The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_fault.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  *
    9  *
   10  * This code is derived from software contributed to Berkeley by
   11  * The Mach Operating System project at Carnegie-Mellon University.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1. Redistributions of source code must retain the above copyright
   17  *    notice, this list of conditions and the following disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  * 3. All advertising materials mentioning features or use of this software
   22  *    must display the following acknowledgement:
   23  *      This product includes software developed by the University of
   24  *      California, Berkeley and its contributors.
   25  * 4. Neither the name of the University nor the names of its contributors
   26  *    may be used to endorse or promote products derived from this software
   27  *    without specific prior written permission.
   28  *
   29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   39  * SUCH DAMAGE.
   40  *
   41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
   42  *
   43  *
   44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   45  * All rights reserved.
   46  *
   47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   48  *
   49  * Permission to use, copy, modify and distribute this software and
   50  * its documentation is hereby granted, provided that both the copyright
   51  * notice and this permission notice appear in all copies of the
   52  * software, derivative works or modified versions, and any portions
   53  * thereof, and that both notices appear in supporting documentation.
   54  *
   55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   58  *
   59  * Carnegie Mellon requests users of this software to return to
   60  *
   61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   62  *  School of Computer Science
   63  *  Carnegie Mellon University
   64  *  Pittsburgh PA 15213-3890
   65  *
   66  * any improvements or extensions that they make and grant Carnegie the
   67  * rights to redistribute these changes.
   68  *
   69  * $FreeBSD$
   70  */
   71 
   72 /*
   73  *      Page fault handling module.
   74  */
   75 
   76 #include <sys/param.h>
   77 #include <sys/systm.h>
   78 #include <sys/proc.h>
   79 #include <sys/vnode.h>
   80 #include <sys/resourcevar.h>
   81 #include <sys/vmmeter.h>
   82 
   83 #include <vm/vm.h>
   84 #include <vm/vm_param.h>
   85 #include <sys/lock.h>
   86 #include <vm/pmap.h>
   87 #include <vm/vm_map.h>
   88 #include <vm/vm_object.h>
   89 #include <vm/vm_page.h>
   90 #include <vm/vm_pageout.h>
   91 #include <vm/vm_kern.h>
   92 #include <vm/vm_pager.h>
   93 #include <vm/vnode_pager.h>
   94 #include <vm/vm_extern.h>
   95 
   96 static int vm_fault_additional_pages __P((vm_page_t, int,
   97                                           int, vm_page_t *, int *));
   98 
   99 #define VM_FAULT_READ_AHEAD 8
  100 #define VM_FAULT_READ_BEHIND 7
  101 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
  102 
  103 struct faultstate {
  104         vm_page_t m;
  105         vm_object_t object;
  106         vm_pindex_t pindex;
  107         vm_page_t first_m;
  108         vm_object_t     first_object;
  109         vm_pindex_t first_pindex;
  110         vm_map_t map;
  111         vm_map_entry_t entry;
  112         int lookup_still_valid;
  113         struct vnode *vp;
  114 };
  115 
  116 static __inline void
  117 release_page(struct faultstate *fs)
  118 {
  119         vm_page_wakeup(fs->m);
  120         vm_page_deactivate(fs->m);
  121         fs->m = NULL;
  122 }
  123 
  124 static __inline void
  125 unlock_map(struct faultstate *fs)
  126 {
  127         if (fs->lookup_still_valid) {
  128                 vm_map_lookup_done(fs->map, fs->entry);
  129                 fs->lookup_still_valid = FALSE;
  130         }
  131 }
  132 
  133 static void
  134 _unlock_things(struct faultstate *fs, int dealloc)
  135 {
  136         vm_object_pip_wakeup(fs->object);
  137         if (fs->object != fs->first_object) {
  138                 vm_page_free(fs->first_m);
  139                 vm_object_pip_wakeup(fs->first_object);
  140                 fs->first_m = NULL;
  141         }
  142         if (dealloc) {
  143                 vm_object_deallocate(fs->first_object);
  144         }
  145         unlock_map(fs); 
  146         if (fs->vp != NULL) { 
  147                 vput(fs->vp);
  148                 fs->vp = NULL;
  149         }
  150 }
  151 
  152 #define unlock_things(fs) _unlock_things(fs, 0)
  153 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
  154 
  155 /*
  156  * TRYPAGER - used by vm_fault to calculate whether the pager for the
  157  *            current object *might* contain the page.
  158  *
  159  *            default objects are zero-fill, there is no real pager.
  160  */
  161 
  162 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
  163                         (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
  164 
  165 /*
  166  *      vm_fault:
  167  *
  168  *      Handle a page fault occurring at the given address,
  169  *      requiring the given permissions, in the map specified.
  170  *      If successful, the page is inserted into the
  171  *      associated physical map.
  172  *
  173  *      NOTE: the given address should be truncated to the
  174  *      proper page address.
  175  *
  176  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
  177  *      a standard error specifying why the fault is fatal is returned.
  178  *
  179  *
  180  *      The map in question must be referenced, and remains so.
  181  *      Caller may hold no locks.
  182  */
  183 int
  184 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
  185 {
  186         vm_prot_t prot;
  187         int result;
  188         boolean_t wired;
  189         int map_generation;
  190         vm_object_t next_object;
  191         vm_page_t marray[VM_FAULT_READ];
  192         int hardfault;
  193         int faultcount;
  194         struct faultstate fs;
  195 
  196         cnt.v_vm_faults++;      /* needs lock XXX */
  197         hardfault = 0;
  198 
  199 RetryFault:;
  200 
  201         /*
  202          * Find the backing store object and offset into it to begin the
  203          * search.
  204          */
  205         fs.map = map;
  206         if ((result = vm_map_lookup(&fs.map, vaddr,
  207                 fault_type, &fs.entry, &fs.first_object,
  208                 &fs.first_pindex, &prot, &wired)) != KERN_SUCCESS) {
  209                 if ((result != KERN_PROTECTION_FAILURE) ||
  210                         ((fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)) {
  211                         return result;
  212                 }
  213 
  214                 /*
  215                  * If we are user-wiring a r/w segment, and it is COW, then
  216                  * we need to do the COW operation.  Note that we don't COW
  217                  * currently RO sections now, because it is NOT desirable
  218                  * to COW .text.  We simply keep .text from ever being COW'ed
  219                  * and take the heat that one cannot debug wired .text sections.
  220                  */
  221                 result = vm_map_lookup(&fs.map, vaddr,
  222                         VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
  223                         &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
  224                 if (result != KERN_SUCCESS) {
  225                         return result;
  226                 }
  227 
  228                 /*
  229                  * If we don't COW now, on a user wire, the user will never
  230                  * be able to write to the mapping.  If we don't make this
  231                  * restriction, the bookkeeping would be nearly impossible.
  232                  */
  233                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
  234                         fs.entry->max_protection &= ~VM_PROT_WRITE;
  235         }
  236 
  237         map_generation = fs.map->timestamp;
  238 
  239         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
  240                 panic("vm_fault: fault on nofault entry, addr: %lx",
  241                     (u_long)vaddr);
  242         }
  243 
  244         /*
  245          * Make a reference to this object to prevent its disposal while we
  246          * are messing with it.  Once we have the reference, the map is free
  247          * to be diddled.  Since objects reference their shadows (and copies),
  248          * they will stay around as well.
  249          *
  250          * Bump the paging-in-progress count to prevent size changes (e.g.
  251          * truncation operations) during I/O.  This must be done after
  252          * obtaining the vnode lock in order to avoid possible deadlocks.
  253          */
  254         vm_object_reference(fs.first_object);
  255         fs.vp = vnode_pager_lock(fs.first_object);
  256         vm_object_pip_add(fs.first_object, 1);
  257 
  258         if ((fault_type & VM_PROT_WRITE) &&
  259                 (fs.first_object->type == OBJT_VNODE)) {
  260                 vm_freeze_copyopts(fs.first_object,
  261                         fs.first_pindex, fs.first_pindex + 1);
  262         }
  263 
  264         fs.lookup_still_valid = TRUE;
  265 
  266         if (wired)
  267                 fault_type = prot;
  268 
  269         fs.first_m = NULL;
  270 
  271         /*
  272          * Search for the page at object/offset.
  273          */
  274 
  275         fs.object = fs.first_object;
  276         fs.pindex = fs.first_pindex;
  277 
  278         while (TRUE) {
  279                 /*
  280                  * If the object is dead, we stop here
  281                  */
  282 
  283                 if (fs.object->flags & OBJ_DEAD) {
  284                         unlock_and_deallocate(&fs);
  285                         return (KERN_PROTECTION_FAILURE);
  286                 }
  287 
  288                 /*
  289                  * See if page is resident
  290                  */
  291                         
  292                 fs.m = vm_page_lookup(fs.object, fs.pindex);
  293                 if (fs.m != NULL) {
  294                         int queue, s;
  295                         /*
  296                          * Wait/Retry if the page is busy.  We have to do this
  297                          * if the page is busy via either PG_BUSY or 
  298                          * vm_page_t->busy because the vm_pager may be using
  299                          * vm_page_t->busy for pageouts ( and even pageins if
  300                          * it is the vnode pager ), and we could end up trying
  301                          * to pagein and pageout the same page simultaneously.
  302                          *
  303                          * We can theoretically allow the busy case on a read
  304                          * fault if the page is marked valid, but since such
  305                          * pages are typically already pmap'd, putting that
  306                          * special case in might be more effort then it is 
  307                          * worth.  We cannot under any circumstances mess
  308                          * around with a vm_page_t->busy page except, perhaps,
  309                          * to pmap it.
  310                          */
  311                         if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
  312                                 unlock_things(&fs);
  313                                 (void)vm_page_sleep_busy(fs.m, TRUE, "vmpfw");
  314                                 cnt.v_intrans++;
  315                                 vm_object_deallocate(fs.first_object);
  316                                 goto RetryFault;
  317                         }
  318 
  319                         queue = fs.m->queue;
  320                         s = splvm();
  321                         vm_page_unqueue_nowakeup(fs.m);
  322                         splx(s);
  323 
  324                         if ((queue - fs.m->pc) == PQ_CACHE && vm_page_count_severe()) {
  325                                 vm_page_activate(fs.m);
  326                                 unlock_and_deallocate(&fs);
  327                                 VM_WAITPFAULT;
  328                                 goto RetryFault;
  329                         }
  330 
  331                         /*
  332                          * Mark page busy for other processes, and the 
  333                          * pagedaemon.  If it still isn't completely valid
  334                          * (readable), jump to readrest, else break-out ( we
  335                          * found the page ).
  336                          */
  337 
  338                         vm_page_busy(fs.m);
  339                         if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
  340                                 fs.m->object != kernel_object && fs.m->object != kmem_object) {
  341                                 goto readrest;
  342                         }
  343 
  344                         break;
  345                 }
  346 
  347                 /*
  348                  * Page is not resident, If this is the search termination
  349                  * or the pager might contain the page, allocate a new page.
  350                  */
  351 
  352                 if (TRYPAGER || fs.object == fs.first_object) {
  353                         if (fs.pindex >= fs.object->size) {
  354                                 unlock_and_deallocate(&fs);
  355                                 return (KERN_PROTECTION_FAILURE);
  356                         }
  357 
  358                         /*
  359                          * Allocate a new page for this object/offset pair.
  360                          */
  361                         fs.m = NULL;
  362                         if (!vm_page_count_severe()) {
  363                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
  364                                     (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
  365                         }
  366                         if (fs.m == NULL) {
  367                                 unlock_and_deallocate(&fs);
  368                                 VM_WAITPFAULT;
  369                                 goto RetryFault;
  370                         }
  371                 }
  372 
  373 readrest:
  374                 /*
  375                  * We have found a valid page or we have allocated a new page.
  376                  * The page thus may not be valid or may not be entirely 
  377                  * valid.
  378                  *
  379                  * Attempt to fault-in the page if there is a chance that the
  380                  * pager has it, and potentially fault in additional pages
  381                  * at the same time.
  382                  */
  383 
  384                 if (TRYPAGER) {
  385                         int rv;
  386                         int reqpage;
  387                         int ahead, behind;
  388                         u_char behavior = vm_map_entry_behavior(fs.entry);
  389 
  390                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
  391                                 ahead = 0;
  392                                 behind = 0;
  393                         } else {
  394                                 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
  395                                 if (behind > VM_FAULT_READ_BEHIND)
  396                                         behind = VM_FAULT_READ_BEHIND;
  397 
  398                                 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
  399                                 if (ahead > VM_FAULT_READ_AHEAD)
  400                                         ahead = VM_FAULT_READ_AHEAD;
  401                         }
  402 
  403                         if ((fs.first_object->type != OBJT_DEVICE) &&
  404                             (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
  405                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
  406                                 fs.pindex >= fs.entry->lastr &&
  407                                 fs.pindex < fs.entry->lastr + VM_FAULT_READ))
  408                         ) {
  409                                 vm_pindex_t firstpindex, tmppindex;
  410 
  411                                 if (fs.first_pindex < 2 * VM_FAULT_READ)
  412                                         firstpindex = 0;
  413                                 else
  414                                         firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
  415 
  416                                 /*
  417                                  * note: partially valid pages cannot be 
  418                                  * included in the lookahead - NFS piecemeal
  419                                  * writes will barf on it badly.
  420                                  */
  421 
  422                                 for(tmppindex = fs.first_pindex - 1;
  423                                         tmppindex >= firstpindex;
  424                                         --tmppindex) {
  425                                         vm_page_t mt;
  426                                         mt = vm_page_lookup( fs.first_object, tmppindex);
  427                                         if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
  428                                                 break;
  429                                         if (mt->busy ||
  430                                                 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
  431                                                 mt->hold_count ||
  432                                                 mt->wire_count) 
  433                                                 continue;
  434                                         if (mt->dirty == 0)
  435                                                 vm_page_test_dirty(mt);
  436                                         if (mt->dirty) {
  437                                                 vm_page_protect(mt, VM_PROT_NONE);
  438                                                 vm_page_deactivate(mt);
  439                                         } else {
  440                                                 vm_page_cache(mt);
  441                                         }
  442                                 }
  443 
  444                                 ahead += behind;
  445                                 behind = 0;
  446                         }
  447 
  448                         /*
  449                          * now we find out if any other pages should be paged
  450                          * in at this time this routine checks to see if the
  451                          * pages surrounding this fault reside in the same
  452                          * object as the page for this fault.  If they do,
  453                          * then they are faulted in also into the object.  The
  454                          * array "marray" returned contains an array of
  455                          * vm_page_t structs where one of them is the
  456                          * vm_page_t passed to the routine.  The reqpage
  457                          * return value is the index into the marray for the
  458                          * vm_page_t passed to the routine.
  459                          *
  460                          * fs.m plus the additional pages are PG_BUSY'd.
  461                          */
  462                         faultcount = vm_fault_additional_pages(
  463                             fs.m, behind, ahead, marray, &reqpage);
  464 
  465                         /*
  466                          * update lastr imperfectly (we do not know how much
  467                          * getpages will actually read), but good enough.
  468                          */
  469                         fs.entry->lastr = fs.pindex + faultcount - behind;
  470 
  471                         /*
  472                          * Call the pager to retrieve the data, if any, after
  473                          * releasing the lock on the map.  We hold a ref on
  474                          * fs.object and the pages are PG_BUSY'd.
  475                          */
  476                         unlock_map(&fs);
  477 
  478                         rv = faultcount ?
  479                             vm_pager_get_pages(fs.object, marray, faultcount,
  480                                 reqpage) : VM_PAGER_FAIL;
  481 
  482                         if (rv == VM_PAGER_OK) {
  483                                 /*
  484                                  * Found the page. Leave it busy while we play
  485                                  * with it.
  486                                  */
  487 
  488                                 /*
  489                                  * Relookup in case pager changed page. Pager
  490                                  * is responsible for disposition of old page
  491                                  * if moved.
  492                                  */
  493                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
  494                                 if(!fs.m) {
  495                                         unlock_and_deallocate(&fs);
  496                                         goto RetryFault;
  497                                 }
  498 
  499                                 hardfault++;
  500                                 break; /* break to PAGE HAS BEEN FOUND */
  501                         }
  502                         /*
  503                          * Remove the bogus page (which does not exist at this
  504                          * object/offset); before doing so, we must get back
  505                          * our object lock to preserve our invariant.
  506                          *
  507                          * Also wake up any other process that may want to bring
  508                          * in this page.
  509                          *
  510                          * If this is the top-level object, we must leave the
  511                          * busy page to prevent another process from rushing
  512                          * past us, and inserting the page in that object at
  513                          * the same time that we are.
  514                          */
  515 
  516                         if (rv == VM_PAGER_ERROR)
  517                                 printf("vm_fault: pager read error, pid %d (%s)\n",
  518                                     curproc->p_pid, curproc->p_comm);
  519                         /*
  520                          * Data outside the range of the pager or an I/O error
  521                          */
  522                         /*
  523                          * XXX - the check for kernel_map is a kludge to work
  524                          * around having the machine panic on a kernel space
  525                          * fault w/ I/O error.
  526                          */
  527                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
  528                                 (rv == VM_PAGER_BAD)) {
  529                                 vm_page_free(fs.m);
  530                                 fs.m = NULL;
  531                                 unlock_and_deallocate(&fs);
  532                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
  533                         }
  534                         if (fs.object != fs.first_object) {
  535                                 vm_page_free(fs.m);
  536                                 fs.m = NULL;
  537                                 /*
  538                                  * XXX - we cannot just fall out at this
  539                                  * point, m has been freed and is invalid!
  540                                  */
  541                         }
  542                 }
  543 
  544                 /*
  545                  * We get here if the object has default pager (or unwiring) 
  546                  * or the pager doesn't have the page.
  547                  */
  548                 if (fs.object == fs.first_object)
  549                         fs.first_m = fs.m;
  550 
  551                 /*
  552                  * Move on to the next object.  Lock the next object before
  553                  * unlocking the current one.
  554                  */
  555 
  556                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
  557                 next_object = fs.object->backing_object;
  558                 if (next_object == NULL) {
  559                         /*
  560                          * If there's no object left, fill the page in the top
  561                          * object with zeros.
  562                          */
  563                         if (fs.object != fs.first_object) {
  564                                 vm_object_pip_wakeup(fs.object);
  565 
  566                                 fs.object = fs.first_object;
  567                                 fs.pindex = fs.first_pindex;
  568                                 fs.m = fs.first_m;
  569                         }
  570                         fs.first_m = NULL;
  571 
  572                         /*
  573                          * Zero the page if necessary and mark it valid.
  574                          */
  575                         if ((fs.m->flags & PG_ZERO) == 0) {
  576                                 vm_page_zero_fill(fs.m);
  577                         } else {
  578                                 cnt.v_ozfod++;
  579                         }
  580                         cnt.v_zfod++;
  581                         fs.m->valid = VM_PAGE_BITS_ALL;
  582                         break;  /* break to PAGE HAS BEEN FOUND */
  583                 } else {
  584                         if (fs.object != fs.first_object) {
  585                                 vm_object_pip_wakeup(fs.object);
  586                         }
  587                         KASSERT(fs.object != next_object, ("object loop %p", next_object));
  588                         fs.object = next_object;
  589                         vm_object_pip_add(fs.object, 1);
  590                 }
  591         }
  592 
  593         KASSERT((fs.m->flags & PG_BUSY) != 0,
  594             ("vm_fault: not busy after main loop"));
  595 
  596         /*
  597          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
  598          * is held.]
  599          */
  600 
  601         /*
  602          * If the page is being written, but isn't already owned by the
  603          * top-level object, we have to copy it into a new page owned by the
  604          * top-level object.
  605          */
  606 
  607         if (fs.object != fs.first_object) {
  608                 /*
  609                  * We only really need to copy if we want to write it.
  610                  */
  611 
  612                 if (fault_type & VM_PROT_WRITE) {
  613                         /*
  614                          * This allows pages to be virtually copied from a 
  615                          * backing_object into the first_object, where the 
  616                          * backing object has no other refs to it, and cannot
  617                          * gain any more refs.  Instead of a bcopy, we just 
  618                          * move the page from the backing object to the 
  619                          * first object.  Note that we must mark the page 
  620                          * dirty in the first object so that it will go out 
  621                          * to swap when needed.
  622                          */
  623                         if (map_generation == fs.map->timestamp &&
  624                                 /*
  625                                  * Only one shadow object
  626                                  */
  627                                 (fs.object->shadow_count == 1) &&
  628                                 /*
  629                                  * No COW refs, except us
  630                                  */
  631                                 (fs.object->ref_count == 1) &&
  632                                 /*
  633                                  * No one else can look this object up
  634                                  */
  635                                 (fs.object->handle == NULL) &&
  636                                 /*
  637                                  * No other ways to look the object up
  638                                  */
  639                                 ((fs.object->type == OBJT_DEFAULT) ||
  640                                  (fs.object->type == OBJT_SWAP)) &&
  641                                 /*
  642                                  * We don't chase down the shadow chain
  643                                  */
  644                                 (fs.object == fs.first_object->backing_object) &&
  645 
  646                                 /*
  647                                  * grab the lock if we need to
  648                                  */
  649                                 (fs.lookup_still_valid ||
  650                                  lockmgr(&fs.map->lock, LK_EXCLUSIVE|LK_NOWAIT, (void *)0, curproc) == 0)
  651                             ) {
  652                                 
  653                                 fs.lookup_still_valid = 1;
  654                                 /*
  655                                  * get rid of the unnecessary page
  656                                  */
  657                                 vm_page_protect(fs.first_m, VM_PROT_NONE);
  658                                 vm_page_free(fs.first_m);
  659                                 fs.first_m = NULL;
  660 
  661                                 /*
  662                                  * grab the page and put it into the 
  663                                  * process'es object.  The page is 
  664                                  * automatically made dirty.
  665                                  */
  666                                 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
  667                                 fs.first_m = fs.m;
  668                                 vm_page_busy(fs.first_m);
  669                                 fs.m = NULL;
  670                                 cnt.v_cow_optim++;
  671                         } else {
  672                                 /*
  673                                  * Oh, well, lets copy it.
  674                                  */
  675                                 vm_page_copy(fs.m, fs.first_m);
  676                         }
  677 
  678                         if (fs.m) {
  679                                 /*
  680                                  * We no longer need the old page or object.
  681                                  */
  682                                 release_page(&fs);
  683                         }
  684 
  685                         /*
  686                          * fs.object != fs.first_object due to above 
  687                          * conditional
  688                          */
  689 
  690                         vm_object_pip_wakeup(fs.object);
  691 
  692                         /*
  693                          * Only use the new page below...
  694                          */
  695 
  696                         cnt.v_cow_faults++;
  697                         fs.m = fs.first_m;
  698                         fs.object = fs.first_object;
  699                         fs.pindex = fs.first_pindex;
  700 
  701                 } else {
  702                         prot &= ~VM_PROT_WRITE;
  703                 }
  704         }
  705 
  706         /*
  707          * We must verify that the maps have not changed since our last
  708          * lookup.
  709          */
  710 
  711         if (!fs.lookup_still_valid &&
  712                 (fs.map->timestamp != map_generation)) {
  713                 vm_object_t retry_object;
  714                 vm_pindex_t retry_pindex;
  715                 vm_prot_t retry_prot;
  716 
  717                 /*
  718                  * Since map entries may be pageable, make sure we can take a
  719                  * page fault on them.
  720                  */
  721 
  722                 /*
  723                  * Unlock vnode before the lookup to avoid deadlock.   E.G.
  724                  * avoid a deadlock between the inode and exec_map that can
  725                  * occur due to locks being obtained in different orders.
  726                  */
  727 
  728                 if (fs.vp != NULL) {
  729                         vput(fs.vp);
  730                         fs.vp = NULL;
  731                 }
  732                 
  733                 if (fs.map->infork) {
  734                         release_page(&fs);
  735                         unlock_and_deallocate(&fs);
  736                         goto RetryFault;
  737                 }
  738 
  739                 /*
  740                  * To avoid trying to write_lock the map while another process
  741                  * has it read_locked (in vm_map_pageable), we do not try for
  742                  * write permission.  If the page is still writable, we will
  743                  * get write permission.  If it is not, or has been marked
  744                  * needs_copy, we enter the mapping without write permission,
  745                  * and will merely take another fault.
  746                  */
  747                 result = vm_map_lookup(&fs.map, vaddr, fault_type & ~VM_PROT_WRITE,
  748                     &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
  749                 map_generation = fs.map->timestamp;
  750 
  751                 /*
  752                  * If we don't need the page any longer, put it on the active
  753                  * list (the easiest thing to do here).  If no one needs it,
  754                  * pageout will grab it eventually.
  755                  */
  756 
  757                 if (result != KERN_SUCCESS) {
  758                         release_page(&fs);
  759                         unlock_and_deallocate(&fs);
  760                         return (result);
  761                 }
  762                 fs.lookup_still_valid = TRUE;
  763 
  764                 if ((retry_object != fs.first_object) ||
  765                     (retry_pindex != fs.first_pindex)) {
  766                         release_page(&fs);
  767                         unlock_and_deallocate(&fs);
  768                         goto RetryFault;
  769                 }
  770                 /*
  771                  * Check whether the protection has changed or the object has
  772                  * been copied while we left the map unlocked. Changing from
  773                  * read to write permission is OK - we leave the page
  774                  * write-protected, and catch the write fault. Changing from
  775                  * write to read permission means that we can't mark the page
  776                  * write-enabled after all.
  777                  */
  778                 prot &= retry_prot;
  779         }
  780 
  781         /*
  782          * Put this page into the physical map. We had to do the unlock above
  783          * because pmap_enter may cause other faults.   We don't put the page
  784          * back on the active queue until later so that the page-out daemon
  785          * won't find us (yet).
  786          */
  787 
  788         if (prot & VM_PROT_WRITE) {
  789                 vm_page_flag_set(fs.m, PG_WRITEABLE);
  790                 vm_object_set_writeable_dirty(fs.m->object);
  791 
  792                 /*
  793                  * If the fault is a write, we know that this page is being
  794                  * written NOW so dirty it explicitly to save on 
  795                  * pmap_is_modified() calls later.
  796                  *
  797                  * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
  798                  * if the page is already dirty to prevent data written with
  799                  * the expectation of being synced from not being synced.
  800                  * Likewise if this entry does not request NOSYNC then make
  801                  * sure the page isn't marked NOSYNC.  Applications sharing
  802                  * data should use the same flags to avoid ping ponging.
  803                  *
  804                  * Also tell the backing pager, if any, that it should remove
  805                  * any swap backing since the page is now dirty.
  806                  */
  807                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
  808                         if (fs.m->dirty == 0)
  809                                 vm_page_flag_set(fs.m, PG_NOSYNC);
  810                 } else {
  811                         vm_page_flag_clear(fs.m, PG_NOSYNC);
  812                 }
  813                 if (fault_flags & VM_FAULT_DIRTY) {
  814                         int s;
  815                         vm_page_dirty(fs.m);
  816                         s = splvm();
  817                         vm_pager_page_unswapped(fs.m);
  818                         splx(s);
  819                 }
  820         }
  821 
  822         /*
  823          * Page had better still be busy
  824          */
  825 
  826         KASSERT(fs.m->flags & PG_BUSY,
  827                 ("vm_fault: page %p not busy!", fs.m));
  828 
  829         unlock_things(&fs);
  830 
  831         /*
  832          * Sanity check: page must be completely valid or it is not fit to
  833          * map into user space.  vm_pager_get_pages() ensures this.
  834          */
  835 
  836         if (fs.m->valid != VM_PAGE_BITS_ALL) {
  837                 vm_page_zero_invalid(fs.m, TRUE);
  838                 printf("Warning: page %p partially invalid on fault\n", fs.m);
  839         }
  840 
  841         pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
  842 
  843         if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
  844                 pmap_prefault(fs.map->pmap, vaddr, fs.entry);
  845         }
  846 
  847         vm_page_flag_clear(fs.m, PG_ZERO);
  848         vm_page_flag_set(fs.m, PG_MAPPED|PG_REFERENCED);
  849         if (fault_flags & VM_FAULT_HOLD)
  850                 vm_page_hold(fs.m);
  851 
  852         /*
  853          * If the page is not wired down, then put it where the pageout daemon
  854          * can find it.
  855          */
  856 
  857         if (fault_flags & VM_FAULT_WIRE_MASK) {
  858                 if (wired)
  859                         vm_page_wire(fs.m);
  860                 else
  861                         vm_page_unwire(fs.m, 1);
  862         } else {
  863                 vm_page_activate(fs.m);
  864         }
  865 
  866         if (curproc && (curproc->p_flag & P_INMEM) && curproc->p_stats) {
  867                 if (hardfault) {
  868                         curproc->p_stats->p_ru.ru_majflt++;
  869                 } else {
  870                         curproc->p_stats->p_ru.ru_minflt++;
  871                 }
  872         }
  873 
  874         /*
  875          * Unlock everything, and return
  876          */
  877 
  878         vm_page_wakeup(fs.m);
  879         vm_object_deallocate(fs.first_object);
  880 
  881         return (KERN_SUCCESS);
  882 
  883 }
  884 
  885 /*
  886  *      vm_fault_wire:
  887  *
  888  *      Wire down a range of virtual addresses in a map.
  889  */
  890 int
  891 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
  892     boolean_t user_wire, boolean_t fictitious)
  893 {
  894 
  895         register vm_offset_t va;
  896         register pmap_t pmap;
  897         int rv;
  898 
  899         pmap = vm_map_pmap(map);
  900 
  901         /*
  902          * Inform the physical mapping system that the range of addresses may
  903          * not fault, so that page tables and such can be locked down as well.
  904          */
  905 
  906         pmap_pageable(pmap, start, end, FALSE);
  907 
  908         /*
  909          * We simulate a fault to get the page and enter it in the physical
  910          * map.
  911          */
  912 
  913         for (va = start; va < end; va += PAGE_SIZE) {
  914                 rv = vm_fault(map, va,
  915                     user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
  916                     user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
  917                 if (rv) {
  918                         if (va != start)
  919                                 vm_fault_unwire(map, start, va, fictitious);
  920                         return (rv);
  921                 }
  922         }
  923         return (KERN_SUCCESS);
  924 }
  925 
  926 /*
  927  *      vm_fault_unwire:
  928  *
  929  *      Unwire a range of virtual addresses in a map.
  930  */
  931 void
  932 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
  933     boolean_t fictitious)
  934 {
  935 
  936         vm_offset_t va;
  937         vm_paddr_t pa;
  938         pmap_t pmap;
  939 
  940         pmap = vm_map_pmap(map);
  941 
  942         /*
  943          * Since the pages are wired down, we must be able to get their
  944          * mappings from the physical map system.
  945          */
  946 
  947         for (va = start; va < end; va += PAGE_SIZE) {
  948                 pa = pmap_extract(pmap, va);
  949                 if (pa != 0) {
  950                         pmap_change_wiring(pmap, va, FALSE);
  951                         if (!fictitious)
  952                                 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
  953                 }
  954         }
  955 
  956         /*
  957          * Inform the physical mapping system that the range of addresses may
  958          * fault, so that page tables and such may be unwired themselves.
  959          */
  960 
  961         pmap_pageable(pmap, start, end, TRUE);
  962 
  963 }
  964 
  965 /*
  966  *      Routine:
  967  *              vm_fault_copy_entry
  968  *      Function:
  969  *              Copy all of the pages from a wired-down map entry to another.
  970  *
  971  *      In/out conditions:
  972  *              The source and destination maps must be locked for write.
  973  *              The source map entry must be wired down (or be a sharing map
  974  *              entry corresponding to a main map entry that is wired down).
  975  */
  976 
  977 void
  978 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
  979         vm_map_t dst_map;
  980         vm_map_t src_map;
  981         vm_map_entry_t dst_entry;
  982         vm_map_entry_t src_entry;
  983 {
  984         vm_object_t dst_object;
  985         vm_object_t src_object;
  986         vm_ooffset_t dst_offset;
  987         vm_ooffset_t src_offset;
  988         vm_prot_t prot;
  989         vm_offset_t vaddr;
  990         vm_page_t dst_m;
  991         vm_page_t src_m;
  992 
  993 #ifdef  lint
  994         src_map++;
  995 #endif  /* lint */
  996 
  997         src_object = src_entry->object.vm_object;
  998         src_offset = src_entry->offset;
  999 
 1000         /*
 1001          * Create the top-level object for the destination entry. (Doesn't
 1002          * actually shadow anything - we copy the pages directly.)
 1003          */
 1004         dst_object = vm_object_allocate(OBJT_DEFAULT,
 1005             (vm_size_t) OFF_TO_IDX(dst_entry->end - dst_entry->start));
 1006 
 1007         dst_entry->object.vm_object = dst_object;
 1008         dst_entry->offset = 0;
 1009 
 1010         prot = dst_entry->max_protection;
 1011 
 1012         /*
 1013          * Loop through all of the pages in the entry's range, copying each
 1014          * one from the source object (it should be there) to the destination
 1015          * object.
 1016          */
 1017         for (vaddr = dst_entry->start, dst_offset = 0;
 1018             vaddr < dst_entry->end;
 1019             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
 1020 
 1021                 /*
 1022                  * Allocate a page in the destination object
 1023                  */
 1024                 do {
 1025                         dst_m = vm_page_alloc(dst_object,
 1026                                 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
 1027                         if (dst_m == NULL) {
 1028                                 VM_WAIT;
 1029                         }
 1030                 } while (dst_m == NULL);
 1031 
 1032                 /*
 1033                  * Find the page in the source object, and copy it in.
 1034                  * (Because the source is wired down, the page will be in
 1035                  * memory.)
 1036                  */
 1037                 src_m = vm_page_lookup(src_object,
 1038                         OFF_TO_IDX(dst_offset + src_offset));
 1039                 if (src_m == NULL)
 1040                         panic("vm_fault_copy_wired: page missing");
 1041 
 1042                 vm_page_copy(src_m, dst_m);
 1043 
 1044                 /*
 1045                  * Enter it in the pmap...
 1046                  */
 1047 
 1048                 vm_page_flag_clear(dst_m, PG_ZERO);
 1049                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
 1050                 vm_page_flag_set(dst_m, PG_WRITEABLE|PG_MAPPED);
 1051 
 1052                 /*
 1053                  * Mark it no longer busy, and put it on the active list.
 1054                  */
 1055                 vm_page_activate(dst_m);
 1056                 vm_page_wakeup(dst_m);
 1057         }
 1058 }
 1059 
 1060 
 1061 /*
 1062  * This routine checks around the requested page for other pages that
 1063  * might be able to be faulted in.  This routine brackets the viable
 1064  * pages for the pages to be paged in.
 1065  *
 1066  * Inputs:
 1067  *      m, rbehind, rahead
 1068  *
 1069  * Outputs:
 1070  *  marray (array of vm_page_t), reqpage (index of requested page)
 1071  *
 1072  * Return value:
 1073  *  number of pages in marray
 1074  */
 1075 static int
 1076 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
 1077         vm_page_t m;
 1078         int rbehind;
 1079         int rahead;
 1080         vm_page_t *marray;
 1081         int *reqpage;
 1082 {
 1083         int i,j;
 1084         vm_object_t object;
 1085         vm_pindex_t pindex, startpindex, endpindex, tpindex;
 1086         vm_page_t rtm;
 1087         int cbehind, cahead;
 1088 
 1089         object = m->object;
 1090         pindex = m->pindex;
 1091 
 1092         /*
 1093          * we don't fault-ahead for device pager
 1094          */
 1095         if (object->type == OBJT_DEVICE) {
 1096                 *reqpage = 0;
 1097                 marray[0] = m;
 1098                 return 1;
 1099         }
 1100 
 1101         /*
 1102          * if the requested page is not available, then give up now
 1103          */
 1104 
 1105         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
 1106                 return 0;
 1107         }
 1108 
 1109         if ((cbehind == 0) && (cahead == 0)) {
 1110                 *reqpage = 0;
 1111                 marray[0] = m;
 1112                 return 1;
 1113         }
 1114 
 1115         if (rahead > cahead) {
 1116                 rahead = cahead;
 1117         }
 1118 
 1119         if (rbehind > cbehind) {
 1120                 rbehind = cbehind;
 1121         }
 1122 
 1123         /*
 1124          * try to do any readahead that we might have free pages for.
 1125          */
 1126         if ((rahead + rbehind) >
 1127                 ((cnt.v_free_count + cnt.v_cache_count) - cnt.v_free_reserved)) {
 1128                 pagedaemon_wakeup();
 1129                 marray[0] = m;
 1130                 *reqpage = 0;
 1131                 return 1;
 1132         }
 1133 
 1134         /*
 1135          * scan backward for the read behind pages -- in memory 
 1136          */
 1137         if (pindex > 0) {
 1138                 if (rbehind > pindex) {
 1139                         rbehind = pindex;
 1140                         startpindex = 0;
 1141                 } else {
 1142                         startpindex = pindex - rbehind;
 1143                 }
 1144 
 1145                 for ( tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
 1146                         if (vm_page_lookup( object, tpindex)) {
 1147                                 startpindex = tpindex + 1;
 1148                                 break;
 1149                         }
 1150                         if (tpindex == 0)
 1151                                 break;
 1152                 }
 1153 
 1154                 for(i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
 1155 
 1156                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
 1157                         if (rtm == NULL) {
 1158                                 for (j = 0; j < i; j++) {
 1159                                         vm_page_free(marray[j]);
 1160                                 }
 1161                                 marray[0] = m;
 1162                                 *reqpage = 0;
 1163                                 return 1;
 1164                         }
 1165 
 1166                         marray[i] = rtm;
 1167                 }
 1168         } else {
 1169                 startpindex = 0;
 1170                 i = 0;
 1171         }
 1172 
 1173         marray[i] = m;
 1174         /* page offset of the required page */
 1175         *reqpage = i;
 1176 
 1177         tpindex = pindex + 1;
 1178         i++;
 1179 
 1180         /*
 1181          * scan forward for the read ahead pages
 1182          */
 1183         endpindex = tpindex + rahead;
 1184         if (endpindex > object->size)
 1185                 endpindex = object->size;
 1186 
 1187         for( ; tpindex < endpindex; i++, tpindex++) {
 1188 
 1189                 if (vm_page_lookup(object, tpindex)) {
 1190                         break;
 1191                 }
 1192 
 1193                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
 1194                 if (rtm == NULL) {
 1195                         break;
 1196                 }
 1197 
 1198                 marray[i] = rtm;
 1199         }
 1200 
 1201         /* return number of bytes of pages */
 1202         return i;
 1203 }

Cache object: 0163d2fb9bdaa1af7baffb3500e81bbb


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.