
  632                          * pageout the same page simultaneously.
  633                          *
  634                          * We can theoretically allow the busy case on a read
  635                          * fault if the page is marked valid, but since such
  636                          * pages are typically already pmap'd, putting that
  637                          * special case in might be more effort then it is 
  638                          * worth.  We cannot under any circumstances mess
  639                          * around with a shared busied page except, perhaps,
  640                          * to pmap it.
  641                          */
  642                         if (vm_page_busied(fs.m)) {
  643                                 /*
  644                                  * Reference the page before unlocking and
  645                                  * sleeping so that the page daemon is less
  646                                  * likely to reclaim it. 
  647                                  */
  648                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
  649                                 if (fs.object != fs.first_object) {
  650                                         if (!VM_OBJECT_TRYWLOCK(
  651                                             fs.first_object)) {
  652                                                 VM_OBJECT_WUNLOCK(fs.object);
  653                                                 VM_OBJECT_WLOCK(fs.first_object);
  654                                                 VM_OBJECT_WLOCK(fs.object);
  655                                         }
  656                                         vm_page_lock(fs.first_m);
  657                                         vm_page_free(fs.first_m);
  658                                         vm_page_unlock(fs.first_m);
  659                                         vm_object_pip_wakeup(fs.first_object);
  660                                         VM_OBJECT_WUNLOCK(fs.first_object);
  661                                         fs.first_m = NULL;
  662                                 }
  663                                 unlock_map(&fs);
  664                                 if (fs.m == vm_page_lookup(fs.object,
  665                                     fs.pindex)) {
  666                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
  667                                 }
  668                                 vm_object_pip_wakeup(fs.object);
  669                                 VM_OBJECT_WUNLOCK(fs.object);
  670                                 PCPU_INC(cnt.v_intrans);
  671                                 vm_object_deallocate(fs.first_object);
  672                                 goto RetryFault;
  673                         }
  674                         vm_page_lock(fs.m);
  675                         vm_page_remque(fs.m);
  676                         vm_page_unlock(fs.m);
  677 
  678                         /*
  679                          * Mark page busy for other processes, and the 
  680                          * pagedaemon.  If it still isn't completely valid
  681                          * (readable), jump to readrest, else break-out ( we
  682                          * found the page ).
  683                          */
  684                         vm_page_xbusy(fs.m);
  685                         if (fs.m->valid != VM_PAGE_BITS_ALL)
  686                                 goto readrest;
  687                         break;
  688                 }
  689                 KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m));
  690 
  691                 /*
  692                  * Page is not resident.  If the pager might contain the page
  693                  * or this is the beginning of the search, allocate a new
  694                  * page.  (Default objects are zero-fill, so there is no real
  695                  * pager for them.)
  696                  */
  697                 if (fs.object->type != OBJT_DEFAULT ||
  698                     fs.object == fs.first_object) {
  699                         if (fs.pindex >= fs.object->size) {
  700                                 unlock_and_deallocate(&fs);
  701                                 return (KERN_PROTECTION_FAILURE);
  702                         }
  703 
  704                         if (fs.object == fs.first_object &&
  705                             (fs.first_object->flags & OBJ_POPULATE) != 0 &&
  706                             fs.first_object->shadow_count == 0) {
  707                                 rv = vm_fault_populate(&fs, vaddr, prot,
  708                                     fault_type, fault_flags, wired, m_hold);
  709                                 switch (rv) {
  710                                 case KERN_SUCCESS:
  711                                 case KERN_FAILURE:
  712                                         unlock_and_deallocate(&fs);
  713                                         return (rv);
  714                                 case KERN_RESOURCE_SHORTAGE:
  715                                         unlock_and_deallocate(&fs);
  716                                         goto RetryFault;
  717                                 case KERN_NOT_RECEIVER:
  718                                         /*
  719                                          * Pager's populate() method
  720                                          * returned VM_PAGER_BAD.
  721                                          */
  722                                         break;
  723                                 default:
  724                                         panic("inconsistent return codes");
  725                                 }
  726                         }
  727 
  728                         /*
  729                          * Allocate a new page for this object/offset pair.
  730                          *
  731                          * Unlocked read of the p_flag is harmless. At
  732                          * worst, the P_KILLED might be not observed
  733                          * there, and allocation can fail, causing
  734                          * restart and new reading of the p_flag.
  735                          */
  736                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
  737 #if VM_NRESERVLEVEL > 0
  738                                 vm_object_color(fs.object, atop(vaddr) -
  739                                     fs.pindex);
  740 #endif
  741                                 alloc_req = P_KILLED(curproc) ?
  742                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
  743                                 if (fs.object->type != OBJT_VNODE &&
  744                                     fs.object->backing_object == NULL)
  745                                         alloc_req |= VM_ALLOC_ZERO;
  746                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
  747                                     alloc_req);
  748                         }
  749                         if (fs.m == NULL) {
  750                                 unlock_and_deallocate(&fs);
  751                                 VM_WAITPFAULT;
  752                                 goto RetryFault;
  753                         }
  754                 }
  755 
  756 readrest:
  757                 /*
  758                  * At this point, we have either allocated a new page or found
  759                  * an existing page that is only partially valid.
  760                  *
  761                  * We hold a reference on the current object and the page is
  762                  * exclusive busied.
  763                  */
  764 
  765                 /*
  766                  * If the pager for the current object might have the page,
  767                  * then determine the number of additional pages to read and
  768                  * potentially reprioritize previously read pages for earlier
  769                  * reclamation.  These operations should only be performed
  770                  * once per page fault.  Even if the current pager doesn't
  771                  * have the page, the number of additional pages to read will
  772                  * apply to subsequent objects in the shadow chain.
  773                  */
  774                 if (fs.object->type != OBJT_DEFAULT && nera == -1 &&
  775                     !P_KILLED(curproc)) {
  776                         KASSERT(fs.lookup_still_valid, ("map unlocked"));
  777                         era = fs.entry->read_ahead;
  778                         behavior = vm_map_entry_behavior(fs.entry);
  779                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
  780                                 nera = 0;
  781                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
  782                                 nera = VM_FAULT_READ_AHEAD_MAX;
  783                                 if (vaddr == fs.entry->next_read)
  784                                         vm_fault_dontneed(&fs, vaddr, nera);
  785                         } else if (vaddr == fs.entry->next_read) {
  786                                 /*
  787                                  * This is a sequential fault.  Arithmetically
  788                                  * increase the requested number of pages in
  789                                  * the read-ahead window.  The requested
  790                                  * number of pages is "# of sequential faults
  791                                  * x (read ahead min + 1) + read ahead min"
  792                                  */
  793                                 nera = VM_FAULT_READ_AHEAD_MIN;
  794                                 if (era > 0) {
  795                                         nera += era + 1;
  796                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
  797                                                 nera = VM_FAULT_READ_AHEAD_MAX;
  798                                 }
  799                                 if (era == VM_FAULT_READ_AHEAD_MAX)
  800                                         vm_fault_dontneed(&fs, vaddr, nera);
  801                         } else {
  802                                 /*
  803                                  * This is a non-sequential fault.
  804                                  */
  805                                 nera = 0;
  806                         }
  807                         if (era != nera) {
  808                                 /*
  809                                  * A read lock on the map suffices to update
  810                                  * the read ahead count safely.
  811                                  */
  812                                 fs.entry->read_ahead = nera;
  813                         }
  814 
  815                         /*
  816                          * Prepare for unlocking the map.  Save the map
  817                          * entry's start and end addresses, which are used to
  818                          * optimize the size of the pager operation below.
  819                          * Even if the map entry's addresses change after
  820                          * unlocking the map, using the saved addresses is
  821                          * safe.
  822                          */
  823                         e_start = fs.entry->start;
  824                         e_end = fs.entry->end;
  825                 }
  826 
  827                 /*
  828                  * Call the pager to retrieve the page if there is a chance
  829                  * that the pager has it, and potentially retrieve additional
  830                  * pages at the same time.
  831                  */
  832                 if (fs.object->type != OBJT_DEFAULT) {
  833                         /*
  834                          * Release the map lock before locking the vnode or
  835                          * sleeping in the pager.  (If the current object has
  836                          * a shadow, then an earlier iteration of this loop
  837                          * may have already unlocked the map.)
  838                          */
  839                         unlock_map(&fs);
  840 
  841                         if (fs.object->type == OBJT_VNODE &&
  842                             (vp = fs.object->handle) != fs.vp) {
  843                                 /*
  844                                  * Perform an unlock in case the desired vnode
  845                                  * changed while the map was unlocked during a
  846                                  * retry.
  847                                  */
  848                                 unlock_vp(&fs);
  849 
  850                                 locked = VOP_ISLOCKED(vp);
  851                                 if (locked != LK_EXCLUSIVE)
  852                                         locked = LK_SHARED;
  853 
  854                                 /*
  855                                  * We must not sleep acquiring the vnode lock
  856                                  * while we have the page exclusive busied or
  857                                  * the object's paging-in-progress count
  858                                  * incremented.  Otherwise, we could deadlock.
  859                                  */
  860                                 error = vget(vp, locked | LK_CANRECURSE |
  861                                     LK_NOWAIT, curthread);
  862                                 if (error != 0) {
  863                                         vhold(vp);
  864                                         release_page(&fs);
  865                                         unlock_and_deallocate(&fs);
  866                                         error = vget(vp, locked | LK_RETRY |
  867                                             LK_CANRECURSE, curthread);
  868                                         vdrop(vp);
  869                                         fs.vp = vp;
  870                                         KASSERT(error == 0,
  871                                             ("vm_fault: vget failed"));
  872                                         goto RetryFault;
  873                                 }
  874                                 fs.vp = vp;
  875                         }
  876                         KASSERT(fs.vp == NULL || !fs.map->system_map,
  877                             ("vm_fault: vnode-backed object mapped by system map"));
  878 
  879                         /*
  880                          * Page in the requested page and hint the pager,
  881                          * that it may bring up surrounding pages.
  882                          */
  883                         if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
  884                             P_KILLED(curproc)) {
  885                                 behind = 0;
  886                                 ahead = 0;
  887                         } else {
  888                                 /* Is this a sequential fault? */
  889                                 if (nera > 0) {
  890                                         behind = 0;
  891                                         ahead = nera;
  892                                 } else {
  893                                         /*
  894                                          * Request a cluster of pages that is
  895                                          * aligned to a VM_FAULT_READ_DEFAULT
  896                                          * page offset boundary within the
  897                                          * object.  Alignment to a page offset
  898                                          * boundary is more likely to coincide
  899                                          * with the underlying file system
  900                                          * block than alignment to a virtual
  901                                          * address boundary.
  902                                          */
  903                                         cluster_offset = fs.pindex %
  904                                             VM_FAULT_READ_DEFAULT;
  905                                         behind = ulmin(cluster_offset,
  906                                             atop(vaddr - e_start));
  907                                         ahead = VM_FAULT_READ_DEFAULT - 1 -
  908                                             cluster_offset;
  909                                 }
  910                                 ahead = ulmin(ahead, atop(e_end - vaddr) - 1);
  911                         }
  912                         rv = vm_pager_get_pages(fs.object, &fs.m, 1,
  913                             &behind, &ahead);
  914                         if (rv == VM_PAGER_OK) {
  915                                 faultcount = behind + 1 + ahead;
  916                                 hardfault = true;
  917                                 break; /* break to PAGE HAS BEEN FOUND */
  918                         }
  919                         if (rv == VM_PAGER_ERROR)
  920                                 printf("vm_fault: pager read error, pid %d (%s)\n",
  921                                     curproc->p_pid, curproc->p_comm);
  922 
  923                         /*
  924                          * If an I/O error occurred or the requested page was
  925                          * outside the range of the pager, clean up and return
  926                          * an error.
  927                          */
  928                         if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
  929                                 vm_page_lock(fs.m);
  930                                 if (fs.m->wire_count == 0)
  931                                         vm_page_free(fs.m);
  932                                 else
  933                                         vm_page_xunbusy_maybelocked(fs.m);
  934                                 vm_page_unlock(fs.m);
  935                                 fs.m = NULL;
  936                                 unlock_and_deallocate(&fs);
  937                                 return (rv == VM_PAGER_ERROR ? KERN_FAILURE :
  938                                     KERN_PROTECTION_FAILURE);
  939                         }
  940 
  941                         /*
  942                          * The requested page does not exist at this object/
  943                          * offset.  Remove the invalid page from the object,
  944                          * waking up anyone waiting for it, and continue on to
  945                          * the next object.  However, if this is the top-level
  946                          * object, we must leave the busy page in place to
  947                          * prevent another process from rushing past us, and
  948                          * inserting the page in that object at the same time
  949                          * that we are.
  950                          */
  951                         if (fs.object != fs.first_object) {
  952                                 vm_page_lock(fs.m);
  953                                 if (fs.m->wire_count == 0)
  954                                         vm_page_free(fs.m);
  955                                 else
  956                                         vm_page_xunbusy_maybelocked(fs.m);
  957                                 vm_page_unlock(fs.m);
  958                                 fs.m = NULL;
  959                         }
  960                 }
  961 
  962                 /*
  963                  * We get here if the object has default pager (or unwiring) 
  964                  * or the pager doesn't have the page.
  965                  */
  966                 if (fs.object == fs.first_object)
  967                         fs.first_m = fs.m;
  968 
  969                 /*
  970                  * Move on to the next object.  Lock the next object before
  971                  * unlocking the current one.
  972                  */
  973                 next_object = fs.object->backing_object;
  974                 if (next_object == NULL) {
  975                         /*
  976                          * If there's no object left, fill the page in the top
  977                          * object with zeros.
  978                          */
  979                         if (fs.object != fs.first_object) {
  980                                 vm_object_pip_wakeup(fs.object);
  981                                 VM_OBJECT_WUNLOCK(fs.object);
  982 
  983                                 fs.object = fs.first_object;
  984                                 fs.pindex = fs.first_pindex;
  985                                 fs.m = fs.first_m;
  986                                 VM_OBJECT_WLOCK(fs.object);
  987                         }
  988                         fs.first_m = NULL;
  989 
  990                         /*
  991                          * Zero the page if necessary and mark it valid.
  992                          */
  993                         if ((fs.m->flags & PG_ZERO) == 0) {
  994                                 pmap_zero_page(fs.m);
  995                         } else {
  996                                 PCPU_INC(cnt.v_ozfod);
  997                         }
  998                         PCPU_INC(cnt.v_zfod);
  999                         fs.m->valid = VM_PAGE_BITS_ALL;
 1000                         /* Don't try to prefault neighboring pages. */
 1001                         faultcount = 1;
 1002                         break;  /* break to PAGE HAS BEEN FOUND */
 1003                 } else {
 1004                         KASSERT(fs.object != next_object,
 1005                             ("object loop %p", next_object));
 1006                         VM_OBJECT_WLOCK(next_object);
 1007                         vm_object_pip_add(next_object, 1);
 1008                         if (fs.object != fs.first_object)
 1009                                 vm_object_pip_wakeup(fs.object);
 1010                         fs.pindex +=
 1011                             OFF_TO_IDX(fs.object->backing_object_offset);
 1012                         VM_OBJECT_WUNLOCK(fs.object);
 1013                         fs.object = next_object;
 1014                 }
 1015         }
 1016 
 1017         vm_page_assert_xbusied(fs.m);
 1018 
 1019         /*
 1020          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
 1021          * is held.]
 1022          */
 1023 
 1024         /*
 1025          * If the page is being written, but isn't already owned by the
 1026          * top-level object, we have to copy it into a new page owned by the
 1027          * top-level object.
 1028          */
 1029         if (fs.object != fs.first_object) {
 1030                 /*
 1031                  * We only really need to copy if we want to write it.
 1032                  */
 1033                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
 1034                         /*
 1035                          * This allows pages to be virtually copied from a 
 1036                          * backing_object into the first_object, where the 
 1037                          * backing object has no other refs to it, and cannot
 1038                          * gain any more refs.  Instead of a bcopy, we just 
 1039                          * move the page from the backing object to the 
 1040                          * first object.  Note that we must mark the page 
 1041                          * dirty in the first object so that it will go out 
 1042                          * to swap when needed.
 1043                          */
 1044                         is_first_object_locked = false;
 1045                         if (
 1046                                 /*
 1047                                  * Only one shadow object
 1048                                  */
 1049                                 (fs.object->shadow_count == 1) &&
 1050                                 /*
 1051                                  * No COW refs, except us
 1052                                  */
 1053                                 (fs.object->ref_count == 1) &&
 1054                                 /*
 1055                                  * No one else can look this object up
 1056                                  */
 1057                                 (fs.object->handle == NULL) &&
 1058                                 /*
 1059                                  * No other ways to look the object up
 1060                                  */
 1061                                 ((fs.object->type == OBJT_DEFAULT) ||
 1062                                  (fs.object->type == OBJT_SWAP)) &&
 1063                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
 1064                                 /*
 1065                                  * We don't chase down the shadow chain
 1066                                  */
 1067                             fs.object == fs.first_object->backing_object) {
 1068                                 vm_page_lock(fs.m);
 1069                                 vm_page_remove(fs.m);
 1070                                 vm_page_unlock(fs.m);
 1071                                 vm_page_lock(fs.first_m);
 1072                                 vm_page_replace_checked(fs.m, fs.first_object,
 1073                                     fs.first_pindex, fs.first_m);
 1074                                 vm_page_free(fs.first_m);
 1075                                 vm_page_unlock(fs.first_m);
 1076                                 vm_page_dirty(fs.m);
 1077 #if VM_NRESERVLEVEL > 0
 1078                                 /*
 1079                                  * Rename the reservation.
 1080                                  */
 1081                                 vm_reserv_rename(fs.m, fs.first_object,
 1082                                     fs.object, OFF_TO_IDX(
 1083                                     fs.first_object->backing_object_offset));
 1084 #endif
 1085                                 /*
 1086                                  * Removing the page from the backing object
 1087                                  * unbusied it.
 1088                                  */
 1089                                 vm_page_xbusy(fs.m);
 1090                                 fs.first_m = fs.m;
 1091                                 fs.m = NULL;
 1092                                 PCPU_INC(cnt.v_cow_optim);
 1093                         } else {
 1094                                 /*
 1095                                  * Oh, well, lets copy it.
 1096                                  */
 1097                                 pmap_copy_page(fs.m, fs.first_m);
 1098                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
 1099                                 if (wired && (fault_flags &
 1100                                     VM_FAULT_WIRE) == 0) {
 1101                                         vm_page_lock(fs.first_m);
 1102                                         vm_page_wire(fs.first_m);
 1103                                         vm_page_unlock(fs.first_m);
 1104                                         
 1105                                         vm_page_lock(fs.m);
 1106                                         vm_page_unwire(fs.m, PQ_INACTIVE);
 1107                                         vm_page_unlock(fs.m);
 1108                                 }
 1109                                 /*
 1110                                  * We no longer need the old page or object.
 1111                                  */
 1112                                 release_page(&fs);
 1113                         }
 1114                         /*
 1115                          * fs.object != fs.first_object due to above 
 1116                          * conditional
 1117                          */
 1118                         vm_object_pip_wakeup(fs.object);
 1119                         VM_OBJECT_WUNLOCK(fs.object);
 1120                         /*
 1121                          * Only use the new page below...
 1122                          */
 1123                         fs.object = fs.first_object;
 1124                         fs.pindex = fs.first_pindex;
 1125                         fs.m = fs.first_m;
 1126                         if (!is_first_object_locked)
 1127                                 VM_OBJECT_WLOCK(fs.object);
 1128                         PCPU_INC(cnt.v_cow_faults);
 1129                         curthread->td_cow++;
 1130                 } else {
 1131                         prot &= ~VM_PROT_WRITE;
 1132                 }
 1133         }
 1134 
 1135         /*
 1136          * We must verify that the maps have not changed since our last
 1137          * lookup.
 1138          */
 1139         if (!fs.lookup_still_valid) {
 1140                 if (!vm_map_trylock_read(fs.map)) {
 1141                         release_page(&fs);
 1142                         unlock_and_deallocate(&fs);
 1143                         goto RetryFault;
 1144                 }
 1145                 fs.lookup_still_valid = true;
 1146                 if (fs.map->timestamp != fs.map_generation) {
 1147                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
 1148                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
 1149 
 1150                         /*
 1151                          * If we don't need the page any longer, put it on the inactive
 1152                          * list (the easiest thing to do here).  If no one needs it,
 1153                          * pageout will grab it eventually.
 1154                          */
 1155                         if (result != KERN_SUCCESS) {
 1156                                 release_page(&fs);
 1157                                 unlock_and_deallocate(&fs);
 1158 
 1159                                 /*
 1160                                  * If retry of map lookup would have blocked then
 1161                                  * retry fault from start.
 1162                                  */
 1163                                 if (result == KERN_FAILURE)
 1164                                         goto RetryFault;
 1165                                 return (result);
 1166                         }
 1167                         if ((retry_object != fs.first_object) ||
 1168                             (retry_pindex != fs.first_pindex)) {
 1169                                 release_page(&fs);
 1170                                 unlock_and_deallocate(&fs);
 1171                                 goto RetryFault;
 1172                         }
 1173 
 1174                         /*
 1175                          * Check whether the protection has changed or the object has
 1176                          * been copied while we left the map unlocked. Changing from
 1177                          * read to write permission is OK - we leave the page
 1178                          * write-protected, and catch the write fault. Changing from
 1179                          * write to read permission means that we can't mark the page
 1180                          * write-enabled after all.
 1181                          */
 1182                         prot &= retry_prot;
 1183                 }
 1184         }
 1185 
 1186         /*
 1187          * If the page was filled by a pager, save the virtual address that
 1188          * should be faulted on next under a sequential access pattern to the
 1189          * map entry.  A read lock on the map suffices to update this address
 1190          * safely.
 1191          */
 1192         if (hardfault)
 1193                 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
 1194 
 1195         vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true);
 1196         vm_page_assert_xbusied(fs.m);
 1197 
 1198         /*
 1199          * Page must be completely valid or it is not fit to
 1200          * map into user space.  vm_pager_get_pages() ensures this.
 1201          */
 1202         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
 1203             ("vm_fault: page %p partially invalid", fs.m));
 1204         VM_OBJECT_WUNLOCK(fs.object);
 1205 
 1206         /*
 1207          * Put this page into the physical map.  We had to do the unlock above
 1208          * because pmap_enter() may sleep.  We don't put the page
 1209          * back on the active queue until later so that the pageout daemon
 1210          * won't find it (yet).
 1211          */
 1212         pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
 1213             fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
 1214         if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
 1215             wired == 0)
 1216                 vm_fault_prefault(&fs, vaddr,
 1217                     faultcount > 0 ? behind : PFBAK,
 1218                     faultcount > 0 ? ahead : PFFOR);
 1219         VM_OBJECT_WLOCK(fs.object);
 1220         vm_page_lock(fs.m);
 1221 
 1222         /*
 1223          * If the page is not wired down, then put it where the pageout daemon
 1224          * can find it.
 1225          */
 1226         if ((fault_flags & VM_FAULT_WIRE) != 0) {
 1227                 KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
 1228                 vm_page_wire(fs.m);
 1229         } else
 1230                 vm_page_activate(fs.m);
 1231         if (m_hold != NULL) {
 1232                 *m_hold = fs.m;
 1233                 vm_page_hold(fs.m);
 1234         }
 1235         vm_page_unlock(fs.m);
 1236         vm_page_xunbusy(fs.m);
 1237 
 1238         /*
 1239          * Unlock everything, and return
 1240          */
 1241         unlock_and_deallocate(&fs);
 1242         if (hardfault) {
 1243                 PCPU_INC(cnt.v_io_faults);
 1244                 curthread->td_ru.ru_majflt++;
 1245 #ifdef RACCT
 1246                 if (racct_enable && fs.object->type == OBJT_VNODE) {
 1247                         PROC_LOCK(curproc);
 1248                         if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
 1249                                 racct_add_force(curproc, RACCT_WRITEBPS,
 1250                                     PAGE_SIZE + behind * PAGE_SIZE);
 1251                                 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
 1252                         } else {
 1253                                 racct_add_force(curproc, RACCT_READBPS,
 1254                                     PAGE_SIZE + ahead * PAGE_SIZE);
 1255                                 racct_add_force(curproc, RACCT_READIOPS, 1);
 1256                         }
 1257                         PROC_UNLOCK(curproc);
 1258                 }
 1259 #endif
 1260         } else 
 1261                 curthread->td_ru.ru_minflt++;
 1262 
 1263         return (KERN_SUCCESS);
 1264 }
 1265 
 1266 /*
 1267  * Speed up the reclamation of pages that precede the faulting pindex within
 1268  * the first object of the shadow chain.  Essentially, perform the equivalent
 1269  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
 1270  * the faulting pindex by the cluster size when the pages read by vm_fault()
 1271  * cross a cluster-size boundary.  The cluster size is the greater of the
 1272  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
 1273  *
 1274  * When "fs->first_object" is a shadow object, the pages in the backing object
 1275  * that precede the faulting pindex are deactivated by vm_fault().  So, this
 1276  * function must only be concerned with pages in the first object.
 1277  */
 1278 static void
 1279 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
 1280 {
 1281         vm_map_entry_t entry;
 1282         vm_object_t first_object, object;
 1283         vm_offset_t end, start;
 1284         vm_page_t m, m_next;
 1285         vm_pindex_t pend, pstart;
 1286         vm_size_t size;
 1287 
 1288         object = fs->object;
 1289         VM_OBJECT_ASSERT_WLOCKED(object);
 1290         first_object = fs->first_object;
 1291         if (first_object != object) {
 1292                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
 1293                         VM_OBJECT_WUNLOCK(object);
 1294                         VM_OBJECT_WLOCK(first_object);
 1295                         VM_OBJECT_WLOCK(object);
 1296                 }
 1297         }
 1298         /* Neither fictitious nor unmanaged pages can be reclaimed. */
 1299         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
 1300                 size = VM_FAULT_DONTNEED_MIN;
 1301                 if (MAXPAGESIZES > 1 && size < pagesizes[1])
 1302                         size = pagesizes[1];
 1303                 end = rounddown2(vaddr, size);
 1304                 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
 1305                     (entry = fs->entry)->start < end) {
 1306                         if (end - entry->start < size)
 1307                                 start = entry->start;
 1308                         else
 1309                                 start = end - size;
 1310                         pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
 1311                         pstart = OFF_TO_IDX(entry->offset) + atop(start -
 1312                             entry->start);
 1313                         m_next = vm_page_find_least(first_object, pstart);
 1314                         pend = OFF_TO_IDX(entry->offset) + atop(end -
 1315                             entry->start);
 1316                         while ((m = m_next) != NULL && m->pindex < pend) {
 1317                                 m_next = TAILQ_NEXT(m, listq);
 1318                                 if (m->valid != VM_PAGE_BITS_ALL ||
 1319                                     vm_page_busied(m))
 1320                                         continue;
 1321 
 1322                                 /*
 1323                                  * Don't clear PGA_REFERENCED, since it would
 1324                                  * likely represent a reference by a different
 1325                                  * process.
 1326                                  *
 1327                                  * Typically, at this point, prefetched pages
 1328                                  * are still in the inactive queue.  Only
 1329                                  * pages that triggered page faults are in the
 1330                                  * active queue.
 1331                                  */
 1332                                 vm_page_lock(m);
 1333                                 vm_page_deactivate(m);
 1334                                 vm_page_unlock(m);
 1335                         }
 1336                 }
 1337         }
 1338         if (first_object != object)
 1339                 VM_OBJECT_WUNLOCK(first_object);
 1340 }
 1341 
 1342 /*
 1343  * vm_fault_prefault provides a quick way of clustering
 1344  * pagefaults into a processes address space.  It is a "cousin"
 1345  * of vm_map_pmap_enter, except it runs at page fault time instead
 1346  * of mmap time.
 1347  */
 1348 static void
 1349 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
 1350     int backward, int forward)
 1351 {
 1352         pmap_t pmap;
 1353         vm_map_entry_t entry;
 1354         vm_object_t backing_object, lobject;
 1355         vm_offset_t addr, starta;
 1356         vm_pindex_t pindex;
 1357         vm_page_t m;
 1358         int i;
 1359 
 1360         pmap = fs->map->pmap;
 1361         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
 1362                 return;
 1363 
 1364         entry = fs->entry;
 1365 
 1366         if (addra < backward * PAGE_SIZE) {
 1367                 starta = entry->start;
 1368         } else {
 1369                 starta = addra - backward * PAGE_SIZE;
 1370                 if (starta < entry->start)
 1371                         starta = entry->start;
 1372         }
 1373 
 1374         /*
 1375          * Generate the sequence of virtual addresses that are candidates for
 1376          * prefaulting in an outward spiral from the faulting virtual address,
 1377          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
 1378          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
 1379          * If the candidate address doesn't have a backing physical page, then
 1380          * the loop immediately terminates.
 1381          */
 1382         for (i = 0; i < 2 * imax(backward, forward); i++) {
 1383                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
 1384                     PAGE_SIZE);
 1385                 if (addr > addra + forward * PAGE_SIZE)
 1386                         addr = 0;
 1387 
 1388                 if (addr < starta || addr >= entry->end)
 1389                         continue;
 1390 
 1391                 if (!pmap_is_prefaultable(pmap, addr))
 1392                         continue;
 1393 
 1394                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
 1395                 lobject = entry->object.vm_object;
 1396                 VM_OBJECT_RLOCK(lobject);
 1397                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
 1398                     lobject->type == OBJT_DEFAULT &&
 1399                     (backing_object = lobject->backing_object) != NULL) {
 1400                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
 1401                             0, ("vm_fault_prefault: unaligned object offset"));
 1402                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
 1403                         VM_OBJECT_RLOCK(backing_object);
 1404                         VM_OBJECT_RUNLOCK(lobject);
 1405                         lobject = backing_object;
 1406                 }
 1407                 if (m == NULL) {
 1408                         VM_OBJECT_RUNLOCK(lobject);
 1409                         break;
 1410                 }
 1411                 if (m->valid == VM_PAGE_BITS_ALL &&
 1412                     (m->flags & PG_FICTITIOUS) == 0)
 1413                         pmap_enter_quick(pmap, addr, m, entry->protection);
 1414                 VM_OBJECT_RUNLOCK(lobject);
 1415         }
 1416 }
 1417 
 1418 /*
 1419  * Hold each of the physical pages that are mapped by the specified range of
 1420  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
 1421  * and allow the specified types of access, "prot".  If all of the implied
 1422  * pages are successfully held, then the number of held pages is returned
 1423  * together with pointers to those pages in the array "ma".  However, if any
 1424  * of the pages cannot be held, -1 is returned.
 1425  */
 1426 int
 1427 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
 1428     vm_prot_t prot, vm_page_t *ma, int max_count)
 1429 {
 1430         vm_offset_t end, va;
 1431         vm_page_t *mp;
 1432         int count;
 1433         boolean_t pmap_failed;
 1434 
 1435         if (len == 0)
 1436                 return (0);
 1437         end = round_page(addr + len);
 1438         addr = trunc_page(addr);
 1439 
 1440         /*
 1441          * Check for illegal addresses.
 1442          */
 1443         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
 1444                 return (-1);
 1445 
 1446         if (atop(end - addr) > max_count)
 1447                 panic("vm_fault_quick_hold_pages: count > max_count");
 1448         count = atop(end - addr);
 1449 
 1450         /*
 1451          * Most likely, the physical pages are resident in the pmap, so it is
 1452          * faster to try pmap_extract_and_hold() first.
 1453          */
 1454         pmap_failed = FALSE;
 1455         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
 1456                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
 1457                 if (*mp == NULL)
 1458                         pmap_failed = TRUE;
 1459                 else if ((prot & VM_PROT_WRITE) != 0 &&
 1460                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
 1461                         /*
 1462                          * Explicitly dirty the physical page.  Otherwise, the
 1463                          * caller's changes may go unnoticed because they are
 1464                          * performed through an unmanaged mapping or by a DMA
 1465                          * operation.
 1466                          *
 1467                          * The object lock is not held here.
 1468                          * See vm_page_clear_dirty_mask().
 1469                          */
 1470                         vm_page_dirty(*mp);
 1471                 }
 1472         }
 1473         if (pmap_failed) {
 1474                 /*
 1475                  * One or more pages could not be held by the pmap.  Either no
 1476                  * page was mapped at the specified virtual address or that
 1477                  * mapping had insufficient permissions.  Attempt to fault in
 1478                  * and hold these pages.
 1479                  */
 1480                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
 1481                         if (*mp == NULL && vm_fault_hold(map, va, prot,
 1482                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
 1483                                 goto error;
 1484         }
 1485         return (count);
 1486 error:  
 1487         for (mp = ma; mp < ma + count; mp++)
 1488                 if (*mp != NULL) {
 1489                         vm_page_lock(*mp);
 1490                         vm_page_unhold(*mp);
 1491                         vm_page_unlock(*mp);
 1492                 }
 1493         return (-1);
 1494 }
 1495 
 1496 /*
 1497  *      Routine:
 1498  *              vm_fault_copy_entry
 1499  *      Function:
 1500  *              Create new shadow object backing dst_entry with private copy of
 1501  *              all underlying pages. When src_entry is equal to dst_entry,
 1502  *              function implements COW for wired-down map entry. Otherwise,
 1503  *              it forks wired entry into dst_map.
 1504  *
 1505  *      In/out conditions:
 1506  *              The source and destination maps must be locked for write.
 1507  *              The source map entry must be wired down (or be a sharing map
 1508  *              entry corresponding to a main map entry that is wired down).
 1509  */
 1510 void
 1511 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
 1512     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
 1513     vm_ooffset_t *fork_charge)
 1514 {
 1515         vm_object_t backing_object, dst_object, object, src_object;
 1516         vm_pindex_t dst_pindex, pindex, src_pindex;
 1517         vm_prot_t access, prot;
 1518         vm_offset_t vaddr;
 1519         vm_page_t dst_m;
 1520         vm_page_t src_m;
 1521         boolean_t upgrade;
 1522 
 1523 #ifdef  lint
 1524         src_map++;
 1525 #endif  /* lint */
 1526 
 1527         upgrade = src_entry == dst_entry;
 1528         access = prot = dst_entry->protection;
 1529 
 1530         src_object = src_entry->object.vm_object;
 1531         src_pindex = OFF_TO_IDX(src_entry->offset);
 1532 
 1533         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
 1534                 dst_object = src_object;
 1535                 vm_object_reference(dst_object);
 1536         } else {
 1537                 /*
 1538                  * Create the top-level object for the destination entry. (Doesn't
 1539                  * actually shadow anything - we copy the pages directly.)
 1540                  */
 1541                 dst_object = vm_object_allocate(OBJT_DEFAULT,
 1542                     atop(dst_entry->end - dst_entry->start));
 1543 #if VM_NRESERVLEVEL > 0
 1544                 dst_object->flags |= OBJ_COLORED;
 1545                 dst_object->pg_color = atop(dst_entry->start);
 1546 #endif
 1547         }
 1548 
 1549         VM_OBJECT_WLOCK(dst_object);
 1550         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
 1551             ("vm_fault_copy_entry: vm_object not NULL"));
 1552         if (src_object != dst_object) {
 1553                 dst_entry->object.vm_object = dst_object;
 1554                 dst_entry->offset = 0;
 1555                 dst_object->charge = dst_entry->end - dst_entry->start;
 1556         }
 1557         if (fork_charge != NULL) {
 1558                 KASSERT(dst_entry->cred == NULL,
 1559                     ("vm_fault_copy_entry: leaked swp charge"));
 1560                 dst_object->cred = curthread->td_ucred;
 1561                 crhold(dst_object->cred);
 1562                 *fork_charge += dst_object->charge;
 1563         } else if (dst_object->cred == NULL) {
 1564                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
 1565                     dst_entry));
 1566                 dst_object->cred = dst_entry->cred;
 1567                 dst_entry->cred = NULL;
 1568         }
 1569 
 1570         /*
 1571          * If not an upgrade, then enter the mappings in the pmap as
 1572          * read and/or execute accesses.  Otherwise, enter them as
 1573          * write accesses.
 1574          *
 1575          * A writeable large page mapping is only created if all of
 1576          * the constituent small page mappings are modified. Marking
 1577          * PTEs as modified on inception allows promotion to happen
 1578          * without taking potentially large number of soft faults.
 1579          */
 1580         if (!upgrade)
 1581                 access &= ~VM_PROT_WRITE;
 1582 
 1583         /*
 1584          * Loop through all of the virtual pages within the entry's
 1585          * range, copying each page from the source object to the
 1586          * destination object.  Since the source is wired, those pages
 1587          * must exist.  In contrast, the destination is pageable.
 1588          * Since the destination object does share any backing storage
 1589          * with the source object, all of its pages must be dirtied,
 1590          * regardless of whether they can be written.
 1591          */
 1592         for (vaddr = dst_entry->start, dst_pindex = 0;
 1593             vaddr < dst_entry->end;
 1594             vaddr += PAGE_SIZE, dst_pindex++) {
 1595 again:
 1596                 /*
 1597                  * Find the page in the source object, and copy it in.
 1598                  * Because the source is wired down, the page will be
 1599                  * in memory.
 1600                  */
 1601                 if (src_object != dst_object)
 1602                         VM_OBJECT_RLOCK(src_object);
 1603                 object = src_object;
 1604                 pindex = src_pindex + dst_pindex;
 1605                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
 1606                     (backing_object = object->backing_object) != NULL) {
 1607                         /*
 1608                          * Unless the source mapping is read-only or
 1609                          * it is presently being upgraded from
 1610                          * read-only, the first object in the shadow
 1611                          * chain should provide all of the pages.  In
 1612                          * other words, this loop body should never be
 1613                          * executed when the source mapping is already
 1614                          * read/write.
 1615                          */
 1616                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
 1617                             upgrade,
 1618                             ("vm_fault_copy_entry: main object missing page"));
 1619 
 1620                         VM_OBJECT_RLOCK(backing_object);
 1621                         pindex += OFF_TO_IDX(object->backing_object_offset);
 1622                         if (object != dst_object)
 1623                                 VM_OBJECT_RUNLOCK(object);
 1624                         object = backing_object;
 1625                 }
 1626                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
 1627 
 1628                 if (object != dst_object) {
 1629                         /*
 1630                          * Allocate a page in the destination object.
 1631                          */
 1632                         dst_m = vm_page_alloc(dst_object, (src_object ==
 1633                             dst_object ? src_pindex : 0) + dst_pindex,
 1634                             VM_ALLOC_NORMAL);
 1635                         if (dst_m == NULL) {
 1636                                 VM_OBJECT_WUNLOCK(dst_object);
 1637                                 VM_OBJECT_RUNLOCK(object);
 1638                                 VM_WAIT;
 1639                                 VM_OBJECT_WLOCK(dst_object);
 1640                                 goto again;
 1641                         }
 1642                         pmap_copy_page(src_m, dst_m);
 1643                         VM_OBJECT_RUNLOCK(object);
 1644                         dst_m->valid = VM_PAGE_BITS_ALL;
 1645                         dst_m->dirty = VM_PAGE_BITS_ALL;
 1646                 } else {
 1647                         dst_m = src_m;
 1648                         if (vm_page_sleep_if_busy(dst_m, "fltupg"))
 1649                                 goto again;
 1650                         vm_page_xbusy(dst_m);
 1651                         KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
 1652                             ("invalid dst page %p", dst_m));
 1653                 }
 1654                 VM_OBJECT_WUNLOCK(dst_object);
 1655 
 1656                 /*
 1657                  * Enter it in the pmap. If a wired, copy-on-write
 1658                  * mapping is being replaced by a write-enabled
 1659                  * mapping, then wire that new mapping.
 1660                  */
 1661                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
 1662                     access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
 1663 
 1664                 /*
 1665                  * Mark it no longer busy, and put it on the active list.
 1666                  */
 1667                 VM_OBJECT_WLOCK(dst_object);
 1668                 
 1669                 if (upgrade) {
 1670                         if (src_m != dst_m) {
 1671                                 vm_page_lock(src_m);
 1672                                 vm_page_unwire(src_m, PQ_INACTIVE);
 1673                                 vm_page_unlock(src_m);
 1674                                 vm_page_lock(dst_m);
 1675                                 vm_page_wire(dst_m);
 1676                                 vm_page_unlock(dst_m);
 1677                         } else {
 1678                                 KASSERT(dst_m->wire_count > 0,
 1679                                     ("dst_m %p is not wired", dst_m));
 1680                         }
 1681                 } else {
 1682                         vm_page_lock(dst_m);
 1683                         vm_page_activate(dst_m);
 1684                         vm_page_unlock(dst_m);
 1685                 }
 1686                 vm_page_xunbusy(dst_m);
 1687         }
 1688         VM_OBJECT_WUNLOCK(dst_object);
 1689         if (upgrade) {
 1690                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
 1691                 vm_object_deallocate(src_object);
 1692         }
 1693 }
 1694 
 1695 /*
 1696  * Block entry into the machine-independent layer's page fault handler by
 1697  * the calling thread.  Subsequent calls to vm_fault() by that thread will
 1698  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
 1699  * spurious page faults. 
 1700  */
 1701 int
 1702 vm_fault_disable_pagefaults(void)
 1703 {
 1704 
 1705         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
 1706 }
 1707 
 1708 void
 1709 vm_fault_enable_pagefaults(int save)
 1710 {
 1711 
 1712         curthread_pflags_restore(save);
 1713 }

Cache object: bfa64dd0c5a35b6ab2fa62c269d67246


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.