The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_fault.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  *
    9  *
   10  * This code is derived from software contributed to Berkeley by
   11  * The Mach Operating System project at Carnegie-Mellon University.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1. Redistributions of source code must retain the above copyright
   17  *    notice, this list of conditions and the following disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  * 3. All advertising materials mentioning features or use of this software
   22  *    must display the following acknowledgement:
   23  *      This product includes software developed by the University of
   24  *      California, Berkeley and its contributors.
   25  * 4. Neither the name of the University nor the names of its contributors
   26  *    may be used to endorse or promote products derived from this software
   27  *    without specific prior written permission.
   28  *
   29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   39  * SUCH DAMAGE.
   40  *
   41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
   42  *
   43  *
   44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   45  * All rights reserved.
   46  *
   47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   48  *
   49  * Permission to use, copy, modify and distribute this software and
   50  * its documentation is hereby granted, provided that both the copyright
   51  * notice and this permission notice appear in all copies of the
   52  * software, derivative works or modified versions, and any portions
   53  * thereof, and that both notices appear in supporting documentation.
   54  *
   55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   58  *
   59  * Carnegie Mellon requests users of this software to return to
   60  *
   61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   62  *  School of Computer Science
   63  *  Carnegie Mellon University
   64  *  Pittsburgh PA 15213-3890
   65  *
   66  * any improvements or extensions that they make and grant Carnegie the
   67  * rights to redistribute these changes.
   68  *
   69  * $FreeBSD: releng/5.0/sys/vm/vm_fault.c 106981 2002-11-16 07:44:25Z alc $
   70  */
   71 
   72 /*
   73  *      Page fault handling module.
   74  */
   75 #include <sys/param.h>
   76 #include <sys/systm.h>
   77 #include <sys/kernel.h>
   78 #include <sys/lock.h>
   79 #include <sys/mutex.h>
   80 #include <sys/proc.h>
   81 #include <sys/resourcevar.h>
   82 #include <sys/sysctl.h>
   83 #include <sys/vmmeter.h>
   84 #include <sys/vnode.h>
   85 
   86 #include <vm/vm.h>
   87 #include <vm/vm_param.h>
   88 #include <vm/pmap.h>
   89 #include <vm/vm_map.h>
   90 #include <vm/vm_object.h>
   91 #include <vm/vm_page.h>
   92 #include <vm/vm_pageout.h>
   93 #include <vm/vm_kern.h>
   94 #include <vm/vm_pager.h>
   95 #include <vm/vnode_pager.h>
   96 #include <vm/vm_extern.h>
   97 
   98 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
   99 
  100 #define VM_FAULT_READ_AHEAD 8
  101 #define VM_FAULT_READ_BEHIND 7
  102 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
  103 
  104 struct faultstate {
  105         vm_page_t m;
  106         vm_object_t object;
  107         vm_pindex_t pindex;
  108         vm_page_t first_m;
  109         vm_object_t     first_object;
  110         vm_pindex_t first_pindex;
  111         vm_map_t map;
  112         vm_map_entry_t entry;
  113         int lookup_still_valid;
  114         struct vnode *vp;
  115 };
  116 
  117 static __inline void
  118 release_page(struct faultstate *fs)
  119 {
  120         vm_page_lock_queues();
  121         vm_page_wakeup(fs->m);
  122         vm_page_deactivate(fs->m);
  123         vm_page_unlock_queues();
  124         fs->m = NULL;
  125 }
  126 
  127 static __inline void
  128 unlock_map(struct faultstate *fs)
  129 {
  130         if (fs->lookup_still_valid) {
  131                 vm_map_lookup_done(fs->map, fs->entry);
  132                 fs->lookup_still_valid = FALSE;
  133         }
  134 }
  135 
  136 static void
  137 _unlock_things(struct faultstate *fs, int dealloc)
  138 {
  139         GIANT_REQUIRED;
  140         vm_object_pip_wakeup(fs->object);
  141         if (fs->object != fs->first_object) {
  142                 vm_page_lock_queues();
  143                 vm_page_free(fs->first_m);
  144                 vm_page_unlock_queues();
  145                 vm_object_pip_wakeup(fs->first_object);
  146                 fs->first_m = NULL;
  147         }
  148         if (dealloc) {
  149                 vm_object_deallocate(fs->first_object);
  150         }
  151         unlock_map(fs); 
  152         if (fs->vp != NULL) { 
  153                 vput(fs->vp);
  154                 fs->vp = NULL;
  155         }
  156 }
  157 
  158 #define unlock_things(fs) _unlock_things(fs, 0)
  159 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
  160 
  161 /*
  162  * TRYPAGER - used by vm_fault to calculate whether the pager for the
  163  *            current object *might* contain the page.
  164  *
  165  *            default objects are zero-fill, there is no real pager.
  166  */
  167 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
  168                         (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
  169 
  170 /*
  171  *      vm_fault:
  172  *
  173  *      Handle a page fault occurring at the given address,
  174  *      requiring the given permissions, in the map specified.
  175  *      If successful, the page is inserted into the
  176  *      associated physical map.
  177  *
  178  *      NOTE: the given address should be truncated to the
  179  *      proper page address.
  180  *
  181  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
  182  *      a standard error specifying why the fault is fatal is returned.
  183  *
  184  *
  185  *      The map in question must be referenced, and remains so.
  186  *      Caller may hold no locks.
  187  */
  188 int
  189 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
  190          int fault_flags)
  191 {
  192         vm_prot_t prot;
  193         int result;
  194         boolean_t growstack, wired;
  195         int map_generation;
  196         vm_object_t next_object;
  197         vm_page_t marray[VM_FAULT_READ];
  198         int hardfault;
  199         int faultcount;
  200         struct faultstate fs;
  201 
  202         hardfault = 0;
  203         growstack = TRUE;
  204         atomic_add_int(&cnt.v_vm_faults, 1);
  205 
  206         mtx_lock(&Giant);
  207 RetryFault:;
  208 
  209         /*
  210          * Find the backing store object and offset into it to begin the
  211          * search.
  212          */
  213         fs.map = map;
  214         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
  215             &fs.first_object, &fs.first_pindex, &prot, &wired);
  216         if (result != KERN_SUCCESS) {
  217                 if (result != KERN_PROTECTION_FAILURE ||
  218                     (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
  219                         if (growstack && result == KERN_INVALID_ADDRESS &&
  220                             map != kernel_map && curproc != NULL) {
  221                                 result = vm_map_growstack(curproc, vaddr);
  222                                 if (result != KERN_SUCCESS) {
  223                                         mtx_unlock(&Giant);
  224                                         return (KERN_FAILURE);
  225                                 }
  226                                 growstack = FALSE;
  227                                 goto RetryFault;
  228                         }
  229                         mtx_unlock(&Giant);
  230                         return (result);
  231                 }
  232 
  233                 /*
  234                  * If we are user-wiring a r/w segment, and it is COW, then
  235                  * we need to do the COW operation.  Note that we don't COW
  236                  * currently RO sections now, because it is NOT desirable
  237                  * to COW .text.  We simply keep .text from ever being COW'ed
  238                  * and take the heat that one cannot debug wired .text sections.
  239                  */
  240                 result = vm_map_lookup(&fs.map, vaddr,
  241                         VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
  242                         &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
  243                 if (result != KERN_SUCCESS) {
  244                         mtx_unlock(&Giant);
  245                         return (result);
  246                 }
  247 
  248                 /*
  249                  * If we don't COW now, on a user wire, the user will never
  250                  * be able to write to the mapping.  If we don't make this
  251                  * restriction, the bookkeeping would be nearly impossible.
  252                  *
  253                  * XXX The following assignment modifies the map without
  254                  * holding a write lock on it.
  255                  */
  256                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
  257                         fs.entry->max_protection &= ~VM_PROT_WRITE;
  258         }
  259 
  260         map_generation = fs.map->timestamp;
  261 
  262         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
  263                 panic("vm_fault: fault on nofault entry, addr: %lx",
  264                     (u_long)vaddr);
  265         }
  266 
  267         /*
  268          * Make a reference to this object to prevent its disposal while we
  269          * are messing with it.  Once we have the reference, the map is free
  270          * to be diddled.  Since objects reference their shadows (and copies),
  271          * they will stay around as well.
  272          *
  273          * Bump the paging-in-progress count to prevent size changes (e.g. 
  274          * truncation operations) during I/O.  This must be done after
  275          * obtaining the vnode lock in order to avoid possible deadlocks.
  276          *
  277          * XXX vnode_pager_lock() can block without releasing the map lock.
  278          */
  279         vm_object_reference(fs.first_object);
  280         fs.vp = vnode_pager_lock(fs.first_object);
  281         vm_object_pip_add(fs.first_object, 1);
  282 
  283 #ifdef ENABLE_VFS_IOOPT
  284         if ((fault_type & VM_PROT_WRITE) &&
  285                 (fs.first_object->type == OBJT_VNODE)) {
  286                 vm_freeze_copyopts(fs.first_object,
  287                         fs.first_pindex, fs.first_pindex + 1);
  288         }
  289 #endif
  290         fs.lookup_still_valid = TRUE;
  291 
  292         if (wired)
  293                 fault_type = prot;
  294 
  295         fs.first_m = NULL;
  296 
  297         /*
  298          * Search for the page at object/offset.
  299          */
  300         fs.object = fs.first_object;
  301         fs.pindex = fs.first_pindex;
  302         while (TRUE) {
  303                 /*
  304                  * If the object is dead, we stop here
  305                  */
  306                 if (fs.object->flags & OBJ_DEAD) {
  307                         unlock_and_deallocate(&fs);
  308                         mtx_unlock(&Giant);
  309                         return (KERN_PROTECTION_FAILURE);
  310                 }
  311 
  312                 /*
  313                  * See if page is resident
  314                  */
  315                 fs.m = vm_page_lookup(fs.object, fs.pindex);
  316                 if (fs.m != NULL) {
  317                         int queue, s;
  318 
  319                         /* 
  320                          * check for page-based copy on write
  321                          */
  322                         vm_page_lock_queues();
  323                         if ((fs.m->cow) && 
  324                             (fault_type & VM_PROT_WRITE)) {
  325                                 s = splvm();
  326                                 vm_page_cowfault(fs.m);
  327                                 splx(s);
  328                                 vm_page_unlock_queues();
  329                                 unlock_things(&fs);
  330                                 goto RetryFault;
  331                         }
  332 
  333                         /*
  334                          * Wait/Retry if the page is busy.  We have to do this
  335                          * if the page is busy via either PG_BUSY or 
  336                          * vm_page_t->busy because the vm_pager may be using
  337                          * vm_page_t->busy for pageouts ( and even pageins if
  338                          * it is the vnode pager ), and we could end up trying
  339                          * to pagein and pageout the same page simultaneously.
  340                          *
  341                          * We can theoretically allow the busy case on a read
  342                          * fault if the page is marked valid, but since such
  343                          * pages are typically already pmap'd, putting that
  344                          * special case in might be more effort then it is 
  345                          * worth.  We cannot under any circumstances mess
  346                          * around with a vm_page_t->busy page except, perhaps,
  347                          * to pmap it.
  348                          */
  349                         if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
  350                                 vm_page_unlock_queues();
  351                                 unlock_things(&fs);
  352                                 (void)vm_page_sleep_busy(fs.m, TRUE, "vmpfw");
  353                                 cnt.v_intrans++;
  354                                 vm_object_deallocate(fs.first_object);
  355                                 goto RetryFault;
  356                         }
  357                         queue = fs.m->queue;
  358 
  359                         s = splvm();
  360                         vm_pageq_remove_nowakeup(fs.m);
  361                         splx(s);
  362 
  363                         if ((queue - fs.m->pc) == PQ_CACHE && vm_page_count_severe()) {
  364                                 vm_page_activate(fs.m);
  365                                 vm_page_unlock_queues();
  366                                 unlock_and_deallocate(&fs);
  367                                 VM_WAITPFAULT;
  368                                 goto RetryFault;
  369                         }
  370 
  371                         /*
  372                          * Mark page busy for other processes, and the 
  373                          * pagedaemon.  If it still isn't completely valid
  374                          * (readable), jump to readrest, else break-out ( we
  375                          * found the page ).
  376                          */
  377                         vm_page_busy(fs.m);
  378                         vm_page_unlock_queues();
  379                         if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
  380                                 fs.m->object != kernel_object && fs.m->object != kmem_object) {
  381                                 goto readrest;
  382                         }
  383 
  384                         break;
  385                 }
  386 
  387                 /*
  388                  * Page is not resident, If this is the search termination
  389                  * or the pager might contain the page, allocate a new page.
  390                  */
  391                 if (TRYPAGER || fs.object == fs.first_object) {
  392                         if (fs.pindex >= fs.object->size) {
  393                                 unlock_and_deallocate(&fs);
  394                                 mtx_unlock(&Giant);
  395                                 return (KERN_PROTECTION_FAILURE);
  396                         }
  397 
  398                         /*
  399                          * Allocate a new page for this object/offset pair.
  400                          */
  401                         fs.m = NULL;
  402                         if (!vm_page_count_severe()) {
  403                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
  404                                     (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
  405                         }
  406                         if (fs.m == NULL) {
  407                                 unlock_and_deallocate(&fs);
  408                                 VM_WAITPFAULT;
  409                                 goto RetryFault;
  410                         }
  411                 }
  412 
  413 readrest:
  414                 /*
  415                  * We have found a valid page or we have allocated a new page.
  416                  * The page thus may not be valid or may not be entirely 
  417                  * valid.
  418                  *
  419                  * Attempt to fault-in the page if there is a chance that the
  420                  * pager has it, and potentially fault in additional pages
  421                  * at the same time.
  422                  */
  423                 if (TRYPAGER) {
  424                         int rv;
  425                         int reqpage;
  426                         int ahead, behind;
  427                         u_char behavior = vm_map_entry_behavior(fs.entry);
  428 
  429                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
  430                                 ahead = 0;
  431                                 behind = 0;
  432                         } else {
  433                                 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
  434                                 if (behind > VM_FAULT_READ_BEHIND)
  435                                         behind = VM_FAULT_READ_BEHIND;
  436 
  437                                 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
  438                                 if (ahead > VM_FAULT_READ_AHEAD)
  439                                         ahead = VM_FAULT_READ_AHEAD;
  440                         }
  441 
  442                         if ((fs.first_object->type != OBJT_DEVICE) &&
  443                             (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
  444                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
  445                                 fs.pindex >= fs.entry->lastr &&
  446                                 fs.pindex < fs.entry->lastr + VM_FAULT_READ))
  447                         ) {
  448                                 vm_pindex_t firstpindex, tmppindex;
  449 
  450                                 if (fs.first_pindex < 2 * VM_FAULT_READ)
  451                                         firstpindex = 0;
  452                                 else
  453                                         firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
  454 
  455                                 vm_page_lock_queues();
  456                                 /*
  457                                  * note: partially valid pages cannot be 
  458                                  * included in the lookahead - NFS piecemeal
  459                                  * writes will barf on it badly.
  460                                  */
  461                                 for (tmppindex = fs.first_pindex - 1;
  462                                         tmppindex >= firstpindex;
  463                                         --tmppindex) {
  464                                         vm_page_t mt;
  465 
  466                                         mt = vm_page_lookup(fs.first_object, tmppindex);
  467                                         if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
  468                                                 break;
  469                                         if (mt->busy ||
  470                                                 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
  471                                                 mt->hold_count ||
  472                                                 mt->wire_count) 
  473                                                 continue;
  474                                         if (mt->dirty == 0)
  475                                                 vm_page_test_dirty(mt);
  476                                         if (mt->dirty) {
  477                                                 pmap_remove_all(mt);
  478                                                 vm_page_deactivate(mt);
  479                                         } else {
  480                                                 vm_page_cache(mt);
  481                                         }
  482                                 }
  483                                 vm_page_unlock_queues();
  484                                 ahead += behind;
  485                                 behind = 0;
  486                         }
  487 
  488                         /*
  489                          * now we find out if any other pages should be paged
  490                          * in at this time this routine checks to see if the
  491                          * pages surrounding this fault reside in the same
  492                          * object as the page for this fault.  If they do,
  493                          * then they are faulted in also into the object.  The
  494                          * array "marray" returned contains an array of
  495                          * vm_page_t structs where one of them is the
  496                          * vm_page_t passed to the routine.  The reqpage
  497                          * return value is the index into the marray for the
  498                          * vm_page_t passed to the routine.
  499                          *
  500                          * fs.m plus the additional pages are PG_BUSY'd.
  501                          *
  502                          * XXX vm_fault_additional_pages() can block
  503                          * without releasing the map lock.
  504                          */
  505                         faultcount = vm_fault_additional_pages(
  506                             fs.m, behind, ahead, marray, &reqpage);
  507 
  508                         /*
  509                          * update lastr imperfectly (we do not know how much
  510                          * getpages will actually read), but good enough.
  511                          *
  512                          * XXX The following assignment modifies the map
  513                          * without holding a write lock on it.
  514                          */
  515                         fs.entry->lastr = fs.pindex + faultcount - behind;
  516 
  517                         /*
  518                          * Call the pager to retrieve the data, if any, after
  519                          * releasing the lock on the map.  We hold a ref on
  520                          * fs.object and the pages are PG_BUSY'd.
  521                          */
  522                         unlock_map(&fs);
  523 
  524                         rv = faultcount ?
  525                             vm_pager_get_pages(fs.object, marray, faultcount,
  526                                 reqpage) : VM_PAGER_FAIL;
  527 
  528                         if (rv == VM_PAGER_OK) {
  529                                 /*
  530                                  * Found the page. Leave it busy while we play
  531                                  * with it.
  532                                  */
  533 
  534                                 /*
  535                                  * Relookup in case pager changed page. Pager
  536                                  * is responsible for disposition of old page
  537                                  * if moved.
  538                                  */
  539                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
  540                                 if (!fs.m) {
  541                                         unlock_and_deallocate(&fs);
  542                                         goto RetryFault;
  543                                 }
  544 
  545                                 hardfault++;
  546                                 break; /* break to PAGE HAS BEEN FOUND */
  547                         }
  548                         /*
  549                          * Remove the bogus page (which does not exist at this
  550                          * object/offset); before doing so, we must get back
  551                          * our object lock to preserve our invariant.
  552                          *
  553                          * Also wake up any other process that may want to bring
  554                          * in this page.
  555                          *
  556                          * If this is the top-level object, we must leave the
  557                          * busy page to prevent another process from rushing
  558                          * past us, and inserting the page in that object at
  559                          * the same time that we are.
  560                          */
  561                         if (rv == VM_PAGER_ERROR)
  562                                 printf("vm_fault: pager read error, pid %d (%s)\n",
  563                                     curproc->p_pid, curproc->p_comm);
  564                         /*
  565                          * Data outside the range of the pager or an I/O error
  566                          */
  567                         /*
  568                          * XXX - the check for kernel_map is a kludge to work
  569                          * around having the machine panic on a kernel space
  570                          * fault w/ I/O error.
  571                          */
  572                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
  573                                 (rv == VM_PAGER_BAD)) {
  574                                 vm_page_lock_queues();
  575                                 vm_page_free(fs.m);
  576                                 vm_page_unlock_queues();
  577                                 fs.m = NULL;
  578                                 unlock_and_deallocate(&fs);
  579                                 mtx_unlock(&Giant);
  580                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
  581                         }
  582                         if (fs.object != fs.first_object) {
  583                                 vm_page_lock_queues();
  584                                 vm_page_free(fs.m);
  585                                 vm_page_unlock_queues();
  586                                 fs.m = NULL;
  587                                 /*
  588                                  * XXX - we cannot just fall out at this
  589                                  * point, m has been freed and is invalid!
  590                                  */
  591                         }
  592                 }
  593 
  594                 /*
  595                  * We get here if the object has default pager (or unwiring) 
  596                  * or the pager doesn't have the page.
  597                  */
  598                 if (fs.object == fs.first_object)
  599                         fs.first_m = fs.m;
  600 
  601                 /*
  602                  * Move on to the next object.  Lock the next object before
  603                  * unlocking the current one.
  604                  */
  605                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
  606                 next_object = fs.object->backing_object;
  607                 if (next_object == NULL) {
  608                         /*
  609                          * If there's no object left, fill the page in the top
  610                          * object with zeros.
  611                          */
  612                         if (fs.object != fs.first_object) {
  613                                 vm_object_pip_wakeup(fs.object);
  614 
  615                                 fs.object = fs.first_object;
  616                                 fs.pindex = fs.first_pindex;
  617                                 fs.m = fs.first_m;
  618                         }
  619                         fs.first_m = NULL;
  620 
  621                         /*
  622                          * Zero the page if necessary and mark it valid.
  623                          */
  624                         if ((fs.m->flags & PG_ZERO) == 0) {
  625                                 pmap_zero_page(fs.m);
  626                         } else {
  627                                 cnt.v_ozfod++;
  628                         }
  629                         cnt.v_zfod++;
  630                         fs.m->valid = VM_PAGE_BITS_ALL;
  631                         break;  /* break to PAGE HAS BEEN FOUND */
  632                 } else {
  633                         if (fs.object != fs.first_object) {
  634                                 vm_object_pip_wakeup(fs.object);
  635                         }
  636                         KASSERT(fs.object != next_object, ("object loop %p", next_object));
  637                         fs.object = next_object;
  638                         vm_object_pip_add(fs.object, 1);
  639                 }
  640         }
  641 
  642         KASSERT((fs.m->flags & PG_BUSY) != 0,
  643             ("vm_fault: not busy after main loop"));
  644 
  645         /*
  646          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
  647          * is held.]
  648          */
  649 
  650         /*
  651          * If the page is being written, but isn't already owned by the
  652          * top-level object, we have to copy it into a new page owned by the
  653          * top-level object.
  654          */
  655         if (fs.object != fs.first_object) {
  656                 /*
  657                  * We only really need to copy if we want to write it.
  658                  */
  659                 if (fault_type & VM_PROT_WRITE) {
  660                         /*
  661                          * This allows pages to be virtually copied from a 
  662                          * backing_object into the first_object, where the 
  663                          * backing object has no other refs to it, and cannot
  664                          * gain any more refs.  Instead of a bcopy, we just 
  665                          * move the page from the backing object to the 
  666                          * first object.  Note that we must mark the page 
  667                          * dirty in the first object so that it will go out 
  668                          * to swap when needed.
  669                          */
  670                         if (map_generation == fs.map->timestamp &&
  671                                 /*
  672                                  * Only one shadow object
  673                                  */
  674                                 (fs.object->shadow_count == 1) &&
  675                                 /*
  676                                  * No COW refs, except us
  677                                  */
  678                                 (fs.object->ref_count == 1) &&
  679                                 /*
  680                                  * No one else can look this object up
  681                                  */
  682                                 (fs.object->handle == NULL) &&
  683                                 /*
  684                                  * No other ways to look the object up
  685                                  */
  686                                 ((fs.object->type == OBJT_DEFAULT) ||
  687                                  (fs.object->type == OBJT_SWAP)) &&
  688                                 /*
  689                                  * We don't chase down the shadow chain
  690                                  */
  691                                 (fs.object == fs.first_object->backing_object) &&
  692 
  693                                 /*
  694                                  * grab the lock if we need to
  695                                  */
  696                             (fs.lookup_still_valid || vm_map_trylock(fs.map))) {
  697                                 
  698                                 fs.lookup_still_valid = 1;
  699                                 /*
  700                                  * get rid of the unnecessary page
  701                                  */
  702                                 vm_page_lock_queues();
  703                                 pmap_remove_all(fs.first_m);
  704                                 vm_page_free(fs.first_m);
  705                                 vm_page_unlock_queues();
  706                                 fs.first_m = NULL;
  707 
  708                                 /*
  709                                  * grab the page and put it into the 
  710                                  * process'es object.  The page is 
  711                                  * automatically made dirty.
  712                                  */
  713                                 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
  714                                 fs.first_m = fs.m;
  715                                 vm_page_busy(fs.first_m);
  716                                 fs.m = NULL;
  717                                 cnt.v_cow_optim++;
  718                         } else {
  719                                 /*
  720                                  * Oh, well, lets copy it.
  721                                  */
  722                                 vm_page_copy(fs.m, fs.first_m);
  723                         }
  724 
  725                         if (fs.m) {
  726                                 /*
  727                                  * We no longer need the old page or object.
  728                                  */
  729                                 release_page(&fs);
  730                         }
  731 
  732                         /*
  733                          * fs.object != fs.first_object due to above 
  734                          * conditional
  735                          */
  736                         vm_object_pip_wakeup(fs.object);
  737 
  738                         /*
  739                          * Only use the new page below...
  740                          */
  741                         cnt.v_cow_faults++;
  742                         fs.m = fs.first_m;
  743                         fs.object = fs.first_object;
  744                         fs.pindex = fs.first_pindex;
  745 
  746                 } else {
  747                         prot &= ~VM_PROT_WRITE;
  748                 }
  749         }
  750 
  751         /*
  752          * We must verify that the maps have not changed since our last
  753          * lookup.
  754          */
  755         if (!fs.lookup_still_valid &&
  756                 (fs.map->timestamp != map_generation)) {
  757                 vm_object_t retry_object;
  758                 vm_pindex_t retry_pindex;
  759                 vm_prot_t retry_prot;
  760 
  761                 /*
  762                  * Since map entries may be pageable, make sure we can take a
  763                  * page fault on them.
  764                  */
  765 
  766                 /*
  767                  * Unlock vnode before the lookup to avoid deadlock.   E.G.
  768                  * avoid a deadlock between the inode and exec_map that can
  769                  * occur due to locks being obtained in different orders.
  770                  */
  771                 if (fs.vp != NULL) {
  772                         vput(fs.vp);
  773                         fs.vp = NULL;
  774                 }
  775                 
  776                 if (fs.map->infork) {
  777                         release_page(&fs);
  778                         unlock_and_deallocate(&fs);
  779                         goto RetryFault;
  780                 }
  781 
  782                 /*
  783                  * To avoid trying to write_lock the map while another process
  784                  * has it read_locked (in vm_map_pageable), we do not try for
  785                  * write permission.  If the page is still writable, we will
  786                  * get write permission.  If it is not, or has been marked
  787                  * needs_copy, we enter the mapping without write permission,
  788                  * and will merely take another fault.
  789                  */
  790                 result = vm_map_lookup(&fs.map, vaddr, fault_type & ~VM_PROT_WRITE,
  791                     &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
  792                 map_generation = fs.map->timestamp;
  793 
  794                 /*
  795                  * If we don't need the page any longer, put it on the active
  796                  * list (the easiest thing to do here).  If no one needs it,
  797                  * pageout will grab it eventually.
  798                  */
  799                 if (result != KERN_SUCCESS) {
  800                         release_page(&fs);
  801                         unlock_and_deallocate(&fs);
  802                         mtx_unlock(&Giant);
  803                         return (result);
  804                 }
  805                 fs.lookup_still_valid = TRUE;
  806 
  807                 if ((retry_object != fs.first_object) ||
  808                     (retry_pindex != fs.first_pindex)) {
  809                         release_page(&fs);
  810                         unlock_and_deallocate(&fs);
  811                         goto RetryFault;
  812                 }
  813                 /*
  814                  * Check whether the protection has changed or the object has
  815                  * been copied while we left the map unlocked. Changing from
  816                  * read to write permission is OK - we leave the page
  817                  * write-protected, and catch the write fault. Changing from
  818                  * write to read permission means that we can't mark the page
  819                  * write-enabled after all.
  820                  */
  821                 prot &= retry_prot;
  822         }
  823 
  824         /*
  825          * Put this page into the physical map. We had to do the unlock above
  826          * because pmap_enter may cause other faults.   We don't put the page
  827          * back on the active queue until later so that the page-out daemon
  828          * won't find us (yet).
  829          */
  830 
  831         if (prot & VM_PROT_WRITE) {
  832                 vm_page_flag_set(fs.m, PG_WRITEABLE);
  833                 vm_object_set_writeable_dirty(fs.m->object);
  834 
  835                 /*
  836                  * If the fault is a write, we know that this page is being
  837                  * written NOW so dirty it explicitly to save on 
  838                  * pmap_is_modified() calls later.
  839                  *
  840                  * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
  841                  * if the page is already dirty to prevent data written with
  842                  * the expectation of being synced from not being synced.
  843                  * Likewise if this entry does not request NOSYNC then make
  844                  * sure the page isn't marked NOSYNC.  Applications sharing
  845                  * data should use the same flags to avoid ping ponging.
  846                  *
  847                  * Also tell the backing pager, if any, that it should remove
  848                  * any swap backing since the page is now dirty.
  849                  */
  850                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
  851                         if (fs.m->dirty == 0)
  852                                 vm_page_flag_set(fs.m, PG_NOSYNC);
  853                 } else {
  854                         vm_page_flag_clear(fs.m, PG_NOSYNC);
  855                 }
  856                 if (fault_flags & VM_FAULT_DIRTY) {
  857                         int s;
  858                         vm_page_dirty(fs.m);
  859                         s = splvm();
  860                         vm_pager_page_unswapped(fs.m);
  861                         splx(s);
  862                 }
  863         }
  864 
  865         /*
  866          * Page had better still be busy
  867          */
  868         KASSERT(fs.m->flags & PG_BUSY,
  869                 ("vm_fault: page %p not busy!", fs.m));
  870         unlock_things(&fs);
  871 
  872         /*
  873          * Sanity check: page must be completely valid or it is not fit to
  874          * map into user space.  vm_pager_get_pages() ensures this.
  875          */
  876         if (fs.m->valid != VM_PAGE_BITS_ALL) {
  877                 vm_page_zero_invalid(fs.m, TRUE);
  878                 printf("Warning: page %p partially invalid on fault\n", fs.m);
  879         }
  880         pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
  881         if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
  882                 pmap_prefault(fs.map->pmap, vaddr, fs.entry);
  883         }
  884         vm_page_lock_queues();
  885         vm_page_flag_clear(fs.m, PG_ZERO);
  886         vm_page_flag_set(fs.m, PG_REFERENCED);
  887 
  888         /*
  889          * If the page is not wired down, then put it where the pageout daemon
  890          * can find it.
  891          */
  892         if (fault_flags & VM_FAULT_WIRE_MASK) {
  893                 if (wired)
  894                         vm_page_wire(fs.m);
  895                 else
  896                         vm_page_unwire(fs.m, 1);
  897         } else {
  898                 vm_page_activate(fs.m);
  899         }
  900         vm_page_wakeup(fs.m);
  901         vm_page_unlock_queues();
  902         mtx_lock_spin(&sched_lock);
  903         if (curproc && (curproc->p_sflag & PS_INMEM) && curproc->p_stats) {
  904                 if (hardfault) {
  905                         curproc->p_stats->p_ru.ru_majflt++;
  906                 } else {
  907                         curproc->p_stats->p_ru.ru_minflt++;
  908                 }
  909         }
  910         mtx_unlock_spin(&sched_lock);
  911 
  912         /*
  913          * Unlock everything, and return
  914          */
  915         vm_object_deallocate(fs.first_object);
  916         mtx_unlock(&Giant);
  917         return (KERN_SUCCESS);
  918 }
  919 
  920 /*
  921  *      vm_fault_wire:
  922  *
  923  *      Wire down a range of virtual addresses in a map.
  924  */
  925 int
  926 vm_fault_wire(map, start, end, user_wire)
  927         vm_map_t map;
  928         vm_offset_t start, end;
  929         boolean_t user_wire;
  930 {
  931         vm_offset_t va;
  932         int rv;
  933 
  934         /*
  935          * We simulate a fault to get the page and enter it in the physical
  936          * map.  For user wiring, we only ask for read access on currently
  937          * read-only sections.
  938          */
  939         for (va = start; va < end; va += PAGE_SIZE) {
  940                 rv = vm_fault(map, va,
  941                     user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
  942                     user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
  943                 if (rv) {
  944                         if (va != start)
  945                                 vm_fault_unwire(map, start, va);
  946                         return (rv);
  947                 }
  948         }
  949         return (KERN_SUCCESS);
  950 }
  951 
  952 /*
  953  *      vm_fault_unwire:
  954  *
  955  *      Unwire a range of virtual addresses in a map.
  956  */
  957 void
  958 vm_fault_unwire(map, start, end)
  959         vm_map_t map;
  960         vm_offset_t start, end;
  961 {
  962         vm_offset_t va, pa;
  963         pmap_t pmap;
  964 
  965         pmap = vm_map_pmap(map);
  966 
  967         mtx_lock(&Giant);
  968         /*
  969          * Since the pages are wired down, we must be able to get their
  970          * mappings from the physical map system.
  971          */
  972         for (va = start; va < end; va += PAGE_SIZE) {
  973                 pa = pmap_extract(pmap, va);
  974                 if (pa != (vm_offset_t) 0) {
  975                         pmap_change_wiring(pmap, va, FALSE);
  976                         vm_page_lock_queues();
  977                         vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
  978                         vm_page_unlock_queues();
  979                 }
  980         }
  981         mtx_unlock(&Giant);
  982 }
  983 
  984 /*
  985  *      Routine:
  986  *              vm_fault_copy_entry
  987  *      Function:
  988  *              Copy all of the pages from a wired-down map entry to another.
  989  *
  990  *      In/out conditions:
  991  *              The source and destination maps must be locked for write.
  992  *              The source map entry must be wired down (or be a sharing map
  993  *              entry corresponding to a main map entry that is wired down).
  994  */
  995 void
  996 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
  997         vm_map_t dst_map;
  998         vm_map_t src_map;
  999         vm_map_entry_t dst_entry;
 1000         vm_map_entry_t src_entry;
 1001 {
 1002         vm_object_t dst_object;
 1003         vm_object_t src_object;
 1004         vm_ooffset_t dst_offset;
 1005         vm_ooffset_t src_offset;
 1006         vm_prot_t prot;
 1007         vm_offset_t vaddr;
 1008         vm_page_t dst_m;
 1009         vm_page_t src_m;
 1010 
 1011 #ifdef  lint
 1012         src_map++;
 1013 #endif  /* lint */
 1014 
 1015         src_object = src_entry->object.vm_object;
 1016         src_offset = src_entry->offset;
 1017 
 1018         /*
 1019          * Create the top-level object for the destination entry. (Doesn't
 1020          * actually shadow anything - we copy the pages directly.)
 1021          */
 1022         dst_object = vm_object_allocate(OBJT_DEFAULT,
 1023             (vm_size_t) OFF_TO_IDX(dst_entry->end - dst_entry->start));
 1024 
 1025         dst_entry->object.vm_object = dst_object;
 1026         dst_entry->offset = 0;
 1027 
 1028         prot = dst_entry->max_protection;
 1029 
 1030         /*
 1031          * Loop through all of the pages in the entry's range, copying each
 1032          * one from the source object (it should be there) to the destination
 1033          * object.
 1034          */
 1035         for (vaddr = dst_entry->start, dst_offset = 0;
 1036             vaddr < dst_entry->end;
 1037             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
 1038 
 1039                 /*
 1040                  * Allocate a page in the destination object
 1041                  */
 1042                 do {
 1043                         dst_m = vm_page_alloc(dst_object,
 1044                                 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
 1045                         if (dst_m == NULL) {
 1046                                 VM_WAIT;
 1047                         }
 1048                 } while (dst_m == NULL);
 1049 
 1050                 /*
 1051                  * Find the page in the source object, and copy it in.
 1052                  * (Because the source is wired down, the page will be in
 1053                  * memory.)
 1054                  */
 1055                 src_m = vm_page_lookup(src_object,
 1056                         OFF_TO_IDX(dst_offset + src_offset));
 1057                 if (src_m == NULL)
 1058                         panic("vm_fault_copy_wired: page missing");
 1059 
 1060                 vm_page_copy(src_m, dst_m);
 1061 
 1062                 /*
 1063                  * Enter it in the pmap...
 1064                  */
 1065                 vm_page_flag_clear(dst_m, PG_ZERO);
 1066                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
 1067                 vm_page_lock_queues();
 1068                 vm_page_flag_set(dst_m, PG_WRITEABLE);
 1069 
 1070                 /*
 1071                  * Mark it no longer busy, and put it on the active list.
 1072                  */
 1073                 vm_page_activate(dst_m);
 1074                 vm_page_wakeup(dst_m);
 1075                 vm_page_unlock_queues();
 1076         }
 1077 }
 1078 
 1079 
 1080 /*
 1081  * This routine checks around the requested page for other pages that
 1082  * might be able to be faulted in.  This routine brackets the viable
 1083  * pages for the pages to be paged in.
 1084  *
 1085  * Inputs:
 1086  *      m, rbehind, rahead
 1087  *
 1088  * Outputs:
 1089  *  marray (array of vm_page_t), reqpage (index of requested page)
 1090  *
 1091  * Return value:
 1092  *  number of pages in marray
 1093  *
 1094  * This routine can't block.
 1095  */
 1096 static int
 1097 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
 1098         vm_page_t m;
 1099         int rbehind;
 1100         int rahead;
 1101         vm_page_t *marray;
 1102         int *reqpage;
 1103 {
 1104         int i,j;
 1105         vm_object_t object;
 1106         vm_pindex_t pindex, startpindex, endpindex, tpindex;
 1107         vm_page_t rtm;
 1108         int cbehind, cahead;
 1109 
 1110         GIANT_REQUIRED;
 1111 
 1112         object = m->object;
 1113         pindex = m->pindex;
 1114 
 1115         /*
 1116          * we don't fault-ahead for device pager
 1117          */
 1118         if (object->type == OBJT_DEVICE) {
 1119                 *reqpage = 0;
 1120                 marray[0] = m;
 1121                 return 1;
 1122         }
 1123 
 1124         /*
 1125          * if the requested page is not available, then give up now
 1126          */
 1127         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
 1128                 return 0;
 1129         }
 1130 
 1131         if ((cbehind == 0) && (cahead == 0)) {
 1132                 *reqpage = 0;
 1133                 marray[0] = m;
 1134                 return 1;
 1135         }
 1136 
 1137         if (rahead > cahead) {
 1138                 rahead = cahead;
 1139         }
 1140 
 1141         if (rbehind > cbehind) {
 1142                 rbehind = cbehind;
 1143         }
 1144 
 1145         /*
 1146          * try to do any readahead that we might have free pages for.
 1147          */
 1148         if ((rahead + rbehind) >
 1149                 ((cnt.v_free_count + cnt.v_cache_count) - cnt.v_free_reserved)) {
 1150                 pagedaemon_wakeup();
 1151                 marray[0] = m;
 1152                 *reqpage = 0;
 1153                 return 1;
 1154         }
 1155 
 1156         /*
 1157          * scan backward for the read behind pages -- in memory 
 1158          */
 1159         if (pindex > 0) {
 1160                 if (rbehind > pindex) {
 1161                         rbehind = pindex;
 1162                         startpindex = 0;
 1163                 } else {
 1164                         startpindex = pindex - rbehind;
 1165                 }
 1166 
 1167                 for (tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
 1168                         if (vm_page_lookup(object, tpindex)) {
 1169                                 startpindex = tpindex + 1;
 1170                                 break;
 1171                         }
 1172                         if (tpindex == 0)
 1173                                 break;
 1174                 }
 1175 
 1176                 for (i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
 1177 
 1178                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
 1179                         if (rtm == NULL) {
 1180                                 vm_page_lock_queues();
 1181                                 for (j = 0; j < i; j++) {
 1182                                         vm_page_free(marray[j]);
 1183                                 }
 1184                                 vm_page_unlock_queues();
 1185                                 marray[0] = m;
 1186                                 *reqpage = 0;
 1187                                 return 1;
 1188                         }
 1189 
 1190                         marray[i] = rtm;
 1191                 }
 1192         } else {
 1193                 startpindex = 0;
 1194                 i = 0;
 1195         }
 1196 
 1197         marray[i] = m;
 1198         /* page offset of the required page */
 1199         *reqpage = i;
 1200 
 1201         tpindex = pindex + 1;
 1202         i++;
 1203 
 1204         /*
 1205          * scan forward for the read ahead pages
 1206          */
 1207         endpindex = tpindex + rahead;
 1208         if (endpindex > object->size)
 1209                 endpindex = object->size;
 1210 
 1211         for (; tpindex < endpindex; i++, tpindex++) {
 1212 
 1213                 if (vm_page_lookup(object, tpindex)) {
 1214                         break;
 1215                 }
 1216 
 1217                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
 1218                 if (rtm == NULL) {
 1219                         break;
 1220                 }
 1221 
 1222                 marray[i] = rtm;
 1223         }
 1224 
 1225         /* return number of bytes of pages */
 1226         return i;
 1227 }

Cache object: a56006d92e5b9b91dc362d9e1ca3e08e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.