FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_fault.c
1 /*-
2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * Copyright (c) 1994 John S. Dyson
7 * All rights reserved.
8 * Copyright (c) 1994 David Greenman
9 * All rights reserved.
10 *
11 *
12 * This code is derived from software contributed to Berkeley by
13 * The Mach Operating System project at Carnegie-Mellon University.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 * must display the following acknowledgement:
25 * This product includes software developed by the University of
26 * California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 * may be used to endorse or promote products derived from this software
29 * without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94
44 *
45 *
46 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47 * All rights reserved.
48 *
49 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50 *
51 * Permission to use, copy, modify and distribute this software and
52 * its documentation is hereby granted, provided that both the copyright
53 * notice and this permission notice appear in all copies of the
54 * software, derivative works or modified versions, and any portions
55 * thereof, and that both notices appear in supporting documentation.
56 *
57 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60 *
61 * Carnegie Mellon requests users of this software to return to
62 *
63 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
64 * School of Computer Science
65 * Carnegie Mellon University
66 * Pittsburgh PA 15213-3890
67 *
68 * any improvements or extensions that they make and grant Carnegie the
69 * rights to redistribute these changes.
70 */
71
72 /*
73 * Page fault handling module.
74 */
75
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78
79 #include "opt_ktrace.h"
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/lock.h>
86 #include <sys/mman.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/racct.h>
90 #include <sys/refcount.h>
91 #include <sys/resourcevar.h>
92 #include <sys/rwlock.h>
93 #include <sys/signalvar.h>
94 #include <sys/sysctl.h>
95 #include <sys/sysent.h>
96 #include <sys/vmmeter.h>
97 #include <sys/vnode.h>
98 #ifdef KTRACE
99 #include <sys/ktrace.h>
100 #endif
101
102 #include <vm/vm.h>
103 #include <vm/vm_param.h>
104 #include <vm/pmap.h>
105 #include <vm/vm_map.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_page.h>
108 #include <vm/vm_pageout.h>
109 #include <vm/vm_kern.h>
110 #include <vm/vm_pager.h>
111 #include <vm/vm_extern.h>
112 #include <vm/vm_reserv.h>
113
114 #define PFBAK 4
115 #define PFFOR 4
116
117 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT)
118
119 #define VM_FAULT_DONTNEED_MIN 1048576
120
121 struct faultstate {
122 /* Fault parameters. */
123 vm_offset_t vaddr;
124 vm_page_t *m_hold;
125 vm_prot_t fault_type;
126 vm_prot_t prot;
127 int fault_flags;
128 int oom;
129 boolean_t wired;
130
131 /* Page reference for cow. */
132 vm_page_t m_cow;
133
134 /* Current object. */
135 vm_object_t object;
136 vm_pindex_t pindex;
137 vm_page_t m;
138
139 /* Top-level map object. */
140 vm_object_t first_object;
141 vm_pindex_t first_pindex;
142 vm_page_t first_m;
143
144 /* Map state. */
145 vm_map_t map;
146 vm_map_entry_t entry;
147 int map_generation;
148 bool lookup_still_valid;
149
150 /* Vnode if locked. */
151 struct vnode *vp;
152 };
153
154 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
155 int ahead);
156 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
157 int backward, int forward, bool obj_locked);
158
159 static int vm_pfault_oom_attempts = 3;
160 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
161 &vm_pfault_oom_attempts, 0,
162 "Number of page allocation attempts in page fault handler before it "
163 "triggers OOM handling");
164
165 static int vm_pfault_oom_wait = 10;
166 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
167 &vm_pfault_oom_wait, 0,
168 "Number of seconds to wait for free pages before retrying "
169 "the page fault handler");
170
171 static inline void
172 fault_page_release(vm_page_t *mp)
173 {
174 vm_page_t m;
175
176 m = *mp;
177 if (m != NULL) {
178 /*
179 * We are likely to loop around again and attempt to busy
180 * this page. Deactivating it leaves it available for
181 * pageout while optimizing fault restarts.
182 */
183 vm_page_deactivate(m);
184 vm_page_xunbusy(m);
185 *mp = NULL;
186 }
187 }
188
189 static inline void
190 fault_page_free(vm_page_t *mp)
191 {
192 vm_page_t m;
193
194 m = *mp;
195 if (m != NULL) {
196 VM_OBJECT_ASSERT_WLOCKED(m->object);
197 if (!vm_page_wired(m))
198 vm_page_free(m);
199 else
200 vm_page_xunbusy(m);
201 *mp = NULL;
202 }
203 }
204
205 static inline void
206 unlock_map(struct faultstate *fs)
207 {
208
209 if (fs->lookup_still_valid) {
210 vm_map_lookup_done(fs->map, fs->entry);
211 fs->lookup_still_valid = false;
212 }
213 }
214
215 static void
216 unlock_vp(struct faultstate *fs)
217 {
218
219 if (fs->vp != NULL) {
220 vput(fs->vp);
221 fs->vp = NULL;
222 }
223 }
224
225 static void
226 fault_deallocate(struct faultstate *fs)
227 {
228
229 fault_page_release(&fs->m_cow);
230 fault_page_release(&fs->m);
231 vm_object_pip_wakeup(fs->object);
232 if (fs->object != fs->first_object) {
233 VM_OBJECT_WLOCK(fs->first_object);
234 fault_page_free(&fs->first_m);
235 VM_OBJECT_WUNLOCK(fs->first_object);
236 vm_object_pip_wakeup(fs->first_object);
237 }
238 vm_object_deallocate(fs->first_object);
239 unlock_map(fs);
240 unlock_vp(fs);
241 }
242
243 static void
244 unlock_and_deallocate(struct faultstate *fs)
245 {
246
247 VM_OBJECT_WUNLOCK(fs->object);
248 fault_deallocate(fs);
249 }
250
251 static void
252 vm_fault_dirty(struct faultstate *fs, vm_page_t m)
253 {
254 bool need_dirty;
255
256 if (((fs->prot & VM_PROT_WRITE) == 0 &&
257 (fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
258 (m->oflags & VPO_UNMANAGED) != 0)
259 return;
260
261 VM_PAGE_OBJECT_BUSY_ASSERT(m);
262
263 need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
264 (fs->fault_flags & VM_FAULT_WIRE) == 0) ||
265 (fs->fault_flags & VM_FAULT_DIRTY) != 0;
266
267 vm_object_set_writeable_dirty(m->object);
268
269 /*
270 * If the fault is a write, we know that this page is being
271 * written NOW so dirty it explicitly to save on
272 * pmap_is_modified() calls later.
273 *
274 * Also, since the page is now dirty, we can possibly tell
275 * the pager to release any swap backing the page.
276 */
277 if (need_dirty && vm_page_set_dirty(m) == 0) {
278 /*
279 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
280 * if the page is already dirty to prevent data written with
281 * the expectation of being synced from not being synced.
282 * Likewise if this entry does not request NOSYNC then make
283 * sure the page isn't marked NOSYNC. Applications sharing
284 * data should use the same flags to avoid ping ponging.
285 */
286 if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
287 vm_page_aflag_set(m, PGA_NOSYNC);
288 else
289 vm_page_aflag_clear(m, PGA_NOSYNC);
290 }
291
292 }
293
294 /*
295 * Unlocks fs.first_object and fs.map on success.
296 */
297 static int
298 vm_fault_soft_fast(struct faultstate *fs)
299 {
300 vm_page_t m, m_map;
301 #if VM_NRESERVLEVEL > 0
302 vm_page_t m_super;
303 int flags;
304 #endif
305 int psind, rv;
306 vm_offset_t vaddr;
307
308 MPASS(fs->vp == NULL);
309 vaddr = fs->vaddr;
310 vm_object_busy(fs->first_object);
311 m = vm_page_lookup(fs->first_object, fs->first_pindex);
312 /* A busy page can be mapped for read|execute access. */
313 if (m == NULL || ((fs->prot & VM_PROT_WRITE) != 0 &&
314 vm_page_busied(m)) || !vm_page_all_valid(m)) {
315 rv = KERN_FAILURE;
316 goto out;
317 }
318 m_map = m;
319 psind = 0;
320 #if VM_NRESERVLEVEL > 0
321 if ((m->flags & PG_FICTITIOUS) == 0 &&
322 (m_super = vm_reserv_to_superpage(m)) != NULL &&
323 rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
324 roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
325 (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
326 (pagesizes[m_super->psind] - 1)) && !fs->wired &&
327 pmap_ps_enabled(fs->map->pmap)) {
328 flags = PS_ALL_VALID;
329 if ((fs->prot & VM_PROT_WRITE) != 0) {
330 /*
331 * Create a superpage mapping allowing write access
332 * only if none of the constituent pages are busy and
333 * all of them are already dirty (except possibly for
334 * the page that was faulted on).
335 */
336 flags |= PS_NONE_BUSY;
337 if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
338 flags |= PS_ALL_DIRTY;
339 }
340 if (vm_page_ps_test(m_super, flags, m)) {
341 m_map = m_super;
342 psind = m_super->psind;
343 vaddr = rounddown2(vaddr, pagesizes[psind]);
344 /* Preset the modified bit for dirty superpages. */
345 if ((flags & PS_ALL_DIRTY) != 0)
346 fs->fault_type |= VM_PROT_WRITE;
347 }
348 }
349 #endif
350 rv = pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
351 PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
352 if (rv != KERN_SUCCESS)
353 goto out;
354 if (fs->m_hold != NULL) {
355 (*fs->m_hold) = m;
356 vm_page_wire(m);
357 }
358 if (psind == 0 && !fs->wired)
359 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
360 VM_OBJECT_RUNLOCK(fs->first_object);
361 vm_fault_dirty(fs, m);
362 vm_map_lookup_done(fs->map, fs->entry);
363 curthread->td_ru.ru_minflt++;
364
365 out:
366 vm_object_unbusy(fs->first_object);
367 return (rv);
368 }
369
370 static void
371 vm_fault_restore_map_lock(struct faultstate *fs)
372 {
373
374 VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
375 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
376
377 if (!vm_map_trylock_read(fs->map)) {
378 VM_OBJECT_WUNLOCK(fs->first_object);
379 vm_map_lock_read(fs->map);
380 VM_OBJECT_WLOCK(fs->first_object);
381 }
382 fs->lookup_still_valid = true;
383 }
384
385 static void
386 vm_fault_populate_check_page(vm_page_t m)
387 {
388
389 /*
390 * Check each page to ensure that the pager is obeying the
391 * interface: the page must be installed in the object, fully
392 * valid, and exclusively busied.
393 */
394 MPASS(m != NULL);
395 MPASS(vm_page_all_valid(m));
396 MPASS(vm_page_xbusied(m));
397 }
398
399 static void
400 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
401 vm_pindex_t last)
402 {
403 vm_page_t m;
404 vm_pindex_t pidx;
405
406 VM_OBJECT_ASSERT_WLOCKED(object);
407 MPASS(first <= last);
408 for (pidx = first, m = vm_page_lookup(object, pidx);
409 pidx <= last; pidx++, m = vm_page_next(m)) {
410 vm_fault_populate_check_page(m);
411 vm_page_deactivate(m);
412 vm_page_xunbusy(m);
413 }
414 }
415
416 static int
417 vm_fault_populate(struct faultstate *fs)
418 {
419 vm_offset_t vaddr;
420 vm_page_t m;
421 vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
422 int bdry_idx, i, npages, psind, rv;
423
424 MPASS(fs->object == fs->first_object);
425 VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
426 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
427 MPASS(fs->first_object->backing_object == NULL);
428 MPASS(fs->lookup_still_valid);
429
430 pager_first = OFF_TO_IDX(fs->entry->offset);
431 pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
432 unlock_map(fs);
433 unlock_vp(fs);
434
435 /*
436 * Call the pager (driver) populate() method.
437 *
438 * There is no guarantee that the method will be called again
439 * if the current fault is for read, and a future fault is
440 * for write. Report the entry's maximum allowed protection
441 * to the driver.
442 */
443 rv = vm_pager_populate(fs->first_object, fs->first_pindex,
444 fs->fault_type, fs->entry->max_protection, &pager_first,
445 &pager_last);
446
447 VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
448 if (rv == VM_PAGER_BAD) {
449 /*
450 * VM_PAGER_BAD is the backdoor for a pager to request
451 * normal fault handling.
452 */
453 vm_fault_restore_map_lock(fs);
454 if (fs->map->timestamp != fs->map_generation)
455 return (KERN_RESTART);
456 return (KERN_NOT_RECEIVER);
457 }
458 if (rv != VM_PAGER_OK)
459 return (KERN_FAILURE); /* AKA SIGSEGV */
460
461 /* Ensure that the driver is obeying the interface. */
462 MPASS(pager_first <= pager_last);
463 MPASS(fs->first_pindex <= pager_last);
464 MPASS(fs->first_pindex >= pager_first);
465 MPASS(pager_last < fs->first_object->size);
466
467 vm_fault_restore_map_lock(fs);
468 bdry_idx = (fs->entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
469 MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
470 if (fs->map->timestamp != fs->map_generation) {
471 if (bdry_idx == 0) {
472 vm_fault_populate_cleanup(fs->first_object, pager_first,
473 pager_last);
474 } else {
475 m = vm_page_lookup(fs->first_object, pager_first);
476 if (m != fs->m)
477 vm_page_xunbusy(m);
478 }
479 return (KERN_RESTART);
480 }
481
482 /*
483 * The map is unchanged after our last unlock. Process the fault.
484 *
485 * First, the special case of largepage mappings, where
486 * populate only busies the first page in superpage run.
487 */
488 if (bdry_idx != 0) {
489 KASSERT(PMAP_HAS_LARGEPAGES,
490 ("missing pmap support for large pages"));
491 m = vm_page_lookup(fs->first_object, pager_first);
492 vm_fault_populate_check_page(m);
493 VM_OBJECT_WUNLOCK(fs->first_object);
494 vaddr = fs->entry->start + IDX_TO_OFF(pager_first) -
495 fs->entry->offset;
496 /* assert alignment for entry */
497 KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0,
498 ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx",
499 (uintmax_t)fs->entry->start, (uintmax_t)pager_first,
500 (uintmax_t)fs->entry->offset, (uintmax_t)vaddr));
501 KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0,
502 ("unaligned superpage m %p %#jx", m,
503 (uintmax_t)VM_PAGE_TO_PHYS(m)));
504 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot,
505 fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) |
506 PMAP_ENTER_LARGEPAGE, bdry_idx);
507 VM_OBJECT_WLOCK(fs->first_object);
508 vm_page_xunbusy(m);
509 if ((fs->fault_flags & VM_FAULT_WIRE) != 0) {
510 for (i = 0; i < atop(pagesizes[bdry_idx]); i++)
511 vm_page_wire(m + i);
512 }
513 if (fs->m_hold != NULL) {
514 *fs->m_hold = m + (fs->first_pindex - pager_first);
515 vm_page_wire(*fs->m_hold);
516 }
517 goto out;
518 }
519
520 /*
521 * The range [pager_first, pager_last] that is given to the
522 * pager is only a hint. The pager may populate any range
523 * within the object that includes the requested page index.
524 * In case the pager expanded the range, clip it to fit into
525 * the map entry.
526 */
527 map_first = OFF_TO_IDX(fs->entry->offset);
528 if (map_first > pager_first) {
529 vm_fault_populate_cleanup(fs->first_object, pager_first,
530 map_first - 1);
531 pager_first = map_first;
532 }
533 map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
534 if (map_last < pager_last) {
535 vm_fault_populate_cleanup(fs->first_object, map_last + 1,
536 pager_last);
537 pager_last = map_last;
538 }
539 for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
540 pidx <= pager_last;
541 pidx += npages, m = vm_page_next(&m[npages - 1])) {
542 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
543 #if defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
544 __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv) || \
545 defined(__powerpc64__)
546 psind = m->psind;
547 if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
548 pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
549 !pmap_ps_enabled(fs->map->pmap) || fs->wired))
550 psind = 0;
551 #else
552 psind = 0;
553 #endif
554 npages = atop(pagesizes[psind]);
555 for (i = 0; i < npages; i++) {
556 vm_fault_populate_check_page(&m[i]);
557 vm_fault_dirty(fs, &m[i]);
558 }
559 VM_OBJECT_WUNLOCK(fs->first_object);
560 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
561 (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
562 #if defined(__amd64__)
563 if (psind > 0 && rv == KERN_FAILURE) {
564 for (i = 0; i < npages; i++) {
565 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
566 &m[i], fs->prot, fs->fault_type |
567 (fs->wired ? PMAP_ENTER_WIRED : 0), 0);
568 MPASS(rv == KERN_SUCCESS);
569 }
570 }
571 #else
572 MPASS(rv == KERN_SUCCESS);
573 #endif
574 VM_OBJECT_WLOCK(fs->first_object);
575 for (i = 0; i < npages; i++) {
576 if ((fs->fault_flags & VM_FAULT_WIRE) != 0)
577 vm_page_wire(&m[i]);
578 else
579 vm_page_activate(&m[i]);
580 if (fs->m_hold != NULL && m[i].pindex == fs->first_pindex) {
581 (*fs->m_hold) = &m[i];
582 vm_page_wire(&m[i]);
583 }
584 vm_page_xunbusy(&m[i]);
585 }
586 }
587 out:
588 curthread->td_ru.ru_majflt++;
589 return (KERN_SUCCESS);
590 }
591
592 static int prot_fault_translation;
593 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
594 &prot_fault_translation, 0,
595 "Control signal to deliver on protection fault");
596
597 /* compat definition to keep common code for signal translation */
598 #define UCODE_PAGEFLT 12
599 #ifdef T_PAGEFLT
600 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
601 #endif
602
603 /*
604 * vm_fault_trap:
605 *
606 * Handle a page fault occurring at the given address,
607 * requiring the given permissions, in the map specified.
608 * If successful, the page is inserted into the
609 * associated physical map.
610 *
611 * NOTE: the given address should be truncated to the
612 * proper page address.
613 *
614 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
615 * a standard error specifying why the fault is fatal is returned.
616 *
617 * The map in question must be referenced, and remains so.
618 * Caller may hold no locks.
619 */
620 int
621 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
622 int fault_flags, int *signo, int *ucode)
623 {
624 int result;
625
626 MPASS(signo == NULL || ucode != NULL);
627 #ifdef KTRACE
628 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
629 ktrfault(vaddr, fault_type);
630 #endif
631 result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
632 NULL);
633 KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
634 result == KERN_INVALID_ADDRESS ||
635 result == KERN_RESOURCE_SHORTAGE ||
636 result == KERN_PROTECTION_FAILURE ||
637 result == KERN_OUT_OF_BOUNDS,
638 ("Unexpected Mach error %d from vm_fault()", result));
639 #ifdef KTRACE
640 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
641 ktrfaultend(result);
642 #endif
643 if (result != KERN_SUCCESS && signo != NULL) {
644 switch (result) {
645 case KERN_FAILURE:
646 case KERN_INVALID_ADDRESS:
647 *signo = SIGSEGV;
648 *ucode = SEGV_MAPERR;
649 break;
650 case KERN_RESOURCE_SHORTAGE:
651 *signo = SIGBUS;
652 *ucode = BUS_OOMERR;
653 break;
654 case KERN_OUT_OF_BOUNDS:
655 *signo = SIGBUS;
656 *ucode = BUS_OBJERR;
657 break;
658 case KERN_PROTECTION_FAILURE:
659 if (prot_fault_translation == 0) {
660 /*
661 * Autodetect. This check also covers
662 * the images without the ABI-tag ELF
663 * note.
664 */
665 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
666 curproc->p_osrel >= P_OSREL_SIGSEGV) {
667 *signo = SIGSEGV;
668 *ucode = SEGV_ACCERR;
669 } else {
670 *signo = SIGBUS;
671 *ucode = UCODE_PAGEFLT;
672 }
673 } else if (prot_fault_translation == 1) {
674 /* Always compat mode. */
675 *signo = SIGBUS;
676 *ucode = UCODE_PAGEFLT;
677 } else {
678 /* Always SIGSEGV mode. */
679 *signo = SIGSEGV;
680 *ucode = SEGV_ACCERR;
681 }
682 break;
683 default:
684 KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
685 result));
686 break;
687 }
688 }
689 return (result);
690 }
691
692 static int
693 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
694 {
695 struct vnode *vp;
696 int error, locked;
697
698 if (fs->object->type != OBJT_VNODE)
699 return (KERN_SUCCESS);
700 vp = fs->object->handle;
701 if (vp == fs->vp) {
702 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
703 return (KERN_SUCCESS);
704 }
705
706 /*
707 * Perform an unlock in case the desired vnode changed while
708 * the map was unlocked during a retry.
709 */
710 unlock_vp(fs);
711
712 locked = VOP_ISLOCKED(vp);
713 if (locked != LK_EXCLUSIVE)
714 locked = LK_SHARED;
715
716 /*
717 * We must not sleep acquiring the vnode lock while we have
718 * the page exclusive busied or the object's
719 * paging-in-progress count incremented. Otherwise, we could
720 * deadlock.
721 */
722 error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT);
723 if (error == 0) {
724 fs->vp = vp;
725 return (KERN_SUCCESS);
726 }
727
728 vhold(vp);
729 if (objlocked)
730 unlock_and_deallocate(fs);
731 else
732 fault_deallocate(fs);
733 error = vget(vp, locked | LK_RETRY | LK_CANRECURSE);
734 vdrop(vp);
735 fs->vp = vp;
736 KASSERT(error == 0, ("vm_fault: vget failed %d", error));
737 return (KERN_RESOURCE_SHORTAGE);
738 }
739
740 /*
741 * Calculate the desired readahead. Handle drop-behind.
742 *
743 * Returns the number of readahead blocks to pass to the pager.
744 */
745 static int
746 vm_fault_readahead(struct faultstate *fs)
747 {
748 int era, nera;
749 u_char behavior;
750
751 KASSERT(fs->lookup_still_valid, ("map unlocked"));
752 era = fs->entry->read_ahead;
753 behavior = vm_map_entry_behavior(fs->entry);
754 if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
755 nera = 0;
756 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
757 nera = VM_FAULT_READ_AHEAD_MAX;
758 if (fs->vaddr == fs->entry->next_read)
759 vm_fault_dontneed(fs, fs->vaddr, nera);
760 } else if (fs->vaddr == fs->entry->next_read) {
761 /*
762 * This is a sequential fault. Arithmetically
763 * increase the requested number of pages in
764 * the read-ahead window. The requested
765 * number of pages is "# of sequential faults
766 * x (read ahead min + 1) + read ahead min"
767 */
768 nera = VM_FAULT_READ_AHEAD_MIN;
769 if (era > 0) {
770 nera += era + 1;
771 if (nera > VM_FAULT_READ_AHEAD_MAX)
772 nera = VM_FAULT_READ_AHEAD_MAX;
773 }
774 if (era == VM_FAULT_READ_AHEAD_MAX)
775 vm_fault_dontneed(fs, fs->vaddr, nera);
776 } else {
777 /*
778 * This is a non-sequential fault.
779 */
780 nera = 0;
781 }
782 if (era != nera) {
783 /*
784 * A read lock on the map suffices to update
785 * the read ahead count safely.
786 */
787 fs->entry->read_ahead = nera;
788 }
789
790 return (nera);
791 }
792
793 static int
794 vm_fault_lookup(struct faultstate *fs)
795 {
796 int result;
797
798 KASSERT(!fs->lookup_still_valid,
799 ("vm_fault_lookup: Map already locked."));
800 result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
801 VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
802 &fs->first_pindex, &fs->prot, &fs->wired);
803 if (result != KERN_SUCCESS) {
804 unlock_vp(fs);
805 return (result);
806 }
807
808 fs->map_generation = fs->map->timestamp;
809
810 if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
811 panic("%s: fault on nofault entry, addr: %#lx",
812 __func__, (u_long)fs->vaddr);
813 }
814
815 if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
816 fs->entry->wiring_thread != curthread) {
817 vm_map_unlock_read(fs->map);
818 vm_map_lock(fs->map);
819 if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
820 (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
821 unlock_vp(fs);
822 fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
823 vm_map_unlock_and_wait(fs->map, 0);
824 } else
825 vm_map_unlock(fs->map);
826 return (KERN_RESOURCE_SHORTAGE);
827 }
828
829 MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
830
831 if (fs->wired)
832 fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
833 else
834 KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
835 ("!fs->wired && VM_FAULT_WIRE"));
836 fs->lookup_still_valid = true;
837
838 return (KERN_SUCCESS);
839 }
840
841 static int
842 vm_fault_relookup(struct faultstate *fs)
843 {
844 vm_object_t retry_object;
845 vm_pindex_t retry_pindex;
846 vm_prot_t retry_prot;
847 int result;
848
849 if (!vm_map_trylock_read(fs->map))
850 return (KERN_RESTART);
851
852 fs->lookup_still_valid = true;
853 if (fs->map->timestamp == fs->map_generation)
854 return (KERN_SUCCESS);
855
856 result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
857 &fs->entry, &retry_object, &retry_pindex, &retry_prot,
858 &fs->wired);
859 if (result != KERN_SUCCESS) {
860 /*
861 * If retry of map lookup would have blocked then
862 * retry fault from start.
863 */
864 if (result == KERN_FAILURE)
865 return (KERN_RESTART);
866 return (result);
867 }
868 if (retry_object != fs->first_object ||
869 retry_pindex != fs->first_pindex)
870 return (KERN_RESTART);
871
872 /*
873 * Check whether the protection has changed or the object has
874 * been copied while we left the map unlocked. Changing from
875 * read to write permission is OK - we leave the page
876 * write-protected, and catch the write fault. Changing from
877 * write to read permission means that we can't mark the page
878 * write-enabled after all.
879 */
880 fs->prot &= retry_prot;
881 fs->fault_type &= retry_prot;
882 if (fs->prot == 0)
883 return (KERN_RESTART);
884
885 /* Reassert because wired may have changed. */
886 KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
887 ("!wired && VM_FAULT_WIRE"));
888
889 return (KERN_SUCCESS);
890 }
891
892 static void
893 vm_fault_cow(struct faultstate *fs)
894 {
895 bool is_first_object_locked;
896
897 KASSERT(fs->object != fs->first_object,
898 ("source and target COW objects are identical"));
899
900 /*
901 * This allows pages to be virtually copied from a backing_object
902 * into the first_object, where the backing object has no other
903 * refs to it, and cannot gain any more refs. Instead of a bcopy,
904 * we just move the page from the backing object to the first
905 * object. Note that we must mark the page dirty in the first
906 * object so that it will go out to swap when needed.
907 */
908 is_first_object_locked = false;
909 if (
910 /*
911 * Only one shadow object and no other refs.
912 */
913 fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
914 /*
915 * No other ways to look the object up
916 */
917 fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 &&
918 /*
919 * We don't chase down the shadow chain and we can acquire locks.
920 */
921 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) &&
922 fs->object == fs->first_object->backing_object &&
923 VM_OBJECT_TRYWLOCK(fs->object)) {
924 /*
925 * Remove but keep xbusy for replace. fs->m is moved into
926 * fs->first_object and left busy while fs->first_m is
927 * conditionally freed.
928 */
929 vm_page_remove_xbusy(fs->m);
930 vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
931 fs->first_m);
932 vm_page_dirty(fs->m);
933 #if VM_NRESERVLEVEL > 0
934 /*
935 * Rename the reservation.
936 */
937 vm_reserv_rename(fs->m, fs->first_object, fs->object,
938 OFF_TO_IDX(fs->first_object->backing_object_offset));
939 #endif
940 VM_OBJECT_WUNLOCK(fs->object);
941 VM_OBJECT_WUNLOCK(fs->first_object);
942 fs->first_m = fs->m;
943 fs->m = NULL;
944 VM_CNT_INC(v_cow_optim);
945 } else {
946 if (is_first_object_locked)
947 VM_OBJECT_WUNLOCK(fs->first_object);
948 /*
949 * Oh, well, lets copy it.
950 */
951 pmap_copy_page(fs->m, fs->first_m);
952 vm_page_valid(fs->first_m);
953 if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
954 vm_page_wire(fs->first_m);
955 vm_page_unwire(fs->m, PQ_INACTIVE);
956 }
957 /*
958 * Save the cow page to be released after
959 * pmap_enter is complete.
960 */
961 fs->m_cow = fs->m;
962 fs->m = NULL;
963
964 /*
965 * Typically, the shadow object is either private to this
966 * address space (OBJ_ONEMAPPING) or its pages are read only.
967 * In the highly unusual case where the pages of a shadow object
968 * are read/write shared between this and other address spaces,
969 * we need to ensure that any pmap-level mappings to the
970 * original, copy-on-write page from the backing object are
971 * removed from those other address spaces.
972 *
973 * The flag check is racy, but this is tolerable: if
974 * OBJ_ONEMAPPING is cleared after the check, the busy state
975 * ensures that new mappings of m_cow can't be created.
976 * pmap_enter() will replace an existing mapping in the current
977 * address space. If OBJ_ONEMAPPING is set after the check,
978 * removing mappings will at worse trigger some unnecessary page
979 * faults.
980 */
981 vm_page_assert_xbusied(fs->m_cow);
982 if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0)
983 pmap_remove_all(fs->m_cow);
984 }
985
986 vm_object_pip_wakeup(fs->object);
987
988 /*
989 * Only use the new page below...
990 */
991 fs->object = fs->first_object;
992 fs->pindex = fs->first_pindex;
993 fs->m = fs->first_m;
994 VM_CNT_INC(v_cow_faults);
995 curthread->td_cow++;
996 }
997
998 static bool
999 vm_fault_next(struct faultstate *fs)
1000 {
1001 vm_object_t next_object;
1002
1003 /*
1004 * The requested page does not exist at this object/
1005 * offset. Remove the invalid page from the object,
1006 * waking up anyone waiting for it, and continue on to
1007 * the next object. However, if this is the top-level
1008 * object, we must leave the busy page in place to
1009 * prevent another process from rushing past us, and
1010 * inserting the page in that object at the same time
1011 * that we are.
1012 */
1013 if (fs->object == fs->first_object) {
1014 fs->first_m = fs->m;
1015 fs->m = NULL;
1016 } else
1017 fault_page_free(&fs->m);
1018
1019 /*
1020 * Move on to the next object. Lock the next object before
1021 * unlocking the current one.
1022 */
1023 VM_OBJECT_ASSERT_WLOCKED(fs->object);
1024 next_object = fs->object->backing_object;
1025 if (next_object == NULL)
1026 return (false);
1027 MPASS(fs->first_m != NULL);
1028 KASSERT(fs->object != next_object, ("object loop %p", next_object));
1029 VM_OBJECT_WLOCK(next_object);
1030 vm_object_pip_add(next_object, 1);
1031 if (fs->object != fs->first_object)
1032 vm_object_pip_wakeup(fs->object);
1033 fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1034 VM_OBJECT_WUNLOCK(fs->object);
1035 fs->object = next_object;
1036
1037 return (true);
1038 }
1039
1040 static void
1041 vm_fault_zerofill(struct faultstate *fs)
1042 {
1043
1044 /*
1045 * If there's no object left, fill the page in the top
1046 * object with zeros.
1047 */
1048 if (fs->object != fs->first_object) {
1049 vm_object_pip_wakeup(fs->object);
1050 fs->object = fs->first_object;
1051 fs->pindex = fs->first_pindex;
1052 }
1053 MPASS(fs->first_m != NULL);
1054 MPASS(fs->m == NULL);
1055 fs->m = fs->first_m;
1056 fs->first_m = NULL;
1057
1058 /*
1059 * Zero the page if necessary and mark it valid.
1060 */
1061 if ((fs->m->flags & PG_ZERO) == 0) {
1062 pmap_zero_page(fs->m);
1063 } else {
1064 VM_CNT_INC(v_ozfod);
1065 }
1066 VM_CNT_INC(v_zfod);
1067 vm_page_valid(fs->m);
1068 }
1069
1070 /*
1071 * Allocate a page directly or via the object populate method.
1072 */
1073 static int
1074 vm_fault_allocate(struct faultstate *fs)
1075 {
1076 struct domainset *dset;
1077 int alloc_req;
1078 int rv;
1079
1080 if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
1081 rv = vm_fault_lock_vnode(fs, true);
1082 MPASS(rv == KERN_SUCCESS || rv == KERN_RESOURCE_SHORTAGE);
1083 if (rv == KERN_RESOURCE_SHORTAGE)
1084 return (rv);
1085 }
1086
1087 if (fs->pindex >= fs->object->size)
1088 return (KERN_OUT_OF_BOUNDS);
1089
1090 if (fs->object == fs->first_object &&
1091 (fs->first_object->flags & OBJ_POPULATE) != 0 &&
1092 fs->first_object->shadow_count == 0) {
1093 rv = vm_fault_populate(fs);
1094 switch (rv) {
1095 case KERN_SUCCESS:
1096 case KERN_FAILURE:
1097 case KERN_RESTART:
1098 return (rv);
1099 case KERN_NOT_RECEIVER:
1100 /*
1101 * Pager's populate() method
1102 * returned VM_PAGER_BAD.
1103 */
1104 break;
1105 default:
1106 panic("inconsistent return codes");
1107 }
1108 }
1109
1110 /*
1111 * Allocate a new page for this object/offset pair.
1112 *
1113 * Unlocked read of the p_flag is harmless. At worst, the P_KILLED
1114 * might be not observed there, and allocation can fail, causing
1115 * restart and new reading of the p_flag.
1116 */
1117 dset = fs->object->domain.dr_policy;
1118 if (dset == NULL)
1119 dset = curthread->td_domain.dr_policy;
1120 if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
1121 #if VM_NRESERVLEVEL > 0
1122 vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
1123 #endif
1124 alloc_req = P_KILLED(curproc) ?
1125 VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
1126 if (fs->object->type != OBJT_VNODE &&
1127 fs->object->backing_object == NULL)
1128 alloc_req |= VM_ALLOC_ZERO;
1129 fs->m = vm_page_alloc(fs->object, fs->pindex, alloc_req);
1130 }
1131 if (fs->m == NULL) {
1132 unlock_and_deallocate(fs);
1133 if (vm_pfault_oom_attempts < 0 ||
1134 fs->oom < vm_pfault_oom_attempts) {
1135 fs->oom++;
1136 vm_waitpfault(dset, vm_pfault_oom_wait * hz);
1137 } else {
1138 if (bootverbose)
1139 printf(
1140 "proc %d (%s) failed to alloc page on fault, starting OOM\n",
1141 curproc->p_pid, curproc->p_comm);
1142 vm_pageout_oom(VM_OOM_MEM_PF);
1143 fs->oom = 0;
1144 }
1145 return (KERN_RESOURCE_SHORTAGE);
1146 }
1147 fs->oom = 0;
1148
1149 return (KERN_NOT_RECEIVER);
1150 }
1151
1152 /*
1153 * Call the pager to retrieve the page if there is a chance
1154 * that the pager has it, and potentially retrieve additional
1155 * pages at the same time.
1156 */
1157 static int
1158 vm_fault_getpages(struct faultstate *fs, int nera, int *behindp, int *aheadp)
1159 {
1160 vm_offset_t e_end, e_start;
1161 int ahead, behind, cluster_offset, rv;
1162 u_char behavior;
1163
1164 /*
1165 * Prepare for unlocking the map. Save the map
1166 * entry's start and end addresses, which are used to
1167 * optimize the size of the pager operation below.
1168 * Even if the map entry's addresses change after
1169 * unlocking the map, using the saved addresses is
1170 * safe.
1171 */
1172 e_start = fs->entry->start;
1173 e_end = fs->entry->end;
1174 behavior = vm_map_entry_behavior(fs->entry);
1175
1176 /*
1177 * Release the map lock before locking the vnode or
1178 * sleeping in the pager. (If the current object has
1179 * a shadow, then an earlier iteration of this loop
1180 * may have already unlocked the map.)
1181 */
1182 unlock_map(fs);
1183
1184 rv = vm_fault_lock_vnode(fs, false);
1185 MPASS(rv == KERN_SUCCESS || rv == KERN_RESOURCE_SHORTAGE);
1186 if (rv == KERN_RESOURCE_SHORTAGE)
1187 return (rv);
1188 KASSERT(fs->vp == NULL || !fs->map->system_map,
1189 ("vm_fault: vnode-backed object mapped by system map"));
1190
1191 /*
1192 * Page in the requested page and hint the pager,
1193 * that it may bring up surrounding pages.
1194 */
1195 if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1196 P_KILLED(curproc)) {
1197 behind = 0;
1198 ahead = 0;
1199 } else {
1200 /* Is this a sequential fault? */
1201 if (nera > 0) {
1202 behind = 0;
1203 ahead = nera;
1204 } else {
1205 /*
1206 * Request a cluster of pages that is
1207 * aligned to a VM_FAULT_READ_DEFAULT
1208 * page offset boundary within the
1209 * object. Alignment to a page offset
1210 * boundary is more likely to coincide
1211 * with the underlying file system
1212 * block than alignment to a virtual
1213 * address boundary.
1214 */
1215 cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
1216 behind = ulmin(cluster_offset,
1217 atop(fs->vaddr - e_start));
1218 ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
1219 }
1220 ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
1221 }
1222 *behindp = behind;
1223 *aheadp = ahead;
1224 rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
1225 if (rv == VM_PAGER_OK)
1226 return (KERN_SUCCESS);
1227 if (rv == VM_PAGER_ERROR)
1228 printf("vm_fault: pager read error, pid %d (%s)\n",
1229 curproc->p_pid, curproc->p_comm);
1230 /*
1231 * If an I/O error occurred or the requested page was
1232 * outside the range of the pager, clean up and return
1233 * an error.
1234 */
1235 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD)
1236 return (KERN_OUT_OF_BOUNDS);
1237 return (KERN_NOT_RECEIVER);
1238 }
1239
1240 /*
1241 * Wait/Retry if the page is busy. We have to do this if the page is
1242 * either exclusive or shared busy because the vm_pager may be using
1243 * read busy for pageouts (and even pageins if it is the vnode pager),
1244 * and we could end up trying to pagein and pageout the same page
1245 * simultaneously.
1246 *
1247 * We can theoretically allow the busy case on a read fault if the page
1248 * is marked valid, but since such pages are typically already pmap'd,
1249 * putting that special case in might be more effort then it is worth.
1250 * We cannot under any circumstances mess around with a shared busied
1251 * page except, perhaps, to pmap it.
1252 */
1253 static void
1254 vm_fault_busy_sleep(struct faultstate *fs)
1255 {
1256 /*
1257 * Reference the page before unlocking and
1258 * sleeping so that the page daemon is less
1259 * likely to reclaim it.
1260 */
1261 vm_page_aflag_set(fs->m, PGA_REFERENCED);
1262 if (fs->object != fs->first_object) {
1263 fault_page_release(&fs->first_m);
1264 vm_object_pip_wakeup(fs->first_object);
1265 }
1266 vm_object_pip_wakeup(fs->object);
1267 unlock_map(fs);
1268 if (fs->m == vm_page_lookup(fs->object, fs->pindex))
1269 vm_page_busy_sleep(fs->m, "vmpfw", false);
1270 else
1271 VM_OBJECT_WUNLOCK(fs->object);
1272 VM_CNT_INC(v_intrans);
1273 vm_object_deallocate(fs->first_object);
1274 }
1275
1276 int
1277 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1278 int fault_flags, vm_page_t *m_hold)
1279 {
1280 struct faultstate fs;
1281 int ahead, behind, faultcount;
1282 int nera, result, rv;
1283 bool dead, hardfault;
1284
1285 VM_CNT_INC(v_vm_faults);
1286
1287 if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
1288 return (KERN_PROTECTION_FAILURE);
1289
1290 fs.vp = NULL;
1291 fs.vaddr = vaddr;
1292 fs.m_hold = m_hold;
1293 fs.fault_flags = fault_flags;
1294 fs.map = map;
1295 fs.lookup_still_valid = false;
1296 fs.oom = 0;
1297 faultcount = 0;
1298 nera = -1;
1299 hardfault = false;
1300
1301 RetryFault:
1302 fs.fault_type = fault_type;
1303
1304 /*
1305 * Find the backing store object and offset into it to begin the
1306 * search.
1307 */
1308 result = vm_fault_lookup(&fs);
1309 if (result != KERN_SUCCESS) {
1310 if (result == KERN_RESOURCE_SHORTAGE)
1311 goto RetryFault;
1312 return (result);
1313 }
1314
1315 /*
1316 * Try to avoid lock contention on the top-level object through
1317 * special-case handling of some types of page faults, specifically,
1318 * those that are mapping an existing page from the top-level object.
1319 * Under this condition, a read lock on the object suffices, allowing
1320 * multiple page faults of a similar type to run in parallel.
1321 */
1322 if (fs.vp == NULL /* avoid locked vnode leak */ &&
1323 (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 &&
1324 (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
1325 VM_OBJECT_RLOCK(fs.first_object);
1326 rv = vm_fault_soft_fast(&fs);
1327 if (rv == KERN_SUCCESS)
1328 return (rv);
1329 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
1330 VM_OBJECT_RUNLOCK(fs.first_object);
1331 VM_OBJECT_WLOCK(fs.first_object);
1332 }
1333 } else {
1334 VM_OBJECT_WLOCK(fs.first_object);
1335 }
1336
1337 /*
1338 * Make a reference to this object to prevent its disposal while we
1339 * are messing with it. Once we have the reference, the map is free
1340 * to be diddled. Since objects reference their shadows (and copies),
1341 * they will stay around as well.
1342 *
1343 * Bump the paging-in-progress count to prevent size changes (e.g.
1344 * truncation operations) during I/O.
1345 */
1346 vm_object_reference_locked(fs.first_object);
1347 vm_object_pip_add(fs.first_object, 1);
1348
1349 fs.m_cow = fs.m = fs.first_m = NULL;
1350
1351 /*
1352 * Search for the page at object/offset.
1353 */
1354 fs.object = fs.first_object;
1355 fs.pindex = fs.first_pindex;
1356
1357 if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) {
1358 rv = vm_fault_allocate(&fs);
1359 switch (rv) {
1360 case KERN_RESTART:
1361 unlock_and_deallocate(&fs);
1362 /* FALLTHROUGH */
1363 case KERN_RESOURCE_SHORTAGE:
1364 goto RetryFault;
1365 case KERN_SUCCESS:
1366 case KERN_FAILURE:
1367 case KERN_OUT_OF_BOUNDS:
1368 unlock_and_deallocate(&fs);
1369 return (rv);
1370 case KERN_NOT_RECEIVER:
1371 break;
1372 default:
1373 panic("vm_fault: Unhandled rv %d", rv);
1374 }
1375 }
1376
1377 while (TRUE) {
1378 KASSERT(fs.m == NULL,
1379 ("page still set %p at loop start", fs.m));
1380 /*
1381 * If the object is marked for imminent termination,
1382 * we retry here, since the collapse pass has raced
1383 * with us. Otherwise, if we see terminally dead
1384 * object, return fail.
1385 */
1386 if ((fs.object->flags & OBJ_DEAD) != 0) {
1387 dead = fs.object->type == OBJT_DEAD;
1388 unlock_and_deallocate(&fs);
1389 if (dead)
1390 return (KERN_PROTECTION_FAILURE);
1391 pause("vmf_de", 1);
1392 goto RetryFault;
1393 }
1394
1395 /*
1396 * See if page is resident
1397 */
1398 fs.m = vm_page_lookup(fs.object, fs.pindex);
1399 if (fs.m != NULL) {
1400 if (vm_page_tryxbusy(fs.m) == 0) {
1401 vm_fault_busy_sleep(&fs);
1402 goto RetryFault;
1403 }
1404
1405 /*
1406 * The page is marked busy for other processes and the
1407 * pagedaemon. If it still is completely valid we
1408 * are done.
1409 */
1410 if (vm_page_all_valid(fs.m)) {
1411 VM_OBJECT_WUNLOCK(fs.object);
1412 break; /* break to PAGE HAS BEEN FOUND. */
1413 }
1414 }
1415 VM_OBJECT_ASSERT_WLOCKED(fs.object);
1416
1417 /*
1418 * Page is not resident. If the pager might contain the page
1419 * or this is the beginning of the search, allocate a new
1420 * page. (Default objects are zero-fill, so there is no real
1421 * pager for them.)
1422 */
1423 if (fs.m == NULL && (fs.object->type != OBJT_DEFAULT ||
1424 fs.object == fs.first_object)) {
1425 rv = vm_fault_allocate(&fs);
1426 switch (rv) {
1427 case KERN_RESTART:
1428 unlock_and_deallocate(&fs);
1429 /* FALLTHROUGH */
1430 case KERN_RESOURCE_SHORTAGE:
1431 goto RetryFault;
1432 case KERN_SUCCESS:
1433 case KERN_FAILURE:
1434 case KERN_OUT_OF_BOUNDS:
1435 unlock_and_deallocate(&fs);
1436 return (rv);
1437 case KERN_NOT_RECEIVER:
1438 break;
1439 default:
1440 panic("vm_fault: Unhandled rv %d", rv);
1441 }
1442 }
1443
1444 /*
1445 * Default objects have no pager so no exclusive busy exists
1446 * to protect this page in the chain. Skip to the next
1447 * object without dropping the lock to preserve atomicity of
1448 * shadow faults.
1449 */
1450 if (fs.object->type != OBJT_DEFAULT) {
1451 /*
1452 * At this point, we have either allocated a new page
1453 * or found an existing page that is only partially
1454 * valid.
1455 *
1456 * We hold a reference on the current object and the
1457 * page is exclusive busied. The exclusive busy
1458 * prevents simultaneous faults and collapses while
1459 * the object lock is dropped.
1460 */
1461 VM_OBJECT_WUNLOCK(fs.object);
1462
1463 /*
1464 * If the pager for the current object might have
1465 * the page, then determine the number of additional
1466 * pages to read and potentially reprioritize
1467 * previously read pages for earlier reclamation.
1468 * These operations should only be performed once per
1469 * page fault. Even if the current pager doesn't
1470 * have the page, the number of additional pages to
1471 * read will apply to subsequent objects in the
1472 * shadow chain.
1473 */
1474 if (nera == -1 && !P_KILLED(curproc))
1475 nera = vm_fault_readahead(&fs);
1476
1477 rv = vm_fault_getpages(&fs, nera, &behind, &ahead);
1478 if (rv == KERN_SUCCESS) {
1479 faultcount = behind + 1 + ahead;
1480 hardfault = true;
1481 break; /* break to PAGE HAS BEEN FOUND. */
1482 }
1483 if (rv == KERN_RESOURCE_SHORTAGE)
1484 goto RetryFault;
1485 VM_OBJECT_WLOCK(fs.object);
1486 if (rv == KERN_OUT_OF_BOUNDS) {
1487 fault_page_free(&fs.m);
1488 unlock_and_deallocate(&fs);
1489 return (rv);
1490 }
1491 }
1492
1493 /*
1494 * The page was not found in the current object. Try to
1495 * traverse into a backing object or zero fill if none is
1496 * found.
1497 */
1498 if (vm_fault_next(&fs))
1499 continue;
1500 if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) {
1501 if (fs.first_object == fs.object)
1502 fault_page_free(&fs.first_m);
1503 unlock_and_deallocate(&fs);
1504 return (KERN_OUT_OF_BOUNDS);
1505 }
1506 VM_OBJECT_WUNLOCK(fs.object);
1507 vm_fault_zerofill(&fs);
1508 /* Don't try to prefault neighboring pages. */
1509 faultcount = 1;
1510 break; /* break to PAGE HAS BEEN FOUND. */
1511 }
1512
1513 /*
1514 * PAGE HAS BEEN FOUND. A valid page has been found and exclusively
1515 * busied. The object lock must no longer be held.
1516 */
1517 vm_page_assert_xbusied(fs.m);
1518 VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1519
1520 /*
1521 * If the page is being written, but isn't already owned by the
1522 * top-level object, we have to copy it into a new page owned by the
1523 * top-level object.
1524 */
1525 if (fs.object != fs.first_object) {
1526 /*
1527 * We only really need to copy if we want to write it.
1528 */
1529 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1530 vm_fault_cow(&fs);
1531 /*
1532 * We only try to prefault read-only mappings to the
1533 * neighboring pages when this copy-on-write fault is
1534 * a hard fault. In other cases, trying to prefault
1535 * is typically wasted effort.
1536 */
1537 if (faultcount == 0)
1538 faultcount = 1;
1539
1540 } else {
1541 fs.prot &= ~VM_PROT_WRITE;
1542 }
1543 }
1544
1545 /*
1546 * We must verify that the maps have not changed since our last
1547 * lookup.
1548 */
1549 if (!fs.lookup_still_valid) {
1550 result = vm_fault_relookup(&fs);
1551 if (result != KERN_SUCCESS) {
1552 fault_deallocate(&fs);
1553 if (result == KERN_RESTART)
1554 goto RetryFault;
1555 return (result);
1556 }
1557 }
1558 VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1559
1560 /*
1561 * If the page was filled by a pager, save the virtual address that
1562 * should be faulted on next under a sequential access pattern to the
1563 * map entry. A read lock on the map suffices to update this address
1564 * safely.
1565 */
1566 if (hardfault)
1567 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1568
1569 /*
1570 * Page must be completely valid or it is not fit to
1571 * map into user space. vm_pager_get_pages() ensures this.
1572 */
1573 vm_page_assert_xbusied(fs.m);
1574 KASSERT(vm_page_all_valid(fs.m),
1575 ("vm_fault: page %p partially invalid", fs.m));
1576
1577 vm_fault_dirty(&fs, fs.m);
1578
1579 /*
1580 * Put this page into the physical map. We had to do the unlock above
1581 * because pmap_enter() may sleep. We don't put the page
1582 * back on the active queue until later so that the pageout daemon
1583 * won't find it (yet).
1584 */
1585 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1586 fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
1587 if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
1588 fs.wired == 0)
1589 vm_fault_prefault(&fs, vaddr,
1590 faultcount > 0 ? behind : PFBAK,
1591 faultcount > 0 ? ahead : PFFOR, false);
1592
1593 /*
1594 * If the page is not wired down, then put it where the pageout daemon
1595 * can find it.
1596 */
1597 if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
1598 vm_page_wire(fs.m);
1599 else
1600 vm_page_activate(fs.m);
1601 if (fs.m_hold != NULL) {
1602 (*fs.m_hold) = fs.m;
1603 vm_page_wire(fs.m);
1604 }
1605 vm_page_xunbusy(fs.m);
1606 fs.m = NULL;
1607
1608 /*
1609 * Unlock everything, and return
1610 */
1611 fault_deallocate(&fs);
1612 if (hardfault) {
1613 VM_CNT_INC(v_io_faults);
1614 curthread->td_ru.ru_majflt++;
1615 #ifdef RACCT
1616 if (racct_enable && fs.object->type == OBJT_VNODE) {
1617 PROC_LOCK(curproc);
1618 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1619 racct_add_force(curproc, RACCT_WRITEBPS,
1620 PAGE_SIZE + behind * PAGE_SIZE);
1621 racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1622 } else {
1623 racct_add_force(curproc, RACCT_READBPS,
1624 PAGE_SIZE + ahead * PAGE_SIZE);
1625 racct_add_force(curproc, RACCT_READIOPS, 1);
1626 }
1627 PROC_UNLOCK(curproc);
1628 }
1629 #endif
1630 } else
1631 curthread->td_ru.ru_minflt++;
1632
1633 return (KERN_SUCCESS);
1634 }
1635
1636 /*
1637 * Speed up the reclamation of pages that precede the faulting pindex within
1638 * the first object of the shadow chain. Essentially, perform the equivalent
1639 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1640 * the faulting pindex by the cluster size when the pages read by vm_fault()
1641 * cross a cluster-size boundary. The cluster size is the greater of the
1642 * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1643 *
1644 * When "fs->first_object" is a shadow object, the pages in the backing object
1645 * that precede the faulting pindex are deactivated by vm_fault(). So, this
1646 * function must only be concerned with pages in the first object.
1647 */
1648 static void
1649 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1650 {
1651 vm_map_entry_t entry;
1652 vm_object_t first_object, object;
1653 vm_offset_t end, start;
1654 vm_page_t m, m_next;
1655 vm_pindex_t pend, pstart;
1656 vm_size_t size;
1657
1658 object = fs->object;
1659 VM_OBJECT_ASSERT_UNLOCKED(object);
1660 first_object = fs->first_object;
1661 /* Neither fictitious nor unmanaged pages can be reclaimed. */
1662 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1663 VM_OBJECT_RLOCK(first_object);
1664 size = VM_FAULT_DONTNEED_MIN;
1665 if (MAXPAGESIZES > 1 && size < pagesizes[1])
1666 size = pagesizes[1];
1667 end = rounddown2(vaddr, size);
1668 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1669 (entry = fs->entry)->start < end) {
1670 if (end - entry->start < size)
1671 start = entry->start;
1672 else
1673 start = end - size;
1674 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1675 pstart = OFF_TO_IDX(entry->offset) + atop(start -
1676 entry->start);
1677 m_next = vm_page_find_least(first_object, pstart);
1678 pend = OFF_TO_IDX(entry->offset) + atop(end -
1679 entry->start);
1680 while ((m = m_next) != NULL && m->pindex < pend) {
1681 m_next = TAILQ_NEXT(m, listq);
1682 if (!vm_page_all_valid(m) ||
1683 vm_page_busied(m))
1684 continue;
1685
1686 /*
1687 * Don't clear PGA_REFERENCED, since it would
1688 * likely represent a reference by a different
1689 * process.
1690 *
1691 * Typically, at this point, prefetched pages
1692 * are still in the inactive queue. Only
1693 * pages that triggered page faults are in the
1694 * active queue. The test for whether the page
1695 * is in the inactive queue is racy; in the
1696 * worst case we will requeue the page
1697 * unnecessarily.
1698 */
1699 if (!vm_page_inactive(m))
1700 vm_page_deactivate(m);
1701 }
1702 }
1703 VM_OBJECT_RUNLOCK(first_object);
1704 }
1705 }
1706
1707 /*
1708 * vm_fault_prefault provides a quick way of clustering
1709 * pagefaults into a processes address space. It is a "cousin"
1710 * of vm_map_pmap_enter, except it runs at page fault time instead
1711 * of mmap time.
1712 */
1713 static void
1714 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1715 int backward, int forward, bool obj_locked)
1716 {
1717 pmap_t pmap;
1718 vm_map_entry_t entry;
1719 vm_object_t backing_object, lobject;
1720 vm_offset_t addr, starta;
1721 vm_pindex_t pindex;
1722 vm_page_t m;
1723 int i;
1724
1725 pmap = fs->map->pmap;
1726 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1727 return;
1728
1729 entry = fs->entry;
1730
1731 if (addra < backward * PAGE_SIZE) {
1732 starta = entry->start;
1733 } else {
1734 starta = addra - backward * PAGE_SIZE;
1735 if (starta < entry->start)
1736 starta = entry->start;
1737 }
1738
1739 /*
1740 * Generate the sequence of virtual addresses that are candidates for
1741 * prefaulting in an outward spiral from the faulting virtual address,
1742 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra
1743 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1744 * If the candidate address doesn't have a backing physical page, then
1745 * the loop immediately terminates.
1746 */
1747 for (i = 0; i < 2 * imax(backward, forward); i++) {
1748 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1749 PAGE_SIZE);
1750 if (addr > addra + forward * PAGE_SIZE)
1751 addr = 0;
1752
1753 if (addr < starta || addr >= entry->end)
1754 continue;
1755
1756 if (!pmap_is_prefaultable(pmap, addr))
1757 continue;
1758
1759 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1760 lobject = entry->object.vm_object;
1761 if (!obj_locked)
1762 VM_OBJECT_RLOCK(lobject);
1763 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1764 lobject->type == OBJT_DEFAULT &&
1765 (backing_object = lobject->backing_object) != NULL) {
1766 KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1767 0, ("vm_fault_prefault: unaligned object offset"));
1768 pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1769 VM_OBJECT_RLOCK(backing_object);
1770 if (!obj_locked || lobject != entry->object.vm_object)
1771 VM_OBJECT_RUNLOCK(lobject);
1772 lobject = backing_object;
1773 }
1774 if (m == NULL) {
1775 if (!obj_locked || lobject != entry->object.vm_object)
1776 VM_OBJECT_RUNLOCK(lobject);
1777 break;
1778 }
1779 if (vm_page_all_valid(m) &&
1780 (m->flags & PG_FICTITIOUS) == 0)
1781 pmap_enter_quick(pmap, addr, m, entry->protection);
1782 if (!obj_locked || lobject != entry->object.vm_object)
1783 VM_OBJECT_RUNLOCK(lobject);
1784 }
1785 }
1786
1787 /*
1788 * Hold each of the physical pages that are mapped by the specified range of
1789 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1790 * and allow the specified types of access, "prot". If all of the implied
1791 * pages are successfully held, then the number of held pages is returned
1792 * together with pointers to those pages in the array "ma". However, if any
1793 * of the pages cannot be held, -1 is returned.
1794 */
1795 int
1796 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1797 vm_prot_t prot, vm_page_t *ma, int max_count)
1798 {
1799 vm_offset_t end, va;
1800 vm_page_t *mp;
1801 int count;
1802 boolean_t pmap_failed;
1803
1804 if (len == 0)
1805 return (0);
1806 end = round_page(addr + len);
1807 addr = trunc_page(addr);
1808
1809 if (!vm_map_range_valid(map, addr, end))
1810 return (-1);
1811
1812 if (atop(end - addr) > max_count)
1813 panic("vm_fault_quick_hold_pages: count > max_count");
1814 count = atop(end - addr);
1815
1816 /*
1817 * Most likely, the physical pages are resident in the pmap, so it is
1818 * faster to try pmap_extract_and_hold() first.
1819 */
1820 pmap_failed = FALSE;
1821 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1822 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1823 if (*mp == NULL)
1824 pmap_failed = TRUE;
1825 else if ((prot & VM_PROT_WRITE) != 0 &&
1826 (*mp)->dirty != VM_PAGE_BITS_ALL) {
1827 /*
1828 * Explicitly dirty the physical page. Otherwise, the
1829 * caller's changes may go unnoticed because they are
1830 * performed through an unmanaged mapping or by a DMA
1831 * operation.
1832 *
1833 * The object lock is not held here.
1834 * See vm_page_clear_dirty_mask().
1835 */
1836 vm_page_dirty(*mp);
1837 }
1838 }
1839 if (pmap_failed) {
1840 /*
1841 * One or more pages could not be held by the pmap. Either no
1842 * page was mapped at the specified virtual address or that
1843 * mapping had insufficient permissions. Attempt to fault in
1844 * and hold these pages.
1845 *
1846 * If vm_fault_disable_pagefaults() was called,
1847 * i.e., TDP_NOFAULTING is set, we must not sleep nor
1848 * acquire MD VM locks, which means we must not call
1849 * vm_fault(). Some (out of tree) callers mark
1850 * too wide a code area with vm_fault_disable_pagefaults()
1851 * already, use the VM_PROT_QUICK_NOFAULT flag to request
1852 * the proper behaviour explicitly.
1853 */
1854 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
1855 (curthread->td_pflags & TDP_NOFAULTING) != 0)
1856 goto error;
1857 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1858 if (*mp == NULL && vm_fault(map, va, prot,
1859 VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1860 goto error;
1861 }
1862 return (count);
1863 error:
1864 for (mp = ma; mp < ma + count; mp++)
1865 if (*mp != NULL)
1866 vm_page_unwire(*mp, PQ_INACTIVE);
1867 return (-1);
1868 }
1869
1870 /*
1871 * Routine:
1872 * vm_fault_copy_entry
1873 * Function:
1874 * Create new shadow object backing dst_entry with private copy of
1875 * all underlying pages. When src_entry is equal to dst_entry,
1876 * function implements COW for wired-down map entry. Otherwise,
1877 * it forks wired entry into dst_map.
1878 *
1879 * In/out conditions:
1880 * The source and destination maps must be locked for write.
1881 * The source map entry must be wired down (or be a sharing map
1882 * entry corresponding to a main map entry that is wired down).
1883 */
1884 void
1885 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1886 vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1887 vm_ooffset_t *fork_charge)
1888 {
1889 vm_object_t backing_object, dst_object, object, src_object;
1890 vm_pindex_t dst_pindex, pindex, src_pindex;
1891 vm_prot_t access, prot;
1892 vm_offset_t vaddr;
1893 vm_page_t dst_m;
1894 vm_page_t src_m;
1895 boolean_t upgrade;
1896
1897 #ifdef lint
1898 src_map++;
1899 #endif /* lint */
1900
1901 upgrade = src_entry == dst_entry;
1902 access = prot = dst_entry->protection;
1903
1904 src_object = src_entry->object.vm_object;
1905 src_pindex = OFF_TO_IDX(src_entry->offset);
1906
1907 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1908 dst_object = src_object;
1909 vm_object_reference(dst_object);
1910 } else {
1911 /*
1912 * Create the top-level object for the destination entry.
1913 * Doesn't actually shadow anything - we copy the pages
1914 * directly.
1915 */
1916 dst_object = vm_object_allocate_anon(atop(dst_entry->end -
1917 dst_entry->start), NULL, NULL, 0);
1918 #if VM_NRESERVLEVEL > 0
1919 dst_object->flags |= OBJ_COLORED;
1920 dst_object->pg_color = atop(dst_entry->start);
1921 #endif
1922 dst_object->domain = src_object->domain;
1923 dst_object->charge = dst_entry->end - dst_entry->start;
1924 }
1925
1926 VM_OBJECT_WLOCK(dst_object);
1927 KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1928 ("vm_fault_copy_entry: vm_object not NULL"));
1929 if (src_object != dst_object) {
1930 dst_entry->object.vm_object = dst_object;
1931 dst_entry->offset = 0;
1932 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
1933 }
1934 if (fork_charge != NULL) {
1935 KASSERT(dst_entry->cred == NULL,
1936 ("vm_fault_copy_entry: leaked swp charge"));
1937 dst_object->cred = curthread->td_ucred;
1938 crhold(dst_object->cred);
1939 *fork_charge += dst_object->charge;
1940 } else if ((dst_object->type == OBJT_DEFAULT ||
1941 dst_object->type == OBJT_SWAP) &&
1942 dst_object->cred == NULL) {
1943 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1944 dst_entry));
1945 dst_object->cred = dst_entry->cred;
1946 dst_entry->cred = NULL;
1947 }
1948
1949 /*
1950 * If not an upgrade, then enter the mappings in the pmap as
1951 * read and/or execute accesses. Otherwise, enter them as
1952 * write accesses.
1953 *
1954 * A writeable large page mapping is only created if all of
1955 * the constituent small page mappings are modified. Marking
1956 * PTEs as modified on inception allows promotion to happen
1957 * without taking potentially large number of soft faults.
1958 */
1959 if (!upgrade)
1960 access &= ~VM_PROT_WRITE;
1961
1962 /*
1963 * Loop through all of the virtual pages within the entry's
1964 * range, copying each page from the source object to the
1965 * destination object. Since the source is wired, those pages
1966 * must exist. In contrast, the destination is pageable.
1967 * Since the destination object doesn't share any backing storage
1968 * with the source object, all of its pages must be dirtied,
1969 * regardless of whether they can be written.
1970 */
1971 for (vaddr = dst_entry->start, dst_pindex = 0;
1972 vaddr < dst_entry->end;
1973 vaddr += PAGE_SIZE, dst_pindex++) {
1974 again:
1975 /*
1976 * Find the page in the source object, and copy it in.
1977 * Because the source is wired down, the page will be
1978 * in memory.
1979 */
1980 if (src_object != dst_object)
1981 VM_OBJECT_RLOCK(src_object);
1982 object = src_object;
1983 pindex = src_pindex + dst_pindex;
1984 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1985 (backing_object = object->backing_object) != NULL) {
1986 /*
1987 * Unless the source mapping is read-only or
1988 * it is presently being upgraded from
1989 * read-only, the first object in the shadow
1990 * chain should provide all of the pages. In
1991 * other words, this loop body should never be
1992 * executed when the source mapping is already
1993 * read/write.
1994 */
1995 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1996 upgrade,
1997 ("vm_fault_copy_entry: main object missing page"));
1998
1999 VM_OBJECT_RLOCK(backing_object);
2000 pindex += OFF_TO_IDX(object->backing_object_offset);
2001 if (object != dst_object)
2002 VM_OBJECT_RUNLOCK(object);
2003 object = backing_object;
2004 }
2005 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
2006
2007 if (object != dst_object) {
2008 /*
2009 * Allocate a page in the destination object.
2010 */
2011 dst_m = vm_page_alloc(dst_object, (src_object ==
2012 dst_object ? src_pindex : 0) + dst_pindex,
2013 VM_ALLOC_NORMAL);
2014 if (dst_m == NULL) {
2015 VM_OBJECT_WUNLOCK(dst_object);
2016 VM_OBJECT_RUNLOCK(object);
2017 vm_wait(dst_object);
2018 VM_OBJECT_WLOCK(dst_object);
2019 goto again;
2020 }
2021
2022 /*
2023 * See the comment in vm_fault_cow().
2024 */
2025 if (src_object == dst_object &&
2026 (object->flags & OBJ_ONEMAPPING) == 0)
2027 pmap_remove_all(src_m);
2028 pmap_copy_page(src_m, dst_m);
2029 VM_OBJECT_RUNLOCK(object);
2030 dst_m->dirty = dst_m->valid = src_m->valid;
2031 } else {
2032 dst_m = src_m;
2033 if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0)
2034 goto again;
2035 if (dst_m->pindex >= dst_object->size) {
2036 /*
2037 * We are upgrading. Index can occur
2038 * out of bounds if the object type is
2039 * vnode and the file was truncated.
2040 */
2041 vm_page_xunbusy(dst_m);
2042 break;
2043 }
2044 }
2045 VM_OBJECT_WUNLOCK(dst_object);
2046
2047 /*
2048 * Enter it in the pmap. If a wired, copy-on-write
2049 * mapping is being replaced by a write-enabled
2050 * mapping, then wire that new mapping.
2051 *
2052 * The page can be invalid if the user called
2053 * msync(MS_INVALIDATE) or truncated the backing vnode
2054 * or shared memory object. In this case, do not
2055 * insert it into pmap, but still do the copy so that
2056 * all copies of the wired map entry have similar
2057 * backing pages.
2058 */
2059 if (vm_page_all_valid(dst_m)) {
2060 pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
2061 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
2062 }
2063
2064 /*
2065 * Mark it no longer busy, and put it on the active list.
2066 */
2067 VM_OBJECT_WLOCK(dst_object);
2068
2069 if (upgrade) {
2070 if (src_m != dst_m) {
2071 vm_page_unwire(src_m, PQ_INACTIVE);
2072 vm_page_wire(dst_m);
2073 } else {
2074 KASSERT(vm_page_wired(dst_m),
2075 ("dst_m %p is not wired", dst_m));
2076 }
2077 } else {
2078 vm_page_activate(dst_m);
2079 }
2080 vm_page_xunbusy(dst_m);
2081 }
2082 VM_OBJECT_WUNLOCK(dst_object);
2083 if (upgrade) {
2084 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
2085 vm_object_deallocate(src_object);
2086 }
2087 }
2088
2089 /*
2090 * Block entry into the machine-independent layer's page fault handler by
2091 * the calling thread. Subsequent calls to vm_fault() by that thread will
2092 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of
2093 * spurious page faults.
2094 */
2095 int
2096 vm_fault_disable_pagefaults(void)
2097 {
2098
2099 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
2100 }
2101
2102 void
2103 vm_fault_enable_pagefaults(int save)
2104 {
2105
2106 curthread_pflags_restore(save);
2107 }
Cache object: 677ace927a24a005942eaafb06e5a183
|