The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_fault.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
    3  *
    4  * Copyright (c) 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  * Copyright (c) 1994 John S. Dyson
    7  * All rights reserved.
    8  * Copyright (c) 1994 David Greenman
    9  * All rights reserved.
   10  *
   11  *
   12  * This code is derived from software contributed to Berkeley by
   13  * The Mach Operating System project at Carnegie-Mellon University.
   14  *
   15  * Redistribution and use in source and binary forms, with or without
   16  * modification, are permitted provided that the following conditions
   17  * are met:
   18  * 1. Redistributions of source code must retain the above copyright
   19  *    notice, this list of conditions and the following disclaimer.
   20  * 2. Redistributions in binary form must reproduce the above copyright
   21  *    notice, this list of conditions and the following disclaimer in the
   22  *    documentation and/or other materials provided with the distribution.
   23  * 3. All advertising materials mentioning features or use of this software
   24  *    must display the following acknowledgement:
   25  *      This product includes software developed by the University of
   26  *      California, Berkeley and its contributors.
   27  * 4. Neither the name of the University nor the names of its contributors
   28  *    may be used to endorse or promote products derived from this software
   29  *    without specific prior written permission.
   30  *
   31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   41  * SUCH DAMAGE.
   42  *
   43  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
   44  *
   45  *
   46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   47  * All rights reserved.
   48  *
   49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   50  *
   51  * Permission to use, copy, modify and distribute this software and
   52  * its documentation is hereby granted, provided that both the copyright
   53  * notice and this permission notice appear in all copies of the
   54  * software, derivative works or modified versions, and any portions
   55  * thereof, and that both notices appear in supporting documentation.
   56  *
   57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   60  *
   61  * Carnegie Mellon requests users of this software to return to
   62  *
   63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   64  *  School of Computer Science
   65  *  Carnegie Mellon University
   66  *  Pittsburgh PA 15213-3890
   67  *
   68  * any improvements or extensions that they make and grant Carnegie the
   69  * rights to redistribute these changes.
   70  */
   71 
   72 /*
   73  *      Page fault handling module.
   74  */
   75 
   76 #include <sys/cdefs.h>
   77 __FBSDID("$FreeBSD$");
   78 
   79 #include "opt_ktrace.h"
   80 #include "opt_vm.h"
   81 
   82 #include <sys/param.h>
   83 #include <sys/systm.h>
   84 #include <sys/kernel.h>
   85 #include <sys/lock.h>
   86 #include <sys/mman.h>
   87 #include <sys/mutex.h>
   88 #include <sys/proc.h>
   89 #include <sys/racct.h>
   90 #include <sys/refcount.h>
   91 #include <sys/resourcevar.h>
   92 #include <sys/rwlock.h>
   93 #include <sys/signalvar.h>
   94 #include <sys/sysctl.h>
   95 #include <sys/sysent.h>
   96 #include <sys/vmmeter.h>
   97 #include <sys/vnode.h>
   98 #ifdef KTRACE
   99 #include <sys/ktrace.h>
  100 #endif
  101 
  102 #include <vm/vm.h>
  103 #include <vm/vm_param.h>
  104 #include <vm/pmap.h>
  105 #include <vm/vm_map.h>
  106 #include <vm/vm_object.h>
  107 #include <vm/vm_page.h>
  108 #include <vm/vm_pageout.h>
  109 #include <vm/vm_kern.h>
  110 #include <vm/vm_pager.h>
  111 #include <vm/vm_extern.h>
  112 #include <vm/vm_reserv.h>
  113 
  114 #define PFBAK 4
  115 #define PFFOR 4
  116 
  117 #define VM_FAULT_READ_DEFAULT   (1 + VM_FAULT_READ_AHEAD_INIT)
  118 
  119 #define VM_FAULT_DONTNEED_MIN   1048576
  120 
  121 struct faultstate {
  122         /* Fault parameters. */
  123         vm_offset_t     vaddr;
  124         vm_page_t       *m_hold;
  125         vm_prot_t       fault_type;
  126         vm_prot_t       prot;
  127         int             fault_flags;
  128         int             oom;
  129         boolean_t       wired;
  130 
  131         /* Page reference for cow. */
  132         vm_page_t m_cow;
  133 
  134         /* Current object. */
  135         vm_object_t     object;
  136         vm_pindex_t     pindex;
  137         vm_page_t       m;
  138 
  139         /* Top-level map object. */
  140         vm_object_t     first_object;
  141         vm_pindex_t     first_pindex;
  142         vm_page_t       first_m;
  143 
  144         /* Map state. */
  145         vm_map_t        map;
  146         vm_map_entry_t  entry;
  147         int             map_generation;
  148         bool            lookup_still_valid;
  149 
  150         /* Vnode if locked. */
  151         struct vnode    *vp;
  152 };
  153 
  154 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
  155             int ahead);
  156 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
  157             int backward, int forward, bool obj_locked);
  158 
  159 static int vm_pfault_oom_attempts = 3;
  160 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
  161     &vm_pfault_oom_attempts, 0,
  162     "Number of page allocation attempts in page fault handler before it "
  163     "triggers OOM handling");
  164 
  165 static int vm_pfault_oom_wait = 10;
  166 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
  167     &vm_pfault_oom_wait, 0,
  168     "Number of seconds to wait for free pages before retrying "
  169     "the page fault handler");
  170 
  171 static inline void
  172 fault_page_release(vm_page_t *mp)
  173 {
  174         vm_page_t m;
  175 
  176         m = *mp;
  177         if (m != NULL) {
  178                 /*
  179                  * We are likely to loop around again and attempt to busy
  180                  * this page.  Deactivating it leaves it available for
  181                  * pageout while optimizing fault restarts.
  182                  */
  183                 vm_page_deactivate(m);
  184                 vm_page_xunbusy(m);
  185                 *mp = NULL;
  186         }
  187 }
  188 
  189 static inline void
  190 fault_page_free(vm_page_t *mp)
  191 {
  192         vm_page_t m;
  193 
  194         m = *mp;
  195         if (m != NULL) {
  196                 VM_OBJECT_ASSERT_WLOCKED(m->object);
  197                 if (!vm_page_wired(m))
  198                         vm_page_free(m);
  199                 else
  200                         vm_page_xunbusy(m);
  201                 *mp = NULL;
  202         }
  203 }
  204 
  205 static inline void
  206 unlock_map(struct faultstate *fs)
  207 {
  208 
  209         if (fs->lookup_still_valid) {
  210                 vm_map_lookup_done(fs->map, fs->entry);
  211                 fs->lookup_still_valid = false;
  212         }
  213 }
  214 
  215 static void
  216 unlock_vp(struct faultstate *fs)
  217 {
  218 
  219         if (fs->vp != NULL) {
  220                 vput(fs->vp);
  221                 fs->vp = NULL;
  222         }
  223 }
  224 
  225 static void
  226 fault_deallocate(struct faultstate *fs)
  227 {
  228 
  229         fault_page_release(&fs->m_cow);
  230         fault_page_release(&fs->m);
  231         vm_object_pip_wakeup(fs->object);
  232         if (fs->object != fs->first_object) {
  233                 VM_OBJECT_WLOCK(fs->first_object);
  234                 fault_page_free(&fs->first_m);
  235                 VM_OBJECT_WUNLOCK(fs->first_object);
  236                 vm_object_pip_wakeup(fs->first_object);
  237         }
  238         vm_object_deallocate(fs->first_object);
  239         unlock_map(fs);
  240         unlock_vp(fs);
  241 }
  242 
  243 static void
  244 unlock_and_deallocate(struct faultstate *fs)
  245 {
  246 
  247         VM_OBJECT_WUNLOCK(fs->object);
  248         fault_deallocate(fs);
  249 }
  250 
  251 static void
  252 vm_fault_dirty(struct faultstate *fs, vm_page_t m)
  253 {
  254         bool need_dirty;
  255 
  256         if (((fs->prot & VM_PROT_WRITE) == 0 &&
  257             (fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
  258             (m->oflags & VPO_UNMANAGED) != 0)
  259                 return;
  260 
  261         VM_PAGE_OBJECT_BUSY_ASSERT(m);
  262 
  263         need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
  264             (fs->fault_flags & VM_FAULT_WIRE) == 0) ||
  265             (fs->fault_flags & VM_FAULT_DIRTY) != 0;
  266 
  267         vm_object_set_writeable_dirty(m->object);
  268 
  269         /*
  270          * If the fault is a write, we know that this page is being
  271          * written NOW so dirty it explicitly to save on
  272          * pmap_is_modified() calls later.
  273          *
  274          * Also, since the page is now dirty, we can possibly tell
  275          * the pager to release any swap backing the page.
  276          */
  277         if (need_dirty && vm_page_set_dirty(m) == 0) {
  278                 /*
  279                  * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
  280                  * if the page is already dirty to prevent data written with
  281                  * the expectation of being synced from not being synced.
  282                  * Likewise if this entry does not request NOSYNC then make
  283                  * sure the page isn't marked NOSYNC.  Applications sharing
  284                  * data should use the same flags to avoid ping ponging.
  285                  */
  286                 if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
  287                         vm_page_aflag_set(m, PGA_NOSYNC);
  288                 else
  289                         vm_page_aflag_clear(m, PGA_NOSYNC);
  290         }
  291 
  292 }
  293 
  294 /*
  295  * Unlocks fs.first_object and fs.map on success.
  296  */
  297 static int
  298 vm_fault_soft_fast(struct faultstate *fs)
  299 {
  300         vm_page_t m, m_map;
  301 #if VM_NRESERVLEVEL > 0
  302         vm_page_t m_super;
  303         int flags;
  304 #endif
  305         int psind, rv;
  306         vm_offset_t vaddr;
  307 
  308         MPASS(fs->vp == NULL);
  309         vaddr = fs->vaddr;
  310         vm_object_busy(fs->first_object);
  311         m = vm_page_lookup(fs->first_object, fs->first_pindex);
  312         /* A busy page can be mapped for read|execute access. */
  313         if (m == NULL || ((fs->prot & VM_PROT_WRITE) != 0 &&
  314             vm_page_busied(m)) || !vm_page_all_valid(m)) {
  315                 rv = KERN_FAILURE;
  316                 goto out;
  317         }
  318         m_map = m;
  319         psind = 0;
  320 #if VM_NRESERVLEVEL > 0
  321         if ((m->flags & PG_FICTITIOUS) == 0 &&
  322             (m_super = vm_reserv_to_superpage(m)) != NULL &&
  323             rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
  324             roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
  325             (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
  326             (pagesizes[m_super->psind] - 1)) && !fs->wired &&
  327             pmap_ps_enabled(fs->map->pmap)) {
  328                 flags = PS_ALL_VALID;
  329                 if ((fs->prot & VM_PROT_WRITE) != 0) {
  330                         /*
  331                          * Create a superpage mapping allowing write access
  332                          * only if none of the constituent pages are busy and
  333                          * all of them are already dirty (except possibly for
  334                          * the page that was faulted on).
  335                          */
  336                         flags |= PS_NONE_BUSY;
  337                         if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
  338                                 flags |= PS_ALL_DIRTY;
  339                 }
  340                 if (vm_page_ps_test(m_super, flags, m)) {
  341                         m_map = m_super;
  342                         psind = m_super->psind;
  343                         vaddr = rounddown2(vaddr, pagesizes[psind]);
  344                         /* Preset the modified bit for dirty superpages. */
  345                         if ((flags & PS_ALL_DIRTY) != 0)
  346                                 fs->fault_type |= VM_PROT_WRITE;
  347                 }
  348         }
  349 #endif
  350         rv = pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
  351             PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
  352         if (rv != KERN_SUCCESS)
  353                 goto out;
  354         if (fs->m_hold != NULL) {
  355                 (*fs->m_hold) = m;
  356                 vm_page_wire(m);
  357         }
  358         if (psind == 0 && !fs->wired)
  359                 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
  360         VM_OBJECT_RUNLOCK(fs->first_object);
  361         vm_fault_dirty(fs, m);
  362         vm_map_lookup_done(fs->map, fs->entry);
  363         curthread->td_ru.ru_minflt++;
  364 
  365 out:
  366         vm_object_unbusy(fs->first_object);
  367         return (rv);
  368 }
  369 
  370 static void
  371 vm_fault_restore_map_lock(struct faultstate *fs)
  372 {
  373 
  374         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
  375         MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
  376 
  377         if (!vm_map_trylock_read(fs->map)) {
  378                 VM_OBJECT_WUNLOCK(fs->first_object);
  379                 vm_map_lock_read(fs->map);
  380                 VM_OBJECT_WLOCK(fs->first_object);
  381         }
  382         fs->lookup_still_valid = true;
  383 }
  384 
  385 static void
  386 vm_fault_populate_check_page(vm_page_t m)
  387 {
  388 
  389         /*
  390          * Check each page to ensure that the pager is obeying the
  391          * interface: the page must be installed in the object, fully
  392          * valid, and exclusively busied.
  393          */
  394         MPASS(m != NULL);
  395         MPASS(vm_page_all_valid(m));
  396         MPASS(vm_page_xbusied(m));
  397 }
  398 
  399 static void
  400 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
  401     vm_pindex_t last)
  402 {
  403         vm_page_t m;
  404         vm_pindex_t pidx;
  405 
  406         VM_OBJECT_ASSERT_WLOCKED(object);
  407         MPASS(first <= last);
  408         for (pidx = first, m = vm_page_lookup(object, pidx);
  409             pidx <= last; pidx++, m = vm_page_next(m)) {
  410                 vm_fault_populate_check_page(m);
  411                 vm_page_deactivate(m);
  412                 vm_page_xunbusy(m);
  413         }
  414 }
  415 
  416 static int
  417 vm_fault_populate(struct faultstate *fs)
  418 {
  419         vm_offset_t vaddr;
  420         vm_page_t m;
  421         vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
  422         int bdry_idx, i, npages, psind, rv;
  423 
  424         MPASS(fs->object == fs->first_object);
  425         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
  426         MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
  427         MPASS(fs->first_object->backing_object == NULL);
  428         MPASS(fs->lookup_still_valid);
  429 
  430         pager_first = OFF_TO_IDX(fs->entry->offset);
  431         pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
  432         unlock_map(fs);
  433         unlock_vp(fs);
  434 
  435         /*
  436          * Call the pager (driver) populate() method.
  437          *
  438          * There is no guarantee that the method will be called again
  439          * if the current fault is for read, and a future fault is
  440          * for write.  Report the entry's maximum allowed protection
  441          * to the driver.
  442          */
  443         rv = vm_pager_populate(fs->first_object, fs->first_pindex,
  444             fs->fault_type, fs->entry->max_protection, &pager_first,
  445             &pager_last);
  446 
  447         VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
  448         if (rv == VM_PAGER_BAD) {
  449                 /*
  450                  * VM_PAGER_BAD is the backdoor for a pager to request
  451                  * normal fault handling.
  452                  */
  453                 vm_fault_restore_map_lock(fs);
  454                 if (fs->map->timestamp != fs->map_generation)
  455                         return (KERN_RESTART);
  456                 return (KERN_NOT_RECEIVER);
  457         }
  458         if (rv != VM_PAGER_OK)
  459                 return (KERN_FAILURE); /* AKA SIGSEGV */
  460 
  461         /* Ensure that the driver is obeying the interface. */
  462         MPASS(pager_first <= pager_last);
  463         MPASS(fs->first_pindex <= pager_last);
  464         MPASS(fs->first_pindex >= pager_first);
  465         MPASS(pager_last < fs->first_object->size);
  466 
  467         vm_fault_restore_map_lock(fs);
  468         bdry_idx = (fs->entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
  469             MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
  470         if (fs->map->timestamp != fs->map_generation) {
  471                 if (bdry_idx == 0) {
  472                         vm_fault_populate_cleanup(fs->first_object, pager_first,
  473                             pager_last);
  474                 } else {
  475                         m = vm_page_lookup(fs->first_object, pager_first);
  476                         if (m != fs->m)
  477                                 vm_page_xunbusy(m);
  478                 }
  479                 return (KERN_RESTART);
  480         }
  481 
  482         /*
  483          * The map is unchanged after our last unlock.  Process the fault.
  484          *
  485          * First, the special case of largepage mappings, where
  486          * populate only busies the first page in superpage run.
  487          */
  488         if (bdry_idx != 0) {
  489                 KASSERT(PMAP_HAS_LARGEPAGES,
  490                     ("missing pmap support for large pages"));
  491                 m = vm_page_lookup(fs->first_object, pager_first);
  492                 vm_fault_populate_check_page(m);
  493                 VM_OBJECT_WUNLOCK(fs->first_object);
  494                 vaddr = fs->entry->start + IDX_TO_OFF(pager_first) -
  495                     fs->entry->offset;
  496                 /* assert alignment for entry */
  497                 KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0,
  498     ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx",
  499                     (uintmax_t)fs->entry->start, (uintmax_t)pager_first,
  500                     (uintmax_t)fs->entry->offset, (uintmax_t)vaddr));
  501                 KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0,
  502                     ("unaligned superpage m %p %#jx", m,
  503                     (uintmax_t)VM_PAGE_TO_PHYS(m)));
  504                 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot,
  505                     fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) |
  506                     PMAP_ENTER_LARGEPAGE, bdry_idx);
  507                 VM_OBJECT_WLOCK(fs->first_object);
  508                 vm_page_xunbusy(m);
  509                 if ((fs->fault_flags & VM_FAULT_WIRE) != 0) {
  510                         for (i = 0; i < atop(pagesizes[bdry_idx]); i++)
  511                                 vm_page_wire(m + i);
  512                 }
  513                 if (fs->m_hold != NULL) {
  514                         *fs->m_hold = m + (fs->first_pindex - pager_first);
  515                         vm_page_wire(*fs->m_hold);
  516                 }
  517                 goto out;
  518         }
  519 
  520         /*
  521          * The range [pager_first, pager_last] that is given to the
  522          * pager is only a hint.  The pager may populate any range
  523          * within the object that includes the requested page index.
  524          * In case the pager expanded the range, clip it to fit into
  525          * the map entry.
  526          */
  527         map_first = OFF_TO_IDX(fs->entry->offset);
  528         if (map_first > pager_first) {
  529                 vm_fault_populate_cleanup(fs->first_object, pager_first,
  530                     map_first - 1);
  531                 pager_first = map_first;
  532         }
  533         map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
  534         if (map_last < pager_last) {
  535                 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
  536                     pager_last);
  537                 pager_last = map_last;
  538         }
  539         for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
  540             pidx <= pager_last;
  541             pidx += npages, m = vm_page_next(&m[npages - 1])) {
  542                 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
  543 #if defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
  544     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv) || \
  545     defined(__powerpc64__)
  546                 psind = m->psind;
  547                 if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
  548                     pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
  549                     !pmap_ps_enabled(fs->map->pmap) || fs->wired))
  550                         psind = 0;
  551 #else
  552                 psind = 0;
  553 #endif          
  554                 npages = atop(pagesizes[psind]);
  555                 for (i = 0; i < npages; i++) {
  556                         vm_fault_populate_check_page(&m[i]);
  557                         vm_fault_dirty(fs, &m[i]);
  558                 }
  559                 VM_OBJECT_WUNLOCK(fs->first_object);
  560                 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
  561                     (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
  562 #if defined(__amd64__)
  563                 if (psind > 0 && rv == KERN_FAILURE) {
  564                         for (i = 0; i < npages; i++) {
  565                                 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
  566                                     &m[i], fs->prot, fs->fault_type |
  567                                     (fs->wired ? PMAP_ENTER_WIRED : 0), 0);
  568                                 MPASS(rv == KERN_SUCCESS);
  569                         }
  570                 }
  571 #else
  572                 MPASS(rv == KERN_SUCCESS);
  573 #endif
  574                 VM_OBJECT_WLOCK(fs->first_object);
  575                 for (i = 0; i < npages; i++) {
  576                         if ((fs->fault_flags & VM_FAULT_WIRE) != 0)
  577                                 vm_page_wire(&m[i]);
  578                         else
  579                                 vm_page_activate(&m[i]);
  580                         if (fs->m_hold != NULL && m[i].pindex == fs->first_pindex) {
  581                                 (*fs->m_hold) = &m[i];
  582                                 vm_page_wire(&m[i]);
  583                         }
  584                         vm_page_xunbusy(&m[i]);
  585                 }
  586         }
  587 out:
  588         curthread->td_ru.ru_majflt++;
  589         return (KERN_SUCCESS);
  590 }
  591 
  592 static int prot_fault_translation;
  593 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
  594     &prot_fault_translation, 0,
  595     "Control signal to deliver on protection fault");
  596 
  597 /* compat definition to keep common code for signal translation */
  598 #define UCODE_PAGEFLT   12
  599 #ifdef T_PAGEFLT
  600 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
  601 #endif
  602 
  603 /*
  604  *      vm_fault_trap:
  605  *
  606  *      Handle a page fault occurring at the given address,
  607  *      requiring the given permissions, in the map specified.
  608  *      If successful, the page is inserted into the
  609  *      associated physical map.
  610  *
  611  *      NOTE: the given address should be truncated to the
  612  *      proper page address.
  613  *
  614  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
  615  *      a standard error specifying why the fault is fatal is returned.
  616  *
  617  *      The map in question must be referenced, and remains so.
  618  *      Caller may hold no locks.
  619  */
  620 int
  621 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
  622     int fault_flags, int *signo, int *ucode)
  623 {
  624         int result;
  625 
  626         MPASS(signo == NULL || ucode != NULL);
  627 #ifdef KTRACE
  628         if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
  629                 ktrfault(vaddr, fault_type);
  630 #endif
  631         result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
  632             NULL);
  633         KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
  634             result == KERN_INVALID_ADDRESS ||
  635             result == KERN_RESOURCE_SHORTAGE ||
  636             result == KERN_PROTECTION_FAILURE ||
  637             result == KERN_OUT_OF_BOUNDS,
  638             ("Unexpected Mach error %d from vm_fault()", result));
  639 #ifdef KTRACE
  640         if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
  641                 ktrfaultend(result);
  642 #endif
  643         if (result != KERN_SUCCESS && signo != NULL) {
  644                 switch (result) {
  645                 case KERN_FAILURE:
  646                 case KERN_INVALID_ADDRESS:
  647                         *signo = SIGSEGV;
  648                         *ucode = SEGV_MAPERR;
  649                         break;
  650                 case KERN_RESOURCE_SHORTAGE:
  651                         *signo = SIGBUS;
  652                         *ucode = BUS_OOMERR;
  653                         break;
  654                 case KERN_OUT_OF_BOUNDS:
  655                         *signo = SIGBUS;
  656                         *ucode = BUS_OBJERR;
  657                         break;
  658                 case KERN_PROTECTION_FAILURE:
  659                         if (prot_fault_translation == 0) {
  660                                 /*
  661                                  * Autodetect.  This check also covers
  662                                  * the images without the ABI-tag ELF
  663                                  * note.
  664                                  */
  665                                 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
  666                                     curproc->p_osrel >= P_OSREL_SIGSEGV) {
  667                                         *signo = SIGSEGV;
  668                                         *ucode = SEGV_ACCERR;
  669                                 } else {
  670                                         *signo = SIGBUS;
  671                                         *ucode = UCODE_PAGEFLT;
  672                                 }
  673                         } else if (prot_fault_translation == 1) {
  674                                 /* Always compat mode. */
  675                                 *signo = SIGBUS;
  676                                 *ucode = UCODE_PAGEFLT;
  677                         } else {
  678                                 /* Always SIGSEGV mode. */
  679                                 *signo = SIGSEGV;
  680                                 *ucode = SEGV_ACCERR;
  681                         }
  682                         break;
  683                 default:
  684                         KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
  685                             result));
  686                         break;
  687                 }
  688         }
  689         return (result);
  690 }
  691 
  692 static int
  693 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
  694 {
  695         struct vnode *vp;
  696         int error, locked;
  697 
  698         if (fs->object->type != OBJT_VNODE)
  699                 return (KERN_SUCCESS);
  700         vp = fs->object->handle;
  701         if (vp == fs->vp) {
  702                 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
  703                 return (KERN_SUCCESS);
  704         }
  705 
  706         /*
  707          * Perform an unlock in case the desired vnode changed while
  708          * the map was unlocked during a retry.
  709          */
  710         unlock_vp(fs);
  711 
  712         locked = VOP_ISLOCKED(vp);
  713         if (locked != LK_EXCLUSIVE)
  714                 locked = LK_SHARED;
  715 
  716         /*
  717          * We must not sleep acquiring the vnode lock while we have
  718          * the page exclusive busied or the object's
  719          * paging-in-progress count incremented.  Otherwise, we could
  720          * deadlock.
  721          */
  722         error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT);
  723         if (error == 0) {
  724                 fs->vp = vp;
  725                 return (KERN_SUCCESS);
  726         }
  727 
  728         vhold(vp);
  729         if (objlocked)
  730                 unlock_and_deallocate(fs);
  731         else
  732                 fault_deallocate(fs);
  733         error = vget(vp, locked | LK_RETRY | LK_CANRECURSE);
  734         vdrop(vp);
  735         fs->vp = vp;
  736         KASSERT(error == 0, ("vm_fault: vget failed %d", error));
  737         return (KERN_RESOURCE_SHORTAGE);
  738 }
  739 
  740 /*
  741  * Calculate the desired readahead.  Handle drop-behind.
  742  *
  743  * Returns the number of readahead blocks to pass to the pager.
  744  */
  745 static int
  746 vm_fault_readahead(struct faultstate *fs)
  747 {
  748         int era, nera;
  749         u_char behavior;
  750 
  751         KASSERT(fs->lookup_still_valid, ("map unlocked"));
  752         era = fs->entry->read_ahead;
  753         behavior = vm_map_entry_behavior(fs->entry);
  754         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
  755                 nera = 0;
  756         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
  757                 nera = VM_FAULT_READ_AHEAD_MAX;
  758                 if (fs->vaddr == fs->entry->next_read)
  759                         vm_fault_dontneed(fs, fs->vaddr, nera);
  760         } else if (fs->vaddr == fs->entry->next_read) {
  761                 /*
  762                  * This is a sequential fault.  Arithmetically
  763                  * increase the requested number of pages in
  764                  * the read-ahead window.  The requested
  765                  * number of pages is "# of sequential faults
  766                  * x (read ahead min + 1) + read ahead min"
  767                  */
  768                 nera = VM_FAULT_READ_AHEAD_MIN;
  769                 if (era > 0) {
  770                         nera += era + 1;
  771                         if (nera > VM_FAULT_READ_AHEAD_MAX)
  772                                 nera = VM_FAULT_READ_AHEAD_MAX;
  773                 }
  774                 if (era == VM_FAULT_READ_AHEAD_MAX)
  775                         vm_fault_dontneed(fs, fs->vaddr, nera);
  776         } else {
  777                 /*
  778                  * This is a non-sequential fault.
  779                  */
  780                 nera = 0;
  781         }
  782         if (era != nera) {
  783                 /*
  784                  * A read lock on the map suffices to update
  785                  * the read ahead count safely.
  786                  */
  787                 fs->entry->read_ahead = nera;
  788         }
  789 
  790         return (nera);
  791 }
  792 
  793 static int
  794 vm_fault_lookup(struct faultstate *fs)
  795 {
  796         int result;
  797 
  798         KASSERT(!fs->lookup_still_valid,
  799            ("vm_fault_lookup: Map already locked."));
  800         result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
  801             VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
  802             &fs->first_pindex, &fs->prot, &fs->wired);
  803         if (result != KERN_SUCCESS) {
  804                 unlock_vp(fs);
  805                 return (result);
  806         }
  807 
  808         fs->map_generation = fs->map->timestamp;
  809 
  810         if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
  811                 panic("%s: fault on nofault entry, addr: %#lx",
  812                     __func__, (u_long)fs->vaddr);
  813         }
  814 
  815         if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
  816             fs->entry->wiring_thread != curthread) {
  817                 vm_map_unlock_read(fs->map);
  818                 vm_map_lock(fs->map);
  819                 if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
  820                     (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
  821                         unlock_vp(fs);
  822                         fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
  823                         vm_map_unlock_and_wait(fs->map, 0);
  824                 } else
  825                         vm_map_unlock(fs->map);
  826                 return (KERN_RESOURCE_SHORTAGE);
  827         }
  828 
  829         MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
  830 
  831         if (fs->wired)
  832                 fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
  833         else
  834                 KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
  835                     ("!fs->wired && VM_FAULT_WIRE"));
  836         fs->lookup_still_valid = true;
  837 
  838         return (KERN_SUCCESS);
  839 }
  840 
  841 static int
  842 vm_fault_relookup(struct faultstate *fs)
  843 {
  844         vm_object_t retry_object;
  845         vm_pindex_t retry_pindex;
  846         vm_prot_t retry_prot;
  847         int result;
  848 
  849         if (!vm_map_trylock_read(fs->map))
  850                 return (KERN_RESTART);
  851 
  852         fs->lookup_still_valid = true;
  853         if (fs->map->timestamp == fs->map_generation)
  854                 return (KERN_SUCCESS);
  855 
  856         result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
  857             &fs->entry, &retry_object, &retry_pindex, &retry_prot,
  858             &fs->wired);
  859         if (result != KERN_SUCCESS) {
  860                 /*
  861                  * If retry of map lookup would have blocked then
  862                  * retry fault from start.
  863                  */
  864                 if (result == KERN_FAILURE)
  865                         return (KERN_RESTART);
  866                 return (result);
  867         }
  868         if (retry_object != fs->first_object ||
  869             retry_pindex != fs->first_pindex)
  870                 return (KERN_RESTART);
  871 
  872         /*
  873          * Check whether the protection has changed or the object has
  874          * been copied while we left the map unlocked. Changing from
  875          * read to write permission is OK - we leave the page
  876          * write-protected, and catch the write fault. Changing from
  877          * write to read permission means that we can't mark the page
  878          * write-enabled after all.
  879          */
  880         fs->prot &= retry_prot;
  881         fs->fault_type &= retry_prot;
  882         if (fs->prot == 0)
  883                 return (KERN_RESTART);
  884 
  885         /* Reassert because wired may have changed. */
  886         KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
  887             ("!wired && VM_FAULT_WIRE"));
  888 
  889         return (KERN_SUCCESS);
  890 }
  891 
  892 static void
  893 vm_fault_cow(struct faultstate *fs)
  894 {
  895         bool is_first_object_locked;
  896 
  897         KASSERT(fs->object != fs->first_object,
  898             ("source and target COW objects are identical"));
  899 
  900         /*
  901          * This allows pages to be virtually copied from a backing_object
  902          * into the first_object, where the backing object has no other
  903          * refs to it, and cannot gain any more refs.  Instead of a bcopy,
  904          * we just move the page from the backing object to the first
  905          * object.  Note that we must mark the page dirty in the first
  906          * object so that it will go out to swap when needed.
  907          */
  908         is_first_object_locked = false;
  909         if (
  910             /*
  911              * Only one shadow object and no other refs.
  912              */
  913             fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
  914             /*
  915              * No other ways to look the object up
  916              */
  917             fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 &&
  918             /*
  919              * We don't chase down the shadow chain and we can acquire locks.
  920              */
  921             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) &&
  922             fs->object == fs->first_object->backing_object &&
  923             VM_OBJECT_TRYWLOCK(fs->object)) {
  924                 /*
  925                  * Remove but keep xbusy for replace.  fs->m is moved into
  926                  * fs->first_object and left busy while fs->first_m is
  927                  * conditionally freed.
  928                  */
  929                 vm_page_remove_xbusy(fs->m);
  930                 vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
  931                     fs->first_m);
  932                 vm_page_dirty(fs->m);
  933 #if VM_NRESERVLEVEL > 0
  934                 /*
  935                  * Rename the reservation.
  936                  */
  937                 vm_reserv_rename(fs->m, fs->first_object, fs->object,
  938                     OFF_TO_IDX(fs->first_object->backing_object_offset));
  939 #endif
  940                 VM_OBJECT_WUNLOCK(fs->object);
  941                 VM_OBJECT_WUNLOCK(fs->first_object);
  942                 fs->first_m = fs->m;
  943                 fs->m = NULL;
  944                 VM_CNT_INC(v_cow_optim);
  945         } else {
  946                 if (is_first_object_locked)
  947                         VM_OBJECT_WUNLOCK(fs->first_object);
  948                 /*
  949                  * Oh, well, lets copy it.
  950                  */
  951                 pmap_copy_page(fs->m, fs->first_m);
  952                 vm_page_valid(fs->first_m);
  953                 if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
  954                         vm_page_wire(fs->first_m);
  955                         vm_page_unwire(fs->m, PQ_INACTIVE);
  956                 }
  957                 /*
  958                  * Save the cow page to be released after
  959                  * pmap_enter is complete.
  960                  */
  961                 fs->m_cow = fs->m;
  962                 fs->m = NULL;
  963 
  964                 /*
  965                  * Typically, the shadow object is either private to this
  966                  * address space (OBJ_ONEMAPPING) or its pages are read only.
  967                  * In the highly unusual case where the pages of a shadow object
  968                  * are read/write shared between this and other address spaces,
  969                  * we need to ensure that any pmap-level mappings to the
  970                  * original, copy-on-write page from the backing object are
  971                  * removed from those other address spaces.
  972                  *
  973                  * The flag check is racy, but this is tolerable: if
  974                  * OBJ_ONEMAPPING is cleared after the check, the busy state
  975                  * ensures that new mappings of m_cow can't be created.
  976                  * pmap_enter() will replace an existing mapping in the current
  977                  * address space.  If OBJ_ONEMAPPING is set after the check,
  978                  * removing mappings will at worse trigger some unnecessary page
  979                  * faults.
  980                  */
  981                 vm_page_assert_xbusied(fs->m_cow);
  982                 if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0)
  983                         pmap_remove_all(fs->m_cow);
  984         }
  985 
  986         vm_object_pip_wakeup(fs->object);
  987 
  988         /*
  989          * Only use the new page below...
  990          */
  991         fs->object = fs->first_object;
  992         fs->pindex = fs->first_pindex;
  993         fs->m = fs->first_m;
  994         VM_CNT_INC(v_cow_faults);
  995         curthread->td_cow++;
  996 }
  997 
  998 static bool
  999 vm_fault_next(struct faultstate *fs)
 1000 {
 1001         vm_object_t next_object;
 1002 
 1003         /*
 1004          * The requested page does not exist at this object/
 1005          * offset.  Remove the invalid page from the object,
 1006          * waking up anyone waiting for it, and continue on to
 1007          * the next object.  However, if this is the top-level
 1008          * object, we must leave the busy page in place to
 1009          * prevent another process from rushing past us, and
 1010          * inserting the page in that object at the same time
 1011          * that we are.
 1012          */
 1013         if (fs->object == fs->first_object) {
 1014                 fs->first_m = fs->m;
 1015                 fs->m = NULL;
 1016         } else
 1017                 fault_page_free(&fs->m);
 1018 
 1019         /*
 1020          * Move on to the next object.  Lock the next object before
 1021          * unlocking the current one.
 1022          */
 1023         VM_OBJECT_ASSERT_WLOCKED(fs->object);
 1024         next_object = fs->object->backing_object;
 1025         if (next_object == NULL)
 1026                 return (false);
 1027         MPASS(fs->first_m != NULL);
 1028         KASSERT(fs->object != next_object, ("object loop %p", next_object));
 1029         VM_OBJECT_WLOCK(next_object);
 1030         vm_object_pip_add(next_object, 1);
 1031         if (fs->object != fs->first_object)
 1032                 vm_object_pip_wakeup(fs->object);
 1033         fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
 1034         VM_OBJECT_WUNLOCK(fs->object);
 1035         fs->object = next_object;
 1036 
 1037         return (true);
 1038 }
 1039 
 1040 static void
 1041 vm_fault_zerofill(struct faultstate *fs)
 1042 {
 1043 
 1044         /*
 1045          * If there's no object left, fill the page in the top
 1046          * object with zeros.
 1047          */
 1048         if (fs->object != fs->first_object) {
 1049                 vm_object_pip_wakeup(fs->object);
 1050                 fs->object = fs->first_object;
 1051                 fs->pindex = fs->first_pindex;
 1052         }
 1053         MPASS(fs->first_m != NULL);
 1054         MPASS(fs->m == NULL);
 1055         fs->m = fs->first_m;
 1056         fs->first_m = NULL;
 1057 
 1058         /*
 1059          * Zero the page if necessary and mark it valid.
 1060          */
 1061         if ((fs->m->flags & PG_ZERO) == 0) {
 1062                 pmap_zero_page(fs->m);
 1063         } else {
 1064                 VM_CNT_INC(v_ozfod);
 1065         }
 1066         VM_CNT_INC(v_zfod);
 1067         vm_page_valid(fs->m);
 1068 }
 1069 
 1070 /*
 1071  * Allocate a page directly or via the object populate method.
 1072  */
 1073 static int
 1074 vm_fault_allocate(struct faultstate *fs)
 1075 {
 1076         struct domainset *dset;
 1077         int alloc_req;
 1078         int rv;
 1079 
 1080         if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
 1081                 rv = vm_fault_lock_vnode(fs, true);
 1082                 MPASS(rv == KERN_SUCCESS || rv == KERN_RESOURCE_SHORTAGE);
 1083                 if (rv == KERN_RESOURCE_SHORTAGE)
 1084                         return (rv);
 1085         }
 1086 
 1087         if (fs->pindex >= fs->object->size)
 1088                 return (KERN_OUT_OF_BOUNDS);
 1089 
 1090         if (fs->object == fs->first_object &&
 1091             (fs->first_object->flags & OBJ_POPULATE) != 0 &&
 1092             fs->first_object->shadow_count == 0) {
 1093                 rv = vm_fault_populate(fs);
 1094                 switch (rv) {
 1095                 case KERN_SUCCESS:
 1096                 case KERN_FAILURE:
 1097                 case KERN_RESTART:
 1098                         return (rv);
 1099                 case KERN_NOT_RECEIVER:
 1100                         /*
 1101                          * Pager's populate() method
 1102                          * returned VM_PAGER_BAD.
 1103                          */
 1104                         break;
 1105                 default:
 1106                         panic("inconsistent return codes");
 1107                 }
 1108         }
 1109 
 1110         /*
 1111          * Allocate a new page for this object/offset pair.
 1112          *
 1113          * Unlocked read of the p_flag is harmless. At worst, the P_KILLED
 1114          * might be not observed there, and allocation can fail, causing
 1115          * restart and new reading of the p_flag.
 1116          */
 1117         dset = fs->object->domain.dr_policy;
 1118         if (dset == NULL)
 1119                 dset = curthread->td_domain.dr_policy;
 1120         if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
 1121 #if VM_NRESERVLEVEL > 0
 1122                 vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
 1123 #endif
 1124                 alloc_req = P_KILLED(curproc) ?
 1125                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
 1126                 if (fs->object->type != OBJT_VNODE &&
 1127                     fs->object->backing_object == NULL)
 1128                         alloc_req |= VM_ALLOC_ZERO;
 1129                 fs->m = vm_page_alloc(fs->object, fs->pindex, alloc_req);
 1130         }
 1131         if (fs->m == NULL) {
 1132                 unlock_and_deallocate(fs);
 1133                 if (vm_pfault_oom_attempts < 0 ||
 1134                     fs->oom < vm_pfault_oom_attempts) {
 1135                         fs->oom++;
 1136                         vm_waitpfault(dset, vm_pfault_oom_wait * hz);
 1137                 } else  {
 1138                         if (bootverbose)
 1139                                 printf(
 1140                 "proc %d (%s) failed to alloc page on fault, starting OOM\n",
 1141                                     curproc->p_pid, curproc->p_comm);
 1142                         vm_pageout_oom(VM_OOM_MEM_PF);
 1143                         fs->oom = 0;
 1144                 }
 1145                 return (KERN_RESOURCE_SHORTAGE);
 1146         }
 1147         fs->oom = 0;
 1148 
 1149         return (KERN_NOT_RECEIVER);
 1150 }
 1151 
 1152 /*
 1153  * Call the pager to retrieve the page if there is a chance
 1154  * that the pager has it, and potentially retrieve additional
 1155  * pages at the same time.
 1156  */
 1157 static int
 1158 vm_fault_getpages(struct faultstate *fs, int nera, int *behindp, int *aheadp)
 1159 {
 1160         vm_offset_t e_end, e_start;
 1161         int ahead, behind, cluster_offset, rv;
 1162         u_char behavior;
 1163 
 1164         /*
 1165          * Prepare for unlocking the map.  Save the map
 1166          * entry's start and end addresses, which are used to
 1167          * optimize the size of the pager operation below.
 1168          * Even if the map entry's addresses change after
 1169          * unlocking the map, using the saved addresses is
 1170          * safe.
 1171          */
 1172         e_start = fs->entry->start;
 1173         e_end = fs->entry->end;
 1174         behavior = vm_map_entry_behavior(fs->entry);
 1175 
 1176         /*
 1177          * Release the map lock before locking the vnode or
 1178          * sleeping in the pager.  (If the current object has
 1179          * a shadow, then an earlier iteration of this loop
 1180          * may have already unlocked the map.)
 1181          */
 1182         unlock_map(fs);
 1183 
 1184         rv = vm_fault_lock_vnode(fs, false);
 1185         MPASS(rv == KERN_SUCCESS || rv == KERN_RESOURCE_SHORTAGE);
 1186         if (rv == KERN_RESOURCE_SHORTAGE)
 1187                 return (rv);
 1188         KASSERT(fs->vp == NULL || !fs->map->system_map,
 1189             ("vm_fault: vnode-backed object mapped by system map"));
 1190 
 1191         /*
 1192          * Page in the requested page and hint the pager,
 1193          * that it may bring up surrounding pages.
 1194          */
 1195         if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
 1196             P_KILLED(curproc)) {
 1197                 behind = 0;
 1198                 ahead = 0;
 1199         } else {
 1200                 /* Is this a sequential fault? */
 1201                 if (nera > 0) {
 1202                         behind = 0;
 1203                         ahead = nera;
 1204                 } else {
 1205                         /*
 1206                          * Request a cluster of pages that is
 1207                          * aligned to a VM_FAULT_READ_DEFAULT
 1208                          * page offset boundary within the
 1209                          * object.  Alignment to a page offset
 1210                          * boundary is more likely to coincide
 1211                          * with the underlying file system
 1212                          * block than alignment to a virtual
 1213                          * address boundary.
 1214                          */
 1215                         cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
 1216                         behind = ulmin(cluster_offset,
 1217                             atop(fs->vaddr - e_start));
 1218                         ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
 1219                 }
 1220                 ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
 1221         }
 1222         *behindp = behind;
 1223         *aheadp = ahead;
 1224         rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
 1225         if (rv == VM_PAGER_OK)
 1226                 return (KERN_SUCCESS);
 1227         if (rv == VM_PAGER_ERROR)
 1228                 printf("vm_fault: pager read error, pid %d (%s)\n",
 1229                     curproc->p_pid, curproc->p_comm);
 1230         /*
 1231          * If an I/O error occurred or the requested page was
 1232          * outside the range of the pager, clean up and return
 1233          * an error.
 1234          */
 1235         if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD)
 1236                 return (KERN_OUT_OF_BOUNDS);
 1237         return (KERN_NOT_RECEIVER);
 1238 }
 1239 
 1240 /*
 1241  * Wait/Retry if the page is busy.  We have to do this if the page is
 1242  * either exclusive or shared busy because the vm_pager may be using
 1243  * read busy for pageouts (and even pageins if it is the vnode pager),
 1244  * and we could end up trying to pagein and pageout the same page
 1245  * simultaneously.
 1246  *
 1247  * We can theoretically allow the busy case on a read fault if the page
 1248  * is marked valid, but since such pages are typically already pmap'd,
 1249  * putting that special case in might be more effort then it is worth.
 1250  * We cannot under any circumstances mess around with a shared busied
 1251  * page except, perhaps, to pmap it.
 1252  */
 1253 static void
 1254 vm_fault_busy_sleep(struct faultstate *fs)
 1255 {
 1256         /*
 1257          * Reference the page before unlocking and
 1258          * sleeping so that the page daemon is less
 1259          * likely to reclaim it.
 1260          */
 1261         vm_page_aflag_set(fs->m, PGA_REFERENCED);
 1262         if (fs->object != fs->first_object) {
 1263                 fault_page_release(&fs->first_m);
 1264                 vm_object_pip_wakeup(fs->first_object);
 1265         }
 1266         vm_object_pip_wakeup(fs->object);
 1267         unlock_map(fs);
 1268         if (fs->m == vm_page_lookup(fs->object, fs->pindex))
 1269                 vm_page_busy_sleep(fs->m, "vmpfw", false);
 1270         else
 1271                 VM_OBJECT_WUNLOCK(fs->object);
 1272         VM_CNT_INC(v_intrans);
 1273         vm_object_deallocate(fs->first_object);
 1274 }
 1275 
 1276 int
 1277 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
 1278     int fault_flags, vm_page_t *m_hold)
 1279 {
 1280         struct faultstate fs;
 1281         int ahead, behind, faultcount;
 1282         int nera, result, rv;
 1283         bool dead, hardfault;
 1284 
 1285         VM_CNT_INC(v_vm_faults);
 1286 
 1287         if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
 1288                 return (KERN_PROTECTION_FAILURE);
 1289 
 1290         fs.vp = NULL;
 1291         fs.vaddr = vaddr;
 1292         fs.m_hold = m_hold;
 1293         fs.fault_flags = fault_flags;
 1294         fs.map = map;
 1295         fs.lookup_still_valid = false;
 1296         fs.oom = 0;
 1297         faultcount = 0;
 1298         nera = -1;
 1299         hardfault = false;
 1300 
 1301 RetryFault:
 1302         fs.fault_type = fault_type;
 1303 
 1304         /*
 1305          * Find the backing store object and offset into it to begin the
 1306          * search.
 1307          */
 1308         result = vm_fault_lookup(&fs);
 1309         if (result != KERN_SUCCESS) {
 1310                 if (result == KERN_RESOURCE_SHORTAGE)
 1311                         goto RetryFault;
 1312                 return (result);
 1313         }
 1314 
 1315         /*
 1316          * Try to avoid lock contention on the top-level object through
 1317          * special-case handling of some types of page faults, specifically,
 1318          * those that are mapping an existing page from the top-level object.
 1319          * Under this condition, a read lock on the object suffices, allowing
 1320          * multiple page faults of a similar type to run in parallel.
 1321          */
 1322         if (fs.vp == NULL /* avoid locked vnode leak */ &&
 1323             (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 &&
 1324             (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
 1325                 VM_OBJECT_RLOCK(fs.first_object);
 1326                 rv = vm_fault_soft_fast(&fs);
 1327                 if (rv == KERN_SUCCESS)
 1328                         return (rv);
 1329                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
 1330                         VM_OBJECT_RUNLOCK(fs.first_object);
 1331                         VM_OBJECT_WLOCK(fs.first_object);
 1332                 }
 1333         } else {
 1334                 VM_OBJECT_WLOCK(fs.first_object);
 1335         }
 1336 
 1337         /*
 1338          * Make a reference to this object to prevent its disposal while we
 1339          * are messing with it.  Once we have the reference, the map is free
 1340          * to be diddled.  Since objects reference their shadows (and copies),
 1341          * they will stay around as well.
 1342          *
 1343          * Bump the paging-in-progress count to prevent size changes (e.g. 
 1344          * truncation operations) during I/O.
 1345          */
 1346         vm_object_reference_locked(fs.first_object);
 1347         vm_object_pip_add(fs.first_object, 1);
 1348 
 1349         fs.m_cow = fs.m = fs.first_m = NULL;
 1350 
 1351         /*
 1352          * Search for the page at object/offset.
 1353          */
 1354         fs.object = fs.first_object;
 1355         fs.pindex = fs.first_pindex;
 1356 
 1357         if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) {
 1358                 rv = vm_fault_allocate(&fs);
 1359                 switch (rv) {
 1360                 case KERN_RESTART:
 1361                         unlock_and_deallocate(&fs);
 1362                         /* FALLTHROUGH */
 1363                 case KERN_RESOURCE_SHORTAGE:
 1364                         goto RetryFault;
 1365                 case KERN_SUCCESS:
 1366                 case KERN_FAILURE:
 1367                 case KERN_OUT_OF_BOUNDS:
 1368                         unlock_and_deallocate(&fs);
 1369                         return (rv);
 1370                 case KERN_NOT_RECEIVER:
 1371                         break;
 1372                 default:
 1373                         panic("vm_fault: Unhandled rv %d", rv);
 1374                 }
 1375         }
 1376 
 1377         while (TRUE) {
 1378                 KASSERT(fs.m == NULL,
 1379                     ("page still set %p at loop start", fs.m));
 1380                 /*
 1381                  * If the object is marked for imminent termination,
 1382                  * we retry here, since the collapse pass has raced
 1383                  * with us.  Otherwise, if we see terminally dead
 1384                  * object, return fail.
 1385                  */
 1386                 if ((fs.object->flags & OBJ_DEAD) != 0) {
 1387                         dead = fs.object->type == OBJT_DEAD;
 1388                         unlock_and_deallocate(&fs);
 1389                         if (dead)
 1390                                 return (KERN_PROTECTION_FAILURE);
 1391                         pause("vmf_de", 1);
 1392                         goto RetryFault;
 1393                 }
 1394 
 1395                 /*
 1396                  * See if page is resident
 1397                  */
 1398                 fs.m = vm_page_lookup(fs.object, fs.pindex);
 1399                 if (fs.m != NULL) {
 1400                         if (vm_page_tryxbusy(fs.m) == 0) {
 1401                                 vm_fault_busy_sleep(&fs);
 1402                                 goto RetryFault;
 1403                         }
 1404 
 1405                         /*
 1406                          * The page is marked busy for other processes and the
 1407                          * pagedaemon.  If it still is completely valid we
 1408                          * are done.
 1409                          */
 1410                         if (vm_page_all_valid(fs.m)) {
 1411                                 VM_OBJECT_WUNLOCK(fs.object);
 1412                                 break; /* break to PAGE HAS BEEN FOUND. */
 1413                         }
 1414                 }
 1415                 VM_OBJECT_ASSERT_WLOCKED(fs.object);
 1416 
 1417                 /*
 1418                  * Page is not resident.  If the pager might contain the page
 1419                  * or this is the beginning of the search, allocate a new
 1420                  * page.  (Default objects are zero-fill, so there is no real
 1421                  * pager for them.)
 1422                  */
 1423                 if (fs.m == NULL && (fs.object->type != OBJT_DEFAULT ||
 1424                     fs.object == fs.first_object)) {
 1425                         rv = vm_fault_allocate(&fs);
 1426                         switch (rv) {
 1427                         case KERN_RESTART:
 1428                                 unlock_and_deallocate(&fs);
 1429                                 /* FALLTHROUGH */
 1430                         case KERN_RESOURCE_SHORTAGE:
 1431                                 goto RetryFault;
 1432                         case KERN_SUCCESS:
 1433                         case KERN_FAILURE:
 1434                         case KERN_OUT_OF_BOUNDS:
 1435                                 unlock_and_deallocate(&fs);
 1436                                 return (rv);
 1437                         case KERN_NOT_RECEIVER:
 1438                                 break;
 1439                         default:
 1440                                 panic("vm_fault: Unhandled rv %d", rv);
 1441                         }
 1442                 }
 1443 
 1444                 /*
 1445                  * Default objects have no pager so no exclusive busy exists
 1446                  * to protect this page in the chain.  Skip to the next
 1447                  * object without dropping the lock to preserve atomicity of
 1448                  * shadow faults.
 1449                  */
 1450                 if (fs.object->type != OBJT_DEFAULT) {
 1451                         /*
 1452                          * At this point, we have either allocated a new page
 1453                          * or found an existing page that is only partially
 1454                          * valid.
 1455                          *
 1456                          * We hold a reference on the current object and the
 1457                          * page is exclusive busied.  The exclusive busy
 1458                          * prevents simultaneous faults and collapses while
 1459                          * the object lock is dropped.
 1460                          */
 1461                         VM_OBJECT_WUNLOCK(fs.object);
 1462 
 1463                         /*
 1464                          * If the pager for the current object might have
 1465                          * the page, then determine the number of additional
 1466                          * pages to read and potentially reprioritize
 1467                          * previously read pages for earlier reclamation.
 1468                          * These operations should only be performed once per
 1469                          * page fault.  Even if the current pager doesn't
 1470                          * have the page, the number of additional pages to
 1471                          * read will apply to subsequent objects in the
 1472                          * shadow chain.
 1473                          */
 1474                         if (nera == -1 && !P_KILLED(curproc))
 1475                                 nera = vm_fault_readahead(&fs);
 1476 
 1477                         rv = vm_fault_getpages(&fs, nera, &behind, &ahead);
 1478                         if (rv == KERN_SUCCESS) {
 1479                                 faultcount = behind + 1 + ahead;
 1480                                 hardfault = true;
 1481                                 break; /* break to PAGE HAS BEEN FOUND. */
 1482                         }
 1483                         if (rv == KERN_RESOURCE_SHORTAGE)
 1484                                 goto RetryFault;
 1485                         VM_OBJECT_WLOCK(fs.object);
 1486                         if (rv == KERN_OUT_OF_BOUNDS) {
 1487                                 fault_page_free(&fs.m);
 1488                                 unlock_and_deallocate(&fs);
 1489                                 return (rv);
 1490                         }
 1491                 }
 1492 
 1493                 /*
 1494                  * The page was not found in the current object.  Try to
 1495                  * traverse into a backing object or zero fill if none is
 1496                  * found.
 1497                  */
 1498                 if (vm_fault_next(&fs))
 1499                         continue;
 1500                 if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) {
 1501                         if (fs.first_object == fs.object)
 1502                                 fault_page_free(&fs.first_m);
 1503                         unlock_and_deallocate(&fs);
 1504                         return (KERN_OUT_OF_BOUNDS);
 1505                 }
 1506                 VM_OBJECT_WUNLOCK(fs.object);
 1507                 vm_fault_zerofill(&fs);
 1508                 /* Don't try to prefault neighboring pages. */
 1509                 faultcount = 1;
 1510                 break;  /* break to PAGE HAS BEEN FOUND. */
 1511         }
 1512 
 1513         /*
 1514          * PAGE HAS BEEN FOUND.  A valid page has been found and exclusively
 1515          * busied.  The object lock must no longer be held.
 1516          */
 1517         vm_page_assert_xbusied(fs.m);
 1518         VM_OBJECT_ASSERT_UNLOCKED(fs.object);
 1519 
 1520         /*
 1521          * If the page is being written, but isn't already owned by the
 1522          * top-level object, we have to copy it into a new page owned by the
 1523          * top-level object.
 1524          */
 1525         if (fs.object != fs.first_object) {
 1526                 /*
 1527                  * We only really need to copy if we want to write it.
 1528                  */
 1529                 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
 1530                         vm_fault_cow(&fs);
 1531                         /*
 1532                          * We only try to prefault read-only mappings to the
 1533                          * neighboring pages when this copy-on-write fault is
 1534                          * a hard fault.  In other cases, trying to prefault
 1535                          * is typically wasted effort.
 1536                          */
 1537                         if (faultcount == 0)
 1538                                 faultcount = 1;
 1539 
 1540                 } else {
 1541                         fs.prot &= ~VM_PROT_WRITE;
 1542                 }
 1543         }
 1544 
 1545         /*
 1546          * We must verify that the maps have not changed since our last
 1547          * lookup.
 1548          */
 1549         if (!fs.lookup_still_valid) {
 1550                 result = vm_fault_relookup(&fs);
 1551                 if (result != KERN_SUCCESS) {
 1552                         fault_deallocate(&fs);
 1553                         if (result == KERN_RESTART)
 1554                                 goto RetryFault;
 1555                         return (result);
 1556                 }
 1557         }
 1558         VM_OBJECT_ASSERT_UNLOCKED(fs.object);
 1559 
 1560         /*
 1561          * If the page was filled by a pager, save the virtual address that
 1562          * should be faulted on next under a sequential access pattern to the
 1563          * map entry.  A read lock on the map suffices to update this address
 1564          * safely.
 1565          */
 1566         if (hardfault)
 1567                 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
 1568 
 1569         /*
 1570          * Page must be completely valid or it is not fit to
 1571          * map into user space.  vm_pager_get_pages() ensures this.
 1572          */
 1573         vm_page_assert_xbusied(fs.m);
 1574         KASSERT(vm_page_all_valid(fs.m),
 1575             ("vm_fault: page %p partially invalid", fs.m));
 1576 
 1577         vm_fault_dirty(&fs, fs.m);
 1578 
 1579         /*
 1580          * Put this page into the physical map.  We had to do the unlock above
 1581          * because pmap_enter() may sleep.  We don't put the page
 1582          * back on the active queue until later so that the pageout daemon
 1583          * won't find it (yet).
 1584          */
 1585         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
 1586             fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
 1587         if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
 1588             fs.wired == 0)
 1589                 vm_fault_prefault(&fs, vaddr,
 1590                     faultcount > 0 ? behind : PFBAK,
 1591                     faultcount > 0 ? ahead : PFFOR, false);
 1592 
 1593         /*
 1594          * If the page is not wired down, then put it where the pageout daemon
 1595          * can find it.
 1596          */
 1597         if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
 1598                 vm_page_wire(fs.m);
 1599         else
 1600                 vm_page_activate(fs.m);
 1601         if (fs.m_hold != NULL) {
 1602                 (*fs.m_hold) = fs.m;
 1603                 vm_page_wire(fs.m);
 1604         }
 1605         vm_page_xunbusy(fs.m);
 1606         fs.m = NULL;
 1607 
 1608         /*
 1609          * Unlock everything, and return
 1610          */
 1611         fault_deallocate(&fs);
 1612         if (hardfault) {
 1613                 VM_CNT_INC(v_io_faults);
 1614                 curthread->td_ru.ru_majflt++;
 1615 #ifdef RACCT
 1616                 if (racct_enable && fs.object->type == OBJT_VNODE) {
 1617                         PROC_LOCK(curproc);
 1618                         if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
 1619                                 racct_add_force(curproc, RACCT_WRITEBPS,
 1620                                     PAGE_SIZE + behind * PAGE_SIZE);
 1621                                 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
 1622                         } else {
 1623                                 racct_add_force(curproc, RACCT_READBPS,
 1624                                     PAGE_SIZE + ahead * PAGE_SIZE);
 1625                                 racct_add_force(curproc, RACCT_READIOPS, 1);
 1626                         }
 1627                         PROC_UNLOCK(curproc);
 1628                 }
 1629 #endif
 1630         } else 
 1631                 curthread->td_ru.ru_minflt++;
 1632 
 1633         return (KERN_SUCCESS);
 1634 }
 1635 
 1636 /*
 1637  * Speed up the reclamation of pages that precede the faulting pindex within
 1638  * the first object of the shadow chain.  Essentially, perform the equivalent
 1639  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
 1640  * the faulting pindex by the cluster size when the pages read by vm_fault()
 1641  * cross a cluster-size boundary.  The cluster size is the greater of the
 1642  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
 1643  *
 1644  * When "fs->first_object" is a shadow object, the pages in the backing object
 1645  * that precede the faulting pindex are deactivated by vm_fault().  So, this
 1646  * function must only be concerned with pages in the first object.
 1647  */
 1648 static void
 1649 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
 1650 {
 1651         vm_map_entry_t entry;
 1652         vm_object_t first_object, object;
 1653         vm_offset_t end, start;
 1654         vm_page_t m, m_next;
 1655         vm_pindex_t pend, pstart;
 1656         vm_size_t size;
 1657 
 1658         object = fs->object;
 1659         VM_OBJECT_ASSERT_UNLOCKED(object);
 1660         first_object = fs->first_object;
 1661         /* Neither fictitious nor unmanaged pages can be reclaimed. */
 1662         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
 1663                 VM_OBJECT_RLOCK(first_object);
 1664                 size = VM_FAULT_DONTNEED_MIN;
 1665                 if (MAXPAGESIZES > 1 && size < pagesizes[1])
 1666                         size = pagesizes[1];
 1667                 end = rounddown2(vaddr, size);
 1668                 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
 1669                     (entry = fs->entry)->start < end) {
 1670                         if (end - entry->start < size)
 1671                                 start = entry->start;
 1672                         else
 1673                                 start = end - size;
 1674                         pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
 1675                         pstart = OFF_TO_IDX(entry->offset) + atop(start -
 1676                             entry->start);
 1677                         m_next = vm_page_find_least(first_object, pstart);
 1678                         pend = OFF_TO_IDX(entry->offset) + atop(end -
 1679                             entry->start);
 1680                         while ((m = m_next) != NULL && m->pindex < pend) {
 1681                                 m_next = TAILQ_NEXT(m, listq);
 1682                                 if (!vm_page_all_valid(m) ||
 1683                                     vm_page_busied(m))
 1684                                         continue;
 1685 
 1686                                 /*
 1687                                  * Don't clear PGA_REFERENCED, since it would
 1688                                  * likely represent a reference by a different
 1689                                  * process.
 1690                                  *
 1691                                  * Typically, at this point, prefetched pages
 1692                                  * are still in the inactive queue.  Only
 1693                                  * pages that triggered page faults are in the
 1694                                  * active queue.  The test for whether the page
 1695                                  * is in the inactive queue is racy; in the
 1696                                  * worst case we will requeue the page
 1697                                  * unnecessarily.
 1698                                  */
 1699                                 if (!vm_page_inactive(m))
 1700                                         vm_page_deactivate(m);
 1701                         }
 1702                 }
 1703                 VM_OBJECT_RUNLOCK(first_object);
 1704         }
 1705 }
 1706 
 1707 /*
 1708  * vm_fault_prefault provides a quick way of clustering
 1709  * pagefaults into a processes address space.  It is a "cousin"
 1710  * of vm_map_pmap_enter, except it runs at page fault time instead
 1711  * of mmap time.
 1712  */
 1713 static void
 1714 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
 1715     int backward, int forward, bool obj_locked)
 1716 {
 1717         pmap_t pmap;
 1718         vm_map_entry_t entry;
 1719         vm_object_t backing_object, lobject;
 1720         vm_offset_t addr, starta;
 1721         vm_pindex_t pindex;
 1722         vm_page_t m;
 1723         int i;
 1724 
 1725         pmap = fs->map->pmap;
 1726         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
 1727                 return;
 1728 
 1729         entry = fs->entry;
 1730 
 1731         if (addra < backward * PAGE_SIZE) {
 1732                 starta = entry->start;
 1733         } else {
 1734                 starta = addra - backward * PAGE_SIZE;
 1735                 if (starta < entry->start)
 1736                         starta = entry->start;
 1737         }
 1738 
 1739         /*
 1740          * Generate the sequence of virtual addresses that are candidates for
 1741          * prefaulting in an outward spiral from the faulting virtual address,
 1742          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
 1743          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
 1744          * If the candidate address doesn't have a backing physical page, then
 1745          * the loop immediately terminates.
 1746          */
 1747         for (i = 0; i < 2 * imax(backward, forward); i++) {
 1748                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
 1749                     PAGE_SIZE);
 1750                 if (addr > addra + forward * PAGE_SIZE)
 1751                         addr = 0;
 1752 
 1753                 if (addr < starta || addr >= entry->end)
 1754                         continue;
 1755 
 1756                 if (!pmap_is_prefaultable(pmap, addr))
 1757                         continue;
 1758 
 1759                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
 1760                 lobject = entry->object.vm_object;
 1761                 if (!obj_locked)
 1762                         VM_OBJECT_RLOCK(lobject);
 1763                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
 1764                     lobject->type == OBJT_DEFAULT &&
 1765                     (backing_object = lobject->backing_object) != NULL) {
 1766                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
 1767                             0, ("vm_fault_prefault: unaligned object offset"));
 1768                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
 1769                         VM_OBJECT_RLOCK(backing_object);
 1770                         if (!obj_locked || lobject != entry->object.vm_object)
 1771                                 VM_OBJECT_RUNLOCK(lobject);
 1772                         lobject = backing_object;
 1773                 }
 1774                 if (m == NULL) {
 1775                         if (!obj_locked || lobject != entry->object.vm_object)
 1776                                 VM_OBJECT_RUNLOCK(lobject);
 1777                         break;
 1778                 }
 1779                 if (vm_page_all_valid(m) &&
 1780                     (m->flags & PG_FICTITIOUS) == 0)
 1781                         pmap_enter_quick(pmap, addr, m, entry->protection);
 1782                 if (!obj_locked || lobject != entry->object.vm_object)
 1783                         VM_OBJECT_RUNLOCK(lobject);
 1784         }
 1785 }
 1786 
 1787 /*
 1788  * Hold each of the physical pages that are mapped by the specified range of
 1789  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
 1790  * and allow the specified types of access, "prot".  If all of the implied
 1791  * pages are successfully held, then the number of held pages is returned
 1792  * together with pointers to those pages in the array "ma".  However, if any
 1793  * of the pages cannot be held, -1 is returned.
 1794  */
 1795 int
 1796 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
 1797     vm_prot_t prot, vm_page_t *ma, int max_count)
 1798 {
 1799         vm_offset_t end, va;
 1800         vm_page_t *mp;
 1801         int count;
 1802         boolean_t pmap_failed;
 1803 
 1804         if (len == 0)
 1805                 return (0);
 1806         end = round_page(addr + len);
 1807         addr = trunc_page(addr);
 1808 
 1809         if (!vm_map_range_valid(map, addr, end))
 1810                 return (-1);
 1811 
 1812         if (atop(end - addr) > max_count)
 1813                 panic("vm_fault_quick_hold_pages: count > max_count");
 1814         count = atop(end - addr);
 1815 
 1816         /*
 1817          * Most likely, the physical pages are resident in the pmap, so it is
 1818          * faster to try pmap_extract_and_hold() first.
 1819          */
 1820         pmap_failed = FALSE;
 1821         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
 1822                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
 1823                 if (*mp == NULL)
 1824                         pmap_failed = TRUE;
 1825                 else if ((prot & VM_PROT_WRITE) != 0 &&
 1826                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
 1827                         /*
 1828                          * Explicitly dirty the physical page.  Otherwise, the
 1829                          * caller's changes may go unnoticed because they are
 1830                          * performed through an unmanaged mapping or by a DMA
 1831                          * operation.
 1832                          *
 1833                          * The object lock is not held here.
 1834                          * See vm_page_clear_dirty_mask().
 1835                          */
 1836                         vm_page_dirty(*mp);
 1837                 }
 1838         }
 1839         if (pmap_failed) {
 1840                 /*
 1841                  * One or more pages could not be held by the pmap.  Either no
 1842                  * page was mapped at the specified virtual address or that
 1843                  * mapping had insufficient permissions.  Attempt to fault in
 1844                  * and hold these pages.
 1845                  *
 1846                  * If vm_fault_disable_pagefaults() was called,
 1847                  * i.e., TDP_NOFAULTING is set, we must not sleep nor
 1848                  * acquire MD VM locks, which means we must not call
 1849                  * vm_fault().  Some (out of tree) callers mark
 1850                  * too wide a code area with vm_fault_disable_pagefaults()
 1851                  * already, use the VM_PROT_QUICK_NOFAULT flag to request
 1852                  * the proper behaviour explicitly.
 1853                  */
 1854                 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
 1855                     (curthread->td_pflags & TDP_NOFAULTING) != 0)
 1856                         goto error;
 1857                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
 1858                         if (*mp == NULL && vm_fault(map, va, prot,
 1859                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
 1860                                 goto error;
 1861         }
 1862         return (count);
 1863 error:  
 1864         for (mp = ma; mp < ma + count; mp++)
 1865                 if (*mp != NULL)
 1866                         vm_page_unwire(*mp, PQ_INACTIVE);
 1867         return (-1);
 1868 }
 1869 
 1870 /*
 1871  *      Routine:
 1872  *              vm_fault_copy_entry
 1873  *      Function:
 1874  *              Create new shadow object backing dst_entry with private copy of
 1875  *              all underlying pages. When src_entry is equal to dst_entry,
 1876  *              function implements COW for wired-down map entry. Otherwise,
 1877  *              it forks wired entry into dst_map.
 1878  *
 1879  *      In/out conditions:
 1880  *              The source and destination maps must be locked for write.
 1881  *              The source map entry must be wired down (or be a sharing map
 1882  *              entry corresponding to a main map entry that is wired down).
 1883  */
 1884 void
 1885 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
 1886     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
 1887     vm_ooffset_t *fork_charge)
 1888 {
 1889         vm_object_t backing_object, dst_object, object, src_object;
 1890         vm_pindex_t dst_pindex, pindex, src_pindex;
 1891         vm_prot_t access, prot;
 1892         vm_offset_t vaddr;
 1893         vm_page_t dst_m;
 1894         vm_page_t src_m;
 1895         boolean_t upgrade;
 1896 
 1897 #ifdef  lint
 1898         src_map++;
 1899 #endif  /* lint */
 1900 
 1901         upgrade = src_entry == dst_entry;
 1902         access = prot = dst_entry->protection;
 1903 
 1904         src_object = src_entry->object.vm_object;
 1905         src_pindex = OFF_TO_IDX(src_entry->offset);
 1906 
 1907         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
 1908                 dst_object = src_object;
 1909                 vm_object_reference(dst_object);
 1910         } else {
 1911                 /*
 1912                  * Create the top-level object for the destination entry.
 1913                  * Doesn't actually shadow anything - we copy the pages
 1914                  * directly.
 1915                  */
 1916                 dst_object = vm_object_allocate_anon(atop(dst_entry->end -
 1917                     dst_entry->start), NULL, NULL, 0);
 1918 #if VM_NRESERVLEVEL > 0
 1919                 dst_object->flags |= OBJ_COLORED;
 1920                 dst_object->pg_color = atop(dst_entry->start);
 1921 #endif
 1922                 dst_object->domain = src_object->domain;
 1923                 dst_object->charge = dst_entry->end - dst_entry->start;
 1924         }
 1925 
 1926         VM_OBJECT_WLOCK(dst_object);
 1927         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
 1928             ("vm_fault_copy_entry: vm_object not NULL"));
 1929         if (src_object != dst_object) {
 1930                 dst_entry->object.vm_object = dst_object;
 1931                 dst_entry->offset = 0;
 1932                 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
 1933         }
 1934         if (fork_charge != NULL) {
 1935                 KASSERT(dst_entry->cred == NULL,
 1936                     ("vm_fault_copy_entry: leaked swp charge"));
 1937                 dst_object->cred = curthread->td_ucred;
 1938                 crhold(dst_object->cred);
 1939                 *fork_charge += dst_object->charge;
 1940         } else if ((dst_object->type == OBJT_DEFAULT ||
 1941             dst_object->type == OBJT_SWAP) &&
 1942             dst_object->cred == NULL) {
 1943                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
 1944                     dst_entry));
 1945                 dst_object->cred = dst_entry->cred;
 1946                 dst_entry->cred = NULL;
 1947         }
 1948 
 1949         /*
 1950          * If not an upgrade, then enter the mappings in the pmap as
 1951          * read and/or execute accesses.  Otherwise, enter them as
 1952          * write accesses.
 1953          *
 1954          * A writeable large page mapping is only created if all of
 1955          * the constituent small page mappings are modified. Marking
 1956          * PTEs as modified on inception allows promotion to happen
 1957          * without taking potentially large number of soft faults.
 1958          */
 1959         if (!upgrade)
 1960                 access &= ~VM_PROT_WRITE;
 1961 
 1962         /*
 1963          * Loop through all of the virtual pages within the entry's
 1964          * range, copying each page from the source object to the
 1965          * destination object.  Since the source is wired, those pages
 1966          * must exist.  In contrast, the destination is pageable.
 1967          * Since the destination object doesn't share any backing storage
 1968          * with the source object, all of its pages must be dirtied,
 1969          * regardless of whether they can be written.
 1970          */
 1971         for (vaddr = dst_entry->start, dst_pindex = 0;
 1972             vaddr < dst_entry->end;
 1973             vaddr += PAGE_SIZE, dst_pindex++) {
 1974 again:
 1975                 /*
 1976                  * Find the page in the source object, and copy it in.
 1977                  * Because the source is wired down, the page will be
 1978                  * in memory.
 1979                  */
 1980                 if (src_object != dst_object)
 1981                         VM_OBJECT_RLOCK(src_object);
 1982                 object = src_object;
 1983                 pindex = src_pindex + dst_pindex;
 1984                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
 1985                     (backing_object = object->backing_object) != NULL) {
 1986                         /*
 1987                          * Unless the source mapping is read-only or
 1988                          * it is presently being upgraded from
 1989                          * read-only, the first object in the shadow
 1990                          * chain should provide all of the pages.  In
 1991                          * other words, this loop body should never be
 1992                          * executed when the source mapping is already
 1993                          * read/write.
 1994                          */
 1995                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
 1996                             upgrade,
 1997                             ("vm_fault_copy_entry: main object missing page"));
 1998 
 1999                         VM_OBJECT_RLOCK(backing_object);
 2000                         pindex += OFF_TO_IDX(object->backing_object_offset);
 2001                         if (object != dst_object)
 2002                                 VM_OBJECT_RUNLOCK(object);
 2003                         object = backing_object;
 2004                 }
 2005                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
 2006 
 2007                 if (object != dst_object) {
 2008                         /*
 2009                          * Allocate a page in the destination object.
 2010                          */
 2011                         dst_m = vm_page_alloc(dst_object, (src_object ==
 2012                             dst_object ? src_pindex : 0) + dst_pindex,
 2013                             VM_ALLOC_NORMAL);
 2014                         if (dst_m == NULL) {
 2015                                 VM_OBJECT_WUNLOCK(dst_object);
 2016                                 VM_OBJECT_RUNLOCK(object);
 2017                                 vm_wait(dst_object);
 2018                                 VM_OBJECT_WLOCK(dst_object);
 2019                                 goto again;
 2020                         }
 2021 
 2022                         /*
 2023                          * See the comment in vm_fault_cow().
 2024                          */
 2025                         if (src_object == dst_object &&
 2026                             (object->flags & OBJ_ONEMAPPING) == 0)
 2027                                 pmap_remove_all(src_m);
 2028                         pmap_copy_page(src_m, dst_m);
 2029                         VM_OBJECT_RUNLOCK(object);
 2030                         dst_m->dirty = dst_m->valid = src_m->valid;
 2031                 } else {
 2032                         dst_m = src_m;
 2033                         if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0)
 2034                                 goto again;
 2035                         if (dst_m->pindex >= dst_object->size) {
 2036                                 /*
 2037                                  * We are upgrading.  Index can occur
 2038                                  * out of bounds if the object type is
 2039                                  * vnode and the file was truncated.
 2040                                  */
 2041                                 vm_page_xunbusy(dst_m);
 2042                                 break;
 2043                         }
 2044                 }
 2045                 VM_OBJECT_WUNLOCK(dst_object);
 2046 
 2047                 /*
 2048                  * Enter it in the pmap. If a wired, copy-on-write
 2049                  * mapping is being replaced by a write-enabled
 2050                  * mapping, then wire that new mapping.
 2051                  *
 2052                  * The page can be invalid if the user called
 2053                  * msync(MS_INVALIDATE) or truncated the backing vnode
 2054                  * or shared memory object.  In this case, do not
 2055                  * insert it into pmap, but still do the copy so that
 2056                  * all copies of the wired map entry have similar
 2057                  * backing pages.
 2058                  */
 2059                 if (vm_page_all_valid(dst_m)) {
 2060                         pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
 2061                             access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
 2062                 }
 2063 
 2064                 /*
 2065                  * Mark it no longer busy, and put it on the active list.
 2066                  */
 2067                 VM_OBJECT_WLOCK(dst_object);
 2068                 
 2069                 if (upgrade) {
 2070                         if (src_m != dst_m) {
 2071                                 vm_page_unwire(src_m, PQ_INACTIVE);
 2072                                 vm_page_wire(dst_m);
 2073                         } else {
 2074                                 KASSERT(vm_page_wired(dst_m),
 2075                                     ("dst_m %p is not wired", dst_m));
 2076                         }
 2077                 } else {
 2078                         vm_page_activate(dst_m);
 2079                 }
 2080                 vm_page_xunbusy(dst_m);
 2081         }
 2082         VM_OBJECT_WUNLOCK(dst_object);
 2083         if (upgrade) {
 2084                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
 2085                 vm_object_deallocate(src_object);
 2086         }
 2087 }
 2088 
 2089 /*
 2090  * Block entry into the machine-independent layer's page fault handler by
 2091  * the calling thread.  Subsequent calls to vm_fault() by that thread will
 2092  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
 2093  * spurious page faults. 
 2094  */
 2095 int
 2096 vm_fault_disable_pagefaults(void)
 2097 {
 2098 
 2099         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
 2100 }
 2101 
 2102 void
 2103 vm_fault_enable_pagefaults(int save)
 2104 {
 2105 
 2106         curthread_pflags_restore(save);
 2107 }

Cache object: 677ace927a24a005942eaafb06e5a183


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.