FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_fault.c
1 /*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94
42 *
43 *
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
46 *
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
62 * School of Computer Science
63 * Carnegie Mellon University
64 * Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 *
69 * $FreeBSD$
70 */
71
72 /*
73 * Page fault handling module.
74 */
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/proc.h>
79 #include <sys/vnode.h>
80 #include <sys/resourcevar.h>
81 #include <sys/vmmeter.h>
82
83 #include <vm/vm.h>
84 #include <vm/vm_param.h>
85 #include <vm/vm_prot.h>
86 #include <sys/lock.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_pager.h>
94 #include <vm/vnode_pager.h>
95 #include <vm/vm_extern.h>
96
97 static int vm_fault_additional_pages __P((vm_page_t, int,
98 int, vm_page_t *, int *));
99
100 #define VM_FAULT_READ_AHEAD 8
101 #define VM_FAULT_READ_BEHIND 7
102 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
103
104 struct faultstate {
105 vm_page_t m;
106 vm_object_t object;
107 vm_pindex_t pindex;
108 vm_page_t first_m;
109 vm_object_t first_object;
110 vm_pindex_t first_pindex;
111 vm_map_t map;
112 vm_map_entry_t entry;
113 int lookup_still_valid;
114 struct vnode *vp;
115 };
116
117 static void
118 release_page(struct faultstate *fs)
119 {
120 vm_page_wakeup(fs->m);
121 vm_page_deactivate(fs->m);
122 fs->m = NULL;
123 }
124
125 static void
126 unlock_map(struct faultstate *fs)
127 {
128 if (fs->lookup_still_valid) {
129 vm_map_lookup_done(fs->map, fs->entry);
130 fs->lookup_still_valid = FALSE;
131 }
132 }
133
134 static void
135 _unlock_things(struct faultstate *fs, int dealloc)
136 {
137 vm_object_pip_wakeup(fs->object);
138 if (fs->object != fs->first_object) {
139 vm_page_free(fs->first_m);
140 vm_object_pip_wakeup(fs->first_object);
141 fs->first_m = NULL;
142 }
143 if (dealloc) {
144 vm_object_deallocate(fs->first_object);
145 }
146 unlock_map(fs);
147 if (fs->vp != NULL) {
148 vput(fs->vp);
149 fs->vp = NULL;
150 }
151 }
152
153 #define unlock_things(fs) _unlock_things(fs, 0)
154 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
155
156 /*
157 * vm_fault:
158 *
159 * Handle a page fault occuring at the given address,
160 * requiring the given permissions, in the map specified.
161 * If successful, the page is inserted into the
162 * associated physical map.
163 *
164 * NOTE: the given address should be truncated to the
165 * proper page address.
166 *
167 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
168 * a standard error specifying why the fault is fatal is returned.
169 *
170 *
171 * The map in question must be referenced, and remains so.
172 * Caller may hold no locks.
173 */
174 int
175 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
176 {
177 vm_prot_t prot;
178 int result;
179 boolean_t wired;
180 int map_generation;
181 vm_page_t old_m;
182 vm_object_t next_object;
183 vm_page_t marray[VM_FAULT_READ];
184 int hardfault;
185 int faultcount;
186 struct faultstate fs;
187
188 cnt.v_vm_faults++; /* needs lock XXX */
189 hardfault = 0;
190
191 RetryFault:;
192 fs.map = map;
193
194 /*
195 * Find the backing store object and offset into it to begin the
196 * search.
197 */
198 if ((result = vm_map_lookup(&fs.map, vaddr,
199 fault_type, &fs.entry, &fs.first_object,
200 &fs.first_pindex, &prot, &wired)) != KERN_SUCCESS) {
201 if ((result != KERN_PROTECTION_FAILURE) ||
202 ((fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)) {
203 return result;
204 }
205
206 /*
207 * If we are user-wiring a r/w segment, and it is COW, then
208 * we need to do the COW operation. Note that we don't COW
209 * currently RO sections now, because it is NOT desirable
210 * to COW .text. We simply keep .text from ever being COW'ed
211 * and take the heat that one cannot debug wired .text sections.
212 */
213 result = vm_map_lookup(&fs.map, vaddr,
214 VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
215 &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
216 if (result != KERN_SUCCESS) {
217 return result;
218 }
219
220 /*
221 * If we don't COW now, on a user wire, the user will never
222 * be able to write to the mapping. If we don't make this
223 * restriction, the bookkeeping would be nearly impossible.
224 */
225 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
226 fs.entry->max_protection &= ~VM_PROT_WRITE;
227 }
228
229 map_generation = fs.map->timestamp;
230
231 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
232 panic("vm_fault: fault on nofault entry, addr: %lx",
233 (u_long)vaddr);
234 }
235
236 /*
237 * Make a reference to this object to prevent its disposal while we
238 * are messing with it. Once we have the reference, the map is free
239 * to be diddled. Since objects reference their shadows (and copies),
240 * they will stay around as well.
241 */
242 vm_object_reference(fs.first_object);
243 vm_object_pip_add(fs.first_object, 1);
244
245 fs.vp = vnode_pager_lock(fs.first_object);
246 if ((fault_type & VM_PROT_WRITE) &&
247 (fs.first_object->type == OBJT_VNODE)) {
248 vm_freeze_copyopts(fs.first_object,
249 fs.first_pindex, fs.first_pindex + 1);
250 }
251
252 fs.lookup_still_valid = TRUE;
253
254 if (wired)
255 fault_type = prot;
256
257 fs.first_m = NULL;
258
259 /*
260 * Search for the page at object/offset.
261 */
262
263 fs.object = fs.first_object;
264 fs.pindex = fs.first_pindex;
265
266 /*
267 * See whether this page is resident
268 */
269 while (TRUE) {
270 /*
271 * If the object is dead, we stop here
272 */
273
274 if (fs.object->flags & OBJ_DEAD) {
275 unlock_and_deallocate(&fs);
276 return (KERN_PROTECTION_FAILURE);
277 }
278
279 /*
280 * See if page is resident
281 */
282
283 fs.m = vm_page_lookup(fs.object, fs.pindex);
284 if (fs.m != NULL) {
285 int queue, s;
286 /*
287 * Wait/Retry if the page is busy. We have to do this
288 * if the page is busy via either PG_BUSY or
289 * vm_page_t->busy because the vm_pager may be using
290 * vm_page_t->busy for pageouts ( and even pageins if
291 * it is the vnode pager ), and we could end up trying
292 * to pagein and pageout the same page simultaniously.
293 *
294 * We can theoretically allow the busy case on a read
295 * fault if the page is marked valid, but since such
296 * pages are typically already pmap'd, putting that
297 * special case in might be more effort then it is
298 * worth. We cannot under any circumstances mess
299 * around with a vm_page_t->busy page except, perhaps,
300 * to pmap it.
301 */
302 if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
303 unlock_things(&fs);
304 s = splvm();
305 if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
306 vm_page_flag_set(fs.m, PG_WANTED | PG_REFERENCED);
307 cnt.v_intrans++;
308 tsleep(fs.m, PSWP, "vmpfw", 0);
309 }
310 splx(s);
311 vm_object_deallocate(fs.first_object);
312 goto RetryFault;
313 }
314
315 queue = fs.m->queue;
316 s = splvm();
317 vm_page_unqueue_nowakeup(fs.m);
318 splx(s);
319
320 /*
321 * Mark page busy for other processes, and the pagedaemon.
322 */
323 if (((queue - fs.m->pc) == PQ_CACHE) &&
324 (cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min) {
325 vm_page_activate(fs.m);
326 unlock_and_deallocate(&fs);
327 VM_WAIT;
328 goto RetryFault;
329 }
330
331 vm_page_busy(fs.m);
332 if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
333 fs.m->object != kernel_object && fs.m->object != kmem_object) {
334 goto readrest;
335 }
336
337 break;
338 }
339 if (((fs.object->type != OBJT_DEFAULT) &&
340 (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
341 || (fs.object == fs.first_object)) {
342
343 if (fs.pindex >= fs.object->size) {
344 unlock_and_deallocate(&fs);
345 return (KERN_PROTECTION_FAILURE);
346 }
347
348 /*
349 * Allocate a new page for this object/offset pair.
350 */
351 fs.m = vm_page_alloc(fs.object, fs.pindex,
352 (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
353
354 if (fs.m == NULL) {
355 unlock_and_deallocate(&fs);
356 VM_WAIT;
357 goto RetryFault;
358 }
359 }
360
361 readrest:
362 if (fs.object->type != OBJT_DEFAULT &&
363 (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired)) {
364 int rv;
365 int reqpage;
366 int ahead, behind;
367
368 if (fs.first_object->behavior == OBJ_RANDOM) {
369 ahead = 0;
370 behind = 0;
371 } else {
372 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
373 if (behind > VM_FAULT_READ_BEHIND)
374 behind = VM_FAULT_READ_BEHIND;
375
376 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
377 if (ahead > VM_FAULT_READ_AHEAD)
378 ahead = VM_FAULT_READ_AHEAD;
379 }
380
381 if ((fs.first_object->type != OBJT_DEVICE) &&
382 (fs.first_object->behavior == OBJ_SEQUENTIAL)) {
383 vm_pindex_t firstpindex, tmppindex;
384 if (fs.first_pindex <
385 2*(VM_FAULT_READ_BEHIND + VM_FAULT_READ_AHEAD + 1))
386 firstpindex = 0;
387 else
388 firstpindex = fs.first_pindex -
389 2*(VM_FAULT_READ_BEHIND + VM_FAULT_READ_AHEAD + 1);
390
391 for(tmppindex = fs.first_pindex - 1;
392 tmppindex >= firstpindex;
393 --tmppindex) {
394 vm_page_t mt;
395 mt = vm_page_lookup( fs.first_object, tmppindex);
396 if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
397 break;
398 if (mt->busy ||
399 (mt->flags & (PG_BUSY | PG_FICTITIOUS)) ||
400 mt->hold_count ||
401 mt->wire_count)
402 continue;
403 if (mt->dirty == 0)
404 vm_page_test_dirty(mt);
405 if (mt->dirty) {
406 vm_page_protect(mt, VM_PROT_NONE);
407 vm_page_deactivate(mt);
408 } else {
409 vm_page_cache(mt);
410 }
411 }
412
413 ahead += behind;
414 behind = 0;
415 }
416
417 /*
418 * now we find out if any other pages should be paged
419 * in at this time this routine checks to see if the
420 * pages surrounding this fault reside in the same
421 * object as the page for this fault. If they do,
422 * then they are faulted in also into the object. The
423 * array "marray" returned contains an array of
424 * vm_page_t structs where one of them is the
425 * vm_page_t passed to the routine. The reqpage
426 * return value is the index into the marray for the
427 * vm_page_t passed to the routine.
428 */
429 faultcount = vm_fault_additional_pages(
430 fs.m, behind, ahead, marray, &reqpage);
431
432 /*
433 * Call the pager to retrieve the data, if any, after
434 * releasing the lock on the map.
435 */
436 unlock_map(&fs);
437
438 rv = faultcount ?
439 vm_pager_get_pages(fs.object, marray, faultcount,
440 reqpage) : VM_PAGER_FAIL;
441
442 if (rv == VM_PAGER_OK) {
443 /*
444 * Found the page. Leave it busy while we play
445 * with it.
446 */
447
448 /*
449 * Relookup in case pager changed page. Pager
450 * is responsible for disposition of old page
451 * if moved.
452 */
453 fs.m = vm_page_lookup(fs.object, fs.pindex);
454 if(!fs.m) {
455 unlock_and_deallocate(&fs);
456 goto RetryFault;
457 }
458
459 hardfault++;
460 break;
461 }
462 /*
463 * Remove the bogus page (which does not exist at this
464 * object/offset); before doing so, we must get back
465 * our object lock to preserve our invariant.
466 *
467 * Also wake up any other process that may want to bring
468 * in this page.
469 *
470 * If this is the top-level object, we must leave the
471 * busy page to prevent another process from rushing
472 * past us, and inserting the page in that object at
473 * the same time that we are.
474 */
475
476 if (rv == VM_PAGER_ERROR)
477 printf("vm_fault: pager read error, pid %d (%s)\n",
478 curproc->p_pid, curproc->p_comm);
479 /*
480 * Data outside the range of the pager or an I/O error
481 */
482 /*
483 * XXX - the check for kernel_map is a kludge to work
484 * around having the machine panic on a kernel space
485 * fault w/ I/O error.
486 */
487 if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
488 (rv == VM_PAGER_BAD)) {
489 vm_page_free(fs.m);
490 fs.m = NULL;
491 unlock_and_deallocate(&fs);
492 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
493 }
494 if (fs.object != fs.first_object) {
495 vm_page_free(fs.m);
496 fs.m = NULL;
497 /*
498 * XXX - we cannot just fall out at this
499 * point, m has been freed and is invalid!
500 */
501 }
502 }
503 /*
504 * We get here if the object has default pager (or unwiring) or the
505 * pager doesn't have the page.
506 */
507 if (fs.object == fs.first_object)
508 fs.first_m = fs.m;
509
510 /*
511 * Move on to the next object. Lock the next object before
512 * unlocking the current one.
513 */
514
515 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
516 next_object = fs.object->backing_object;
517 if (next_object == NULL) {
518 /*
519 * If there's no object left, fill the page in the top
520 * object with zeros.
521 */
522 if (fs.object != fs.first_object) {
523 vm_object_pip_wakeup(fs.object);
524
525 fs.object = fs.first_object;
526 fs.pindex = fs.first_pindex;
527 fs.m = fs.first_m;
528 }
529 fs.first_m = NULL;
530
531 if ((fs.m->flags & PG_ZERO) == 0) {
532 vm_page_zero_fill(fs.m);
533 }
534 else
535 cnt.v_ozfod++;
536 cnt.v_zfod++;
537 break;
538 } else {
539 if (fs.object != fs.first_object) {
540 vm_object_pip_wakeup(fs.object);
541 }
542 fs.object = next_object;
543 vm_object_pip_add(fs.object, 1);
544 }
545 }
546 KASSERT((fs.m->flags & PG_BUSY) != 0,
547 ("vm_fault: not busy after main loop"));
548
549 /*
550 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
551 * is held.]
552 */
553
554 old_m = fs.m; /* save page that would be copied */
555
556 /*
557 * If the page is being written, but isn't already owned by the
558 * top-level object, we have to copy it into a new page owned by the
559 * top-level object.
560 */
561
562 if (fs.object != fs.first_object) {
563 /*
564 * We only really need to copy if we want to write it.
565 */
566
567 if (fault_type & VM_PROT_WRITE) {
568
569 /*
570 * This allows pages to be virtually copied from a backing_object
571 * into the first_object, where the backing object has no other
572 * refs to it, and cannot gain any more refs. Instead of a
573 * bcopy, we just move the page from the backing object to the
574 * first object. Note that we must mark the page dirty in the
575 * first object so that it will go out to swap when needed.
576 */
577 if (map_generation == fs.map->timestamp &&
578 /*
579 * Only one shadow object
580 */
581 (fs.object->shadow_count == 1) &&
582 /*
583 * No COW refs, except us
584 */
585 (fs.object->ref_count == 1) &&
586 /*
587 * Noone else can look this object up
588 */
589 (fs.object->handle == NULL) &&
590 /*
591 * No other ways to look the object up
592 */
593 ((fs.object->type == OBJT_DEFAULT) ||
594 (fs.object->type == OBJT_SWAP)) &&
595 /*
596 * We don't chase down the shadow chain
597 */
598 (fs.object == fs.first_object->backing_object) &&
599
600 /*
601 * grab the lock if we need to
602 */
603 (fs.lookup_still_valid ||
604 (((fs.entry->eflags & MAP_ENTRY_IS_A_MAP) == 0) &&
605 lockmgr(&fs.map->lock,
606 LK_EXCLUSIVE|LK_NOWAIT, (void *)0, curproc) == 0))) {
607
608 fs.lookup_still_valid = 1;
609 /*
610 * get rid of the unnecessary page
611 */
612 vm_page_protect(fs.first_m, VM_PROT_NONE);
613 vm_page_free(fs.first_m);
614 fs.first_m = NULL;
615
616 /*
617 * grab the page and put it into the process'es object
618 */
619 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
620 fs.first_m = fs.m;
621 fs.first_m->dirty = VM_PAGE_BITS_ALL;
622 vm_page_busy(fs.first_m);
623 fs.m = NULL;
624 cnt.v_cow_optim++;
625 } else {
626 /*
627 * Oh, well, lets copy it.
628 */
629 vm_page_copy(fs.m, fs.first_m);
630 }
631
632 if (fs.m) {
633 /*
634 * We no longer need the old page or object.
635 */
636 release_page(&fs);
637 }
638
639 vm_object_pip_wakeup(fs.object);
640 /*
641 * Only use the new page below...
642 */
643
644 cnt.v_cow_faults++;
645 fs.m = fs.first_m;
646 fs.object = fs.first_object;
647 fs.pindex = fs.first_pindex;
648
649 } else {
650 prot &= ~VM_PROT_WRITE;
651 }
652 }
653
654 /*
655 * We must verify that the maps have not changed since our last
656 * lookup.
657 */
658
659 if (!fs.lookup_still_valid &&
660 (fs.map->timestamp != map_generation)) {
661 vm_object_t retry_object;
662 vm_pindex_t retry_pindex;
663 vm_prot_t retry_prot;
664
665 /*
666 * Since map entries may be pageable, make sure we can take a
667 * page fault on them.
668 */
669
670
671 /*
672 * Unlock vnode before the lookup to avoid deadlock. E.G.
673 * avoid a deadlock between the inode and exec_map that can
674 * occur due to locks being obtained in different orders.
675 */
676
677 if (fs.vp != NULL) {
678 vput(fs.vp);
679 fs.vp = NULL;
680 }
681
682 /*
683 * To avoid trying to write_lock the map while another process
684 * has it read_locked (in vm_map_pageable), we do not try for
685 * write permission. If the page is still writable, we will
686 * get write permission. If it is not, or has been marked
687 * needs_copy, we enter the mapping without write permission,
688 * and will merely take another fault.
689 */
690 result = vm_map_lookup(&fs.map, vaddr, fault_type & ~VM_PROT_WRITE,
691 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
692 map_generation = fs.map->timestamp;
693
694 /*
695 * If we don't need the page any longer, put it on the active
696 * list (the easiest thing to do here). If no one needs it,
697 * pageout will grab it eventually.
698 */
699
700 if (result != KERN_SUCCESS) {
701 release_page(&fs);
702 unlock_and_deallocate(&fs);
703 return (result);
704 }
705 fs.lookup_still_valid = TRUE;
706
707 if ((retry_object != fs.first_object) ||
708 (retry_pindex != fs.first_pindex)) {
709 release_page(&fs);
710 unlock_and_deallocate(&fs);
711 goto RetryFault;
712 }
713 /*
714 * Check whether the protection has changed or the object has
715 * been copied while we left the map unlocked. Changing from
716 * read to write permission is OK - we leave the page
717 * write-protected, and catch the write fault. Changing from
718 * write to read permission means that we can't mark the page
719 * write-enabled after all.
720 */
721 prot &= retry_prot;
722 }
723
724 /*
725 * Put this page into the physical map. We had to do the unlock above
726 * because pmap_enter may cause other faults. We don't put the page
727 * back on the active queue until later so that the page-out daemon
728 * won't find us (yet).
729 */
730
731 if (prot & VM_PROT_WRITE) {
732 vm_page_flag_set(fs.m, PG_WRITEABLE);
733 vm_object_set_flag(fs.m->object,
734 OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
735 /*
736 * If the fault is a write, we know that this page is being
737 * written NOW. This will save on the pmap_is_modified() calls
738 * later.
739 */
740 if (fault_flags & VM_FAULT_DIRTY) {
741 fs.m->dirty = VM_PAGE_BITS_ALL;
742 }
743 }
744
745 unlock_things(&fs);
746 fs.m->valid = VM_PAGE_BITS_ALL;
747 vm_page_flag_clear(fs.m, PG_ZERO);
748
749 pmap_enter(fs.map->pmap, vaddr, VM_PAGE_TO_PHYS(fs.m), prot, wired);
750 if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
751 pmap_prefault(fs.map->pmap, vaddr, fs.entry);
752 }
753
754 vm_page_flag_set(fs.m, PG_MAPPED|PG_REFERENCED);
755 if (fault_flags & VM_FAULT_HOLD)
756 vm_page_hold(fs.m);
757
758 /*
759 * If the page is not wired down, then put it where the pageout daemon
760 * can find it.
761 */
762 if (fault_flags & VM_FAULT_WIRE_MASK) {
763 if (wired)
764 vm_page_wire(fs.m);
765 else
766 vm_page_unwire(fs.m, 1);
767 } else {
768 vm_page_activate(fs.m);
769 }
770
771 if (curproc && (curproc->p_flag & P_INMEM) && curproc->p_stats) {
772 if (hardfault) {
773 curproc->p_stats->p_ru.ru_majflt++;
774 } else {
775 curproc->p_stats->p_ru.ru_minflt++;
776 }
777 }
778
779 /*
780 * Unlock everything, and return
781 */
782
783 vm_page_wakeup(fs.m);
784 vm_object_deallocate(fs.first_object);
785
786 return (KERN_SUCCESS);
787
788 }
789
790 /*
791 * vm_fault_wire:
792 *
793 * Wire down a range of virtual addresses in a map.
794 */
795 int
796 vm_fault_wire(map, start, end)
797 vm_map_t map;
798 vm_offset_t start, end;
799 {
800
801 register vm_offset_t va;
802 register pmap_t pmap;
803 int rv;
804
805 pmap = vm_map_pmap(map);
806
807 /*
808 * Inform the physical mapping system that the range of addresses may
809 * not fault, so that page tables and such can be locked down as well.
810 */
811
812 pmap_pageable(pmap, start, end, FALSE);
813
814 /*
815 * We simulate a fault to get the page and enter it in the physical
816 * map.
817 */
818
819 for (va = start; va < end; va += PAGE_SIZE) {
820 rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
821 VM_FAULT_CHANGE_WIRING);
822 if (rv) {
823 if (va != start)
824 vm_fault_unwire(map, start, va);
825 return (rv);
826 }
827 }
828 return (KERN_SUCCESS);
829 }
830
831 /*
832 * vm_fault_user_wire:
833 *
834 * Wire down a range of virtual addresses in a map. This
835 * is for user mode though, so we only ask for read access
836 * on currently read only sections.
837 */
838 int
839 vm_fault_user_wire(map, start, end)
840 vm_map_t map;
841 vm_offset_t start, end;
842 {
843
844 register vm_offset_t va;
845 register pmap_t pmap;
846 int rv;
847
848 pmap = vm_map_pmap(map);
849
850 /*
851 * Inform the physical mapping system that the range of addresses may
852 * not fault, so that page tables and such can be locked down as well.
853 */
854
855 pmap_pageable(pmap, start, end, FALSE);
856
857 /*
858 * We simulate a fault to get the page and enter it in the physical
859 * map.
860 */
861 for (va = start; va < end; va += PAGE_SIZE) {
862 rv = vm_fault(map, va, VM_PROT_READ, VM_FAULT_USER_WIRE);
863 if (rv) {
864 if (va != start)
865 vm_fault_unwire(map, start, va);
866 return (rv);
867 }
868 }
869 return (KERN_SUCCESS);
870 }
871
872
873 /*
874 * vm_fault_unwire:
875 *
876 * Unwire a range of virtual addresses in a map.
877 */
878 void
879 vm_fault_unwire(map, start, end)
880 vm_map_t map;
881 vm_offset_t start, end;
882 {
883
884 register vm_offset_t va, pa;
885 register pmap_t pmap;
886
887 pmap = vm_map_pmap(map);
888
889 /*
890 * Since the pages are wired down, we must be able to get their
891 * mappings from the physical map system.
892 */
893
894 for (va = start; va < end; va += PAGE_SIZE) {
895 pa = pmap_extract(pmap, va);
896 if (pa != (vm_offset_t) 0) {
897 pmap_change_wiring(pmap, va, FALSE);
898 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
899 }
900 }
901
902 /*
903 * Inform the physical mapping system that the range of addresses may
904 * fault, so that page tables and such may be unwired themselves.
905 */
906
907 pmap_pageable(pmap, start, end, TRUE);
908
909 }
910
911 /*
912 * Routine:
913 * vm_fault_copy_entry
914 * Function:
915 * Copy all of the pages from a wired-down map entry to another.
916 *
917 * In/out conditions:
918 * The source and destination maps must be locked for write.
919 * The source map entry must be wired down (or be a sharing map
920 * entry corresponding to a main map entry that is wired down).
921 */
922
923 void
924 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
925 vm_map_t dst_map;
926 vm_map_t src_map;
927 vm_map_entry_t dst_entry;
928 vm_map_entry_t src_entry;
929 {
930 vm_object_t dst_object;
931 vm_object_t src_object;
932 vm_ooffset_t dst_offset;
933 vm_ooffset_t src_offset;
934 vm_prot_t prot;
935 vm_offset_t vaddr;
936 vm_page_t dst_m;
937 vm_page_t src_m;
938
939 #ifdef lint
940 src_map++;
941 #endif /* lint */
942
943 src_object = src_entry->object.vm_object;
944 src_offset = src_entry->offset;
945
946 /*
947 * Create the top-level object for the destination entry. (Doesn't
948 * actually shadow anything - we copy the pages directly.)
949 */
950 dst_object = vm_object_allocate(OBJT_DEFAULT,
951 (vm_size_t) OFF_TO_IDX(dst_entry->end - dst_entry->start));
952
953 dst_entry->object.vm_object = dst_object;
954 dst_entry->offset = 0;
955
956 prot = dst_entry->max_protection;
957
958 /*
959 * Loop through all of the pages in the entry's range, copying each
960 * one from the source object (it should be there) to the destination
961 * object.
962 */
963 for (vaddr = dst_entry->start, dst_offset = 0;
964 vaddr < dst_entry->end;
965 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
966
967 /*
968 * Allocate a page in the destination object
969 */
970 do {
971 dst_m = vm_page_alloc(dst_object,
972 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
973 if (dst_m == NULL) {
974 VM_WAIT;
975 }
976 } while (dst_m == NULL);
977
978 /*
979 * Find the page in the source object, and copy it in.
980 * (Because the source is wired down, the page will be in
981 * memory.)
982 */
983 src_m = vm_page_lookup(src_object,
984 OFF_TO_IDX(dst_offset + src_offset));
985 if (src_m == NULL)
986 panic("vm_fault_copy_wired: page missing");
987
988 vm_page_copy(src_m, dst_m);
989
990 /*
991 * Enter it in the pmap...
992 */
993
994 vm_page_flag_clear(dst_m, PG_ZERO);
995 pmap_enter(dst_map->pmap, vaddr, VM_PAGE_TO_PHYS(dst_m),
996 prot, FALSE);
997 vm_page_flag_set(dst_m, PG_WRITEABLE|PG_MAPPED);
998
999 /*
1000 * Mark it no longer busy, and put it on the active list.
1001 */
1002 vm_page_activate(dst_m);
1003 vm_page_wakeup(dst_m);
1004 }
1005 }
1006
1007
1008 /*
1009 * This routine checks around the requested page for other pages that
1010 * might be able to be faulted in. This routine brackets the viable
1011 * pages for the pages to be paged in.
1012 *
1013 * Inputs:
1014 * m, rbehind, rahead
1015 *
1016 * Outputs:
1017 * marray (array of vm_page_t), reqpage (index of requested page)
1018 *
1019 * Return value:
1020 * number of pages in marray
1021 */
1022 static int
1023 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1024 vm_page_t m;
1025 int rbehind;
1026 int rahead;
1027 vm_page_t *marray;
1028 int *reqpage;
1029 {
1030 int i,j;
1031 vm_object_t object;
1032 vm_pindex_t pindex, startpindex, endpindex, tpindex;
1033 vm_page_t rtm;
1034 int cbehind, cahead;
1035
1036 object = m->object;
1037 pindex = m->pindex;
1038
1039 /*
1040 * we don't fault-ahead for device pager
1041 */
1042 if (object->type == OBJT_DEVICE) {
1043 *reqpage = 0;
1044 marray[0] = m;
1045 return 1;
1046 }
1047
1048 /*
1049 * if the requested page is not available, then give up now
1050 */
1051
1052 if (!vm_pager_has_page(object,
1053 OFF_TO_IDX(object->paging_offset) + pindex, &cbehind, &cahead)) {
1054 return 0;
1055 }
1056
1057 if ((cbehind == 0) && (cahead == 0)) {
1058 *reqpage = 0;
1059 marray[0] = m;
1060 return 1;
1061 }
1062
1063 if (rahead > cahead) {
1064 rahead = cahead;
1065 }
1066
1067 if (rbehind > cbehind) {
1068 rbehind = cbehind;
1069 }
1070
1071 /*
1072 * try to do any readahead that we might have free pages for.
1073 */
1074 if ((rahead + rbehind) >
1075 ((cnt.v_free_count + cnt.v_cache_count) - cnt.v_free_reserved)) {
1076 pagedaemon_wakeup();
1077 marray[0] = m;
1078 *reqpage = 0;
1079 return 1;
1080 }
1081
1082 /*
1083 * scan backward for the read behind pages -- in memory
1084 */
1085 if (pindex > 0) {
1086 if (rbehind > pindex) {
1087 rbehind = pindex;
1088 startpindex = 0;
1089 } else {
1090 startpindex = pindex - rbehind;
1091 }
1092
1093 for ( tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1094 if (vm_page_lookup( object, tpindex)) {
1095 startpindex = tpindex + 1;
1096 break;
1097 }
1098 if (tpindex == 0)
1099 break;
1100 }
1101
1102 for(i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1103
1104 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1105 if (rtm == NULL) {
1106 for (j = 0; j < i; j++) {
1107 vm_page_free(marray[j]);
1108 }
1109 marray[0] = m;
1110 *reqpage = 0;
1111 return 1;
1112 }
1113
1114 marray[i] = rtm;
1115 }
1116 } else {
1117 startpindex = 0;
1118 i = 0;
1119 }
1120
1121 marray[i] = m;
1122 /* page offset of the required page */
1123 *reqpage = i;
1124
1125 tpindex = pindex + 1;
1126 i++;
1127
1128 /*
1129 * scan forward for the read ahead pages
1130 */
1131 endpindex = tpindex + rahead;
1132 if (endpindex > object->size)
1133 endpindex = object->size;
1134
1135 for( ; tpindex < endpindex; i++, tpindex++) {
1136
1137 if (vm_page_lookup(object, tpindex)) {
1138 break;
1139 }
1140
1141 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1142 if (rtm == NULL) {
1143 break;
1144 }
1145
1146 marray[i] = rtm;
1147 }
1148
1149 /* return number of bytes of pages */
1150 return i;
1151 }
Cache object: 1018199b2b892c946cc988a68c3726d6
|