FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_fault.c
1 /*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94
42 *
43 *
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
46 *
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
62 * School of Computer Science
63 * Carnegie Mellon University
64 * Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 *
69 * $FreeBSD: releng/5.0/sys/vm/vm_fault.c 106981 2002-11-16 07:44:25Z alc $
70 */
71
72 /*
73 * Page fault handling module.
74 */
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/kernel.h>
78 #include <sys/lock.h>
79 #include <sys/mutex.h>
80 #include <sys/proc.h>
81 #include <sys/resourcevar.h>
82 #include <sys/sysctl.h>
83 #include <sys/vmmeter.h>
84 #include <sys/vnode.h>
85
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pageout.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/vm_extern.h>
97
98 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
99
100 #define VM_FAULT_READ_AHEAD 8
101 #define VM_FAULT_READ_BEHIND 7
102 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
103
104 struct faultstate {
105 vm_page_t m;
106 vm_object_t object;
107 vm_pindex_t pindex;
108 vm_page_t first_m;
109 vm_object_t first_object;
110 vm_pindex_t first_pindex;
111 vm_map_t map;
112 vm_map_entry_t entry;
113 int lookup_still_valid;
114 struct vnode *vp;
115 };
116
117 static __inline void
118 release_page(struct faultstate *fs)
119 {
120 vm_page_lock_queues();
121 vm_page_wakeup(fs->m);
122 vm_page_deactivate(fs->m);
123 vm_page_unlock_queues();
124 fs->m = NULL;
125 }
126
127 static __inline void
128 unlock_map(struct faultstate *fs)
129 {
130 if (fs->lookup_still_valid) {
131 vm_map_lookup_done(fs->map, fs->entry);
132 fs->lookup_still_valid = FALSE;
133 }
134 }
135
136 static void
137 _unlock_things(struct faultstate *fs, int dealloc)
138 {
139 GIANT_REQUIRED;
140 vm_object_pip_wakeup(fs->object);
141 if (fs->object != fs->first_object) {
142 vm_page_lock_queues();
143 vm_page_free(fs->first_m);
144 vm_page_unlock_queues();
145 vm_object_pip_wakeup(fs->first_object);
146 fs->first_m = NULL;
147 }
148 if (dealloc) {
149 vm_object_deallocate(fs->first_object);
150 }
151 unlock_map(fs);
152 if (fs->vp != NULL) {
153 vput(fs->vp);
154 fs->vp = NULL;
155 }
156 }
157
158 #define unlock_things(fs) _unlock_things(fs, 0)
159 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
160
161 /*
162 * TRYPAGER - used by vm_fault to calculate whether the pager for the
163 * current object *might* contain the page.
164 *
165 * default objects are zero-fill, there is no real pager.
166 */
167 #define TRYPAGER (fs.object->type != OBJT_DEFAULT && \
168 (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
169
170 /*
171 * vm_fault:
172 *
173 * Handle a page fault occurring at the given address,
174 * requiring the given permissions, in the map specified.
175 * If successful, the page is inserted into the
176 * associated physical map.
177 *
178 * NOTE: the given address should be truncated to the
179 * proper page address.
180 *
181 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
182 * a standard error specifying why the fault is fatal is returned.
183 *
184 *
185 * The map in question must be referenced, and remains so.
186 * Caller may hold no locks.
187 */
188 int
189 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
190 int fault_flags)
191 {
192 vm_prot_t prot;
193 int result;
194 boolean_t growstack, wired;
195 int map_generation;
196 vm_object_t next_object;
197 vm_page_t marray[VM_FAULT_READ];
198 int hardfault;
199 int faultcount;
200 struct faultstate fs;
201
202 hardfault = 0;
203 growstack = TRUE;
204 atomic_add_int(&cnt.v_vm_faults, 1);
205
206 mtx_lock(&Giant);
207 RetryFault:;
208
209 /*
210 * Find the backing store object and offset into it to begin the
211 * search.
212 */
213 fs.map = map;
214 result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
215 &fs.first_object, &fs.first_pindex, &prot, &wired);
216 if (result != KERN_SUCCESS) {
217 if (result != KERN_PROTECTION_FAILURE ||
218 (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
219 if (growstack && result == KERN_INVALID_ADDRESS &&
220 map != kernel_map && curproc != NULL) {
221 result = vm_map_growstack(curproc, vaddr);
222 if (result != KERN_SUCCESS) {
223 mtx_unlock(&Giant);
224 return (KERN_FAILURE);
225 }
226 growstack = FALSE;
227 goto RetryFault;
228 }
229 mtx_unlock(&Giant);
230 return (result);
231 }
232
233 /*
234 * If we are user-wiring a r/w segment, and it is COW, then
235 * we need to do the COW operation. Note that we don't COW
236 * currently RO sections now, because it is NOT desirable
237 * to COW .text. We simply keep .text from ever being COW'ed
238 * and take the heat that one cannot debug wired .text sections.
239 */
240 result = vm_map_lookup(&fs.map, vaddr,
241 VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
242 &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
243 if (result != KERN_SUCCESS) {
244 mtx_unlock(&Giant);
245 return (result);
246 }
247
248 /*
249 * If we don't COW now, on a user wire, the user will never
250 * be able to write to the mapping. If we don't make this
251 * restriction, the bookkeeping would be nearly impossible.
252 *
253 * XXX The following assignment modifies the map without
254 * holding a write lock on it.
255 */
256 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
257 fs.entry->max_protection &= ~VM_PROT_WRITE;
258 }
259
260 map_generation = fs.map->timestamp;
261
262 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
263 panic("vm_fault: fault on nofault entry, addr: %lx",
264 (u_long)vaddr);
265 }
266
267 /*
268 * Make a reference to this object to prevent its disposal while we
269 * are messing with it. Once we have the reference, the map is free
270 * to be diddled. Since objects reference their shadows (and copies),
271 * they will stay around as well.
272 *
273 * Bump the paging-in-progress count to prevent size changes (e.g.
274 * truncation operations) during I/O. This must be done after
275 * obtaining the vnode lock in order to avoid possible deadlocks.
276 *
277 * XXX vnode_pager_lock() can block without releasing the map lock.
278 */
279 vm_object_reference(fs.first_object);
280 fs.vp = vnode_pager_lock(fs.first_object);
281 vm_object_pip_add(fs.first_object, 1);
282
283 #ifdef ENABLE_VFS_IOOPT
284 if ((fault_type & VM_PROT_WRITE) &&
285 (fs.first_object->type == OBJT_VNODE)) {
286 vm_freeze_copyopts(fs.first_object,
287 fs.first_pindex, fs.first_pindex + 1);
288 }
289 #endif
290 fs.lookup_still_valid = TRUE;
291
292 if (wired)
293 fault_type = prot;
294
295 fs.first_m = NULL;
296
297 /*
298 * Search for the page at object/offset.
299 */
300 fs.object = fs.first_object;
301 fs.pindex = fs.first_pindex;
302 while (TRUE) {
303 /*
304 * If the object is dead, we stop here
305 */
306 if (fs.object->flags & OBJ_DEAD) {
307 unlock_and_deallocate(&fs);
308 mtx_unlock(&Giant);
309 return (KERN_PROTECTION_FAILURE);
310 }
311
312 /*
313 * See if page is resident
314 */
315 fs.m = vm_page_lookup(fs.object, fs.pindex);
316 if (fs.m != NULL) {
317 int queue, s;
318
319 /*
320 * check for page-based copy on write
321 */
322 vm_page_lock_queues();
323 if ((fs.m->cow) &&
324 (fault_type & VM_PROT_WRITE)) {
325 s = splvm();
326 vm_page_cowfault(fs.m);
327 splx(s);
328 vm_page_unlock_queues();
329 unlock_things(&fs);
330 goto RetryFault;
331 }
332
333 /*
334 * Wait/Retry if the page is busy. We have to do this
335 * if the page is busy via either PG_BUSY or
336 * vm_page_t->busy because the vm_pager may be using
337 * vm_page_t->busy for pageouts ( and even pageins if
338 * it is the vnode pager ), and we could end up trying
339 * to pagein and pageout the same page simultaneously.
340 *
341 * We can theoretically allow the busy case on a read
342 * fault if the page is marked valid, but since such
343 * pages are typically already pmap'd, putting that
344 * special case in might be more effort then it is
345 * worth. We cannot under any circumstances mess
346 * around with a vm_page_t->busy page except, perhaps,
347 * to pmap it.
348 */
349 if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
350 vm_page_unlock_queues();
351 unlock_things(&fs);
352 (void)vm_page_sleep_busy(fs.m, TRUE, "vmpfw");
353 cnt.v_intrans++;
354 vm_object_deallocate(fs.first_object);
355 goto RetryFault;
356 }
357 queue = fs.m->queue;
358
359 s = splvm();
360 vm_pageq_remove_nowakeup(fs.m);
361 splx(s);
362
363 if ((queue - fs.m->pc) == PQ_CACHE && vm_page_count_severe()) {
364 vm_page_activate(fs.m);
365 vm_page_unlock_queues();
366 unlock_and_deallocate(&fs);
367 VM_WAITPFAULT;
368 goto RetryFault;
369 }
370
371 /*
372 * Mark page busy for other processes, and the
373 * pagedaemon. If it still isn't completely valid
374 * (readable), jump to readrest, else break-out ( we
375 * found the page ).
376 */
377 vm_page_busy(fs.m);
378 vm_page_unlock_queues();
379 if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
380 fs.m->object != kernel_object && fs.m->object != kmem_object) {
381 goto readrest;
382 }
383
384 break;
385 }
386
387 /*
388 * Page is not resident, If this is the search termination
389 * or the pager might contain the page, allocate a new page.
390 */
391 if (TRYPAGER || fs.object == fs.first_object) {
392 if (fs.pindex >= fs.object->size) {
393 unlock_and_deallocate(&fs);
394 mtx_unlock(&Giant);
395 return (KERN_PROTECTION_FAILURE);
396 }
397
398 /*
399 * Allocate a new page for this object/offset pair.
400 */
401 fs.m = NULL;
402 if (!vm_page_count_severe()) {
403 fs.m = vm_page_alloc(fs.object, fs.pindex,
404 (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
405 }
406 if (fs.m == NULL) {
407 unlock_and_deallocate(&fs);
408 VM_WAITPFAULT;
409 goto RetryFault;
410 }
411 }
412
413 readrest:
414 /*
415 * We have found a valid page or we have allocated a new page.
416 * The page thus may not be valid or may not be entirely
417 * valid.
418 *
419 * Attempt to fault-in the page if there is a chance that the
420 * pager has it, and potentially fault in additional pages
421 * at the same time.
422 */
423 if (TRYPAGER) {
424 int rv;
425 int reqpage;
426 int ahead, behind;
427 u_char behavior = vm_map_entry_behavior(fs.entry);
428
429 if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
430 ahead = 0;
431 behind = 0;
432 } else {
433 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
434 if (behind > VM_FAULT_READ_BEHIND)
435 behind = VM_FAULT_READ_BEHIND;
436
437 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
438 if (ahead > VM_FAULT_READ_AHEAD)
439 ahead = VM_FAULT_READ_AHEAD;
440 }
441
442 if ((fs.first_object->type != OBJT_DEVICE) &&
443 (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
444 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
445 fs.pindex >= fs.entry->lastr &&
446 fs.pindex < fs.entry->lastr + VM_FAULT_READ))
447 ) {
448 vm_pindex_t firstpindex, tmppindex;
449
450 if (fs.first_pindex < 2 * VM_FAULT_READ)
451 firstpindex = 0;
452 else
453 firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
454
455 vm_page_lock_queues();
456 /*
457 * note: partially valid pages cannot be
458 * included in the lookahead - NFS piecemeal
459 * writes will barf on it badly.
460 */
461 for (tmppindex = fs.first_pindex - 1;
462 tmppindex >= firstpindex;
463 --tmppindex) {
464 vm_page_t mt;
465
466 mt = vm_page_lookup(fs.first_object, tmppindex);
467 if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
468 break;
469 if (mt->busy ||
470 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
471 mt->hold_count ||
472 mt->wire_count)
473 continue;
474 if (mt->dirty == 0)
475 vm_page_test_dirty(mt);
476 if (mt->dirty) {
477 pmap_remove_all(mt);
478 vm_page_deactivate(mt);
479 } else {
480 vm_page_cache(mt);
481 }
482 }
483 vm_page_unlock_queues();
484 ahead += behind;
485 behind = 0;
486 }
487
488 /*
489 * now we find out if any other pages should be paged
490 * in at this time this routine checks to see if the
491 * pages surrounding this fault reside in the same
492 * object as the page for this fault. If they do,
493 * then they are faulted in also into the object. The
494 * array "marray" returned contains an array of
495 * vm_page_t structs where one of them is the
496 * vm_page_t passed to the routine. The reqpage
497 * return value is the index into the marray for the
498 * vm_page_t passed to the routine.
499 *
500 * fs.m plus the additional pages are PG_BUSY'd.
501 *
502 * XXX vm_fault_additional_pages() can block
503 * without releasing the map lock.
504 */
505 faultcount = vm_fault_additional_pages(
506 fs.m, behind, ahead, marray, &reqpage);
507
508 /*
509 * update lastr imperfectly (we do not know how much
510 * getpages will actually read), but good enough.
511 *
512 * XXX The following assignment modifies the map
513 * without holding a write lock on it.
514 */
515 fs.entry->lastr = fs.pindex + faultcount - behind;
516
517 /*
518 * Call the pager to retrieve the data, if any, after
519 * releasing the lock on the map. We hold a ref on
520 * fs.object and the pages are PG_BUSY'd.
521 */
522 unlock_map(&fs);
523
524 rv = faultcount ?
525 vm_pager_get_pages(fs.object, marray, faultcount,
526 reqpage) : VM_PAGER_FAIL;
527
528 if (rv == VM_PAGER_OK) {
529 /*
530 * Found the page. Leave it busy while we play
531 * with it.
532 */
533
534 /*
535 * Relookup in case pager changed page. Pager
536 * is responsible for disposition of old page
537 * if moved.
538 */
539 fs.m = vm_page_lookup(fs.object, fs.pindex);
540 if (!fs.m) {
541 unlock_and_deallocate(&fs);
542 goto RetryFault;
543 }
544
545 hardfault++;
546 break; /* break to PAGE HAS BEEN FOUND */
547 }
548 /*
549 * Remove the bogus page (which does not exist at this
550 * object/offset); before doing so, we must get back
551 * our object lock to preserve our invariant.
552 *
553 * Also wake up any other process that may want to bring
554 * in this page.
555 *
556 * If this is the top-level object, we must leave the
557 * busy page to prevent another process from rushing
558 * past us, and inserting the page in that object at
559 * the same time that we are.
560 */
561 if (rv == VM_PAGER_ERROR)
562 printf("vm_fault: pager read error, pid %d (%s)\n",
563 curproc->p_pid, curproc->p_comm);
564 /*
565 * Data outside the range of the pager or an I/O error
566 */
567 /*
568 * XXX - the check for kernel_map is a kludge to work
569 * around having the machine panic on a kernel space
570 * fault w/ I/O error.
571 */
572 if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
573 (rv == VM_PAGER_BAD)) {
574 vm_page_lock_queues();
575 vm_page_free(fs.m);
576 vm_page_unlock_queues();
577 fs.m = NULL;
578 unlock_and_deallocate(&fs);
579 mtx_unlock(&Giant);
580 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
581 }
582 if (fs.object != fs.first_object) {
583 vm_page_lock_queues();
584 vm_page_free(fs.m);
585 vm_page_unlock_queues();
586 fs.m = NULL;
587 /*
588 * XXX - we cannot just fall out at this
589 * point, m has been freed and is invalid!
590 */
591 }
592 }
593
594 /*
595 * We get here if the object has default pager (or unwiring)
596 * or the pager doesn't have the page.
597 */
598 if (fs.object == fs.first_object)
599 fs.first_m = fs.m;
600
601 /*
602 * Move on to the next object. Lock the next object before
603 * unlocking the current one.
604 */
605 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
606 next_object = fs.object->backing_object;
607 if (next_object == NULL) {
608 /*
609 * If there's no object left, fill the page in the top
610 * object with zeros.
611 */
612 if (fs.object != fs.first_object) {
613 vm_object_pip_wakeup(fs.object);
614
615 fs.object = fs.first_object;
616 fs.pindex = fs.first_pindex;
617 fs.m = fs.first_m;
618 }
619 fs.first_m = NULL;
620
621 /*
622 * Zero the page if necessary and mark it valid.
623 */
624 if ((fs.m->flags & PG_ZERO) == 0) {
625 pmap_zero_page(fs.m);
626 } else {
627 cnt.v_ozfod++;
628 }
629 cnt.v_zfod++;
630 fs.m->valid = VM_PAGE_BITS_ALL;
631 break; /* break to PAGE HAS BEEN FOUND */
632 } else {
633 if (fs.object != fs.first_object) {
634 vm_object_pip_wakeup(fs.object);
635 }
636 KASSERT(fs.object != next_object, ("object loop %p", next_object));
637 fs.object = next_object;
638 vm_object_pip_add(fs.object, 1);
639 }
640 }
641
642 KASSERT((fs.m->flags & PG_BUSY) != 0,
643 ("vm_fault: not busy after main loop"));
644
645 /*
646 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
647 * is held.]
648 */
649
650 /*
651 * If the page is being written, but isn't already owned by the
652 * top-level object, we have to copy it into a new page owned by the
653 * top-level object.
654 */
655 if (fs.object != fs.first_object) {
656 /*
657 * We only really need to copy if we want to write it.
658 */
659 if (fault_type & VM_PROT_WRITE) {
660 /*
661 * This allows pages to be virtually copied from a
662 * backing_object into the first_object, where the
663 * backing object has no other refs to it, and cannot
664 * gain any more refs. Instead of a bcopy, we just
665 * move the page from the backing object to the
666 * first object. Note that we must mark the page
667 * dirty in the first object so that it will go out
668 * to swap when needed.
669 */
670 if (map_generation == fs.map->timestamp &&
671 /*
672 * Only one shadow object
673 */
674 (fs.object->shadow_count == 1) &&
675 /*
676 * No COW refs, except us
677 */
678 (fs.object->ref_count == 1) &&
679 /*
680 * No one else can look this object up
681 */
682 (fs.object->handle == NULL) &&
683 /*
684 * No other ways to look the object up
685 */
686 ((fs.object->type == OBJT_DEFAULT) ||
687 (fs.object->type == OBJT_SWAP)) &&
688 /*
689 * We don't chase down the shadow chain
690 */
691 (fs.object == fs.first_object->backing_object) &&
692
693 /*
694 * grab the lock if we need to
695 */
696 (fs.lookup_still_valid || vm_map_trylock(fs.map))) {
697
698 fs.lookup_still_valid = 1;
699 /*
700 * get rid of the unnecessary page
701 */
702 vm_page_lock_queues();
703 pmap_remove_all(fs.first_m);
704 vm_page_free(fs.first_m);
705 vm_page_unlock_queues();
706 fs.first_m = NULL;
707
708 /*
709 * grab the page and put it into the
710 * process'es object. The page is
711 * automatically made dirty.
712 */
713 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
714 fs.first_m = fs.m;
715 vm_page_busy(fs.first_m);
716 fs.m = NULL;
717 cnt.v_cow_optim++;
718 } else {
719 /*
720 * Oh, well, lets copy it.
721 */
722 vm_page_copy(fs.m, fs.first_m);
723 }
724
725 if (fs.m) {
726 /*
727 * We no longer need the old page or object.
728 */
729 release_page(&fs);
730 }
731
732 /*
733 * fs.object != fs.first_object due to above
734 * conditional
735 */
736 vm_object_pip_wakeup(fs.object);
737
738 /*
739 * Only use the new page below...
740 */
741 cnt.v_cow_faults++;
742 fs.m = fs.first_m;
743 fs.object = fs.first_object;
744 fs.pindex = fs.first_pindex;
745
746 } else {
747 prot &= ~VM_PROT_WRITE;
748 }
749 }
750
751 /*
752 * We must verify that the maps have not changed since our last
753 * lookup.
754 */
755 if (!fs.lookup_still_valid &&
756 (fs.map->timestamp != map_generation)) {
757 vm_object_t retry_object;
758 vm_pindex_t retry_pindex;
759 vm_prot_t retry_prot;
760
761 /*
762 * Since map entries may be pageable, make sure we can take a
763 * page fault on them.
764 */
765
766 /*
767 * Unlock vnode before the lookup to avoid deadlock. E.G.
768 * avoid a deadlock between the inode and exec_map that can
769 * occur due to locks being obtained in different orders.
770 */
771 if (fs.vp != NULL) {
772 vput(fs.vp);
773 fs.vp = NULL;
774 }
775
776 if (fs.map->infork) {
777 release_page(&fs);
778 unlock_and_deallocate(&fs);
779 goto RetryFault;
780 }
781
782 /*
783 * To avoid trying to write_lock the map while another process
784 * has it read_locked (in vm_map_pageable), we do not try for
785 * write permission. If the page is still writable, we will
786 * get write permission. If it is not, or has been marked
787 * needs_copy, we enter the mapping without write permission,
788 * and will merely take another fault.
789 */
790 result = vm_map_lookup(&fs.map, vaddr, fault_type & ~VM_PROT_WRITE,
791 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
792 map_generation = fs.map->timestamp;
793
794 /*
795 * If we don't need the page any longer, put it on the active
796 * list (the easiest thing to do here). If no one needs it,
797 * pageout will grab it eventually.
798 */
799 if (result != KERN_SUCCESS) {
800 release_page(&fs);
801 unlock_and_deallocate(&fs);
802 mtx_unlock(&Giant);
803 return (result);
804 }
805 fs.lookup_still_valid = TRUE;
806
807 if ((retry_object != fs.first_object) ||
808 (retry_pindex != fs.first_pindex)) {
809 release_page(&fs);
810 unlock_and_deallocate(&fs);
811 goto RetryFault;
812 }
813 /*
814 * Check whether the protection has changed or the object has
815 * been copied while we left the map unlocked. Changing from
816 * read to write permission is OK - we leave the page
817 * write-protected, and catch the write fault. Changing from
818 * write to read permission means that we can't mark the page
819 * write-enabled after all.
820 */
821 prot &= retry_prot;
822 }
823
824 /*
825 * Put this page into the physical map. We had to do the unlock above
826 * because pmap_enter may cause other faults. We don't put the page
827 * back on the active queue until later so that the page-out daemon
828 * won't find us (yet).
829 */
830
831 if (prot & VM_PROT_WRITE) {
832 vm_page_flag_set(fs.m, PG_WRITEABLE);
833 vm_object_set_writeable_dirty(fs.m->object);
834
835 /*
836 * If the fault is a write, we know that this page is being
837 * written NOW so dirty it explicitly to save on
838 * pmap_is_modified() calls later.
839 *
840 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
841 * if the page is already dirty to prevent data written with
842 * the expectation of being synced from not being synced.
843 * Likewise if this entry does not request NOSYNC then make
844 * sure the page isn't marked NOSYNC. Applications sharing
845 * data should use the same flags to avoid ping ponging.
846 *
847 * Also tell the backing pager, if any, that it should remove
848 * any swap backing since the page is now dirty.
849 */
850 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
851 if (fs.m->dirty == 0)
852 vm_page_flag_set(fs.m, PG_NOSYNC);
853 } else {
854 vm_page_flag_clear(fs.m, PG_NOSYNC);
855 }
856 if (fault_flags & VM_FAULT_DIRTY) {
857 int s;
858 vm_page_dirty(fs.m);
859 s = splvm();
860 vm_pager_page_unswapped(fs.m);
861 splx(s);
862 }
863 }
864
865 /*
866 * Page had better still be busy
867 */
868 KASSERT(fs.m->flags & PG_BUSY,
869 ("vm_fault: page %p not busy!", fs.m));
870 unlock_things(&fs);
871
872 /*
873 * Sanity check: page must be completely valid or it is not fit to
874 * map into user space. vm_pager_get_pages() ensures this.
875 */
876 if (fs.m->valid != VM_PAGE_BITS_ALL) {
877 vm_page_zero_invalid(fs.m, TRUE);
878 printf("Warning: page %p partially invalid on fault\n", fs.m);
879 }
880 pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
881 if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
882 pmap_prefault(fs.map->pmap, vaddr, fs.entry);
883 }
884 vm_page_lock_queues();
885 vm_page_flag_clear(fs.m, PG_ZERO);
886 vm_page_flag_set(fs.m, PG_REFERENCED);
887
888 /*
889 * If the page is not wired down, then put it where the pageout daemon
890 * can find it.
891 */
892 if (fault_flags & VM_FAULT_WIRE_MASK) {
893 if (wired)
894 vm_page_wire(fs.m);
895 else
896 vm_page_unwire(fs.m, 1);
897 } else {
898 vm_page_activate(fs.m);
899 }
900 vm_page_wakeup(fs.m);
901 vm_page_unlock_queues();
902 mtx_lock_spin(&sched_lock);
903 if (curproc && (curproc->p_sflag & PS_INMEM) && curproc->p_stats) {
904 if (hardfault) {
905 curproc->p_stats->p_ru.ru_majflt++;
906 } else {
907 curproc->p_stats->p_ru.ru_minflt++;
908 }
909 }
910 mtx_unlock_spin(&sched_lock);
911
912 /*
913 * Unlock everything, and return
914 */
915 vm_object_deallocate(fs.first_object);
916 mtx_unlock(&Giant);
917 return (KERN_SUCCESS);
918 }
919
920 /*
921 * vm_fault_wire:
922 *
923 * Wire down a range of virtual addresses in a map.
924 */
925 int
926 vm_fault_wire(map, start, end, user_wire)
927 vm_map_t map;
928 vm_offset_t start, end;
929 boolean_t user_wire;
930 {
931 vm_offset_t va;
932 int rv;
933
934 /*
935 * We simulate a fault to get the page and enter it in the physical
936 * map. For user wiring, we only ask for read access on currently
937 * read-only sections.
938 */
939 for (va = start; va < end; va += PAGE_SIZE) {
940 rv = vm_fault(map, va,
941 user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
942 user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
943 if (rv) {
944 if (va != start)
945 vm_fault_unwire(map, start, va);
946 return (rv);
947 }
948 }
949 return (KERN_SUCCESS);
950 }
951
952 /*
953 * vm_fault_unwire:
954 *
955 * Unwire a range of virtual addresses in a map.
956 */
957 void
958 vm_fault_unwire(map, start, end)
959 vm_map_t map;
960 vm_offset_t start, end;
961 {
962 vm_offset_t va, pa;
963 pmap_t pmap;
964
965 pmap = vm_map_pmap(map);
966
967 mtx_lock(&Giant);
968 /*
969 * Since the pages are wired down, we must be able to get their
970 * mappings from the physical map system.
971 */
972 for (va = start; va < end; va += PAGE_SIZE) {
973 pa = pmap_extract(pmap, va);
974 if (pa != (vm_offset_t) 0) {
975 pmap_change_wiring(pmap, va, FALSE);
976 vm_page_lock_queues();
977 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
978 vm_page_unlock_queues();
979 }
980 }
981 mtx_unlock(&Giant);
982 }
983
984 /*
985 * Routine:
986 * vm_fault_copy_entry
987 * Function:
988 * Copy all of the pages from a wired-down map entry to another.
989 *
990 * In/out conditions:
991 * The source and destination maps must be locked for write.
992 * The source map entry must be wired down (or be a sharing map
993 * entry corresponding to a main map entry that is wired down).
994 */
995 void
996 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
997 vm_map_t dst_map;
998 vm_map_t src_map;
999 vm_map_entry_t dst_entry;
1000 vm_map_entry_t src_entry;
1001 {
1002 vm_object_t dst_object;
1003 vm_object_t src_object;
1004 vm_ooffset_t dst_offset;
1005 vm_ooffset_t src_offset;
1006 vm_prot_t prot;
1007 vm_offset_t vaddr;
1008 vm_page_t dst_m;
1009 vm_page_t src_m;
1010
1011 #ifdef lint
1012 src_map++;
1013 #endif /* lint */
1014
1015 src_object = src_entry->object.vm_object;
1016 src_offset = src_entry->offset;
1017
1018 /*
1019 * Create the top-level object for the destination entry. (Doesn't
1020 * actually shadow anything - we copy the pages directly.)
1021 */
1022 dst_object = vm_object_allocate(OBJT_DEFAULT,
1023 (vm_size_t) OFF_TO_IDX(dst_entry->end - dst_entry->start));
1024
1025 dst_entry->object.vm_object = dst_object;
1026 dst_entry->offset = 0;
1027
1028 prot = dst_entry->max_protection;
1029
1030 /*
1031 * Loop through all of the pages in the entry's range, copying each
1032 * one from the source object (it should be there) to the destination
1033 * object.
1034 */
1035 for (vaddr = dst_entry->start, dst_offset = 0;
1036 vaddr < dst_entry->end;
1037 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1038
1039 /*
1040 * Allocate a page in the destination object
1041 */
1042 do {
1043 dst_m = vm_page_alloc(dst_object,
1044 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1045 if (dst_m == NULL) {
1046 VM_WAIT;
1047 }
1048 } while (dst_m == NULL);
1049
1050 /*
1051 * Find the page in the source object, and copy it in.
1052 * (Because the source is wired down, the page will be in
1053 * memory.)
1054 */
1055 src_m = vm_page_lookup(src_object,
1056 OFF_TO_IDX(dst_offset + src_offset));
1057 if (src_m == NULL)
1058 panic("vm_fault_copy_wired: page missing");
1059
1060 vm_page_copy(src_m, dst_m);
1061
1062 /*
1063 * Enter it in the pmap...
1064 */
1065 vm_page_flag_clear(dst_m, PG_ZERO);
1066 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1067 vm_page_lock_queues();
1068 vm_page_flag_set(dst_m, PG_WRITEABLE);
1069
1070 /*
1071 * Mark it no longer busy, and put it on the active list.
1072 */
1073 vm_page_activate(dst_m);
1074 vm_page_wakeup(dst_m);
1075 vm_page_unlock_queues();
1076 }
1077 }
1078
1079
1080 /*
1081 * This routine checks around the requested page for other pages that
1082 * might be able to be faulted in. This routine brackets the viable
1083 * pages for the pages to be paged in.
1084 *
1085 * Inputs:
1086 * m, rbehind, rahead
1087 *
1088 * Outputs:
1089 * marray (array of vm_page_t), reqpage (index of requested page)
1090 *
1091 * Return value:
1092 * number of pages in marray
1093 *
1094 * This routine can't block.
1095 */
1096 static int
1097 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1098 vm_page_t m;
1099 int rbehind;
1100 int rahead;
1101 vm_page_t *marray;
1102 int *reqpage;
1103 {
1104 int i,j;
1105 vm_object_t object;
1106 vm_pindex_t pindex, startpindex, endpindex, tpindex;
1107 vm_page_t rtm;
1108 int cbehind, cahead;
1109
1110 GIANT_REQUIRED;
1111
1112 object = m->object;
1113 pindex = m->pindex;
1114
1115 /*
1116 * we don't fault-ahead for device pager
1117 */
1118 if (object->type == OBJT_DEVICE) {
1119 *reqpage = 0;
1120 marray[0] = m;
1121 return 1;
1122 }
1123
1124 /*
1125 * if the requested page is not available, then give up now
1126 */
1127 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1128 return 0;
1129 }
1130
1131 if ((cbehind == 0) && (cahead == 0)) {
1132 *reqpage = 0;
1133 marray[0] = m;
1134 return 1;
1135 }
1136
1137 if (rahead > cahead) {
1138 rahead = cahead;
1139 }
1140
1141 if (rbehind > cbehind) {
1142 rbehind = cbehind;
1143 }
1144
1145 /*
1146 * try to do any readahead that we might have free pages for.
1147 */
1148 if ((rahead + rbehind) >
1149 ((cnt.v_free_count + cnt.v_cache_count) - cnt.v_free_reserved)) {
1150 pagedaemon_wakeup();
1151 marray[0] = m;
1152 *reqpage = 0;
1153 return 1;
1154 }
1155
1156 /*
1157 * scan backward for the read behind pages -- in memory
1158 */
1159 if (pindex > 0) {
1160 if (rbehind > pindex) {
1161 rbehind = pindex;
1162 startpindex = 0;
1163 } else {
1164 startpindex = pindex - rbehind;
1165 }
1166
1167 for (tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1168 if (vm_page_lookup(object, tpindex)) {
1169 startpindex = tpindex + 1;
1170 break;
1171 }
1172 if (tpindex == 0)
1173 break;
1174 }
1175
1176 for (i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1177
1178 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1179 if (rtm == NULL) {
1180 vm_page_lock_queues();
1181 for (j = 0; j < i; j++) {
1182 vm_page_free(marray[j]);
1183 }
1184 vm_page_unlock_queues();
1185 marray[0] = m;
1186 *reqpage = 0;
1187 return 1;
1188 }
1189
1190 marray[i] = rtm;
1191 }
1192 } else {
1193 startpindex = 0;
1194 i = 0;
1195 }
1196
1197 marray[i] = m;
1198 /* page offset of the required page */
1199 *reqpage = i;
1200
1201 tpindex = pindex + 1;
1202 i++;
1203
1204 /*
1205 * scan forward for the read ahead pages
1206 */
1207 endpindex = tpindex + rahead;
1208 if (endpindex > object->size)
1209 endpindex = object->size;
1210
1211 for (; tpindex < endpindex; i++, tpindex++) {
1212
1213 if (vm_page_lookup(object, tpindex)) {
1214 break;
1215 }
1216
1217 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1218 if (rtm == NULL) {
1219 break;
1220 }
1221
1222 marray[i] = rtm;
1223 }
1224
1225 /* return number of bytes of pages */
1226 return i;
1227 }
Cache object: a56006d92e5b9b91dc362d9e1ca3e08e
|