The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_fault.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  *
    9  *
   10  * This code is derived from software contributed to Berkeley by
   11  * The Mach Operating System project at Carnegie-Mellon University.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1. Redistributions of source code must retain the above copyright
   17  *    notice, this list of conditions and the following disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  * 3. All advertising materials mentioning features or use of this software
   22  *    must display the following acknowledgement:
   23  *      This product includes software developed by the University of
   24  *      California, Berkeley and its contributors.
   25  * 4. Neither the name of the University nor the names of its contributors
   26  *    may be used to endorse or promote products derived from this software
   27  *    without specific prior written permission.
   28  *
   29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   39  * SUCH DAMAGE.
   40  *
   41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
   42  *
   43  *
   44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   45  * All rights reserved.
   46  *
   47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   48  *
   49  * Permission to use, copy, modify and distribute this software and
   50  * its documentation is hereby granted, provided that both the copyright
   51  * notice and this permission notice appear in all copies of the
   52  * software, derivative works or modified versions, and any portions
   53  * thereof, and that both notices appear in supporting documentation.
   54  *
   55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   58  *
   59  * Carnegie Mellon requests users of this software to return to
   60  *
   61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   62  *  School of Computer Science
   63  *  Carnegie Mellon University
   64  *  Pittsburgh PA 15213-3890
   65  *
   66  * any improvements or extensions that they make and grant Carnegie the
   67  * rights to redistribute these changes.
   68  */
   69 
   70 /*
   71  *      Page fault handling module.
   72  */
   73 
   74 #include <sys/cdefs.h>
   75 __FBSDID("$FreeBSD$");
   76 
   77 #include "opt_ktrace.h"
   78 #include "opt_vm.h"
   79 
   80 #include <sys/param.h>
   81 #include <sys/systm.h>
   82 #include <sys/kernel.h>
   83 #include <sys/lock.h>
   84 #include <sys/mman.h>
   85 #include <sys/proc.h>
   86 #include <sys/racct.h>
   87 #include <sys/resourcevar.h>
   88 #include <sys/rwlock.h>
   89 #include <sys/sysctl.h>
   90 #include <sys/vmmeter.h>
   91 #include <sys/vnode.h>
   92 #ifdef KTRACE
   93 #include <sys/ktrace.h>
   94 #endif
   95 
   96 #include <vm/vm.h>
   97 #include <vm/vm_param.h>
   98 #include <vm/pmap.h>
   99 #include <vm/vm_map.h>
  100 #include <vm/vm_object.h>
  101 #include <vm/vm_page.h>
  102 #include <vm/vm_pageout.h>
  103 #include <vm/vm_kern.h>
  104 #include <vm/vm_pager.h>
  105 #include <vm/vm_extern.h>
  106 #include <vm/vm_reserv.h>
  107 
  108 #define PFBAK 4
  109 #define PFFOR 4
  110 
  111 #define VM_FAULT_READ_DEFAULT   (1 + VM_FAULT_READ_AHEAD_INIT)
  112 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
  113 
  114 #define VM_FAULT_DONTNEED_MIN   1048576
  115 
  116 struct faultstate {
  117         vm_page_t m;
  118         vm_object_t object;
  119         vm_pindex_t pindex;
  120         vm_page_t first_m;
  121         vm_object_t     first_object;
  122         vm_pindex_t first_pindex;
  123         vm_map_t map;
  124         vm_map_entry_t entry;
  125         int map_generation;
  126         bool lookup_still_valid;
  127         struct vnode *vp;
  128 };
  129 
  130 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
  131             int ahead);
  132 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
  133             int backward, int forward, bool obj_locked);
  134 
  135 static inline void
  136 release_page(struct faultstate *fs)
  137 {
  138 
  139         vm_page_xunbusy(fs->m);
  140         vm_page_lock(fs->m);
  141         vm_page_deactivate(fs->m);
  142         vm_page_unlock(fs->m);
  143         fs->m = NULL;
  144 }
  145 
  146 static inline void
  147 unlock_map(struct faultstate *fs)
  148 {
  149 
  150         if (fs->lookup_still_valid) {
  151                 vm_map_lookup_done(fs->map, fs->entry);
  152                 fs->lookup_still_valid = false;
  153         }
  154 }
  155 
  156 static void
  157 unlock_vp(struct faultstate *fs)
  158 {
  159 
  160         if (fs->vp != NULL) {
  161                 vput(fs->vp);
  162                 fs->vp = NULL;
  163         }
  164 }
  165 
  166 static void
  167 unlock_and_deallocate(struct faultstate *fs)
  168 {
  169 
  170         vm_object_pip_wakeup(fs->object);
  171         VM_OBJECT_WUNLOCK(fs->object);
  172         if (fs->object != fs->first_object) {
  173                 VM_OBJECT_WLOCK(fs->first_object);
  174                 vm_page_lock(fs->first_m);
  175                 vm_page_free(fs->first_m);
  176                 vm_page_unlock(fs->first_m);
  177                 vm_object_pip_wakeup(fs->first_object);
  178                 VM_OBJECT_WUNLOCK(fs->first_object);
  179                 fs->first_m = NULL;
  180         }
  181         vm_object_deallocate(fs->first_object);
  182         unlock_map(fs);
  183         unlock_vp(fs);
  184 }
  185 
  186 static void
  187 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
  188     vm_prot_t fault_type, int fault_flags, bool set_wd)
  189 {
  190         bool need_dirty;
  191 
  192         if (((prot & VM_PROT_WRITE) == 0 &&
  193             (fault_flags & VM_FAULT_DIRTY) == 0) ||
  194             (m->oflags & VPO_UNMANAGED) != 0)
  195                 return;
  196 
  197         VM_OBJECT_ASSERT_LOCKED(m->object);
  198 
  199         need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
  200             (fault_flags & VM_FAULT_WIRE) == 0) ||
  201             (fault_flags & VM_FAULT_DIRTY) != 0;
  202 
  203         if (set_wd)
  204                 vm_object_set_writeable_dirty(m->object);
  205         else
  206                 /*
  207                  * If two callers of vm_fault_dirty() with set_wd ==
  208                  * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
  209                  * flag set, other with flag clear, race, it is
  210                  * possible for the no-NOSYNC thread to see m->dirty
  211                  * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
  212                  * around manipulation of VPO_NOSYNC and
  213                  * vm_page_dirty() call, to avoid the race and keep
  214                  * m->oflags consistent.
  215                  */
  216                 vm_page_lock(m);
  217 
  218         /*
  219          * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
  220          * if the page is already dirty to prevent data written with
  221          * the expectation of being synced from not being synced.
  222          * Likewise if this entry does not request NOSYNC then make
  223          * sure the page isn't marked NOSYNC.  Applications sharing
  224          * data should use the same flags to avoid ping ponging.
  225          */
  226         if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
  227                 if (m->dirty == 0) {
  228                         m->oflags |= VPO_NOSYNC;
  229                 }
  230         } else {
  231                 m->oflags &= ~VPO_NOSYNC;
  232         }
  233 
  234         /*
  235          * If the fault is a write, we know that this page is being
  236          * written NOW so dirty it explicitly to save on
  237          * pmap_is_modified() calls later.
  238          *
  239          * Also, since the page is now dirty, we can possibly tell
  240          * the pager to release any swap backing the page.  Calling
  241          * the pager requires a write lock on the object.
  242          */
  243         if (need_dirty)
  244                 vm_page_dirty(m);
  245         if (!set_wd)
  246                 vm_page_unlock(m);
  247         else if (need_dirty)
  248                 vm_pager_page_unswapped(m);
  249 }
  250 
  251 static void
  252 vm_fault_fill_hold(vm_page_t *m_hold, vm_page_t m)
  253 {
  254 
  255         if (m_hold != NULL) {
  256                 *m_hold = m;
  257                 vm_page_lock(m);
  258                 vm_page_hold(m);
  259                 vm_page_unlock(m);
  260         }
  261 }
  262 
  263 /*
  264  * Unlocks fs.first_object and fs.map on success.
  265  */
  266 static int
  267 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
  268     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
  269 {
  270         vm_page_t m, m_map;
  271 #if defined(__amd64__) && VM_NRESERVLEVEL > 0
  272         vm_page_t m_super;
  273         int flags;
  274 #endif
  275         int psind, rv;
  276 
  277         MPASS(fs->vp == NULL);
  278         m = vm_page_lookup(fs->first_object, fs->first_pindex);
  279         /* A busy page can be mapped for read|execute access. */
  280         if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
  281             vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
  282                 return (KERN_FAILURE);
  283         m_map = m;
  284         psind = 0;
  285 #if defined(__amd64__) && VM_NRESERVLEVEL > 0
  286         if ((m->flags & PG_FICTITIOUS) == 0 &&
  287             (m_super = vm_reserv_to_superpage(m)) != NULL &&
  288             rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
  289             roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
  290             (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
  291             (pagesizes[m_super->psind] - 1)) &&
  292             pmap_ps_enabled(fs->map->pmap)) {
  293                 flags = PS_ALL_VALID;
  294                 if ((prot & VM_PROT_WRITE) != 0) {
  295                         /*
  296                          * Create a superpage mapping allowing write access
  297                          * only if none of the constituent pages are busy and
  298                          * all of them are already dirty (except possibly for
  299                          * the page that was faulted on).
  300                          */
  301                         flags |= PS_NONE_BUSY;
  302                         if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
  303                                 flags |= PS_ALL_DIRTY;
  304                 }
  305                 if (vm_page_ps_test(m_super, flags, m)) {
  306                         m_map = m_super;
  307                         psind = m_super->psind;
  308                         vaddr = rounddown2(vaddr, pagesizes[psind]);
  309                         /* Preset the modified bit for dirty superpages. */
  310                         if ((flags & PS_ALL_DIRTY) != 0)
  311                                 fault_type |= VM_PROT_WRITE;
  312                 }
  313         }
  314 #endif
  315         rv = pmap_enter(fs->map->pmap, vaddr, m_map, prot, fault_type |
  316             PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), psind);
  317         if (rv != KERN_SUCCESS)
  318                 return (rv);
  319         vm_fault_fill_hold(m_hold, m);
  320         vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false);
  321         if (psind == 0 && !wired)
  322                 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
  323         VM_OBJECT_RUNLOCK(fs->first_object);
  324         vm_map_lookup_done(fs->map, fs->entry);
  325         curthread->td_ru.ru_minflt++;
  326         return (KERN_SUCCESS);
  327 }
  328 
  329 static void
  330 vm_fault_restore_map_lock(struct faultstate *fs)
  331 {
  332 
  333         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
  334         MPASS(fs->first_object->paging_in_progress > 0);
  335 
  336         if (!vm_map_trylock_read(fs->map)) {
  337                 VM_OBJECT_WUNLOCK(fs->first_object);
  338                 vm_map_lock_read(fs->map);
  339                 VM_OBJECT_WLOCK(fs->first_object);
  340         }
  341         fs->lookup_still_valid = true;
  342 }
  343 
  344 static void
  345 vm_fault_populate_check_page(vm_page_t m)
  346 {
  347 
  348         /*
  349          * Check each page to ensure that the pager is obeying the
  350          * interface: the page must be installed in the object, fully
  351          * valid, and exclusively busied.
  352          */
  353         MPASS(m != NULL);
  354         MPASS(m->valid == VM_PAGE_BITS_ALL);
  355         MPASS(vm_page_xbusied(m));
  356 }
  357 
  358 static void
  359 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
  360     vm_pindex_t last)
  361 {
  362         vm_page_t m;
  363         vm_pindex_t pidx;
  364 
  365         VM_OBJECT_ASSERT_WLOCKED(object);
  366         MPASS(first <= last);
  367         for (pidx = first, m = vm_page_lookup(object, pidx);
  368             pidx <= last; pidx++, m = vm_page_next(m)) {
  369                 vm_fault_populate_check_page(m);
  370                 vm_page_lock(m);
  371                 vm_page_deactivate(m);
  372                 vm_page_unlock(m);
  373                 vm_page_xunbusy(m);
  374         }
  375 }
  376 
  377 static int
  378 vm_fault_populate(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
  379     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
  380 {
  381         vm_page_t m;
  382         vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
  383         int rv;
  384 
  385         MPASS(fs->object == fs->first_object);
  386         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
  387         MPASS(fs->first_object->paging_in_progress > 0);
  388         MPASS(fs->first_object->backing_object == NULL);
  389         MPASS(fs->lookup_still_valid);
  390 
  391         pager_first = OFF_TO_IDX(fs->entry->offset);
  392         pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
  393         unlock_map(fs);
  394         unlock_vp(fs);
  395 
  396         /*
  397          * Call the pager (driver) populate() method.
  398          *
  399          * There is no guarantee that the method will be called again
  400          * if the current fault is for read, and a future fault is
  401          * for write.  Report the entry's maximum allowed protection
  402          * to the driver.
  403          */
  404         rv = vm_pager_populate(fs->first_object, fs->first_pindex,
  405             fault_type, fs->entry->max_protection, &pager_first, &pager_last);
  406 
  407         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
  408         if (rv == VM_PAGER_BAD) {
  409                 /*
  410                  * VM_PAGER_BAD is the backdoor for a pager to request
  411                  * normal fault handling.
  412                  */
  413                 vm_fault_restore_map_lock(fs);
  414                 if (fs->map->timestamp != fs->map_generation)
  415                         return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
  416                 return (KERN_NOT_RECEIVER);
  417         }
  418         if (rv != VM_PAGER_OK)
  419                 return (KERN_FAILURE); /* AKA SIGSEGV */
  420 
  421         /* Ensure that the driver is obeying the interface. */
  422         MPASS(pager_first <= pager_last);
  423         MPASS(fs->first_pindex <= pager_last);
  424         MPASS(fs->first_pindex >= pager_first);
  425         MPASS(pager_last < fs->first_object->size);
  426 
  427         vm_fault_restore_map_lock(fs);
  428         if (fs->map->timestamp != fs->map_generation) {
  429                 vm_fault_populate_cleanup(fs->first_object, pager_first,
  430                     pager_last);
  431                 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
  432         }
  433 
  434         /*
  435          * The map is unchanged after our last unlock.  Process the fault.
  436          *
  437          * The range [pager_first, pager_last] that is given to the
  438          * pager is only a hint.  The pager may populate any range
  439          * within the object that includes the requested page index.
  440          * In case the pager expanded the range, clip it to fit into
  441          * the map entry.
  442          */
  443         map_first = OFF_TO_IDX(fs->entry->offset);
  444         if (map_first > pager_first) {
  445                 vm_fault_populate_cleanup(fs->first_object, pager_first,
  446                     map_first - 1);
  447                 pager_first = map_first;
  448         }
  449         map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
  450         if (map_last < pager_last) {
  451                 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
  452                     pager_last);
  453                 pager_last = map_last;
  454         }
  455         for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
  456             pidx <= pager_last; pidx++, m = vm_page_next(m)) {
  457                 vm_fault_populate_check_page(m);
  458                 vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags,
  459                     true);
  460                 VM_OBJECT_WUNLOCK(fs->first_object);
  461                 pmap_enter(fs->map->pmap, fs->entry->start + IDX_TO_OFF(pidx) -
  462                     fs->entry->offset, m, prot, fault_type | (wired ?
  463                     PMAP_ENTER_WIRED : 0), 0);
  464                 VM_OBJECT_WLOCK(fs->first_object);
  465                 if (pidx == fs->first_pindex)
  466                         vm_fault_fill_hold(m_hold, m);
  467                 vm_page_lock(m);
  468                 if ((fault_flags & VM_FAULT_WIRE) != 0) {
  469                         KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
  470                         vm_page_wire(m);
  471                 } else {
  472                         vm_page_activate(m);
  473                 }
  474                 vm_page_unlock(m);
  475                 vm_page_xunbusy(m);
  476         }
  477         curthread->td_ru.ru_majflt++;
  478         return (KERN_SUCCESS);
  479 }
  480 
  481 /*
  482  *      vm_fault:
  483  *
  484  *      Handle a page fault occurring at the given address,
  485  *      requiring the given permissions, in the map specified.
  486  *      If successful, the page is inserted into the
  487  *      associated physical map.
  488  *
  489  *      NOTE: the given address should be truncated to the
  490  *      proper page address.
  491  *
  492  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
  493  *      a standard error specifying why the fault is fatal is returned.
  494  *
  495  *      The map in question must be referenced, and remains so.
  496  *      Caller may hold no locks.
  497  */
  498 int
  499 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
  500     int fault_flags)
  501 {
  502         struct thread *td;
  503         int result;
  504 
  505         td = curthread;
  506         if ((td->td_pflags & TDP_NOFAULTING) != 0)
  507                 return (KERN_PROTECTION_FAILURE);
  508 #ifdef KTRACE
  509         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
  510                 ktrfault(vaddr, fault_type);
  511 #endif
  512         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
  513             NULL);
  514 #ifdef KTRACE
  515         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
  516                 ktrfaultend(result);
  517 #endif
  518         return (result);
  519 }
  520 
  521 int
  522 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
  523     int fault_flags, vm_page_t *m_hold)
  524 {
  525         struct faultstate fs;
  526         struct vnode *vp;
  527         vm_object_t next_object, retry_object;
  528         vm_offset_t e_end, e_start;
  529         vm_pindex_t retry_pindex;
  530         vm_prot_t prot, retry_prot;
  531         int ahead, alloc_req, behind, cluster_offset, error, era, faultcount;
  532         int locked, nera, result, rv;
  533         u_char behavior;
  534         boolean_t wired;        /* Passed by reference. */
  535         bool dead, hardfault, is_first_object_locked;
  536 
  537         PCPU_INC(cnt.v_vm_faults);
  538         fs.vp = NULL;
  539         faultcount = 0;
  540         nera = -1;
  541         hardfault = false;
  542 
  543 RetryFault:;
  544 
  545         /*
  546          * Find the backing store object and offset into it to begin the
  547          * search.
  548          */
  549         fs.map = map;
  550         result = vm_map_lookup(&fs.map, vaddr, fault_type |
  551             VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object,
  552             &fs.first_pindex, &prot, &wired);
  553         if (result != KERN_SUCCESS) {
  554                 unlock_vp(&fs);
  555                 return (result);
  556         }
  557 
  558         fs.map_generation = fs.map->timestamp;
  559 
  560         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
  561                 panic("vm_fault: fault on nofault entry, addr: %lx",
  562                     (u_long)vaddr);
  563         }
  564 
  565         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
  566             fs.entry->wiring_thread != curthread) {
  567                 vm_map_unlock_read(fs.map);
  568                 vm_map_lock(fs.map);
  569                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
  570                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
  571                         unlock_vp(&fs);
  572                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
  573                         vm_map_unlock_and_wait(fs.map, 0);
  574                 } else
  575                         vm_map_unlock(fs.map);
  576                 goto RetryFault;
  577         }
  578 
  579         MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0);
  580 
  581         if (wired)
  582                 fault_type = prot | (fault_type & VM_PROT_COPY);
  583         else
  584                 KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
  585                     ("!wired && VM_FAULT_WIRE"));
  586 
  587         /*
  588          * Try to avoid lock contention on the top-level object through
  589          * special-case handling of some types of page faults, specifically,
  590          * those that are both (1) mapping an existing page from the top-
  591          * level object and (2) not having to mark that object as containing
  592          * dirty pages.  Under these conditions, a read lock on the top-level
  593          * object suffices, allowing multiple page faults of a similar type to
  594          * run in parallel on the same top-level object.
  595          */
  596         if (fs.vp == NULL /* avoid locked vnode leak */ &&
  597             (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
  598             /* avoid calling vm_object_set_writeable_dirty() */
  599             ((prot & VM_PROT_WRITE) == 0 ||
  600             (fs.first_object->type != OBJT_VNODE &&
  601             (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
  602             (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
  603                 VM_OBJECT_RLOCK(fs.first_object);
  604                 if ((prot & VM_PROT_WRITE) == 0 ||
  605                     (fs.first_object->type != OBJT_VNODE &&
  606                     (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
  607                     (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) {
  608                         rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type,
  609                             fault_flags, wired, m_hold);
  610                         if (rv == KERN_SUCCESS)
  611                                 return (rv);
  612                 }
  613                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
  614                         VM_OBJECT_RUNLOCK(fs.first_object);
  615                         VM_OBJECT_WLOCK(fs.first_object);
  616                 }
  617         } else {
  618                 VM_OBJECT_WLOCK(fs.first_object);
  619         }
  620 
  621         /*
  622          * Make a reference to this object to prevent its disposal while we
  623          * are messing with it.  Once we have the reference, the map is free
  624          * to be diddled.  Since objects reference their shadows (and copies),
  625          * they will stay around as well.
  626          *
  627          * Bump the paging-in-progress count to prevent size changes (e.g. 
  628          * truncation operations) during I/O.
  629          */
  630         vm_object_reference_locked(fs.first_object);
  631         vm_object_pip_add(fs.first_object, 1);
  632 
  633         fs.lookup_still_valid = true;
  634 
  635         fs.first_m = NULL;
  636 
  637         /*
  638          * Search for the page at object/offset.
  639          */
  640         fs.object = fs.first_object;
  641         fs.pindex = fs.first_pindex;
  642         while (TRUE) {
  643                 /*
  644                  * If the object is marked for imminent termination,
  645                  * we retry here, since the collapse pass has raced
  646                  * with us.  Otherwise, if we see terminally dead
  647                  * object, return fail.
  648                  */
  649                 if ((fs.object->flags & OBJ_DEAD) != 0) {
  650                         dead = fs.object->type == OBJT_DEAD;
  651                         unlock_and_deallocate(&fs);
  652                         if (dead)
  653                                 return (KERN_PROTECTION_FAILURE);
  654                         pause("vmf_de", 1);
  655                         goto RetryFault;
  656                 }
  657 
  658                 /*
  659                  * See if page is resident
  660                  */
  661                 fs.m = vm_page_lookup(fs.object, fs.pindex);
  662                 if (fs.m != NULL) {
  663                         /*
  664                          * Wait/Retry if the page is busy.  We have to do this
  665                          * if the page is either exclusive or shared busy
  666                          * because the vm_pager may be using read busy for
  667                          * pageouts (and even pageins if it is the vnode
  668                          * pager), and we could end up trying to pagein and
  669                          * pageout the same page simultaneously.
  670                          *
  671                          * We can theoretically allow the busy case on a read
  672                          * fault if the page is marked valid, but since such
  673                          * pages are typically already pmap'd, putting that
  674                          * special case in might be more effort then it is 
  675                          * worth.  We cannot under any circumstances mess
  676                          * around with a shared busied page except, perhaps,
  677                          * to pmap it.
  678                          */
  679                         if (vm_page_busied(fs.m)) {
  680                                 /*
  681                                  * Reference the page before unlocking and
  682                                  * sleeping so that the page daemon is less
  683                                  * likely to reclaim it. 
  684                                  */
  685                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
  686                                 if (fs.object != fs.first_object) {
  687                                         if (!VM_OBJECT_TRYWLOCK(
  688                                             fs.first_object)) {
  689                                                 VM_OBJECT_WUNLOCK(fs.object);
  690                                                 VM_OBJECT_WLOCK(fs.first_object);
  691                                                 VM_OBJECT_WLOCK(fs.object);
  692                                         }
  693                                         vm_page_lock(fs.first_m);
  694                                         vm_page_free(fs.first_m);
  695                                         vm_page_unlock(fs.first_m);
  696                                         vm_object_pip_wakeup(fs.first_object);
  697                                         VM_OBJECT_WUNLOCK(fs.first_object);
  698                                         fs.first_m = NULL;
  699                                 }
  700                                 unlock_map(&fs);
  701                                 if (fs.m == vm_page_lookup(fs.object,
  702                                     fs.pindex)) {
  703                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
  704                                 }
  705                                 vm_object_pip_wakeup(fs.object);
  706                                 VM_OBJECT_WUNLOCK(fs.object);
  707                                 PCPU_INC(cnt.v_intrans);
  708                                 vm_object_deallocate(fs.first_object);
  709                                 goto RetryFault;
  710                         }
  711                         vm_page_lock(fs.m);
  712                         vm_page_remque(fs.m);
  713                         vm_page_unlock(fs.m);
  714 
  715                         /*
  716                          * Mark page busy for other processes, and the 
  717                          * pagedaemon.  If it still isn't completely valid
  718                          * (readable), jump to readrest, else break-out ( we
  719                          * found the page ).
  720                          */
  721                         vm_page_xbusy(fs.m);
  722                         if (fs.m->valid != VM_PAGE_BITS_ALL)
  723                                 goto readrest;
  724                         break;
  725                 }
  726                 KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m));
  727 
  728                 /*
  729                  * Page is not resident.  If the pager might contain the page
  730                  * or this is the beginning of the search, allocate a new
  731                  * page.  (Default objects are zero-fill, so there is no real
  732                  * pager for them.)
  733                  */
  734                 if (fs.object->type != OBJT_DEFAULT ||
  735                     fs.object == fs.first_object) {
  736                         if (fs.pindex >= fs.object->size) {
  737                                 unlock_and_deallocate(&fs);
  738                                 return (KERN_PROTECTION_FAILURE);
  739                         }
  740 
  741                         if (fs.object == fs.first_object &&
  742                             (fs.first_object->flags & OBJ_POPULATE) != 0 &&
  743                             fs.first_object->shadow_count == 0) {
  744                                 rv = vm_fault_populate(&fs, vaddr, prot,
  745                                     fault_type, fault_flags, wired, m_hold);
  746                                 switch (rv) {
  747                                 case KERN_SUCCESS:
  748                                 case KERN_FAILURE:
  749                                         unlock_and_deallocate(&fs);
  750                                         return (rv);
  751                                 case KERN_RESOURCE_SHORTAGE:
  752                                         unlock_and_deallocate(&fs);
  753                                         goto RetryFault;
  754                                 case KERN_NOT_RECEIVER:
  755                                         /*
  756                                          * Pager's populate() method
  757                                          * returned VM_PAGER_BAD.
  758                                          */
  759                                         break;
  760                                 default:
  761                                         panic("inconsistent return codes");
  762                                 }
  763                         }
  764 
  765                         /*
  766                          * Allocate a new page for this object/offset pair.
  767                          *
  768                          * Unlocked read of the p_flag is harmless. At
  769                          * worst, the P_KILLED might be not observed
  770                          * there, and allocation can fail, causing
  771                          * restart and new reading of the p_flag.
  772                          */
  773                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
  774 #if VM_NRESERVLEVEL > 0
  775                                 vm_object_color(fs.object, atop(vaddr) -
  776                                     fs.pindex);
  777 #endif
  778                                 alloc_req = P_KILLED(curproc) ?
  779                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
  780                                 if (fs.object->type != OBJT_VNODE &&
  781                                     fs.object->backing_object == NULL)
  782                                         alloc_req |= VM_ALLOC_ZERO;
  783                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
  784                                     alloc_req);
  785                         }
  786                         if (fs.m == NULL) {
  787                                 unlock_and_deallocate(&fs);
  788                                 VM_WAITPFAULT;
  789                                 goto RetryFault;
  790                         }
  791                 }
  792 
  793 readrest:
  794                 /*
  795                  * At this point, we have either allocated a new page or found
  796                  * an existing page that is only partially valid.
  797                  *
  798                  * We hold a reference on the current object and the page is
  799                  * exclusive busied.
  800                  */
  801 
  802                 /*
  803                  * If the pager for the current object might have the page,
  804                  * then determine the number of additional pages to read and
  805                  * potentially reprioritize previously read pages for earlier
  806                  * reclamation.  These operations should only be performed
  807                  * once per page fault.  Even if the current pager doesn't
  808                  * have the page, the number of additional pages to read will
  809                  * apply to subsequent objects in the shadow chain.
  810                  */
  811                 if (fs.object->type != OBJT_DEFAULT && nera == -1 &&
  812                     !P_KILLED(curproc)) {
  813                         KASSERT(fs.lookup_still_valid, ("map unlocked"));
  814                         era = fs.entry->read_ahead;
  815                         behavior = vm_map_entry_behavior(fs.entry);
  816                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
  817                                 nera = 0;
  818                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
  819                                 nera = VM_FAULT_READ_AHEAD_MAX;
  820                                 if (vaddr == fs.entry->next_read)
  821                                         vm_fault_dontneed(&fs, vaddr, nera);
  822                         } else if (vaddr == fs.entry->next_read) {
  823                                 /*
  824                                  * This is a sequential fault.  Arithmetically
  825                                  * increase the requested number of pages in
  826                                  * the read-ahead window.  The requested
  827                                  * number of pages is "# of sequential faults
  828                                  * x (read ahead min + 1) + read ahead min"
  829                                  */
  830                                 nera = VM_FAULT_READ_AHEAD_MIN;
  831                                 if (era > 0) {
  832                                         nera += era + 1;
  833                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
  834                                                 nera = VM_FAULT_READ_AHEAD_MAX;
  835                                 }
  836                                 if (era == VM_FAULT_READ_AHEAD_MAX)
  837                                         vm_fault_dontneed(&fs, vaddr, nera);
  838                         } else {
  839                                 /*
  840                                  * This is a non-sequential fault.
  841                                  */
  842                                 nera = 0;
  843                         }
  844                         if (era != nera) {
  845                                 /*
  846                                  * A read lock on the map suffices to update
  847                                  * the read ahead count safely.
  848                                  */
  849                                 fs.entry->read_ahead = nera;
  850                         }
  851 
  852                         /*
  853                          * Prepare for unlocking the map.  Save the map
  854                          * entry's start and end addresses, which are used to
  855                          * optimize the size of the pager operation below.
  856                          * Even if the map entry's addresses change after
  857                          * unlocking the map, using the saved addresses is
  858                          * safe.
  859                          */
  860                         e_start = fs.entry->start;
  861                         e_end = fs.entry->end;
  862                 }
  863 
  864                 /*
  865                  * Call the pager to retrieve the page if there is a chance
  866                  * that the pager has it, and potentially retrieve additional
  867                  * pages at the same time.
  868                  */
  869                 if (fs.object->type != OBJT_DEFAULT) {
  870                         /*
  871                          * Release the map lock before locking the vnode or
  872                          * sleeping in the pager.  (If the current object has
  873                          * a shadow, then an earlier iteration of this loop
  874                          * may have already unlocked the map.)
  875                          */
  876                         unlock_map(&fs);
  877 
  878                         if (fs.object->type == OBJT_VNODE &&
  879                             (vp = fs.object->handle) != fs.vp) {
  880                                 /*
  881                                  * Perform an unlock in case the desired vnode
  882                                  * changed while the map was unlocked during a
  883                                  * retry.
  884                                  */
  885                                 unlock_vp(&fs);
  886 
  887                                 locked = VOP_ISLOCKED(vp);
  888                                 if (locked != LK_EXCLUSIVE)
  889                                         locked = LK_SHARED;
  890 
  891                                 /*
  892                                  * We must not sleep acquiring the vnode lock
  893                                  * while we have the page exclusive busied or
  894                                  * the object's paging-in-progress count
  895                                  * incremented.  Otherwise, we could deadlock.
  896                                  */
  897                                 error = vget(vp, locked | LK_CANRECURSE |
  898                                     LK_NOWAIT, curthread);
  899                                 if (error != 0) {
  900                                         vhold(vp);
  901                                         release_page(&fs);
  902                                         unlock_and_deallocate(&fs);
  903                                         error = vget(vp, locked | LK_RETRY |
  904                                             LK_CANRECURSE, curthread);
  905                                         vdrop(vp);
  906                                         fs.vp = vp;
  907                                         KASSERT(error == 0,
  908                                             ("vm_fault: vget failed"));
  909                                         goto RetryFault;
  910                                 }
  911                                 fs.vp = vp;
  912                         }
  913                         KASSERT(fs.vp == NULL || !fs.map->system_map,
  914                             ("vm_fault: vnode-backed object mapped by system map"));
  915 
  916                         /*
  917                          * Page in the requested page and hint the pager,
  918                          * that it may bring up surrounding pages.
  919                          */
  920                         if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
  921                             P_KILLED(curproc)) {
  922                                 behind = 0;
  923                                 ahead = 0;
  924                         } else {
  925                                 /* Is this a sequential fault? */
  926                                 if (nera > 0) {
  927                                         behind = 0;
  928                                         ahead = nera;
  929                                 } else {
  930                                         /*
  931                                          * Request a cluster of pages that is
  932                                          * aligned to a VM_FAULT_READ_DEFAULT
  933                                          * page offset boundary within the
  934                                          * object.  Alignment to a page offset
  935                                          * boundary is more likely to coincide
  936                                          * with the underlying file system
  937                                          * block than alignment to a virtual
  938                                          * address boundary.
  939                                          */
  940                                         cluster_offset = fs.pindex %
  941                                             VM_FAULT_READ_DEFAULT;
  942                                         behind = ulmin(cluster_offset,
  943                                             atop(vaddr - e_start));
  944                                         ahead = VM_FAULT_READ_DEFAULT - 1 -
  945                                             cluster_offset;
  946                                 }
  947                                 ahead = ulmin(ahead, atop(e_end - vaddr) - 1);
  948                         }
  949                         rv = vm_pager_get_pages(fs.object, &fs.m, 1,
  950                             &behind, &ahead);
  951                         if (rv == VM_PAGER_OK) {
  952                                 faultcount = behind + 1 + ahead;
  953                                 hardfault = true;
  954                                 break; /* break to PAGE HAS BEEN FOUND */
  955                         }
  956                         if (rv == VM_PAGER_ERROR)
  957                                 printf("vm_fault: pager read error, pid %d (%s)\n",
  958                                     curproc->p_pid, curproc->p_comm);
  959 
  960                         /*
  961                          * If an I/O error occurred or the requested page was
  962                          * outside the range of the pager, clean up and return
  963                          * an error.
  964                          */
  965                         if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
  966                                 vm_page_lock(fs.m);
  967                                 if (fs.m->wire_count == 0)
  968                                         vm_page_free(fs.m);
  969                                 else
  970                                         vm_page_xunbusy_maybelocked(fs.m);
  971                                 vm_page_unlock(fs.m);
  972                                 fs.m = NULL;
  973                                 unlock_and_deallocate(&fs);
  974                                 return (rv == VM_PAGER_ERROR ? KERN_FAILURE :
  975                                     KERN_PROTECTION_FAILURE);
  976                         }
  977 
  978                         /*
  979                          * The requested page does not exist at this object/
  980                          * offset.  Remove the invalid page from the object,
  981                          * waking up anyone waiting for it, and continue on to
  982                          * the next object.  However, if this is the top-level
  983                          * object, we must leave the busy page in place to
  984                          * prevent another process from rushing past us, and
  985                          * inserting the page in that object at the same time
  986                          * that we are.
  987                          */
  988                         if (fs.object != fs.first_object) {
  989                                 vm_page_lock(fs.m);
  990                                 if (fs.m->wire_count == 0)
  991                                         vm_page_free(fs.m);
  992                                 else
  993                                         vm_page_xunbusy_maybelocked(fs.m);
  994                                 vm_page_unlock(fs.m);
  995                                 fs.m = NULL;
  996                         }
  997                 }
  998 
  999                 /*
 1000                  * We get here if the object has default pager (or unwiring) 
 1001                  * or the pager doesn't have the page.
 1002                  */
 1003                 if (fs.object == fs.first_object)
 1004                         fs.first_m = fs.m;
 1005 
 1006                 /*
 1007                  * Move on to the next object.  Lock the next object before
 1008                  * unlocking the current one.
 1009                  */
 1010                 next_object = fs.object->backing_object;
 1011                 if (next_object == NULL) {
 1012                         /*
 1013                          * If there's no object left, fill the page in the top
 1014                          * object with zeros.
 1015                          */
 1016                         if (fs.object != fs.first_object) {
 1017                                 vm_object_pip_wakeup(fs.object);
 1018                                 VM_OBJECT_WUNLOCK(fs.object);
 1019 
 1020                                 fs.object = fs.first_object;
 1021                                 fs.pindex = fs.first_pindex;
 1022                                 fs.m = fs.first_m;
 1023                                 VM_OBJECT_WLOCK(fs.object);
 1024                         }
 1025                         fs.first_m = NULL;
 1026 
 1027                         /*
 1028                          * Zero the page if necessary and mark it valid.
 1029                          */
 1030                         if ((fs.m->flags & PG_ZERO) == 0) {
 1031                                 pmap_zero_page(fs.m);
 1032                         } else {
 1033                                 PCPU_INC(cnt.v_ozfod);
 1034                         }
 1035                         PCPU_INC(cnt.v_zfod);
 1036                         fs.m->valid = VM_PAGE_BITS_ALL;
 1037                         /* Don't try to prefault neighboring pages. */
 1038                         faultcount = 1;
 1039                         break;  /* break to PAGE HAS BEEN FOUND */
 1040                 } else {
 1041                         KASSERT(fs.object != next_object,
 1042                             ("object loop %p", next_object));
 1043                         VM_OBJECT_WLOCK(next_object);
 1044                         vm_object_pip_add(next_object, 1);
 1045                         if (fs.object != fs.first_object)
 1046                                 vm_object_pip_wakeup(fs.object);
 1047                         fs.pindex +=
 1048                             OFF_TO_IDX(fs.object->backing_object_offset);
 1049                         VM_OBJECT_WUNLOCK(fs.object);
 1050                         fs.object = next_object;
 1051                 }
 1052         }
 1053 
 1054         vm_page_assert_xbusied(fs.m);
 1055 
 1056         /*
 1057          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
 1058          * is held.]
 1059          */
 1060 
 1061         /*
 1062          * If the page is being written, but isn't already owned by the
 1063          * top-level object, we have to copy it into a new page owned by the
 1064          * top-level object.
 1065          */
 1066         if (fs.object != fs.first_object) {
 1067                 /*
 1068                  * We only really need to copy if we want to write it.
 1069                  */
 1070                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
 1071                         /*
 1072                          * This allows pages to be virtually copied from a 
 1073                          * backing_object into the first_object, where the 
 1074                          * backing object has no other refs to it, and cannot
 1075                          * gain any more refs.  Instead of a bcopy, we just 
 1076                          * move the page from the backing object to the 
 1077                          * first object.  Note that we must mark the page 
 1078                          * dirty in the first object so that it will go out 
 1079                          * to swap when needed.
 1080                          */
 1081                         is_first_object_locked = false;
 1082                         if (
 1083                                 /*
 1084                                  * Only one shadow object
 1085                                  */
 1086                                 (fs.object->shadow_count == 1) &&
 1087                                 /*
 1088                                  * No COW refs, except us
 1089                                  */
 1090                                 (fs.object->ref_count == 1) &&
 1091                                 /*
 1092                                  * No one else can look this object up
 1093                                  */
 1094                                 (fs.object->handle == NULL) &&
 1095                                 /*
 1096                                  * No other ways to look the object up
 1097                                  */
 1098                                 ((fs.object->type == OBJT_DEFAULT) ||
 1099                                  (fs.object->type == OBJT_SWAP)) &&
 1100                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
 1101                                 /*
 1102                                  * We don't chase down the shadow chain
 1103                                  */
 1104                             fs.object == fs.first_object->backing_object) {
 1105                                 vm_page_lock(fs.m);
 1106                                 vm_page_remove(fs.m);
 1107                                 vm_page_unlock(fs.m);
 1108                                 vm_page_lock(fs.first_m);
 1109                                 vm_page_replace_checked(fs.m, fs.first_object,
 1110                                     fs.first_pindex, fs.first_m);
 1111                                 vm_page_free(fs.first_m);
 1112                                 vm_page_unlock(fs.first_m);
 1113                                 vm_page_dirty(fs.m);
 1114 #if VM_NRESERVLEVEL > 0
 1115                                 /*
 1116                                  * Rename the reservation.
 1117                                  */
 1118                                 vm_reserv_rename(fs.m, fs.first_object,
 1119                                     fs.object, OFF_TO_IDX(
 1120                                     fs.first_object->backing_object_offset));
 1121 #endif
 1122                                 /*
 1123                                  * Removing the page from the backing object
 1124                                  * unbusied it.
 1125                                  */
 1126                                 vm_page_xbusy(fs.m);
 1127                                 fs.first_m = fs.m;
 1128                                 fs.m = NULL;
 1129                                 PCPU_INC(cnt.v_cow_optim);
 1130                         } else {
 1131                                 /*
 1132                                  * Oh, well, lets copy it.
 1133                                  */
 1134                                 pmap_copy_page(fs.m, fs.first_m);
 1135                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
 1136                                 if ((fault_flags & VM_FAULT_WIRE) == 0) {
 1137                                         prot &= ~VM_PROT_WRITE;
 1138                                         fault_type &= ~VM_PROT_WRITE;
 1139                                 }
 1140                                 if (wired && (fault_flags &
 1141                                     VM_FAULT_WIRE) == 0) {
 1142                                         vm_page_lock(fs.first_m);
 1143                                         vm_page_wire(fs.first_m);
 1144                                         vm_page_unlock(fs.first_m);
 1145                                         
 1146                                         vm_page_lock(fs.m);
 1147                                         vm_page_unwire(fs.m, PQ_INACTIVE);
 1148                                         vm_page_unlock(fs.m);
 1149                                 }
 1150 
 1151                                 /*
 1152                                  * Typically, the shadow object is either
 1153                                  * private to this address space
 1154                                  * (OBJ_ONEMAPPING) or its pages are read only.
 1155                                  * In the highly unusual case where the pages of
 1156                                  * a shadow object are read/write shared between
 1157                                  * this and other address spaces, we need to
 1158                                  * ensure that any pmap-level mappings to the
 1159                                  * original, copy-on-write page from the backing
 1160                                  * object are removed from those other address
 1161                                  * spaces.
 1162                                  *
 1163                                  * The flag check is racy, but this is
 1164                                  * tolerable: if OBJ_ONEMAPPING is cleared after
 1165                                  * the check, the busy state ensures that new
 1166                                  * mappings of fs.m can't be created.
 1167                                  * pmap_enter() will replace an existing mapping
 1168                                  * in the current address space.  If
 1169                                  * OBJ_ONEMAPPING is set after the check,
 1170                                  * removing mappings will at worse trigger some
 1171                                  * unnecessary page faults.
 1172                                  */
 1173                                 vm_page_assert_xbusied(fs.m);
 1174                                 if ((fs.first_object->flags & OBJ_ONEMAPPING) == 0)
 1175                                         pmap_remove_all(fs.m);
 1176 
 1177                                 /*
 1178                                  * We no longer need the old page or object.
 1179                                  */
 1180                                 release_page(&fs);
 1181                         }
 1182                         /*
 1183                          * fs.object != fs.first_object due to above 
 1184                          * conditional
 1185                          */
 1186                         vm_object_pip_wakeup(fs.object);
 1187                         VM_OBJECT_WUNLOCK(fs.object);
 1188                         /*
 1189                          * Only use the new page below...
 1190                          */
 1191                         fs.object = fs.first_object;
 1192                         fs.pindex = fs.first_pindex;
 1193                         fs.m = fs.first_m;
 1194                         if (!is_first_object_locked)
 1195                                 VM_OBJECT_WLOCK(fs.object);
 1196                         PCPU_INC(cnt.v_cow_faults);
 1197                         curthread->td_cow++;
 1198                 } else {
 1199                         prot &= ~VM_PROT_WRITE;
 1200                 }
 1201         }
 1202 
 1203         /*
 1204          * We must verify that the maps have not changed since our last
 1205          * lookup.
 1206          */
 1207         if (!fs.lookup_still_valid) {
 1208                 if (!vm_map_trylock_read(fs.map)) {
 1209                         release_page(&fs);
 1210                         unlock_and_deallocate(&fs);
 1211                         goto RetryFault;
 1212                 }
 1213                 fs.lookup_still_valid = true;
 1214                 if (fs.map->timestamp != fs.map_generation) {
 1215                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
 1216                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
 1217 
 1218                         /*
 1219                          * If we don't need the page any longer, put it on the inactive
 1220                          * list (the easiest thing to do here).  If no one needs it,
 1221                          * pageout will grab it eventually.
 1222                          */
 1223                         if (result != KERN_SUCCESS) {
 1224                                 release_page(&fs);
 1225                                 unlock_and_deallocate(&fs);
 1226 
 1227                                 /*
 1228                                  * If retry of map lookup would have blocked then
 1229                                  * retry fault from start.
 1230                                  */
 1231                                 if (result == KERN_FAILURE)
 1232                                         goto RetryFault;
 1233                                 return (result);
 1234                         }
 1235                         if ((retry_object != fs.first_object) ||
 1236                             (retry_pindex != fs.first_pindex)) {
 1237                                 release_page(&fs);
 1238                                 unlock_and_deallocate(&fs);
 1239                                 goto RetryFault;
 1240                         }
 1241 
 1242                         /*
 1243                          * Check whether the protection has changed or the object has
 1244                          * been copied while we left the map unlocked. Changing from
 1245                          * read to write permission is OK - we leave the page
 1246                          * write-protected, and catch the write fault. Changing from
 1247                          * write to read permission means that we can't mark the page
 1248                          * write-enabled after all.
 1249                          */
 1250                         prot &= retry_prot;
 1251                         fault_type &= retry_prot;
 1252                         if (prot == 0) {
 1253                                 release_page(&fs);
 1254                                 unlock_and_deallocate(&fs);
 1255                                 goto RetryFault;
 1256                         }
 1257                 }
 1258         }
 1259 
 1260         /*
 1261          * If the page was filled by a pager, save the virtual address that
 1262          * should be faulted on next under a sequential access pattern to the
 1263          * map entry.  A read lock on the map suffices to update this address
 1264          * safely.
 1265          */
 1266         if (hardfault)
 1267                 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
 1268 
 1269         vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true);
 1270         vm_page_assert_xbusied(fs.m);
 1271 
 1272         /*
 1273          * Page must be completely valid or it is not fit to
 1274          * map into user space.  vm_pager_get_pages() ensures this.
 1275          */
 1276         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
 1277             ("vm_fault: page %p partially invalid", fs.m));
 1278         VM_OBJECT_WUNLOCK(fs.object);
 1279 
 1280         /*
 1281          * Put this page into the physical map.  We had to do the unlock above
 1282          * because pmap_enter() may sleep.  We don't put the page
 1283          * back on the active queue until later so that the pageout daemon
 1284          * won't find it (yet).
 1285          */
 1286         pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
 1287             fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
 1288         if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
 1289             wired == 0)
 1290                 vm_fault_prefault(&fs, vaddr,
 1291                     faultcount > 0 ? behind : PFBAK,
 1292                     faultcount > 0 ? ahead : PFFOR, false);
 1293         VM_OBJECT_WLOCK(fs.object);
 1294         vm_page_lock(fs.m);
 1295 
 1296         /*
 1297          * If the page is not wired down, then put it where the pageout daemon
 1298          * can find it.
 1299          */
 1300         if ((fault_flags & VM_FAULT_WIRE) != 0) {
 1301                 KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
 1302                 vm_page_wire(fs.m);
 1303         } else
 1304                 vm_page_activate(fs.m);
 1305         if (m_hold != NULL) {
 1306                 *m_hold = fs.m;
 1307                 vm_page_hold(fs.m);
 1308         }
 1309         vm_page_unlock(fs.m);
 1310         vm_page_xunbusy(fs.m);
 1311 
 1312         /*
 1313          * Unlock everything, and return
 1314          */
 1315         unlock_and_deallocate(&fs);
 1316         if (hardfault) {
 1317                 PCPU_INC(cnt.v_io_faults);
 1318                 curthread->td_ru.ru_majflt++;
 1319 #ifdef RACCT
 1320                 if (racct_enable && fs.object->type == OBJT_VNODE) {
 1321                         PROC_LOCK(curproc);
 1322                         if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
 1323                                 racct_add_force(curproc, RACCT_WRITEBPS,
 1324                                     PAGE_SIZE + behind * PAGE_SIZE);
 1325                                 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
 1326                         } else {
 1327                                 racct_add_force(curproc, RACCT_READBPS,
 1328                                     PAGE_SIZE + ahead * PAGE_SIZE);
 1329                                 racct_add_force(curproc, RACCT_READIOPS, 1);
 1330                         }
 1331                         PROC_UNLOCK(curproc);
 1332                 }
 1333 #endif
 1334         } else 
 1335                 curthread->td_ru.ru_minflt++;
 1336 
 1337         return (KERN_SUCCESS);
 1338 }
 1339 
 1340 /*
 1341  * Speed up the reclamation of pages that precede the faulting pindex within
 1342  * the first object of the shadow chain.  Essentially, perform the equivalent
 1343  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
 1344  * the faulting pindex by the cluster size when the pages read by vm_fault()
 1345  * cross a cluster-size boundary.  The cluster size is the greater of the
 1346  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
 1347  *
 1348  * When "fs->first_object" is a shadow object, the pages in the backing object
 1349  * that precede the faulting pindex are deactivated by vm_fault().  So, this
 1350  * function must only be concerned with pages in the first object.
 1351  */
 1352 static void
 1353 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
 1354 {
 1355         vm_map_entry_t entry;
 1356         vm_object_t first_object, object;
 1357         vm_offset_t end, start;
 1358         vm_page_t m, m_next;
 1359         vm_pindex_t pend, pstart;
 1360         vm_size_t size;
 1361 
 1362         object = fs->object;
 1363         VM_OBJECT_ASSERT_WLOCKED(object);
 1364         first_object = fs->first_object;
 1365         if (first_object != object) {
 1366                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
 1367                         VM_OBJECT_WUNLOCK(object);
 1368                         VM_OBJECT_WLOCK(first_object);
 1369                         VM_OBJECT_WLOCK(object);
 1370                 }
 1371         }
 1372         /* Neither fictitious nor unmanaged pages can be reclaimed. */
 1373         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
 1374                 size = VM_FAULT_DONTNEED_MIN;
 1375                 if (MAXPAGESIZES > 1 && size < pagesizes[1])
 1376                         size = pagesizes[1];
 1377                 end = rounddown2(vaddr, size);
 1378                 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
 1379                     (entry = fs->entry)->start < end) {
 1380                         if (end - entry->start < size)
 1381                                 start = entry->start;
 1382                         else
 1383                                 start = end - size;
 1384                         pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
 1385                         pstart = OFF_TO_IDX(entry->offset) + atop(start -
 1386                             entry->start);
 1387                         m_next = vm_page_find_least(first_object, pstart);
 1388                         pend = OFF_TO_IDX(entry->offset) + atop(end -
 1389                             entry->start);
 1390                         while ((m = m_next) != NULL && m->pindex < pend) {
 1391                                 m_next = TAILQ_NEXT(m, listq);
 1392                                 if (m->valid != VM_PAGE_BITS_ALL ||
 1393                                     vm_page_busied(m))
 1394                                         continue;
 1395 
 1396                                 /*
 1397                                  * Don't clear PGA_REFERENCED, since it would
 1398                                  * likely represent a reference by a different
 1399                                  * process.
 1400                                  *
 1401                                  * Typically, at this point, prefetched pages
 1402                                  * are still in the inactive queue.  Only
 1403                                  * pages that triggered page faults are in the
 1404                                  * active queue.
 1405                                  */
 1406                                 vm_page_lock(m);
 1407                                 vm_page_deactivate(m);
 1408                                 vm_page_unlock(m);
 1409                         }
 1410                 }
 1411         }
 1412         if (first_object != object)
 1413                 VM_OBJECT_WUNLOCK(first_object);
 1414 }
 1415 
 1416 /*
 1417  * vm_fault_prefault provides a quick way of clustering
 1418  * pagefaults into a processes address space.  It is a "cousin"
 1419  * of vm_map_pmap_enter, except it runs at page fault time instead
 1420  * of mmap time.
 1421  */
 1422 static void
 1423 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
 1424     int backward, int forward, bool obj_locked)
 1425 {
 1426         pmap_t pmap;
 1427         vm_map_entry_t entry;
 1428         vm_object_t backing_object, lobject;
 1429         vm_offset_t addr, starta;
 1430         vm_pindex_t pindex;
 1431         vm_page_t m;
 1432         int i;
 1433 
 1434         pmap = fs->map->pmap;
 1435         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
 1436                 return;
 1437 
 1438         entry = fs->entry;
 1439 
 1440         if (addra < backward * PAGE_SIZE) {
 1441                 starta = entry->start;
 1442         } else {
 1443                 starta = addra - backward * PAGE_SIZE;
 1444                 if (starta < entry->start)
 1445                         starta = entry->start;
 1446         }
 1447 
 1448         /*
 1449          * Generate the sequence of virtual addresses that are candidates for
 1450          * prefaulting in an outward spiral from the faulting virtual address,
 1451          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
 1452          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
 1453          * If the candidate address doesn't have a backing physical page, then
 1454          * the loop immediately terminates.
 1455          */
 1456         for (i = 0; i < 2 * imax(backward, forward); i++) {
 1457                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
 1458                     PAGE_SIZE);
 1459                 if (addr > addra + forward * PAGE_SIZE)
 1460                         addr = 0;
 1461 
 1462                 if (addr < starta || addr >= entry->end)
 1463                         continue;
 1464 
 1465                 if (!pmap_is_prefaultable(pmap, addr))
 1466                         continue;
 1467 
 1468                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
 1469                 lobject = entry->object.vm_object;
 1470                 if (!obj_locked)
 1471                         VM_OBJECT_RLOCK(lobject);
 1472                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
 1473                     lobject->type == OBJT_DEFAULT &&
 1474                     (backing_object = lobject->backing_object) != NULL) {
 1475                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
 1476                             0, ("vm_fault_prefault: unaligned object offset"));
 1477                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
 1478                         VM_OBJECT_RLOCK(backing_object);
 1479                         if (!obj_locked || lobject != entry->object.vm_object)
 1480                                 VM_OBJECT_RUNLOCK(lobject);
 1481                         lobject = backing_object;
 1482                 }
 1483                 if (m == NULL) {
 1484                         if (!obj_locked || lobject != entry->object.vm_object)
 1485                                 VM_OBJECT_RUNLOCK(lobject);
 1486                         break;
 1487                 }
 1488                 if (m->valid == VM_PAGE_BITS_ALL &&
 1489                     (m->flags & PG_FICTITIOUS) == 0)
 1490                         pmap_enter_quick(pmap, addr, m, entry->protection);
 1491                 if (!obj_locked || lobject != entry->object.vm_object)
 1492                         VM_OBJECT_RUNLOCK(lobject);
 1493         }
 1494 }
 1495 
 1496 /*
 1497  * Hold each of the physical pages that are mapped by the specified range of
 1498  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
 1499  * and allow the specified types of access, "prot".  If all of the implied
 1500  * pages are successfully held, then the number of held pages is returned
 1501  * together with pointers to those pages in the array "ma".  However, if any
 1502  * of the pages cannot be held, -1 is returned.
 1503  */
 1504 int
 1505 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
 1506     vm_prot_t prot, vm_page_t *ma, int max_count)
 1507 {
 1508         vm_offset_t end, va;
 1509         vm_page_t *mp;
 1510         int count;
 1511         boolean_t pmap_failed;
 1512 
 1513         if (len == 0)
 1514                 return (0);
 1515         end = round_page(addr + len);
 1516         addr = trunc_page(addr);
 1517 
 1518         /*
 1519          * Check for illegal addresses.
 1520          */
 1521         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
 1522                 return (-1);
 1523 
 1524         if (atop(end - addr) > max_count)
 1525                 panic("vm_fault_quick_hold_pages: count > max_count");
 1526         count = atop(end - addr);
 1527 
 1528         /*
 1529          * Most likely, the physical pages are resident in the pmap, so it is
 1530          * faster to try pmap_extract_and_hold() first.
 1531          */
 1532         pmap_failed = FALSE;
 1533         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
 1534                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
 1535                 if (*mp == NULL)
 1536                         pmap_failed = TRUE;
 1537                 else if ((prot & VM_PROT_WRITE) != 0 &&
 1538                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
 1539                         /*
 1540                          * Explicitly dirty the physical page.  Otherwise, the
 1541                          * caller's changes may go unnoticed because they are
 1542                          * performed through an unmanaged mapping or by a DMA
 1543                          * operation.
 1544                          *
 1545                          * The object lock is not held here.
 1546                          * See vm_page_clear_dirty_mask().
 1547                          */
 1548                         vm_page_dirty(*mp);
 1549                 }
 1550         }
 1551         if (pmap_failed) {
 1552                 /*
 1553                  * One or more pages could not be held by the pmap.  Either no
 1554                  * page was mapped at the specified virtual address or that
 1555                  * mapping had insufficient permissions.  Attempt to fault in
 1556                  * and hold these pages.
 1557                  *
 1558                  * If vm_fault_disable_pagefaults() was called,
 1559                  * i.e., TDP_NOFAULTING is set, we must not sleep nor
 1560                  * acquire MD VM locks, which means we must not call
 1561                  * vm_fault_hold().  Some (out of tree) callers mark
 1562                  * too wide a code area with vm_fault_disable_pagefaults()
 1563                  * already, use the VM_PROT_QUICK_NOFAULT flag to request
 1564                  * the proper behaviour explicitly.
 1565                  */
 1566                 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
 1567                     (curthread->td_pflags & TDP_NOFAULTING) != 0)
 1568                         goto error;
 1569                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
 1570                         if (*mp == NULL && vm_fault_hold(map, va, prot,
 1571                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
 1572                                 goto error;
 1573         }
 1574         return (count);
 1575 error:  
 1576         for (mp = ma; mp < ma + count; mp++)
 1577                 if (*mp != NULL) {
 1578                         vm_page_lock(*mp);
 1579                         vm_page_unhold(*mp);
 1580                         vm_page_unlock(*mp);
 1581                 }
 1582         return (-1);
 1583 }
 1584 
 1585 /*
 1586  *      Routine:
 1587  *              vm_fault_copy_entry
 1588  *      Function:
 1589  *              Create new shadow object backing dst_entry with private copy of
 1590  *              all underlying pages. When src_entry is equal to dst_entry,
 1591  *              function implements COW for wired-down map entry. Otherwise,
 1592  *              it forks wired entry into dst_map.
 1593  *
 1594  *      In/out conditions:
 1595  *              The source and destination maps must be locked for write.
 1596  *              The source map entry must be wired down (or be a sharing map
 1597  *              entry corresponding to a main map entry that is wired down).
 1598  */
 1599 void
 1600 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
 1601     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
 1602     vm_ooffset_t *fork_charge)
 1603 {
 1604         vm_object_t backing_object, dst_object, object, src_object;
 1605         vm_pindex_t dst_pindex, pindex, src_pindex;
 1606         vm_prot_t access, prot;
 1607         vm_offset_t vaddr;
 1608         vm_page_t dst_m;
 1609         vm_page_t src_m;
 1610         boolean_t upgrade;
 1611 
 1612 #ifdef  lint
 1613         src_map++;
 1614 #endif  /* lint */
 1615 
 1616         upgrade = src_entry == dst_entry;
 1617         access = prot = dst_entry->protection;
 1618 
 1619         src_object = src_entry->object.vm_object;
 1620         src_pindex = OFF_TO_IDX(src_entry->offset);
 1621 
 1622         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
 1623                 dst_object = src_object;
 1624                 vm_object_reference(dst_object);
 1625         } else {
 1626                 /*
 1627                  * Create the top-level object for the destination entry. (Doesn't
 1628                  * actually shadow anything - we copy the pages directly.)
 1629                  */
 1630                 dst_object = vm_object_allocate(OBJT_DEFAULT,
 1631                     atop(dst_entry->end - dst_entry->start));
 1632 #if VM_NRESERVLEVEL > 0
 1633                 dst_object->flags |= OBJ_COLORED;
 1634                 dst_object->pg_color = atop(dst_entry->start);
 1635 #endif
 1636                 dst_object->charge = dst_entry->end - dst_entry->start;
 1637         }
 1638 
 1639         VM_OBJECT_WLOCK(dst_object);
 1640         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
 1641             ("vm_fault_copy_entry: vm_object not NULL"));
 1642         if (src_object != dst_object) {
 1643                 dst_entry->object.vm_object = dst_object;
 1644                 dst_entry->offset = 0;
 1645         }
 1646         if (fork_charge != NULL) {
 1647                 KASSERT(dst_entry->cred == NULL,
 1648                     ("vm_fault_copy_entry: leaked swp charge"));
 1649                 dst_object->cred = curthread->td_ucred;
 1650                 crhold(dst_object->cred);
 1651                 *fork_charge += dst_object->charge;
 1652         } else if ((dst_object->type == OBJT_DEFAULT ||
 1653             dst_object->type == OBJT_SWAP) &&
 1654             dst_object->cred == NULL) {
 1655                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
 1656                     dst_entry));
 1657                 dst_object->cred = dst_entry->cred;
 1658                 dst_entry->cred = NULL;
 1659         }
 1660 
 1661         /*
 1662          * If not an upgrade, then enter the mappings in the pmap as
 1663          * read and/or execute accesses.  Otherwise, enter them as
 1664          * write accesses.
 1665          *
 1666          * A writeable large page mapping is only created if all of
 1667          * the constituent small page mappings are modified. Marking
 1668          * PTEs as modified on inception allows promotion to happen
 1669          * without taking potentially large number of soft faults.
 1670          */
 1671         if (!upgrade)
 1672                 access &= ~VM_PROT_WRITE;
 1673 
 1674         /*
 1675          * Loop through all of the virtual pages within the entry's
 1676          * range, copying each page from the source object to the
 1677          * destination object.  Since the source is wired, those pages
 1678          * must exist.  In contrast, the destination is pageable.
 1679          * Since the destination object doesn't share any backing storage
 1680          * with the source object, all of its pages must be dirtied,
 1681          * regardless of whether they can be written.
 1682          */
 1683         for (vaddr = dst_entry->start, dst_pindex = 0;
 1684             vaddr < dst_entry->end;
 1685             vaddr += PAGE_SIZE, dst_pindex++) {
 1686 again:
 1687                 /*
 1688                  * Find the page in the source object, and copy it in.
 1689                  * Because the source is wired down, the page will be
 1690                  * in memory.
 1691                  */
 1692                 if (src_object != dst_object)
 1693                         VM_OBJECT_RLOCK(src_object);
 1694                 object = src_object;
 1695                 pindex = src_pindex + dst_pindex;
 1696                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
 1697                     (backing_object = object->backing_object) != NULL) {
 1698                         /*
 1699                          * Unless the source mapping is read-only or
 1700                          * it is presently being upgraded from
 1701                          * read-only, the first object in the shadow
 1702                          * chain should provide all of the pages.  In
 1703                          * other words, this loop body should never be
 1704                          * executed when the source mapping is already
 1705                          * read/write.
 1706                          */
 1707                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
 1708                             upgrade,
 1709                             ("vm_fault_copy_entry: main object missing page"));
 1710 
 1711                         VM_OBJECT_RLOCK(backing_object);
 1712                         pindex += OFF_TO_IDX(object->backing_object_offset);
 1713                         if (object != dst_object)
 1714                                 VM_OBJECT_RUNLOCK(object);
 1715                         object = backing_object;
 1716                 }
 1717                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
 1718 
 1719                 if (object != dst_object) {
 1720                         /*
 1721                          * Allocate a page in the destination object.
 1722                          */
 1723                         dst_m = vm_page_alloc(dst_object, (src_object ==
 1724                             dst_object ? src_pindex : 0) + dst_pindex,
 1725                             VM_ALLOC_NORMAL);
 1726                         if (dst_m == NULL) {
 1727                                 VM_OBJECT_WUNLOCK(dst_object);
 1728                                 VM_OBJECT_RUNLOCK(object);
 1729                                 VM_WAIT;
 1730                                 VM_OBJECT_WLOCK(dst_object);
 1731                                 goto again;
 1732                         }
 1733                         pmap_copy_page(src_m, dst_m);
 1734                         VM_OBJECT_RUNLOCK(object);
 1735                         dst_m->dirty = dst_m->valid = src_m->valid;
 1736                 } else {
 1737                         dst_m = src_m;
 1738                         if (vm_page_sleep_if_busy(dst_m, "fltupg"))
 1739                                 goto again;
 1740                         if (dst_m->pindex >= dst_object->size)
 1741                                 /*
 1742                                  * We are upgrading.  Index can occur
 1743                                  * out of bounds if the object type is
 1744                                  * vnode and the file was truncated.
 1745                                  */
 1746                                 break;
 1747                         vm_page_xbusy(dst_m);
 1748                 }
 1749                 VM_OBJECT_WUNLOCK(dst_object);
 1750 
 1751                 /*
 1752                  * Enter it in the pmap. If a wired, copy-on-write
 1753                  * mapping is being replaced by a write-enabled
 1754                  * mapping, then wire that new mapping.
 1755                  *
 1756                  * The page can be invalid if the user called
 1757                  * msync(MS_INVALIDATE) or truncated the backing vnode
 1758                  * or shared memory object.  In this case, do not
 1759                  * insert it into pmap, but still do the copy so that
 1760                  * all copies of the wired map entry have similar
 1761                  * backing pages.
 1762                  */
 1763                 if (dst_m->valid == VM_PAGE_BITS_ALL) {
 1764                         pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
 1765                             access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
 1766                 }
 1767 
 1768                 /*
 1769                  * Mark it no longer busy, and put it on the active list.
 1770                  */
 1771                 VM_OBJECT_WLOCK(dst_object);
 1772                 
 1773                 if (upgrade) {
 1774                         if (src_m != dst_m) {
 1775                                 vm_page_lock(src_m);
 1776                                 vm_page_unwire(src_m, PQ_INACTIVE);
 1777                                 vm_page_unlock(src_m);
 1778                                 vm_page_lock(dst_m);
 1779                                 vm_page_wire(dst_m);
 1780                                 vm_page_unlock(dst_m);
 1781                         } else {
 1782                                 KASSERT(dst_m->wire_count > 0,
 1783                                     ("dst_m %p is not wired", dst_m));
 1784                         }
 1785                 } else {
 1786                         vm_page_lock(dst_m);
 1787                         vm_page_activate(dst_m);
 1788                         vm_page_unlock(dst_m);
 1789                 }
 1790                 vm_page_xunbusy(dst_m);
 1791         }
 1792         VM_OBJECT_WUNLOCK(dst_object);
 1793         if (upgrade) {
 1794                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
 1795                 vm_object_deallocate(src_object);
 1796         }
 1797 }
 1798 
 1799 /*
 1800  * Block entry into the machine-independent layer's page fault handler by
 1801  * the calling thread.  Subsequent calls to vm_fault() by that thread will
 1802  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
 1803  * spurious page faults. 
 1804  */
 1805 int
 1806 vm_fault_disable_pagefaults(void)
 1807 {
 1808 
 1809         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
 1810 }
 1811 
 1812 void
 1813 vm_fault_enable_pagefaults(int save)
 1814 {
 1815 
 1816         curthread_pflags_restore(save);
 1817 }

Cache object: ea0af6436a008590e1f50b06aa754386


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.