The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_fault.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
    3  *
    4  * Copyright (c) 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  * Copyright (c) 1994 John S. Dyson
    7  * All rights reserved.
    8  * Copyright (c) 1994 David Greenman
    9  * All rights reserved.
   10  *
   11  *
   12  * This code is derived from software contributed to Berkeley by
   13  * The Mach Operating System project at Carnegie-Mellon University.
   14  *
   15  * Redistribution and use in source and binary forms, with or without
   16  * modification, are permitted provided that the following conditions
   17  * are met:
   18  * 1. Redistributions of source code must retain the above copyright
   19  *    notice, this list of conditions and the following disclaimer.
   20  * 2. Redistributions in binary form must reproduce the above copyright
   21  *    notice, this list of conditions and the following disclaimer in the
   22  *    documentation and/or other materials provided with the distribution.
   23  * 3. All advertising materials mentioning features or use of this software
   24  *    must display the following acknowledgement:
   25  *      This product includes software developed by the University of
   26  *      California, Berkeley and its contributors.
   27  * 4. Neither the name of the University nor the names of its contributors
   28  *    may be used to endorse or promote products derived from this software
   29  *    without specific prior written permission.
   30  *
   31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   41  * SUCH DAMAGE.
   42  *
   43  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
   44  *
   45  *
   46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   47  * All rights reserved.
   48  *
   49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   50  *
   51  * Permission to use, copy, modify and distribute this software and
   52  * its documentation is hereby granted, provided that both the copyright
   53  * notice and this permission notice appear in all copies of the
   54  * software, derivative works or modified versions, and any portions
   55  * thereof, and that both notices appear in supporting documentation.
   56  *
   57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   60  *
   61  * Carnegie Mellon requests users of this software to return to
   62  *
   63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   64  *  School of Computer Science
   65  *  Carnegie Mellon University
   66  *  Pittsburgh PA 15213-3890
   67  *
   68  * any improvements or extensions that they make and grant Carnegie the
   69  * rights to redistribute these changes.
   70  */
   71 
   72 /*
   73  *      Page fault handling module.
   74  */
   75 
   76 #include <sys/cdefs.h>
   77 __FBSDID("$FreeBSD$");
   78 
   79 #include "opt_ktrace.h"
   80 #include "opt_vm.h"
   81 
   82 #include <sys/param.h>
   83 #include <sys/systm.h>
   84 #include <sys/kernel.h>
   85 #include <sys/lock.h>
   86 #include <sys/mman.h>
   87 #include <sys/proc.h>
   88 #include <sys/racct.h>
   89 #include <sys/resourcevar.h>
   90 #include <sys/rwlock.h>
   91 #include <sys/signalvar.h>
   92 #include <sys/sysctl.h>
   93 #include <sys/sysent.h>
   94 #include <sys/vmmeter.h>
   95 #include <sys/vnode.h>
   96 #ifdef KTRACE
   97 #include <sys/ktrace.h>
   98 #endif
   99 
  100 #include <vm/vm.h>
  101 #include <vm/vm_param.h>
  102 #include <vm/pmap.h>
  103 #include <vm/vm_map.h>
  104 #include <vm/vm_object.h>
  105 #include <vm/vm_page.h>
  106 #include <vm/vm_pageout.h>
  107 #include <vm/vm_kern.h>
  108 #include <vm/vm_pager.h>
  109 #include <vm/vm_extern.h>
  110 #include <vm/vm_reserv.h>
  111 
  112 #define PFBAK 4
  113 #define PFFOR 4
  114 
  115 #define VM_FAULT_READ_DEFAULT   (1 + VM_FAULT_READ_AHEAD_INIT)
  116 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
  117 
  118 #define VM_FAULT_DONTNEED_MIN   1048576
  119 
  120 struct faultstate {
  121         vm_page_t m;
  122         vm_object_t object;
  123         vm_pindex_t pindex;
  124         vm_page_t first_m;
  125         vm_object_t     first_object;
  126         vm_pindex_t first_pindex;
  127         vm_map_t map;
  128         vm_map_entry_t entry;
  129         int map_generation;
  130         bool lookup_still_valid;
  131         struct vnode *vp;
  132 };
  133 
  134 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
  135             int ahead);
  136 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
  137             int backward, int forward, bool obj_locked);
  138 
  139 static int vm_pfault_oom_attempts = 3;
  140 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
  141     &vm_pfault_oom_attempts, 0,
  142     "Number of page allocation attempts in page fault handler before it "
  143     "triggers OOM handling");
  144 
  145 static int vm_pfault_oom_wait = 10;
  146 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
  147     &vm_pfault_oom_wait, 0,
  148     "Number of seconds to wait for free pages before retrying "
  149     "the page fault handler");
  150 
  151 static inline void
  152 release_page(struct faultstate *fs)
  153 {
  154 
  155         if (fs->m != NULL) {
  156                 vm_page_xunbusy(fs->m);
  157                 vm_page_lock(fs->m);
  158                 vm_page_deactivate(fs->m);
  159                 vm_page_unlock(fs->m);
  160                 fs->m = NULL;
  161         }
  162 }
  163 
  164 static inline void
  165 unlock_map(struct faultstate *fs)
  166 {
  167 
  168         if (fs->lookup_still_valid) {
  169                 vm_map_lookup_done(fs->map, fs->entry);
  170                 fs->lookup_still_valid = false;
  171         }
  172 }
  173 
  174 static void
  175 unlock_vp(struct faultstate *fs)
  176 {
  177 
  178         if (fs->vp != NULL) {
  179                 vput(fs->vp);
  180                 fs->vp = NULL;
  181         }
  182 }
  183 
  184 static void
  185 unlock_and_deallocate(struct faultstate *fs)
  186 {
  187 
  188         vm_object_pip_wakeup(fs->object);
  189         VM_OBJECT_WUNLOCK(fs->object);
  190         if (fs->object != fs->first_object) {
  191                 VM_OBJECT_WLOCK(fs->first_object);
  192                 vm_page_lock(fs->first_m);
  193                 vm_page_free(fs->first_m);
  194                 vm_page_unlock(fs->first_m);
  195                 vm_object_pip_wakeup(fs->first_object);
  196                 VM_OBJECT_WUNLOCK(fs->first_object);
  197                 fs->first_m = NULL;
  198         }
  199         vm_object_deallocate(fs->first_object);
  200         unlock_map(fs);
  201         unlock_vp(fs);
  202 }
  203 
  204 static void
  205 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
  206     vm_prot_t fault_type, int fault_flags, bool set_wd)
  207 {
  208         bool need_dirty;
  209 
  210         if (((prot & VM_PROT_WRITE) == 0 &&
  211             (fault_flags & VM_FAULT_DIRTY) == 0) ||
  212             (m->oflags & VPO_UNMANAGED) != 0)
  213                 return;
  214 
  215         VM_OBJECT_ASSERT_LOCKED(m->object);
  216 
  217         need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
  218             (fault_flags & VM_FAULT_WIRE) == 0) ||
  219             (fault_flags & VM_FAULT_DIRTY) != 0;
  220 
  221         if (set_wd)
  222                 vm_object_set_writeable_dirty(m->object);
  223         else
  224                 /*
  225                  * If two callers of vm_fault_dirty() with set_wd ==
  226                  * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
  227                  * flag set, other with flag clear, race, it is
  228                  * possible for the no-NOSYNC thread to see m->dirty
  229                  * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
  230                  * around manipulation of VPO_NOSYNC and
  231                  * vm_page_dirty() call, to avoid the race and keep
  232                  * m->oflags consistent.
  233                  */
  234                 vm_page_lock(m);
  235 
  236         /*
  237          * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
  238          * if the page is already dirty to prevent data written with
  239          * the expectation of being synced from not being synced.
  240          * Likewise if this entry does not request NOSYNC then make
  241          * sure the page isn't marked NOSYNC.  Applications sharing
  242          * data should use the same flags to avoid ping ponging.
  243          */
  244         if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
  245                 if (m->dirty == 0) {
  246                         m->oflags |= VPO_NOSYNC;
  247                 }
  248         } else {
  249                 m->oflags &= ~VPO_NOSYNC;
  250         }
  251 
  252         /*
  253          * If the fault is a write, we know that this page is being
  254          * written NOW so dirty it explicitly to save on
  255          * pmap_is_modified() calls later.
  256          *
  257          * Also, since the page is now dirty, we can possibly tell
  258          * the pager to release any swap backing the page.  Calling
  259          * the pager requires a write lock on the object.
  260          */
  261         if (need_dirty)
  262                 vm_page_dirty(m);
  263         if (!set_wd)
  264                 vm_page_unlock(m);
  265         else if (need_dirty)
  266                 vm_pager_page_unswapped(m);
  267 }
  268 
  269 static void
  270 vm_fault_fill_hold(vm_page_t *m_hold, vm_page_t m)
  271 {
  272 
  273         if (m_hold != NULL) {
  274                 *m_hold = m;
  275                 vm_page_lock(m);
  276                 vm_page_hold(m);
  277                 vm_page_unlock(m);
  278         }
  279 }
  280 
  281 /*
  282  * Unlocks fs.first_object and fs.map on success.
  283  */
  284 static int
  285 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
  286     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
  287 {
  288         vm_page_t m, m_map;
  289 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
  290     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \
  291     VM_NRESERVLEVEL > 0
  292         vm_page_t m_super;
  293         int flags;
  294 #endif
  295         int psind, rv;
  296 
  297         MPASS(fs->vp == NULL);
  298         m = vm_page_lookup(fs->first_object, fs->first_pindex);
  299         /* A busy page can be mapped for read|execute access. */
  300         if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
  301             vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
  302                 return (KERN_FAILURE);
  303         m_map = m;
  304         psind = 0;
  305 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
  306     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \
  307     VM_NRESERVLEVEL > 0
  308         if ((m->flags & PG_FICTITIOUS) == 0 &&
  309             (m_super = vm_reserv_to_superpage(m)) != NULL &&
  310             rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
  311             roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
  312             (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
  313             (pagesizes[m_super->psind] - 1)) &&
  314             pmap_ps_enabled(fs->map->pmap)) {
  315                 flags = PS_ALL_VALID;
  316                 if ((prot & VM_PROT_WRITE) != 0) {
  317                         /*
  318                          * Create a superpage mapping allowing write access
  319                          * only if none of the constituent pages are busy and
  320                          * all of them are already dirty (except possibly for
  321                          * the page that was faulted on).
  322                          */
  323                         flags |= PS_NONE_BUSY;
  324                         if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
  325                                 flags |= PS_ALL_DIRTY;
  326                 }
  327                 if (vm_page_ps_test(m_super, flags, m)) {
  328                         m_map = m_super;
  329                         psind = m_super->psind;
  330                         vaddr = rounddown2(vaddr, pagesizes[psind]);
  331                         /* Preset the modified bit for dirty superpages. */
  332                         if ((flags & PS_ALL_DIRTY) != 0)
  333                                 fault_type |= VM_PROT_WRITE;
  334                 }
  335         }
  336 #endif
  337         rv = pmap_enter(fs->map->pmap, vaddr, m_map, prot, fault_type |
  338             PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), psind);
  339         if (rv != KERN_SUCCESS)
  340                 return (rv);
  341         vm_fault_fill_hold(m_hold, m);
  342         vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false);
  343         if (psind == 0 && !wired)
  344                 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
  345         VM_OBJECT_RUNLOCK(fs->first_object);
  346         vm_map_lookup_done(fs->map, fs->entry);
  347         curthread->td_ru.ru_minflt++;
  348         return (KERN_SUCCESS);
  349 }
  350 
  351 static void
  352 vm_fault_restore_map_lock(struct faultstate *fs)
  353 {
  354 
  355         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
  356         MPASS(fs->first_object->paging_in_progress > 0);
  357 
  358         if (!vm_map_trylock_read(fs->map)) {
  359                 VM_OBJECT_WUNLOCK(fs->first_object);
  360                 vm_map_lock_read(fs->map);
  361                 VM_OBJECT_WLOCK(fs->first_object);
  362         }
  363         fs->lookup_still_valid = true;
  364 }
  365 
  366 static void
  367 vm_fault_populate_check_page(vm_page_t m)
  368 {
  369 
  370         /*
  371          * Check each page to ensure that the pager is obeying the
  372          * interface: the page must be installed in the object, fully
  373          * valid, and exclusively busied.
  374          */
  375         MPASS(m != NULL);
  376         MPASS(m->valid == VM_PAGE_BITS_ALL);
  377         MPASS(vm_page_xbusied(m));
  378 }
  379 
  380 static void
  381 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
  382     vm_pindex_t last)
  383 {
  384         vm_page_t m;
  385         vm_pindex_t pidx;
  386 
  387         VM_OBJECT_ASSERT_WLOCKED(object);
  388         MPASS(first <= last);
  389         for (pidx = first, m = vm_page_lookup(object, pidx);
  390             pidx <= last; pidx++, m = vm_page_next(m)) {
  391                 vm_fault_populate_check_page(m);
  392                 vm_page_lock(m);
  393                 vm_page_deactivate(m);
  394                 vm_page_unlock(m);
  395                 vm_page_xunbusy(m);
  396         }
  397 }
  398 
  399 static int
  400 vm_fault_populate(struct faultstate *fs, vm_prot_t prot, int fault_type,
  401     int fault_flags, boolean_t wired, vm_page_t *m_hold)
  402 {
  403         struct mtx *m_mtx;
  404         vm_offset_t vaddr;
  405         vm_page_t m;
  406         vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
  407         int i, npages, psind, rv;
  408 
  409         MPASS(fs->object == fs->first_object);
  410         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
  411         MPASS(fs->first_object->paging_in_progress > 0);
  412         MPASS(fs->first_object->backing_object == NULL);
  413         MPASS(fs->lookup_still_valid);
  414 
  415         pager_first = OFF_TO_IDX(fs->entry->offset);
  416         pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
  417         unlock_map(fs);
  418         unlock_vp(fs);
  419 
  420         /*
  421          * Call the pager (driver) populate() method.
  422          *
  423          * There is no guarantee that the method will be called again
  424          * if the current fault is for read, and a future fault is
  425          * for write.  Report the entry's maximum allowed protection
  426          * to the driver.
  427          */
  428         rv = vm_pager_populate(fs->first_object, fs->first_pindex,
  429             fault_type, fs->entry->max_protection, &pager_first, &pager_last);
  430 
  431         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
  432         if (rv == VM_PAGER_BAD) {
  433                 /*
  434                  * VM_PAGER_BAD is the backdoor for a pager to request
  435                  * normal fault handling.
  436                  */
  437                 vm_fault_restore_map_lock(fs);
  438                 if (fs->map->timestamp != fs->map_generation)
  439                         return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
  440                 return (KERN_NOT_RECEIVER);
  441         }
  442         if (rv != VM_PAGER_OK)
  443                 return (KERN_FAILURE); /* AKA SIGSEGV */
  444 
  445         /* Ensure that the driver is obeying the interface. */
  446         MPASS(pager_first <= pager_last);
  447         MPASS(fs->first_pindex <= pager_last);
  448         MPASS(fs->first_pindex >= pager_first);
  449         MPASS(pager_last < fs->first_object->size);
  450 
  451         vm_fault_restore_map_lock(fs);
  452         if (fs->map->timestamp != fs->map_generation) {
  453                 vm_fault_populate_cleanup(fs->first_object, pager_first,
  454                     pager_last);
  455                 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
  456         }
  457 
  458         /*
  459          * The map is unchanged after our last unlock.  Process the fault.
  460          *
  461          * The range [pager_first, pager_last] that is given to the
  462          * pager is only a hint.  The pager may populate any range
  463          * within the object that includes the requested page index.
  464          * In case the pager expanded the range, clip it to fit into
  465          * the map entry.
  466          */
  467         map_first = OFF_TO_IDX(fs->entry->offset);
  468         if (map_first > pager_first) {
  469                 vm_fault_populate_cleanup(fs->first_object, pager_first,
  470                     map_first - 1);
  471                 pager_first = map_first;
  472         }
  473         map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
  474         if (map_last < pager_last) {
  475                 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
  476                     pager_last);
  477                 pager_last = map_last;
  478         }
  479         for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
  480             pidx <= pager_last;
  481             pidx += npages, m = vm_page_next(&m[npages - 1])) {
  482                 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
  483 #if defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
  484     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)
  485                 psind = m->psind;
  486                 if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
  487                     pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
  488                     !pmap_ps_enabled(fs->map->pmap)))
  489                         psind = 0;
  490 #else
  491                 psind = 0;
  492 #endif          
  493                 npages = atop(pagesizes[psind]);
  494                 for (i = 0; i < npages; i++) {
  495                         vm_fault_populate_check_page(&m[i]);
  496                         vm_fault_dirty(fs->entry, &m[i], prot, fault_type,
  497                             fault_flags, true);
  498                 }
  499                 VM_OBJECT_WUNLOCK(fs->first_object);
  500                 rv = pmap_enter(fs->map->pmap, vaddr, m, prot, fault_type |
  501                     (wired ? PMAP_ENTER_WIRED : 0), psind);
  502 #if defined(__amd64__)
  503                 if (psind > 0 && rv == KERN_FAILURE) {
  504                         for (i = 0; i < npages; i++) {
  505                                 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
  506                                     &m[i], prot, fault_type |
  507                                     (wired ? PMAP_ENTER_WIRED : 0), 0);
  508                                 MPASS(rv == KERN_SUCCESS);
  509                         }
  510                 }
  511 #else
  512                 MPASS(rv == KERN_SUCCESS);
  513 #endif
  514                 VM_OBJECT_WLOCK(fs->first_object);
  515                 m_mtx = NULL;
  516                 for (i = 0; i < npages; i++) {
  517                         vm_page_change_lock(&m[i], &m_mtx);
  518                         if ((fault_flags & VM_FAULT_WIRE) != 0)
  519                                 vm_page_wire(&m[i]);
  520                         else
  521                                 vm_page_activate(&m[i]);
  522                         if (m_hold != NULL && m[i].pindex == fs->first_pindex) {
  523                                 *m_hold = &m[i];
  524                                 vm_page_hold(&m[i]);
  525                         }
  526                         vm_page_xunbusy_maybelocked(&m[i]);
  527                 }
  528                 if (m_mtx != NULL)
  529                         mtx_unlock(m_mtx);
  530         }
  531         curthread->td_ru.ru_majflt++;
  532         return (KERN_SUCCESS);
  533 }
  534 
  535 static int prot_fault_translation;
  536 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
  537     &prot_fault_translation, 0,
  538     "Control signal to deliver on protection fault");
  539 
  540 /* compat definition to keep common code for signal translation */
  541 #define UCODE_PAGEFLT   12
  542 #ifdef T_PAGEFLT
  543 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
  544 #endif
  545 
  546 /*
  547  *      vm_fault_trap:
  548  *
  549  *      Handle a page fault occurring at the given address,
  550  *      requiring the given permissions, in the map specified.
  551  *      If successful, the page is inserted into the
  552  *      associated physical map.
  553  *
  554  *      NOTE: the given address should be truncated to the
  555  *      proper page address.
  556  *
  557  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
  558  *      a standard error specifying why the fault is fatal is returned.
  559  *
  560  *      The map in question must be referenced, and remains so.
  561  *      Caller may hold no locks.
  562  */
  563 int
  564 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
  565     int fault_flags, int *signo, int *ucode)
  566 {
  567         int result;
  568 
  569         MPASS(signo == NULL || ucode != NULL);
  570 #ifdef KTRACE
  571         if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
  572                 ktrfault(vaddr, fault_type);
  573 #endif
  574         result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
  575             NULL);
  576         KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
  577             result == KERN_INVALID_ADDRESS ||
  578             result == KERN_RESOURCE_SHORTAGE ||
  579             result == KERN_PROTECTION_FAILURE ||
  580             result == KERN_OUT_OF_BOUNDS,
  581             ("Unexpected Mach error %d from vm_fault()", result));
  582 #ifdef KTRACE
  583         if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
  584                 ktrfaultend(result);
  585 #endif
  586         if (result != KERN_SUCCESS && signo != NULL) {
  587                 switch (result) {
  588                 case KERN_FAILURE:
  589                 case KERN_INVALID_ADDRESS:
  590                         *signo = SIGSEGV;
  591                         *ucode = SEGV_MAPERR;
  592                         break;
  593                 case KERN_RESOURCE_SHORTAGE:
  594                         *signo = SIGBUS;
  595                         *ucode = BUS_OOMERR;
  596                         break;
  597                 case KERN_OUT_OF_BOUNDS:
  598                         *signo = SIGBUS;
  599                         *ucode = BUS_OBJERR;
  600                         break;
  601                 case KERN_PROTECTION_FAILURE:
  602                         if (prot_fault_translation == 0) {
  603                                 /*
  604                                  * Autodetect.  This check also covers
  605                                  * the images without the ABI-tag ELF
  606                                  * note.
  607                                  */
  608                                 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
  609                                     curproc->p_osrel >= P_OSREL_SIGSEGV) {
  610                                         *signo = SIGSEGV;
  611                                         *ucode = SEGV_ACCERR;
  612                                 } else {
  613                                         *signo = SIGBUS;
  614                                         *ucode = UCODE_PAGEFLT;
  615                                 }
  616                         } else if (prot_fault_translation == 1) {
  617                                 /* Always compat mode. */
  618                                 *signo = SIGBUS;
  619                                 *ucode = UCODE_PAGEFLT;
  620                         } else {
  621                                 /* Always SIGSEGV mode. */
  622                                 *signo = SIGSEGV;
  623                                 *ucode = SEGV_ACCERR;
  624                         }
  625                         break;
  626                 default:
  627                         KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
  628                             result));
  629                         break;
  630                 }
  631         }
  632         return (result);
  633 }
  634 
  635 static int
  636 vm_fault_lock_vnode(struct faultstate *fs)
  637 {
  638         struct vnode *vp;
  639         int error, locked;
  640 
  641         if (fs->object->type != OBJT_VNODE)
  642                 return (KERN_SUCCESS);
  643         vp = fs->object->handle;
  644         if (vp == fs->vp) {
  645                 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
  646                 return (KERN_SUCCESS);
  647         }
  648 
  649         /*
  650          * Perform an unlock in case the desired vnode changed while
  651          * the map was unlocked during a retry.
  652          */
  653         unlock_vp(fs);
  654 
  655         locked = VOP_ISLOCKED(vp);
  656         if (locked != LK_EXCLUSIVE)
  657                 locked = LK_SHARED;
  658 
  659         /*
  660          * We must not sleep acquiring the vnode lock while we have
  661          * the page exclusive busied or the object's
  662          * paging-in-progress count incremented.  Otherwise, we could
  663          * deadlock.
  664          */
  665         error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT, curthread);
  666         if (error == 0) {
  667                 fs->vp = vp;
  668                 return (KERN_SUCCESS);
  669         }
  670 
  671         vhold(vp);
  672         release_page(fs);
  673         unlock_and_deallocate(fs);
  674         error = vget(vp, locked | LK_RETRY | LK_CANRECURSE, curthread);
  675         vdrop(vp);
  676         fs->vp = vp;
  677         KASSERT(error == 0, ("vm_fault: vget failed %d", error));
  678         return (KERN_RESOURCE_SHORTAGE);
  679 }
  680 
  681 int
  682 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
  683     int fault_flags, vm_page_t *m_hold)
  684 {
  685         struct faultstate fs;
  686         struct domainset *dset;
  687         vm_object_t next_object, retry_object;
  688         vm_offset_t e_end, e_start;
  689         vm_pindex_t retry_pindex;
  690         vm_prot_t prot, retry_prot;
  691         int ahead, alloc_req, behind, cluster_offset, era, faultcount;
  692         int nera, oom, result, rv;
  693         u_char behavior;
  694         boolean_t wired;        /* Passed by reference. */
  695         bool dead, hardfault, is_first_object_locked;
  696 
  697         VM_CNT_INC(v_vm_faults);
  698 
  699         if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
  700                 return (KERN_PROTECTION_FAILURE);
  701 
  702         fs.vp = NULL;
  703         faultcount = 0;
  704         nera = -1;
  705         hardfault = false;
  706 
  707 RetryFault:
  708         oom = 0;
  709 RetryFault_oom:
  710 
  711         /*
  712          * Find the backing store object and offset into it to begin the
  713          * search.
  714          */
  715         fs.map = map;
  716         result = vm_map_lookup(&fs.map, vaddr, fault_type |
  717             VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object,
  718             &fs.first_pindex, &prot, &wired);
  719         if (result != KERN_SUCCESS) {
  720                 unlock_vp(&fs);
  721                 return (result);
  722         }
  723 
  724         fs.map_generation = fs.map->timestamp;
  725 
  726         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
  727                 panic("%s: fault on nofault entry, addr: %#lx",
  728                     __func__, (u_long)vaddr);
  729         }
  730 
  731         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
  732             fs.entry->wiring_thread != curthread) {
  733                 vm_map_unlock_read(fs.map);
  734                 vm_map_lock(fs.map);
  735                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
  736                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
  737                         unlock_vp(&fs);
  738                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
  739                         vm_map_unlock_and_wait(fs.map, 0);
  740                 } else
  741                         vm_map_unlock(fs.map);
  742                 goto RetryFault;
  743         }
  744 
  745         MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0);
  746 
  747         if (wired)
  748                 fault_type = prot | (fault_type & VM_PROT_COPY);
  749         else
  750                 KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
  751                     ("!wired && VM_FAULT_WIRE"));
  752 
  753         /*
  754          * Try to avoid lock contention on the top-level object through
  755          * special-case handling of some types of page faults, specifically,
  756          * those that are both (1) mapping an existing page from the top-
  757          * level object and (2) not having to mark that object as containing
  758          * dirty pages.  Under these conditions, a read lock on the top-level
  759          * object suffices, allowing multiple page faults of a similar type to
  760          * run in parallel on the same top-level object.
  761          */
  762         if (fs.vp == NULL /* avoid locked vnode leak */ &&
  763             (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
  764             /* avoid calling vm_object_set_writeable_dirty() */
  765             ((prot & VM_PROT_WRITE) == 0 ||
  766             (fs.first_object->type != OBJT_VNODE &&
  767             (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
  768             (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
  769                 VM_OBJECT_RLOCK(fs.first_object);
  770                 if ((prot & VM_PROT_WRITE) == 0 ||
  771                     (fs.first_object->type != OBJT_VNODE &&
  772                     (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
  773                     (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) {
  774                         rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type,
  775                             fault_flags, wired, m_hold);
  776                         if (rv == KERN_SUCCESS)
  777                                 return (rv);
  778                 }
  779                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
  780                         VM_OBJECT_RUNLOCK(fs.first_object);
  781                         VM_OBJECT_WLOCK(fs.first_object);
  782                 }
  783         } else {
  784                 VM_OBJECT_WLOCK(fs.first_object);
  785         }
  786 
  787         /*
  788          * Make a reference to this object to prevent its disposal while we
  789          * are messing with it.  Once we have the reference, the map is free
  790          * to be diddled.  Since objects reference their shadows (and copies),
  791          * they will stay around as well.
  792          *
  793          * Bump the paging-in-progress count to prevent size changes (e.g. 
  794          * truncation operations) during I/O.
  795          */
  796         vm_object_reference_locked(fs.first_object);
  797         vm_object_pip_add(fs.first_object, 1);
  798 
  799         fs.lookup_still_valid = true;
  800 
  801         fs.first_m = NULL;
  802 
  803         /*
  804          * Search for the page at object/offset.
  805          */
  806         fs.object = fs.first_object;
  807         fs.pindex = fs.first_pindex;
  808         while (TRUE) {
  809                 /*
  810                  * If the object is marked for imminent termination,
  811                  * we retry here, since the collapse pass has raced
  812                  * with us.  Otherwise, if we see terminally dead
  813                  * object, return fail.
  814                  */
  815                 if ((fs.object->flags & OBJ_DEAD) != 0) {
  816                         dead = fs.object->type == OBJT_DEAD;
  817                         unlock_and_deallocate(&fs);
  818                         if (dead)
  819                                 return (KERN_PROTECTION_FAILURE);
  820                         pause("vmf_de", 1);
  821                         goto RetryFault;
  822                 }
  823 
  824                 /*
  825                  * See if page is resident
  826                  */
  827                 fs.m = vm_page_lookup(fs.object, fs.pindex);
  828                 if (fs.m != NULL) {
  829                         /*
  830                          * Wait/Retry if the page is busy.  We have to do this
  831                          * if the page is either exclusive or shared busy
  832                          * because the vm_pager may be using read busy for
  833                          * pageouts (and even pageins if it is the vnode
  834                          * pager), and we could end up trying to pagein and
  835                          * pageout the same page simultaneously.
  836                          *
  837                          * We can theoretically allow the busy case on a read
  838                          * fault if the page is marked valid, but since such
  839                          * pages are typically already pmap'd, putting that
  840                          * special case in might be more effort then it is 
  841                          * worth.  We cannot under any circumstances mess
  842                          * around with a shared busied page except, perhaps,
  843                          * to pmap it.
  844                          */
  845                         if (vm_page_busied(fs.m)) {
  846                                 /*
  847                                  * Reference the page before unlocking and
  848                                  * sleeping so that the page daemon is less
  849                                  * likely to reclaim it.
  850                                  */
  851                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
  852                                 if (fs.object != fs.first_object) {
  853                                         if (!VM_OBJECT_TRYWLOCK(
  854                                             fs.first_object)) {
  855                                                 VM_OBJECT_WUNLOCK(fs.object);
  856                                                 VM_OBJECT_WLOCK(fs.first_object);
  857                                                 VM_OBJECT_WLOCK(fs.object);
  858                                         }
  859                                         vm_page_lock(fs.first_m);
  860                                         vm_page_free(fs.first_m);
  861                                         vm_page_unlock(fs.first_m);
  862                                         vm_object_pip_wakeup(fs.first_object);
  863                                         VM_OBJECT_WUNLOCK(fs.first_object);
  864                                         fs.first_m = NULL;
  865                                 }
  866                                 unlock_map(&fs);
  867                                 if (fs.m == vm_page_lookup(fs.object,
  868                                     fs.pindex)) {
  869                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
  870                                 }
  871                                 vm_object_pip_wakeup(fs.object);
  872                                 VM_OBJECT_WUNLOCK(fs.object);
  873                                 VM_CNT_INC(v_intrans);
  874                                 vm_object_deallocate(fs.first_object);
  875                                 goto RetryFault;
  876                         }
  877 
  878                         /*
  879                          * Mark page busy for other processes, and the 
  880                          * pagedaemon.  If it still isn't completely valid
  881                          * (readable), jump to readrest, else break-out ( we
  882                          * found the page ).
  883                          */
  884                         vm_page_xbusy(fs.m);
  885                         if (fs.m->valid != VM_PAGE_BITS_ALL)
  886                                 goto readrest;
  887                         break; /* break to PAGE HAS BEEN FOUND */
  888                 }
  889                 KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m));
  890 
  891                 /*
  892                  * Page is not resident.  If the pager might contain the page
  893                  * or this is the beginning of the search, allocate a new
  894                  * page.  (Default objects are zero-fill, so there is no real
  895                  * pager for them.)
  896                  */
  897                 if (fs.object->type != OBJT_DEFAULT ||
  898                     fs.object == fs.first_object) {
  899                         if ((fs.object->flags & OBJ_SIZEVNLOCK) != 0) {
  900                                 rv = vm_fault_lock_vnode(&fs);
  901                                 MPASS(rv == KERN_SUCCESS ||
  902                                     rv == KERN_RESOURCE_SHORTAGE);
  903                                 if (rv == KERN_RESOURCE_SHORTAGE)
  904                                         goto RetryFault;
  905                         }
  906                         if (fs.pindex >= fs.object->size) {
  907                                 unlock_and_deallocate(&fs);
  908                                 return (KERN_OUT_OF_BOUNDS);
  909                         }
  910 
  911                         if (fs.object == fs.first_object &&
  912                             (fs.first_object->flags & OBJ_POPULATE) != 0 &&
  913                             fs.first_object->shadow_count == 0) {
  914                                 rv = vm_fault_populate(&fs, prot, fault_type,
  915                                     fault_flags, wired, m_hold);
  916                                 switch (rv) {
  917                                 case KERN_SUCCESS:
  918                                 case KERN_FAILURE:
  919                                         unlock_and_deallocate(&fs);
  920                                         return (rv);
  921                                 case KERN_RESOURCE_SHORTAGE:
  922                                         unlock_and_deallocate(&fs);
  923                                         goto RetryFault;
  924                                 case KERN_NOT_RECEIVER:
  925                                         /*
  926                                          * Pager's populate() method
  927                                          * returned VM_PAGER_BAD.
  928                                          */
  929                                         break;
  930                                 default:
  931                                         panic("inconsistent return codes");
  932                                 }
  933                         }
  934 
  935                         /*
  936                          * Allocate a new page for this object/offset pair.
  937                          *
  938                          * Unlocked read of the p_flag is harmless. At
  939                          * worst, the P_KILLED might be not observed
  940                          * there, and allocation can fail, causing
  941                          * restart and new reading of the p_flag.
  942                          */
  943                         dset = fs.object->domain.dr_policy;
  944                         if (dset == NULL)
  945                                 dset = curthread->td_domain.dr_policy;
  946                         if (!vm_page_count_severe_set(&dset->ds_mask) ||
  947                             P_KILLED(curproc)) {
  948 #if VM_NRESERVLEVEL > 0
  949                                 vm_object_color(fs.object, atop(vaddr) -
  950                                     fs.pindex);
  951 #endif
  952                                 alloc_req = P_KILLED(curproc) ?
  953                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
  954                                 if (fs.object->type != OBJT_VNODE &&
  955                                     fs.object->backing_object == NULL)
  956                                         alloc_req |= VM_ALLOC_ZERO;
  957                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
  958                                     alloc_req);
  959                         }
  960                         if (fs.m == NULL) {
  961                                 unlock_and_deallocate(&fs);
  962                                 if (vm_pfault_oom_attempts < 0 ||
  963                                     oom < vm_pfault_oom_attempts) {
  964                                         oom++;
  965                                         vm_waitpfault(dset,
  966                                             vm_pfault_oom_wait * hz);
  967                                         goto RetryFault_oom;
  968                                 }
  969                                 if (bootverbose)
  970                                         printf(
  971         "proc %d (%s) failed to alloc page on fault, starting OOM\n",
  972                                             curproc->p_pid, curproc->p_comm);
  973                                 vm_pageout_oom(VM_OOM_MEM_PF);
  974                                 goto RetryFault;
  975                         }
  976                 }
  977 
  978 readrest:
  979                 /*
  980                  * At this point, we have either allocated a new page or found
  981                  * an existing page that is only partially valid.
  982                  *
  983                  * We hold a reference on the current object and the page is
  984                  * exclusive busied.
  985                  */
  986 
  987                 /*
  988                  * If the pager for the current object might have the page,
  989                  * then determine the number of additional pages to read and
  990                  * potentially reprioritize previously read pages for earlier
  991                  * reclamation.  These operations should only be performed
  992                  * once per page fault.  Even if the current pager doesn't
  993                  * have the page, the number of additional pages to read will
  994                  * apply to subsequent objects in the shadow chain.
  995                  */
  996                 if (fs.object->type != OBJT_DEFAULT && nera == -1 &&
  997                     !P_KILLED(curproc)) {
  998                         KASSERT(fs.lookup_still_valid, ("map unlocked"));
  999                         era = fs.entry->read_ahead;
 1000                         behavior = vm_map_entry_behavior(fs.entry);
 1001                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
 1002                                 nera = 0;
 1003                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
 1004                                 nera = VM_FAULT_READ_AHEAD_MAX;
 1005                                 if (vaddr == fs.entry->next_read)
 1006                                         vm_fault_dontneed(&fs, vaddr, nera);
 1007                         } else if (vaddr == fs.entry->next_read) {
 1008                                 /*
 1009                                  * This is a sequential fault.  Arithmetically
 1010                                  * increase the requested number of pages in
 1011                                  * the read-ahead window.  The requested
 1012                                  * number of pages is "# of sequential faults
 1013                                  * x (read ahead min + 1) + read ahead min"
 1014                                  */
 1015                                 nera = VM_FAULT_READ_AHEAD_MIN;
 1016                                 if (era > 0) {
 1017                                         nera += era + 1;
 1018                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
 1019                                                 nera = VM_FAULT_READ_AHEAD_MAX;
 1020                                 }
 1021                                 if (era == VM_FAULT_READ_AHEAD_MAX)
 1022                                         vm_fault_dontneed(&fs, vaddr, nera);
 1023                         } else {
 1024                                 /*
 1025                                  * This is a non-sequential fault.
 1026                                  */
 1027                                 nera = 0;
 1028                         }
 1029                         if (era != nera) {
 1030                                 /*
 1031                                  * A read lock on the map suffices to update
 1032                                  * the read ahead count safely.
 1033                                  */
 1034                                 fs.entry->read_ahead = nera;
 1035                         }
 1036 
 1037                         /*
 1038                          * Prepare for unlocking the map.  Save the map
 1039                          * entry's start and end addresses, which are used to
 1040                          * optimize the size of the pager operation below.
 1041                          * Even if the map entry's addresses change after
 1042                          * unlocking the map, using the saved addresses is
 1043                          * safe.
 1044                          */
 1045                         e_start = fs.entry->start;
 1046                         e_end = fs.entry->end;
 1047                 }
 1048 
 1049                 /*
 1050                  * Call the pager to retrieve the page if there is a chance
 1051                  * that the pager has it, and potentially retrieve additional
 1052                  * pages at the same time.
 1053                  */
 1054                 if (fs.object->type != OBJT_DEFAULT) {
 1055                         /*
 1056                          * Release the map lock before locking the vnode or
 1057                          * sleeping in the pager.  (If the current object has
 1058                          * a shadow, then an earlier iteration of this loop
 1059                          * may have already unlocked the map.)
 1060                          */
 1061                         unlock_map(&fs);
 1062 
 1063                         rv = vm_fault_lock_vnode(&fs);
 1064                         MPASS(rv == KERN_SUCCESS ||
 1065                             rv == KERN_RESOURCE_SHORTAGE);
 1066                         if (rv == KERN_RESOURCE_SHORTAGE)
 1067                                 goto RetryFault;
 1068                         KASSERT(fs.vp == NULL || !fs.map->system_map,
 1069                             ("vm_fault: vnode-backed object mapped by system map"));
 1070 
 1071                         /*
 1072                          * Page in the requested page and hint the pager,
 1073                          * that it may bring up surrounding pages.
 1074                          */
 1075                         if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
 1076                             P_KILLED(curproc)) {
 1077                                 behind = 0;
 1078                                 ahead = 0;
 1079                         } else {
 1080                                 /* Is this a sequential fault? */
 1081                                 if (nera > 0) {
 1082                                         behind = 0;
 1083                                         ahead = nera;
 1084                                 } else {
 1085                                         /*
 1086                                          * Request a cluster of pages that is
 1087                                          * aligned to a VM_FAULT_READ_DEFAULT
 1088                                          * page offset boundary within the
 1089                                          * object.  Alignment to a page offset
 1090                                          * boundary is more likely to coincide
 1091                                          * with the underlying file system
 1092                                          * block than alignment to a virtual
 1093                                          * address boundary.
 1094                                          */
 1095                                         cluster_offset = fs.pindex %
 1096                                             VM_FAULT_READ_DEFAULT;
 1097                                         behind = ulmin(cluster_offset,
 1098                                             atop(vaddr - e_start));
 1099                                         ahead = VM_FAULT_READ_DEFAULT - 1 -
 1100                                             cluster_offset;
 1101                                 }
 1102                                 ahead = ulmin(ahead, atop(e_end - vaddr) - 1);
 1103                         }
 1104                         rv = vm_pager_get_pages(fs.object, &fs.m, 1,
 1105                             &behind, &ahead);
 1106                         if (rv == VM_PAGER_OK) {
 1107                                 faultcount = behind + 1 + ahead;
 1108                                 hardfault = true;
 1109                                 break; /* break to PAGE HAS BEEN FOUND */
 1110                         }
 1111                         if (rv == VM_PAGER_ERROR)
 1112                                 printf("vm_fault: pager read error, pid %d (%s)\n",
 1113                                     curproc->p_pid, curproc->p_comm);
 1114 
 1115                         /*
 1116                          * If an I/O error occurred or the requested page was
 1117                          * outside the range of the pager, clean up and return
 1118                          * an error.
 1119                          */
 1120                         if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
 1121                                 vm_page_lock(fs.m);
 1122                                 if (!vm_page_wired(fs.m))
 1123                                         vm_page_free(fs.m);
 1124                                 else
 1125                                         vm_page_xunbusy_maybelocked(fs.m);
 1126                                 vm_page_unlock(fs.m);
 1127                                 fs.m = NULL;
 1128                                 unlock_and_deallocate(&fs);
 1129                                 return (KERN_OUT_OF_BOUNDS);
 1130                         }
 1131 
 1132                         /*
 1133                          * The requested page does not exist at this object/
 1134                          * offset.  Remove the invalid page from the object,
 1135                          * waking up anyone waiting for it, and continue on to
 1136                          * the next object.  However, if this is the top-level
 1137                          * object, we must leave the busy page in place to
 1138                          * prevent another process from rushing past us, and
 1139                          * inserting the page in that object at the same time
 1140                          * that we are.
 1141                          */
 1142                         if (fs.object != fs.first_object) {
 1143                                 vm_page_lock(fs.m);
 1144                                 if (!vm_page_wired(fs.m))
 1145                                         vm_page_free(fs.m);
 1146                                 else
 1147                                         vm_page_xunbusy_maybelocked(fs.m);
 1148                                 vm_page_unlock(fs.m);
 1149                                 fs.m = NULL;
 1150                         }
 1151                 }
 1152 
 1153                 /*
 1154                  * We get here if the object has default pager (or unwiring) 
 1155                  * or the pager doesn't have the page.
 1156                  */
 1157                 if (fs.object == fs.first_object)
 1158                         fs.first_m = fs.m;
 1159 
 1160                 /*
 1161                  * Move on to the next object.  Lock the next object before
 1162                  * unlocking the current one.
 1163                  */
 1164                 next_object = fs.object->backing_object;
 1165                 if (next_object == NULL) {
 1166                         /*
 1167                          * If there's no object left, fill the page in the top
 1168                          * object with zeros.
 1169                          */
 1170                         if (fs.object != fs.first_object) {
 1171                                 vm_object_pip_wakeup(fs.object);
 1172                                 VM_OBJECT_WUNLOCK(fs.object);
 1173 
 1174                                 fs.object = fs.first_object;
 1175                                 fs.pindex = fs.first_pindex;
 1176                                 fs.m = fs.first_m;
 1177                                 VM_OBJECT_WLOCK(fs.object);
 1178                         }
 1179                         fs.first_m = NULL;
 1180 
 1181                         /*
 1182                          * Zero the page if necessary and mark it valid.
 1183                          */
 1184                         if ((fs.m->flags & PG_ZERO) == 0) {
 1185                                 pmap_zero_page(fs.m);
 1186                         } else {
 1187                                 VM_CNT_INC(v_ozfod);
 1188                         }
 1189                         VM_CNT_INC(v_zfod);
 1190                         fs.m->valid = VM_PAGE_BITS_ALL;
 1191                         /* Don't try to prefault neighboring pages. */
 1192                         faultcount = 1;
 1193                         break;  /* break to PAGE HAS BEEN FOUND */
 1194                 } else {
 1195                         KASSERT(fs.object != next_object,
 1196                             ("object loop %p", next_object));
 1197                         VM_OBJECT_WLOCK(next_object);
 1198                         vm_object_pip_add(next_object, 1);
 1199                         if (fs.object != fs.first_object)
 1200                                 vm_object_pip_wakeup(fs.object);
 1201                         fs.pindex +=
 1202                             OFF_TO_IDX(fs.object->backing_object_offset);
 1203                         VM_OBJECT_WUNLOCK(fs.object);
 1204                         fs.object = next_object;
 1205                 }
 1206         }
 1207 
 1208         vm_page_assert_xbusied(fs.m);
 1209 
 1210         /*
 1211          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
 1212          * is held.]
 1213          */
 1214 
 1215         /*
 1216          * If the page is being written, but isn't already owned by the
 1217          * top-level object, we have to copy it into a new page owned by the
 1218          * top-level object.
 1219          */
 1220         if (fs.object != fs.first_object) {
 1221                 /*
 1222                  * We only really need to copy if we want to write it.
 1223                  */
 1224                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
 1225                         /*
 1226                          * This allows pages to be virtually copied from a 
 1227                          * backing_object into the first_object, where the 
 1228                          * backing object has no other refs to it, and cannot
 1229                          * gain any more refs.  Instead of a bcopy, we just 
 1230                          * move the page from the backing object to the 
 1231                          * first object.  Note that we must mark the page 
 1232                          * dirty in the first object so that it will go out 
 1233                          * to swap when needed.
 1234                          */
 1235                         is_first_object_locked = false;
 1236                         if (
 1237                                 /*
 1238                                  * Only one shadow object
 1239                                  */
 1240                                 (fs.object->shadow_count == 1) &&
 1241                                 /*
 1242                                  * No COW refs, except us
 1243                                  */
 1244                                 (fs.object->ref_count == 1) &&
 1245                                 /*
 1246                                  * No one else can look this object up
 1247                                  */
 1248                                 (fs.object->handle == NULL) &&
 1249                                 /*
 1250                                  * No other ways to look the object up
 1251                                  */
 1252                                 ((fs.object->type == OBJT_DEFAULT) ||
 1253                                  (fs.object->type == OBJT_SWAP)) &&
 1254                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
 1255                                 /*
 1256                                  * We don't chase down the shadow chain
 1257                                  */
 1258                             fs.object == fs.first_object->backing_object) {
 1259                                 vm_page_lock(fs.m);
 1260                                 vm_page_dequeue(fs.m);
 1261                                 (void)vm_page_remove(fs.m);
 1262                                 vm_page_unlock(fs.m);
 1263                                 vm_page_lock(fs.first_m);
 1264                                 vm_page_replace_checked(fs.m, fs.first_object,
 1265                                     fs.first_pindex, fs.first_m);
 1266                                 vm_page_free(fs.first_m);
 1267                                 vm_page_unlock(fs.first_m);
 1268                                 vm_page_dirty(fs.m);
 1269 #if VM_NRESERVLEVEL > 0
 1270                                 /*
 1271                                  * Rename the reservation.
 1272                                  */
 1273                                 vm_reserv_rename(fs.m, fs.first_object,
 1274                                     fs.object, OFF_TO_IDX(
 1275                                     fs.first_object->backing_object_offset));
 1276 #endif
 1277                                 /*
 1278                                  * Removing the page from the backing object
 1279                                  * unbusied it.
 1280                                  */
 1281                                 vm_page_xbusy(fs.m);
 1282                                 fs.first_m = fs.m;
 1283                                 fs.m = NULL;
 1284                                 VM_CNT_INC(v_cow_optim);
 1285                         } else {
 1286                                 /*
 1287                                  * Oh, well, lets copy it.
 1288                                  */
 1289                                 pmap_copy_page(fs.m, fs.first_m);
 1290                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
 1291                                 if (wired && (fault_flags &
 1292                                     VM_FAULT_WIRE) == 0) {
 1293                                         vm_page_lock(fs.first_m);
 1294                                         vm_page_wire(fs.first_m);
 1295                                         vm_page_unlock(fs.first_m);
 1296                                         
 1297                                         vm_page_lock(fs.m);
 1298                                         vm_page_unwire(fs.m, PQ_INACTIVE);
 1299                                         vm_page_unlock(fs.m);
 1300                                 }
 1301 
 1302                                 /*
 1303                                  * Typically, the shadow object is either
 1304                                  * private to this address space
 1305                                  * (OBJ_ONEMAPPING) or its pages are read only.
 1306                                  * In the highly unusual case where the pages of
 1307                                  * a shadow object are read/write shared between
 1308                                  * this and other address spaces, we need to
 1309                                  * ensure that any pmap-level mappings to the
 1310                                  * original, copy-on-write page from the backing
 1311                                  * object are removed from those other address
 1312                                  * spaces.
 1313                                  *
 1314                                  * The flag check is racy, but this is
 1315                                  * tolerable: if OBJ_ONEMAPPING is cleared after
 1316                                  * the check, the busy state ensures that new
 1317                                  * mappings of fs.m can't be created.
 1318                                  * pmap_enter() will replace an existing mapping
 1319                                  * in the current address space.  If
 1320                                  * OBJ_ONEMAPPING is set after the check,
 1321                                  * removing mappings will at worse trigger some
 1322                                  * unnecessary page faults.
 1323                                  */
 1324                                 vm_page_assert_xbusied(fs.m);
 1325                                 if ((fs.first_object->flags & OBJ_ONEMAPPING) == 0)
 1326                                         pmap_remove_all(fs.m);
 1327 
 1328                                 /*
 1329                                  * We no longer need the old page or object.
 1330                                  */
 1331                                 release_page(&fs);
 1332                         }
 1333                         /*
 1334                          * fs.object != fs.first_object due to above 
 1335                          * conditional
 1336                          */
 1337                         vm_object_pip_wakeup(fs.object);
 1338                         VM_OBJECT_WUNLOCK(fs.object);
 1339                         /*
 1340                          * Only use the new page below...
 1341                          */
 1342                         fs.object = fs.first_object;
 1343                         fs.pindex = fs.first_pindex;
 1344                         fs.m = fs.first_m;
 1345                         if (!is_first_object_locked)
 1346                                 VM_OBJECT_WLOCK(fs.object);
 1347                         VM_CNT_INC(v_cow_faults);
 1348                         curthread->td_cow++;
 1349                 } else {
 1350                         prot &= ~VM_PROT_WRITE;
 1351                 }
 1352         }
 1353 
 1354         /*
 1355          * We must verify that the maps have not changed since our last
 1356          * lookup.
 1357          */
 1358         if (!fs.lookup_still_valid) {
 1359                 if (!vm_map_trylock_read(fs.map)) {
 1360                         release_page(&fs);
 1361                         unlock_and_deallocate(&fs);
 1362                         goto RetryFault;
 1363                 }
 1364                 fs.lookup_still_valid = true;
 1365                 if (fs.map->timestamp != fs.map_generation) {
 1366                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
 1367                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
 1368 
 1369                         /*
 1370                          * If we don't need the page any longer, put it on the inactive
 1371                          * list (the easiest thing to do here).  If no one needs it,
 1372                          * pageout will grab it eventually.
 1373                          */
 1374                         if (result != KERN_SUCCESS) {
 1375                                 release_page(&fs);
 1376                                 unlock_and_deallocate(&fs);
 1377 
 1378                                 /*
 1379                                  * If retry of map lookup would have blocked then
 1380                                  * retry fault from start.
 1381                                  */
 1382                                 if (result == KERN_FAILURE)
 1383                                         goto RetryFault;
 1384                                 return (result);
 1385                         }
 1386                         if ((retry_object != fs.first_object) ||
 1387                             (retry_pindex != fs.first_pindex)) {
 1388                                 release_page(&fs);
 1389                                 unlock_and_deallocate(&fs);
 1390                                 goto RetryFault;
 1391                         }
 1392 
 1393                         /*
 1394                          * Check whether the protection has changed or the object has
 1395                          * been copied while we left the map unlocked. Changing from
 1396                          * read to write permission is OK - we leave the page
 1397                          * write-protected, and catch the write fault. Changing from
 1398                          * write to read permission means that we can't mark the page
 1399                          * write-enabled after all.
 1400                          */
 1401                         prot &= retry_prot;
 1402                         fault_type &= retry_prot;
 1403                         if (prot == 0) {
 1404                                 release_page(&fs);
 1405                                 unlock_and_deallocate(&fs);
 1406                                 goto RetryFault;
 1407                         }
 1408 
 1409                         /* Reassert because wired may have changed. */
 1410                         KASSERT(wired || (fault_flags & VM_FAULT_WIRE) == 0,
 1411                             ("!wired && VM_FAULT_WIRE"));
 1412                 }
 1413         }
 1414 
 1415         /*
 1416          * If the page was filled by a pager, save the virtual address that
 1417          * should be faulted on next under a sequential access pattern to the
 1418          * map entry.  A read lock on the map suffices to update this address
 1419          * safely.
 1420          */
 1421         if (hardfault)
 1422                 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
 1423 
 1424         vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true);
 1425         vm_page_assert_xbusied(fs.m);
 1426 
 1427         /*
 1428          * Page must be completely valid or it is not fit to
 1429          * map into user space.  vm_pager_get_pages() ensures this.
 1430          */
 1431         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
 1432             ("vm_fault: page %p partially invalid", fs.m));
 1433         VM_OBJECT_WUNLOCK(fs.object);
 1434 
 1435         /*
 1436          * Put this page into the physical map.  We had to do the unlock above
 1437          * because pmap_enter() may sleep.  We don't put the page
 1438          * back on the active queue until later so that the pageout daemon
 1439          * won't find it (yet).
 1440          */
 1441         pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
 1442             fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
 1443         if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
 1444             wired == 0)
 1445                 vm_fault_prefault(&fs, vaddr,
 1446                     faultcount > 0 ? behind : PFBAK,
 1447                     faultcount > 0 ? ahead : PFFOR, false);
 1448         VM_OBJECT_WLOCK(fs.object);
 1449         vm_page_lock(fs.m);
 1450 
 1451         /*
 1452          * If the page is not wired down, then put it where the pageout daemon
 1453          * can find it.
 1454          */
 1455         if ((fault_flags & VM_FAULT_WIRE) != 0)
 1456                 vm_page_wire(fs.m);
 1457         else
 1458                 vm_page_activate(fs.m);
 1459         if (m_hold != NULL) {
 1460                 *m_hold = fs.m;
 1461                 vm_page_hold(fs.m);
 1462         }
 1463         vm_page_unlock(fs.m);
 1464         vm_page_xunbusy(fs.m);
 1465 
 1466         /*
 1467          * Unlock everything, and return
 1468          */
 1469         unlock_and_deallocate(&fs);
 1470         if (hardfault) {
 1471                 VM_CNT_INC(v_io_faults);
 1472                 curthread->td_ru.ru_majflt++;
 1473 #ifdef RACCT
 1474                 if (racct_enable && fs.object->type == OBJT_VNODE) {
 1475                         PROC_LOCK(curproc);
 1476                         if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
 1477                                 racct_add_force(curproc, RACCT_WRITEBPS,
 1478                                     PAGE_SIZE + behind * PAGE_SIZE);
 1479                                 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
 1480                         } else {
 1481                                 racct_add_force(curproc, RACCT_READBPS,
 1482                                     PAGE_SIZE + ahead * PAGE_SIZE);
 1483                                 racct_add_force(curproc, RACCT_READIOPS, 1);
 1484                         }
 1485                         PROC_UNLOCK(curproc);
 1486                 }
 1487 #endif
 1488         } else 
 1489                 curthread->td_ru.ru_minflt++;
 1490 
 1491         return (KERN_SUCCESS);
 1492 }
 1493 
 1494 /*
 1495  * Speed up the reclamation of pages that precede the faulting pindex within
 1496  * the first object of the shadow chain.  Essentially, perform the equivalent
 1497  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
 1498  * the faulting pindex by the cluster size when the pages read by vm_fault()
 1499  * cross a cluster-size boundary.  The cluster size is the greater of the
 1500  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
 1501  *
 1502  * When "fs->first_object" is a shadow object, the pages in the backing object
 1503  * that precede the faulting pindex are deactivated by vm_fault().  So, this
 1504  * function must only be concerned with pages in the first object.
 1505  */
 1506 static void
 1507 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
 1508 {
 1509         vm_map_entry_t entry;
 1510         vm_object_t first_object, object;
 1511         vm_offset_t end, start;
 1512         vm_page_t m, m_next;
 1513         vm_pindex_t pend, pstart;
 1514         vm_size_t size;
 1515 
 1516         object = fs->object;
 1517         VM_OBJECT_ASSERT_WLOCKED(object);
 1518         first_object = fs->first_object;
 1519         if (first_object != object) {
 1520                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
 1521                         VM_OBJECT_WUNLOCK(object);
 1522                         VM_OBJECT_WLOCK(first_object);
 1523                         VM_OBJECT_WLOCK(object);
 1524                 }
 1525         }
 1526         /* Neither fictitious nor unmanaged pages can be reclaimed. */
 1527         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
 1528                 size = VM_FAULT_DONTNEED_MIN;
 1529                 if (MAXPAGESIZES > 1 && size < pagesizes[1])
 1530                         size = pagesizes[1];
 1531                 end = rounddown2(vaddr, size);
 1532                 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
 1533                     (entry = fs->entry)->start < end) {
 1534                         if (end - entry->start < size)
 1535                                 start = entry->start;
 1536                         else
 1537                                 start = end - size;
 1538                         pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
 1539                         pstart = OFF_TO_IDX(entry->offset) + atop(start -
 1540                             entry->start);
 1541                         m_next = vm_page_find_least(first_object, pstart);
 1542                         pend = OFF_TO_IDX(entry->offset) + atop(end -
 1543                             entry->start);
 1544                         while ((m = m_next) != NULL && m->pindex < pend) {
 1545                                 m_next = TAILQ_NEXT(m, listq);
 1546                                 if (m->valid != VM_PAGE_BITS_ALL ||
 1547                                     vm_page_busied(m))
 1548                                         continue;
 1549 
 1550                                 /*
 1551                                  * Don't clear PGA_REFERENCED, since it would
 1552                                  * likely represent a reference by a different
 1553                                  * process.
 1554                                  *
 1555                                  * Typically, at this point, prefetched pages
 1556                                  * are still in the inactive queue.  Only
 1557                                  * pages that triggered page faults are in the
 1558                                  * active queue.
 1559                                  */
 1560                                 vm_page_lock(m);
 1561                                 if (!vm_page_inactive(m))
 1562                                         vm_page_deactivate(m);
 1563                                 vm_page_unlock(m);
 1564                         }
 1565                 }
 1566         }
 1567         if (first_object != object)
 1568                 VM_OBJECT_WUNLOCK(first_object);
 1569 }
 1570 
 1571 /*
 1572  * vm_fault_prefault provides a quick way of clustering
 1573  * pagefaults into a processes address space.  It is a "cousin"
 1574  * of vm_map_pmap_enter, except it runs at page fault time instead
 1575  * of mmap time.
 1576  */
 1577 static void
 1578 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
 1579     int backward, int forward, bool obj_locked)
 1580 {
 1581         pmap_t pmap;
 1582         vm_map_entry_t entry;
 1583         vm_object_t backing_object, lobject;
 1584         vm_offset_t addr, starta;
 1585         vm_pindex_t pindex;
 1586         vm_page_t m;
 1587         int i;
 1588 
 1589         pmap = fs->map->pmap;
 1590         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
 1591                 return;
 1592 
 1593         entry = fs->entry;
 1594 
 1595         if (addra < backward * PAGE_SIZE) {
 1596                 starta = entry->start;
 1597         } else {
 1598                 starta = addra - backward * PAGE_SIZE;
 1599                 if (starta < entry->start)
 1600                         starta = entry->start;
 1601         }
 1602 
 1603         /*
 1604          * Generate the sequence of virtual addresses that are candidates for
 1605          * prefaulting in an outward spiral from the faulting virtual address,
 1606          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
 1607          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
 1608          * If the candidate address doesn't have a backing physical page, then
 1609          * the loop immediately terminates.
 1610          */
 1611         for (i = 0; i < 2 * imax(backward, forward); i++) {
 1612                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
 1613                     PAGE_SIZE);
 1614                 if (addr > addra + forward * PAGE_SIZE)
 1615                         addr = 0;
 1616 
 1617                 if (addr < starta || addr >= entry->end)
 1618                         continue;
 1619 
 1620                 if (!pmap_is_prefaultable(pmap, addr))
 1621                         continue;
 1622 
 1623                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
 1624                 lobject = entry->object.vm_object;
 1625                 if (!obj_locked)
 1626                         VM_OBJECT_RLOCK(lobject);
 1627                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
 1628                     lobject->type == OBJT_DEFAULT &&
 1629                     (backing_object = lobject->backing_object) != NULL) {
 1630                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
 1631                             0, ("vm_fault_prefault: unaligned object offset"));
 1632                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
 1633                         VM_OBJECT_RLOCK(backing_object);
 1634                         if (!obj_locked || lobject != entry->object.vm_object)
 1635                                 VM_OBJECT_RUNLOCK(lobject);
 1636                         lobject = backing_object;
 1637                 }
 1638                 if (m == NULL) {
 1639                         if (!obj_locked || lobject != entry->object.vm_object)
 1640                                 VM_OBJECT_RUNLOCK(lobject);
 1641                         break;
 1642                 }
 1643                 if (m->valid == VM_PAGE_BITS_ALL &&
 1644                     (m->flags & PG_FICTITIOUS) == 0)
 1645                         pmap_enter_quick(pmap, addr, m, entry->protection);
 1646                 if (!obj_locked || lobject != entry->object.vm_object)
 1647                         VM_OBJECT_RUNLOCK(lobject);
 1648         }
 1649 }
 1650 
 1651 /*
 1652  * Hold each of the physical pages that are mapped by the specified range of
 1653  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
 1654  * and allow the specified types of access, "prot".  If all of the implied
 1655  * pages are successfully held, then the number of held pages is returned
 1656  * together with pointers to those pages in the array "ma".  However, if any
 1657  * of the pages cannot be held, -1 is returned.
 1658  */
 1659 int
 1660 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
 1661     vm_prot_t prot, vm_page_t *ma, int max_count)
 1662 {
 1663         vm_offset_t end, va;
 1664         vm_page_t *mp;
 1665         int count;
 1666         boolean_t pmap_failed;
 1667 
 1668         if (len == 0)
 1669                 return (0);
 1670         end = round_page(addr + len);
 1671         addr = trunc_page(addr);
 1672 
 1673         if (!vm_map_range_valid(map, addr, end))
 1674                 return (-1);
 1675 
 1676         if (atop(end - addr) > max_count)
 1677                 panic("vm_fault_quick_hold_pages: count > max_count");
 1678         count = atop(end - addr);
 1679 
 1680         /*
 1681          * Most likely, the physical pages are resident in the pmap, so it is
 1682          * faster to try pmap_extract_and_hold() first.
 1683          */
 1684         pmap_failed = FALSE;
 1685         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
 1686                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
 1687                 if (*mp == NULL)
 1688                         pmap_failed = TRUE;
 1689                 else if ((prot & VM_PROT_WRITE) != 0 &&
 1690                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
 1691                         /*
 1692                          * Explicitly dirty the physical page.  Otherwise, the
 1693                          * caller's changes may go unnoticed because they are
 1694                          * performed through an unmanaged mapping or by a DMA
 1695                          * operation.
 1696                          *
 1697                          * The object lock is not held here.
 1698                          * See vm_page_clear_dirty_mask().
 1699                          */
 1700                         vm_page_dirty(*mp);
 1701                 }
 1702         }
 1703         if (pmap_failed) {
 1704                 /*
 1705                  * One or more pages could not be held by the pmap.  Either no
 1706                  * page was mapped at the specified virtual address or that
 1707                  * mapping had insufficient permissions.  Attempt to fault in
 1708                  * and hold these pages.
 1709                  *
 1710                  * If vm_fault_disable_pagefaults() was called,
 1711                  * i.e., TDP_NOFAULTING is set, we must not sleep nor
 1712                  * acquire MD VM locks, which means we must not call
 1713                  * vm_fault().  Some (out of tree) callers mark
 1714                  * too wide a code area with vm_fault_disable_pagefaults()
 1715                  * already, use the VM_PROT_QUICK_NOFAULT flag to request
 1716                  * the proper behaviour explicitly.
 1717                  */
 1718                 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
 1719                     (curthread->td_pflags & TDP_NOFAULTING) != 0)
 1720                         goto error;
 1721                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
 1722                         if (*mp == NULL && vm_fault(map, va, prot,
 1723                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
 1724                                 goto error;
 1725         }
 1726         return (count);
 1727 error:  
 1728         for (mp = ma; mp < ma + count; mp++)
 1729                 if (*mp != NULL) {
 1730                         vm_page_lock(*mp);
 1731                         vm_page_unhold(*mp);
 1732                         vm_page_unlock(*mp);
 1733                 }
 1734         return (-1);
 1735 }
 1736 
 1737 /*
 1738  *      Routine:
 1739  *              vm_fault_copy_entry
 1740  *      Function:
 1741  *              Create new shadow object backing dst_entry with private copy of
 1742  *              all underlying pages. When src_entry is equal to dst_entry,
 1743  *              function implements COW for wired-down map entry. Otherwise,
 1744  *              it forks wired entry into dst_map.
 1745  *
 1746  *      In/out conditions:
 1747  *              The source and destination maps must be locked for write.
 1748  *              The source map entry must be wired down (or be a sharing map
 1749  *              entry corresponding to a main map entry that is wired down).
 1750  */
 1751 void
 1752 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
 1753     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
 1754     vm_ooffset_t *fork_charge)
 1755 {
 1756         vm_object_t backing_object, dst_object, object, src_object;
 1757         vm_pindex_t dst_pindex, pindex, src_pindex;
 1758         vm_prot_t access, prot;
 1759         vm_offset_t vaddr;
 1760         vm_page_t dst_m;
 1761         vm_page_t src_m;
 1762         boolean_t upgrade;
 1763 
 1764 #ifdef  lint
 1765         src_map++;
 1766 #endif  /* lint */
 1767 
 1768         upgrade = src_entry == dst_entry;
 1769         access = prot = dst_entry->protection;
 1770 
 1771         src_object = src_entry->object.vm_object;
 1772         src_pindex = OFF_TO_IDX(src_entry->offset);
 1773 
 1774         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
 1775                 dst_object = src_object;
 1776                 vm_object_reference(dst_object);
 1777         } else {
 1778                 /*
 1779                  * Create the top-level object for the destination entry. (Doesn't
 1780                  * actually shadow anything - we copy the pages directly.)
 1781                  */
 1782                 dst_object = vm_object_allocate(OBJT_DEFAULT,
 1783                     atop(dst_entry->end - dst_entry->start));
 1784 #if VM_NRESERVLEVEL > 0
 1785                 dst_object->flags |= OBJ_COLORED;
 1786                 dst_object->pg_color = atop(dst_entry->start);
 1787 #endif
 1788                 dst_object->domain = src_object->domain;
 1789                 dst_object->charge = dst_entry->end - dst_entry->start;
 1790         }
 1791 
 1792         VM_OBJECT_WLOCK(dst_object);
 1793         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
 1794             ("vm_fault_copy_entry: vm_object not NULL"));
 1795         if (src_object != dst_object) {
 1796                 dst_entry->object.vm_object = dst_object;
 1797                 dst_entry->offset = 0;
 1798                 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
 1799         }
 1800         if (fork_charge != NULL) {
 1801                 KASSERT(dst_entry->cred == NULL,
 1802                     ("vm_fault_copy_entry: leaked swp charge"));
 1803                 dst_object->cred = curthread->td_ucred;
 1804                 crhold(dst_object->cred);
 1805                 *fork_charge += dst_object->charge;
 1806         } else if ((dst_object->type == OBJT_DEFAULT ||
 1807             dst_object->type == OBJT_SWAP) &&
 1808             dst_object->cred == NULL) {
 1809                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
 1810                     dst_entry));
 1811                 dst_object->cred = dst_entry->cred;
 1812                 dst_entry->cred = NULL;
 1813         }
 1814 
 1815         /*
 1816          * If not an upgrade, then enter the mappings in the pmap as
 1817          * read and/or execute accesses.  Otherwise, enter them as
 1818          * write accesses.
 1819          *
 1820          * A writeable large page mapping is only created if all of
 1821          * the constituent small page mappings are modified. Marking
 1822          * PTEs as modified on inception allows promotion to happen
 1823          * without taking potentially large number of soft faults.
 1824          */
 1825         if (!upgrade)
 1826                 access &= ~VM_PROT_WRITE;
 1827 
 1828         /*
 1829          * Loop through all of the virtual pages within the entry's
 1830          * range, copying each page from the source object to the
 1831          * destination object.  Since the source is wired, those pages
 1832          * must exist.  In contrast, the destination is pageable.
 1833          * Since the destination object doesn't share any backing storage
 1834          * with the source object, all of its pages must be dirtied,
 1835          * regardless of whether they can be written.
 1836          */
 1837         for (vaddr = dst_entry->start, dst_pindex = 0;
 1838             vaddr < dst_entry->end;
 1839             vaddr += PAGE_SIZE, dst_pindex++) {
 1840 again:
 1841                 /*
 1842                  * Find the page in the source object, and copy it in.
 1843                  * Because the source is wired down, the page will be
 1844                  * in memory.
 1845                  */
 1846                 if (src_object != dst_object)
 1847                         VM_OBJECT_RLOCK(src_object);
 1848                 object = src_object;
 1849                 pindex = src_pindex + dst_pindex;
 1850                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
 1851                     (backing_object = object->backing_object) != NULL) {
 1852                         /*
 1853                          * Unless the source mapping is read-only or
 1854                          * it is presently being upgraded from
 1855                          * read-only, the first object in the shadow
 1856                          * chain should provide all of the pages.  In
 1857                          * other words, this loop body should never be
 1858                          * executed when the source mapping is already
 1859                          * read/write.
 1860                          */
 1861                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
 1862                             upgrade,
 1863                             ("vm_fault_copy_entry: main object missing page"));
 1864 
 1865                         VM_OBJECT_RLOCK(backing_object);
 1866                         pindex += OFF_TO_IDX(object->backing_object_offset);
 1867                         if (object != dst_object)
 1868                                 VM_OBJECT_RUNLOCK(object);
 1869                         object = backing_object;
 1870                 }
 1871                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
 1872 
 1873                 if (object != dst_object) {
 1874                         /*
 1875                          * Allocate a page in the destination object.
 1876                          */
 1877                         dst_m = vm_page_alloc(dst_object, (src_object ==
 1878                             dst_object ? src_pindex : 0) + dst_pindex,
 1879                             VM_ALLOC_NORMAL);
 1880                         if (dst_m == NULL) {
 1881                                 VM_OBJECT_WUNLOCK(dst_object);
 1882                                 VM_OBJECT_RUNLOCK(object);
 1883                                 vm_wait(dst_object);
 1884                                 VM_OBJECT_WLOCK(dst_object);
 1885                                 goto again;
 1886                         }
 1887 
 1888                         /*
 1889                          * See the comment in vm_fault_cow().
 1890                          */
 1891                         if (src_object == dst_object &&
 1892                             (object->flags & OBJ_ONEMAPPING) == 0)
 1893                                 pmap_remove_all(src_m);
 1894                         pmap_copy_page(src_m, dst_m);
 1895                         VM_OBJECT_RUNLOCK(object);
 1896                         dst_m->dirty = dst_m->valid = src_m->valid;
 1897                 } else {
 1898                         dst_m = src_m;
 1899                         if (vm_page_sleep_if_busy(dst_m, "fltupg"))
 1900                                 goto again;
 1901                         if (dst_m->pindex >= dst_object->size)
 1902                                 /*
 1903                                  * We are upgrading.  Index can occur
 1904                                  * out of bounds if the object type is
 1905                                  * vnode and the file was truncated.
 1906                                  */
 1907                                 break;
 1908                         vm_page_xbusy(dst_m);
 1909                 }
 1910                 VM_OBJECT_WUNLOCK(dst_object);
 1911 
 1912                 /*
 1913                  * Enter it in the pmap. If a wired, copy-on-write
 1914                  * mapping is being replaced by a write-enabled
 1915                  * mapping, then wire that new mapping.
 1916                  *
 1917                  * The page can be invalid if the user called
 1918                  * msync(MS_INVALIDATE) or truncated the backing vnode
 1919                  * or shared memory object.  In this case, do not
 1920                  * insert it into pmap, but still do the copy so that
 1921                  * all copies of the wired map entry have similar
 1922                  * backing pages.
 1923                  */
 1924                 if (dst_m->valid == VM_PAGE_BITS_ALL) {
 1925                         pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
 1926                             access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
 1927                 }
 1928 
 1929                 /*
 1930                  * Mark it no longer busy, and put it on the active list.
 1931                  */
 1932                 VM_OBJECT_WLOCK(dst_object);
 1933                 
 1934                 if (upgrade) {
 1935                         if (src_m != dst_m) {
 1936                                 vm_page_lock(src_m);
 1937                                 vm_page_unwire(src_m, PQ_INACTIVE);
 1938                                 vm_page_unlock(src_m);
 1939                                 vm_page_lock(dst_m);
 1940                                 vm_page_wire(dst_m);
 1941                                 vm_page_unlock(dst_m);
 1942                         } else {
 1943                                 KASSERT(vm_page_wired(dst_m),
 1944                                     ("dst_m %p is not wired", dst_m));
 1945                         }
 1946                 } else {
 1947                         vm_page_lock(dst_m);
 1948                         vm_page_activate(dst_m);
 1949                         vm_page_unlock(dst_m);
 1950                 }
 1951                 vm_page_xunbusy(dst_m);
 1952         }
 1953         VM_OBJECT_WUNLOCK(dst_object);
 1954         if (upgrade) {
 1955                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
 1956                 vm_object_deallocate(src_object);
 1957         }
 1958 }
 1959 
 1960 /*
 1961  * Block entry into the machine-independent layer's page fault handler by
 1962  * the calling thread.  Subsequent calls to vm_fault() by that thread will
 1963  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
 1964  * spurious page faults. 
 1965  */
 1966 int
 1967 vm_fault_disable_pagefaults(void)
 1968 {
 1969 
 1970         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
 1971 }
 1972 
 1973 void
 1974 vm_fault_enable_pagefaults(int save)
 1975 {
 1976 
 1977         curthread_pflags_restore(save);
 1978 }

Cache object: 960b37528bd4b214993e4a7be0db3ab7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.