The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_fault.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  *
    9  *
   10  * This code is derived from software contributed to Berkeley by
   11  * The Mach Operating System project at Carnegie-Mellon University.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1. Redistributions of source code must retain the above copyright
   17  *    notice, this list of conditions and the following disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  * 3. All advertising materials mentioning features or use of this software
   22  *    must display the following acknowledgement:
   23  *      This product includes software developed by the University of
   24  *      California, Berkeley and its contributors.
   25  * 4. Neither the name of the University nor the names of its contributors
   26  *    may be used to endorse or promote products derived from this software
   27  *    without specific prior written permission.
   28  *
   29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   39  * SUCH DAMAGE.
   40  *
   41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
   42  *
   43  *
   44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   45  * All rights reserved.
   46  *
   47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   48  *
   49  * Permission to use, copy, modify and distribute this software and
   50  * its documentation is hereby granted, provided that both the copyright
   51  * notice and this permission notice appear in all copies of the
   52  * software, derivative works or modified versions, and any portions
   53  * thereof, and that both notices appear in supporting documentation.
   54  *
   55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   58  *
   59  * Carnegie Mellon requests users of this software to return to
   60  *
   61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   62  *  School of Computer Science
   63  *  Carnegie Mellon University
   64  *  Pittsburgh PA 15213-3890
   65  *
   66  * any improvements or extensions that they make and grant Carnegie the
   67  * rights to redistribute these changes.
   68  *
   69  * $FreeBSD: releng/5.1/sys/vm/vm_fault.c 113868 2003-04-22 20:01:56Z jhb $
   70  */
   71 
   72 /*
   73  *      Page fault handling module.
   74  */
   75 #include <sys/param.h>
   76 #include <sys/systm.h>
   77 #include <sys/kernel.h>
   78 #include <sys/lock.h>
   79 #include <sys/mutex.h>
   80 #include <sys/proc.h>
   81 #include <sys/resourcevar.h>
   82 #include <sys/sysctl.h>
   83 #include <sys/vmmeter.h>
   84 #include <sys/vnode.h>
   85 
   86 #include <vm/vm.h>
   87 #include <vm/vm_param.h>
   88 #include <vm/pmap.h>
   89 #include <vm/vm_map.h>
   90 #include <vm/vm_object.h>
   91 #include <vm/vm_page.h>
   92 #include <vm/vm_pageout.h>
   93 #include <vm/vm_kern.h>
   94 #include <vm/vm_pager.h>
   95 #include <vm/vnode_pager.h>
   96 #include <vm/vm_extern.h>
   97 
   98 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
   99 
  100 #define VM_FAULT_READ_AHEAD 8
  101 #define VM_FAULT_READ_BEHIND 7
  102 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
  103 
  104 struct faultstate {
  105         vm_page_t m;
  106         vm_object_t object;
  107         vm_pindex_t pindex;
  108         vm_page_t first_m;
  109         vm_object_t     first_object;
  110         vm_pindex_t first_pindex;
  111         vm_map_t map;
  112         vm_map_entry_t entry;
  113         int lookup_still_valid;
  114         struct vnode *vp;
  115 };
  116 
  117 static __inline void
  118 release_page(struct faultstate *fs)
  119 {
  120         vm_page_lock_queues();
  121         vm_page_wakeup(fs->m);
  122         vm_page_deactivate(fs->m);
  123         vm_page_unlock_queues();
  124         fs->m = NULL;
  125 }
  126 
  127 static __inline void
  128 unlock_map(struct faultstate *fs)
  129 {
  130         if (fs->lookup_still_valid) {
  131                 vm_map_lookup_done(fs->map, fs->entry);
  132                 fs->lookup_still_valid = FALSE;
  133         }
  134 }
  135 
  136 static void
  137 _unlock_things(struct faultstate *fs, int dealloc)
  138 {
  139         GIANT_REQUIRED;
  140         VM_OBJECT_LOCK(fs->object);
  141         vm_object_pip_wakeup(fs->object);
  142         VM_OBJECT_UNLOCK(fs->object);
  143         if (fs->object != fs->first_object) {
  144                 VM_OBJECT_LOCK(fs->first_object);
  145                 vm_page_lock_queues();
  146                 vm_page_free(fs->first_m);
  147                 vm_page_unlock_queues();
  148                 vm_object_pip_wakeup(fs->first_object);
  149                 VM_OBJECT_UNLOCK(fs->first_object);
  150                 fs->first_m = NULL;
  151         }
  152         if (dealloc) {
  153                 vm_object_deallocate(fs->first_object);
  154         }
  155         unlock_map(fs); 
  156         if (fs->vp != NULL) { 
  157                 vput(fs->vp);
  158                 fs->vp = NULL;
  159         }
  160 }
  161 
  162 #define unlock_things(fs) _unlock_things(fs, 0)
  163 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
  164 
  165 /*
  166  * TRYPAGER - used by vm_fault to calculate whether the pager for the
  167  *            current object *might* contain the page.
  168  *
  169  *            default objects are zero-fill, there is no real pager.
  170  */
  171 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
  172                         (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
  173 
  174 /*
  175  *      vm_fault:
  176  *
  177  *      Handle a page fault occurring at the given address,
  178  *      requiring the given permissions, in the map specified.
  179  *      If successful, the page is inserted into the
  180  *      associated physical map.
  181  *
  182  *      NOTE: the given address should be truncated to the
  183  *      proper page address.
  184  *
  185  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
  186  *      a standard error specifying why the fault is fatal is returned.
  187  *
  188  *
  189  *      The map in question must be referenced, and remains so.
  190  *      Caller may hold no locks.
  191  */
  192 int
  193 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
  194          int fault_flags)
  195 {
  196         vm_prot_t prot;
  197         int result;
  198         boolean_t growstack, wired;
  199         int map_generation;
  200         vm_object_t next_object;
  201         vm_page_t marray[VM_FAULT_READ];
  202         int hardfault;
  203         int faultcount;
  204         struct faultstate fs;
  205 
  206         hardfault = 0;
  207         growstack = TRUE;
  208         atomic_add_int(&cnt.v_vm_faults, 1);
  209 
  210         mtx_lock(&Giant);
  211 RetryFault:;
  212 
  213         /*
  214          * Find the backing store object and offset into it to begin the
  215          * search.
  216          */
  217         fs.map = map;
  218         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
  219             &fs.first_object, &fs.first_pindex, &prot, &wired);
  220         if (result != KERN_SUCCESS) {
  221                 if (result != KERN_PROTECTION_FAILURE ||
  222                     (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
  223                         if (growstack && result == KERN_INVALID_ADDRESS &&
  224                             map != kernel_map && curproc != NULL) {
  225                                 result = vm_map_growstack(curproc, vaddr);
  226                                 if (result != KERN_SUCCESS) {
  227                                         mtx_unlock(&Giant);
  228                                         return (KERN_FAILURE);
  229                                 }
  230                                 growstack = FALSE;
  231                                 goto RetryFault;
  232                         }
  233                         mtx_unlock(&Giant);
  234                         return (result);
  235                 }
  236 
  237                 /*
  238                  * If we are user-wiring a r/w segment, and it is COW, then
  239                  * we need to do the COW operation.  Note that we don't COW
  240                  * currently RO sections now, because it is NOT desirable
  241                  * to COW .text.  We simply keep .text from ever being COW'ed
  242                  * and take the heat that one cannot debug wired .text sections.
  243                  */
  244                 result = vm_map_lookup(&fs.map, vaddr,
  245                         VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
  246                         &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
  247                 if (result != KERN_SUCCESS) {
  248                         mtx_unlock(&Giant);
  249                         return (result);
  250                 }
  251 
  252                 /*
  253                  * If we don't COW now, on a user wire, the user will never
  254                  * be able to write to the mapping.  If we don't make this
  255                  * restriction, the bookkeeping would be nearly impossible.
  256                  *
  257                  * XXX The following assignment modifies the map without
  258                  * holding a write lock on it.
  259                  */
  260                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
  261                         fs.entry->max_protection &= ~VM_PROT_WRITE;
  262         }
  263 
  264         map_generation = fs.map->timestamp;
  265 
  266         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
  267                 panic("vm_fault: fault on nofault entry, addr: %lx",
  268                     (u_long)vaddr);
  269         }
  270 
  271         /*
  272          * Make a reference to this object to prevent its disposal while we
  273          * are messing with it.  Once we have the reference, the map is free
  274          * to be diddled.  Since objects reference their shadows (and copies),
  275          * they will stay around as well.
  276          *
  277          * Bump the paging-in-progress count to prevent size changes (e.g. 
  278          * truncation operations) during I/O.  This must be done after
  279          * obtaining the vnode lock in order to avoid possible deadlocks.
  280          *
  281          * XXX vnode_pager_lock() can block without releasing the map lock.
  282          */
  283         vm_object_reference(fs.first_object);
  284         fs.vp = vnode_pager_lock(fs.first_object);
  285         VM_OBJECT_LOCK(fs.first_object);
  286         vm_object_pip_add(fs.first_object, 1);
  287         VM_OBJECT_UNLOCK(fs.first_object);
  288 
  289         fs.lookup_still_valid = TRUE;
  290 
  291         if (wired)
  292                 fault_type = prot;
  293 
  294         fs.first_m = NULL;
  295 
  296         /*
  297          * Search for the page at object/offset.
  298          */
  299         fs.object = fs.first_object;
  300         fs.pindex = fs.first_pindex;
  301         while (TRUE) {
  302                 /*
  303                  * If the object is dead, we stop here
  304                  */
  305                 if (fs.object->flags & OBJ_DEAD) {
  306                         unlock_and_deallocate(&fs);
  307                         mtx_unlock(&Giant);
  308                         return (KERN_PROTECTION_FAILURE);
  309                 }
  310 
  311                 /*
  312                  * See if page is resident
  313                  */
  314                 fs.m = vm_page_lookup(fs.object, fs.pindex);
  315                 if (fs.m != NULL) {
  316                         int queue, s;
  317 
  318                         /* 
  319                          * check for page-based copy on write.
  320                          * We check fs.object == fs.first_object so
  321                          * as to ensure the legacy COW mechanism is
  322                          * used when the page in question is part of
  323                          * a shadow object.  Otherwise, vm_page_cowfault()
  324                          * removes the page from the backing object, 
  325                          * which is not what we want.
  326                          */
  327                         vm_page_lock_queues();
  328                         if ((fs.m->cow) && 
  329                             (fault_type & VM_PROT_WRITE) &&
  330                             (fs.object == fs.first_object)) {
  331                                 s = splvm();
  332                                 vm_page_cowfault(fs.m);
  333                                 splx(s);
  334                                 vm_page_unlock_queues();
  335                                 unlock_things(&fs);
  336                                 goto RetryFault;
  337                         }
  338 
  339                         /*
  340                          * Wait/Retry if the page is busy.  We have to do this
  341                          * if the page is busy via either PG_BUSY or 
  342                          * vm_page_t->busy because the vm_pager may be using
  343                          * vm_page_t->busy for pageouts ( and even pageins if
  344                          * it is the vnode pager ), and we could end up trying
  345                          * to pagein and pageout the same page simultaneously.
  346                          *
  347                          * We can theoretically allow the busy case on a read
  348                          * fault if the page is marked valid, but since such
  349                          * pages are typically already pmap'd, putting that
  350                          * special case in might be more effort then it is 
  351                          * worth.  We cannot under any circumstances mess
  352                          * around with a vm_page_t->busy page except, perhaps,
  353                          * to pmap it.
  354                          */
  355                         if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
  356                                 vm_page_unlock_queues();
  357                                 unlock_things(&fs);
  358                                 vm_page_lock_queues();
  359                                 if (!vm_page_sleep_if_busy(fs.m, TRUE, "vmpfw"))
  360                                         vm_page_unlock_queues();
  361                                 cnt.v_intrans++;
  362                                 vm_object_deallocate(fs.first_object);
  363                                 goto RetryFault;
  364                         }
  365                         queue = fs.m->queue;
  366 
  367                         s = splvm();
  368                         vm_pageq_remove_nowakeup(fs.m);
  369                         splx(s);
  370 
  371                         if ((queue - fs.m->pc) == PQ_CACHE && vm_page_count_severe()) {
  372                                 vm_page_activate(fs.m);
  373                                 vm_page_unlock_queues();
  374                                 unlock_and_deallocate(&fs);
  375                                 VM_WAITPFAULT;
  376                                 goto RetryFault;
  377                         }
  378 
  379                         /*
  380                          * Mark page busy for other processes, and the 
  381                          * pagedaemon.  If it still isn't completely valid
  382                          * (readable), jump to readrest, else break-out ( we
  383                          * found the page ).
  384                          */
  385                         vm_page_busy(fs.m);
  386                         vm_page_unlock_queues();
  387                         if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
  388                                 fs.m->object != kernel_object && fs.m->object != kmem_object) {
  389                                 goto readrest;
  390                         }
  391 
  392                         break;
  393                 }
  394 
  395                 /*
  396                  * Page is not resident, If this is the search termination
  397                  * or the pager might contain the page, allocate a new page.
  398                  */
  399                 if (TRYPAGER || fs.object == fs.first_object) {
  400                         if (fs.pindex >= fs.object->size) {
  401                                 unlock_and_deallocate(&fs);
  402                                 mtx_unlock(&Giant);
  403                                 return (KERN_PROTECTION_FAILURE);
  404                         }
  405 
  406                         /*
  407                          * Allocate a new page for this object/offset pair.
  408                          */
  409                         fs.m = NULL;
  410                         if (!vm_page_count_severe()) {
  411                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
  412                                     (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
  413                         }
  414                         if (fs.m == NULL) {
  415                                 unlock_and_deallocate(&fs);
  416                                 VM_WAITPFAULT;
  417                                 goto RetryFault;
  418                         }
  419                 }
  420 
  421 readrest:
  422                 /*
  423                  * We have found a valid page or we have allocated a new page.
  424                  * The page thus may not be valid or may not be entirely 
  425                  * valid.
  426                  *
  427                  * Attempt to fault-in the page if there is a chance that the
  428                  * pager has it, and potentially fault in additional pages
  429                  * at the same time.
  430                  */
  431                 if (TRYPAGER) {
  432                         int rv;
  433                         int reqpage;
  434                         int ahead, behind;
  435                         u_char behavior = vm_map_entry_behavior(fs.entry);
  436 
  437                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
  438                                 ahead = 0;
  439                                 behind = 0;
  440                         } else {
  441                                 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
  442                                 if (behind > VM_FAULT_READ_BEHIND)
  443                                         behind = VM_FAULT_READ_BEHIND;
  444 
  445                                 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
  446                                 if (ahead > VM_FAULT_READ_AHEAD)
  447                                         ahead = VM_FAULT_READ_AHEAD;
  448                         }
  449 
  450                         if ((fs.first_object->type != OBJT_DEVICE) &&
  451                             (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
  452                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
  453                                 fs.pindex >= fs.entry->lastr &&
  454                                 fs.pindex < fs.entry->lastr + VM_FAULT_READ))
  455                         ) {
  456                                 vm_pindex_t firstpindex, tmppindex;
  457 
  458                                 if (fs.first_pindex < 2 * VM_FAULT_READ)
  459                                         firstpindex = 0;
  460                                 else
  461                                         firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
  462 
  463                                 vm_page_lock_queues();
  464                                 /*
  465                                  * note: partially valid pages cannot be 
  466                                  * included in the lookahead - NFS piecemeal
  467                                  * writes will barf on it badly.
  468                                  */
  469                                 for (tmppindex = fs.first_pindex - 1;
  470                                         tmppindex >= firstpindex;
  471                                         --tmppindex) {
  472                                         vm_page_t mt;
  473 
  474                                         mt = vm_page_lookup(fs.first_object, tmppindex);
  475                                         if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
  476                                                 break;
  477                                         if (mt->busy ||
  478                                                 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
  479                                                 mt->hold_count ||
  480                                                 mt->wire_count) 
  481                                                 continue;
  482                                         if (mt->dirty == 0)
  483                                                 vm_page_test_dirty(mt);
  484                                         if (mt->dirty) {
  485                                                 pmap_remove_all(mt);
  486                                                 vm_page_deactivate(mt);
  487                                         } else {
  488                                                 vm_page_cache(mt);
  489                                         }
  490                                 }
  491                                 vm_page_unlock_queues();
  492                                 ahead += behind;
  493                                 behind = 0;
  494                         }
  495 
  496                         /*
  497                          * now we find out if any other pages should be paged
  498                          * in at this time this routine checks to see if the
  499                          * pages surrounding this fault reside in the same
  500                          * object as the page for this fault.  If they do,
  501                          * then they are faulted in also into the object.  The
  502                          * array "marray" returned contains an array of
  503                          * vm_page_t structs where one of them is the
  504                          * vm_page_t passed to the routine.  The reqpage
  505                          * return value is the index into the marray for the
  506                          * vm_page_t passed to the routine.
  507                          *
  508                          * fs.m plus the additional pages are PG_BUSY'd.
  509                          *
  510                          * XXX vm_fault_additional_pages() can block
  511                          * without releasing the map lock.
  512                          */
  513                         faultcount = vm_fault_additional_pages(
  514                             fs.m, behind, ahead, marray, &reqpage);
  515 
  516                         /*
  517                          * update lastr imperfectly (we do not know how much
  518                          * getpages will actually read), but good enough.
  519                          *
  520                          * XXX The following assignment modifies the map
  521                          * without holding a write lock on it.
  522                          */
  523                         fs.entry->lastr = fs.pindex + faultcount - behind;
  524 
  525                         /*
  526                          * Call the pager to retrieve the data, if any, after
  527                          * releasing the lock on the map.  We hold a ref on
  528                          * fs.object and the pages are PG_BUSY'd.
  529                          */
  530                         unlock_map(&fs);
  531 
  532                         rv = faultcount ?
  533                             vm_pager_get_pages(fs.object, marray, faultcount,
  534                                 reqpage) : VM_PAGER_FAIL;
  535 
  536                         if (rv == VM_PAGER_OK) {
  537                                 /*
  538                                  * Found the page. Leave it busy while we play
  539                                  * with it.
  540                                  */
  541 
  542                                 /*
  543                                  * Relookup in case pager changed page. Pager
  544                                  * is responsible for disposition of old page
  545                                  * if moved.
  546                                  */
  547                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
  548                                 if (!fs.m) {
  549                                         unlock_and_deallocate(&fs);
  550                                         goto RetryFault;
  551                                 }
  552 
  553                                 hardfault++;
  554                                 break; /* break to PAGE HAS BEEN FOUND */
  555                         }
  556                         /*
  557                          * Remove the bogus page (which does not exist at this
  558                          * object/offset); before doing so, we must get back
  559                          * our object lock to preserve our invariant.
  560                          *
  561                          * Also wake up any other process that may want to bring
  562                          * in this page.
  563                          *
  564                          * If this is the top-level object, we must leave the
  565                          * busy page to prevent another process from rushing
  566                          * past us, and inserting the page in that object at
  567                          * the same time that we are.
  568                          */
  569                         if (rv == VM_PAGER_ERROR)
  570                                 printf("vm_fault: pager read error, pid %d (%s)\n",
  571                                     curproc->p_pid, curproc->p_comm);
  572                         /*
  573                          * Data outside the range of the pager or an I/O error
  574                          */
  575                         /*
  576                          * XXX - the check for kernel_map is a kludge to work
  577                          * around having the machine panic on a kernel space
  578                          * fault w/ I/O error.
  579                          */
  580                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
  581                                 (rv == VM_PAGER_BAD)) {
  582                                 vm_page_lock_queues();
  583                                 vm_page_free(fs.m);
  584                                 vm_page_unlock_queues();
  585                                 fs.m = NULL;
  586                                 unlock_and_deallocate(&fs);
  587                                 mtx_unlock(&Giant);
  588                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
  589                         }
  590                         if (fs.object != fs.first_object) {
  591                                 vm_page_lock_queues();
  592                                 vm_page_free(fs.m);
  593                                 vm_page_unlock_queues();
  594                                 fs.m = NULL;
  595                                 /*
  596                                  * XXX - we cannot just fall out at this
  597                                  * point, m has been freed and is invalid!
  598                                  */
  599                         }
  600                 }
  601 
  602                 /*
  603                  * We get here if the object has default pager (or unwiring) 
  604                  * or the pager doesn't have the page.
  605                  */
  606                 if (fs.object == fs.first_object)
  607                         fs.first_m = fs.m;
  608 
  609                 /*
  610                  * Move on to the next object.  Lock the next object before
  611                  * unlocking the current one.
  612                  */
  613                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
  614                 next_object = fs.object->backing_object;
  615                 if (next_object == NULL) {
  616                         /*
  617                          * If there's no object left, fill the page in the top
  618                          * object with zeros.
  619                          */
  620                         if (fs.object != fs.first_object) {
  621                                 VM_OBJECT_LOCK(fs.object);
  622                                 vm_object_pip_wakeup(fs.object);
  623                                 VM_OBJECT_UNLOCK(fs.object);
  624 
  625                                 fs.object = fs.first_object;
  626                                 fs.pindex = fs.first_pindex;
  627                                 fs.m = fs.first_m;
  628                         }
  629                         fs.first_m = NULL;
  630 
  631                         /*
  632                          * Zero the page if necessary and mark it valid.
  633                          */
  634                         if ((fs.m->flags & PG_ZERO) == 0) {
  635                                 pmap_zero_page(fs.m);
  636                         } else {
  637                                 cnt.v_ozfod++;
  638                         }
  639                         cnt.v_zfod++;
  640                         fs.m->valid = VM_PAGE_BITS_ALL;
  641                         break;  /* break to PAGE HAS BEEN FOUND */
  642                 } else {
  643                         if (fs.object != fs.first_object) {
  644                                 VM_OBJECT_LOCK(fs.object);
  645                                 vm_object_pip_wakeup(fs.object);
  646                                 VM_OBJECT_UNLOCK(fs.object);
  647                         }
  648                         KASSERT(fs.object != next_object, ("object loop %p", next_object));
  649                         fs.object = next_object;
  650                         VM_OBJECT_LOCK(fs.object);
  651                         vm_object_pip_add(fs.object, 1);
  652                         VM_OBJECT_UNLOCK(fs.object);
  653                 }
  654         }
  655 
  656         KASSERT((fs.m->flags & PG_BUSY) != 0,
  657             ("vm_fault: not busy after main loop"));
  658 
  659         /*
  660          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
  661          * is held.]
  662          */
  663 
  664         /*
  665          * If the page is being written, but isn't already owned by the
  666          * top-level object, we have to copy it into a new page owned by the
  667          * top-level object.
  668          */
  669         if (fs.object != fs.first_object) {
  670                 /*
  671                  * We only really need to copy if we want to write it.
  672                  */
  673                 if (fault_type & VM_PROT_WRITE) {
  674                         /*
  675                          * This allows pages to be virtually copied from a 
  676                          * backing_object into the first_object, where the 
  677                          * backing object has no other refs to it, and cannot
  678                          * gain any more refs.  Instead of a bcopy, we just 
  679                          * move the page from the backing object to the 
  680                          * first object.  Note that we must mark the page 
  681                          * dirty in the first object so that it will go out 
  682                          * to swap when needed.
  683                          */
  684                         if (map_generation == fs.map->timestamp &&
  685                                 /*
  686                                  * Only one shadow object
  687                                  */
  688                                 (fs.object->shadow_count == 1) &&
  689                                 /*
  690                                  * No COW refs, except us
  691                                  */
  692                                 (fs.object->ref_count == 1) &&
  693                                 /*
  694                                  * No one else can look this object up
  695                                  */
  696                                 (fs.object->handle == NULL) &&
  697                                 /*
  698                                  * No other ways to look the object up
  699                                  */
  700                                 ((fs.object->type == OBJT_DEFAULT) ||
  701                                  (fs.object->type == OBJT_SWAP)) &&
  702                                 /*
  703                                  * We don't chase down the shadow chain
  704                                  */
  705                                 (fs.object == fs.first_object->backing_object) &&
  706 
  707                                 /*
  708                                  * grab the lock if we need to
  709                                  */
  710                             (fs.lookup_still_valid || vm_map_trylock(fs.map))) {
  711                                 
  712                                 fs.lookup_still_valid = 1;
  713                                 /*
  714                                  * get rid of the unnecessary page
  715                                  */
  716                                 vm_page_lock_queues();
  717                                 pmap_remove_all(fs.first_m);
  718                                 vm_page_free(fs.first_m);
  719                                 fs.first_m = NULL;
  720 
  721                                 /*
  722                                  * grab the page and put it into the 
  723                                  * process'es object.  The page is 
  724                                  * automatically made dirty.
  725                                  */
  726                                 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
  727                                 fs.first_m = fs.m;
  728                                 vm_page_busy(fs.first_m);
  729                                 vm_page_unlock_queues();
  730                                 fs.m = NULL;
  731                                 cnt.v_cow_optim++;
  732                         } else {
  733                                 /*
  734                                  * Oh, well, lets copy it.
  735                                  */
  736                                 vm_page_copy(fs.m, fs.first_m);
  737                         }
  738 
  739                         if (fs.m) {
  740                                 /*
  741                                  * We no longer need the old page or object.
  742                                  */
  743                                 release_page(&fs);
  744                         }
  745 
  746                         /*
  747                          * fs.object != fs.first_object due to above 
  748                          * conditional
  749                          */
  750                         VM_OBJECT_LOCK(fs.object);
  751                         vm_object_pip_wakeup(fs.object);
  752                         VM_OBJECT_UNLOCK(fs.object);
  753 
  754                         /*
  755                          * Only use the new page below...
  756                          */
  757                         cnt.v_cow_faults++;
  758                         fs.m = fs.first_m;
  759                         fs.object = fs.first_object;
  760                         fs.pindex = fs.first_pindex;
  761 
  762                 } else {
  763                         prot &= ~VM_PROT_WRITE;
  764                 }
  765         }
  766 
  767         /*
  768          * We must verify that the maps have not changed since our last
  769          * lookup.
  770          */
  771         if (!fs.lookup_still_valid &&
  772                 (fs.map->timestamp != map_generation)) {
  773                 vm_object_t retry_object;
  774                 vm_pindex_t retry_pindex;
  775                 vm_prot_t retry_prot;
  776 
  777                 /*
  778                  * Since map entries may be pageable, make sure we can take a
  779                  * page fault on them.
  780                  */
  781 
  782                 /*
  783                  * Unlock vnode before the lookup to avoid deadlock.   E.G.
  784                  * avoid a deadlock between the inode and exec_map that can
  785                  * occur due to locks being obtained in different orders.
  786                  */
  787                 if (fs.vp != NULL) {
  788                         vput(fs.vp);
  789                         fs.vp = NULL;
  790                 }
  791                 
  792                 if (fs.map->infork) {
  793                         release_page(&fs);
  794                         unlock_and_deallocate(&fs);
  795                         goto RetryFault;
  796                 }
  797 
  798                 /*
  799                  * To avoid trying to write_lock the map while another process
  800                  * has it read_locked (in vm_map_pageable), we do not try for
  801                  * write permission.  If the page is still writable, we will
  802                  * get write permission.  If it is not, or has been marked
  803                  * needs_copy, we enter the mapping without write permission,
  804                  * and will merely take another fault.
  805                  */
  806                 result = vm_map_lookup(&fs.map, vaddr, fault_type & ~VM_PROT_WRITE,
  807                     &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
  808                 map_generation = fs.map->timestamp;
  809 
  810                 /*
  811                  * If we don't need the page any longer, put it on the active
  812                  * list (the easiest thing to do here).  If no one needs it,
  813                  * pageout will grab it eventually.
  814                  */
  815                 if (result != KERN_SUCCESS) {
  816                         release_page(&fs);
  817                         unlock_and_deallocate(&fs);
  818                         mtx_unlock(&Giant);
  819                         return (result);
  820                 }
  821                 fs.lookup_still_valid = TRUE;
  822 
  823                 if ((retry_object != fs.first_object) ||
  824                     (retry_pindex != fs.first_pindex)) {
  825                         release_page(&fs);
  826                         unlock_and_deallocate(&fs);
  827                         goto RetryFault;
  828                 }
  829                 /*
  830                  * Check whether the protection has changed or the object has
  831                  * been copied while we left the map unlocked. Changing from
  832                  * read to write permission is OK - we leave the page
  833                  * write-protected, and catch the write fault. Changing from
  834                  * write to read permission means that we can't mark the page
  835                  * write-enabled after all.
  836                  */
  837                 prot &= retry_prot;
  838         }
  839 
  840         /*
  841          * Put this page into the physical map. We had to do the unlock above
  842          * because pmap_enter may cause other faults.   We don't put the page
  843          * back on the active queue until later so that the page-out daemon
  844          * won't find us (yet).
  845          */
  846 
  847         if (prot & VM_PROT_WRITE) {
  848                 vm_page_lock_queues();
  849                 vm_page_flag_set(fs.m, PG_WRITEABLE);
  850                 vm_object_set_writeable_dirty(fs.m->object);
  851 
  852                 /*
  853                  * If the fault is a write, we know that this page is being
  854                  * written NOW so dirty it explicitly to save on 
  855                  * pmap_is_modified() calls later.
  856                  *
  857                  * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
  858                  * if the page is already dirty to prevent data written with
  859                  * the expectation of being synced from not being synced.
  860                  * Likewise if this entry does not request NOSYNC then make
  861                  * sure the page isn't marked NOSYNC.  Applications sharing
  862                  * data should use the same flags to avoid ping ponging.
  863                  *
  864                  * Also tell the backing pager, if any, that it should remove
  865                  * any swap backing since the page is now dirty.
  866                  */
  867                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
  868                         if (fs.m->dirty == 0)
  869                                 vm_page_flag_set(fs.m, PG_NOSYNC);
  870                 } else {
  871                         vm_page_flag_clear(fs.m, PG_NOSYNC);
  872                 }
  873                 vm_page_unlock_queues();
  874                 if (fault_flags & VM_FAULT_DIRTY) {
  875                         int s;
  876                         vm_page_dirty(fs.m);
  877                         s = splvm();
  878                         vm_pager_page_unswapped(fs.m);
  879                         splx(s);
  880                 }
  881         }
  882 
  883         /*
  884          * Page had better still be busy
  885          */
  886         KASSERT(fs.m->flags & PG_BUSY,
  887                 ("vm_fault: page %p not busy!", fs.m));
  888         unlock_things(&fs);
  889 
  890         /*
  891          * Sanity check: page must be completely valid or it is not fit to
  892          * map into user space.  vm_pager_get_pages() ensures this.
  893          */
  894         if (fs.m->valid != VM_PAGE_BITS_ALL) {
  895                 vm_page_zero_invalid(fs.m, TRUE);
  896                 printf("Warning: page %p partially invalid on fault\n", fs.m);
  897         }
  898         pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
  899         if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
  900                 pmap_prefault(fs.map->pmap, vaddr, fs.entry);
  901         }
  902         vm_page_lock_queues();
  903         vm_page_flag_clear(fs.m, PG_ZERO);
  904         vm_page_flag_set(fs.m, PG_REFERENCED);
  905 
  906         /*
  907          * If the page is not wired down, then put it where the pageout daemon
  908          * can find it.
  909          */
  910         if (fault_flags & VM_FAULT_WIRE_MASK) {
  911                 if (wired)
  912                         vm_page_wire(fs.m);
  913                 else
  914                         vm_page_unwire(fs.m, 1);
  915         } else {
  916                 vm_page_activate(fs.m);
  917         }
  918         vm_page_wakeup(fs.m);
  919         vm_page_unlock_queues();
  920 
  921         PROC_LOCK(curproc);
  922         if ((curproc->p_sflag & PS_INMEM) && curproc->p_stats) {
  923                 if (hardfault) {
  924                         curproc->p_stats->p_ru.ru_majflt++;
  925                 } else {
  926                         curproc->p_stats->p_ru.ru_minflt++;
  927                 }
  928         }
  929         PROC_UNLOCK(curproc);
  930 
  931         /*
  932          * Unlock everything, and return
  933          */
  934         vm_object_deallocate(fs.first_object);
  935         mtx_unlock(&Giant);
  936         return (KERN_SUCCESS);
  937 }
  938 
  939 /*
  940  *      vm_fault_quick:
  941  *
  942  *      Ensure that the requested virtual address, which may be in userland,
  943  *      is valid.  Fault-in the page if necessary.  Return -1 on failure.
  944  */
  945 int
  946 vm_fault_quick(caddr_t v, int prot)
  947 {
  948         int r;
  949 
  950         if (prot & VM_PROT_WRITE)
  951                 r = subyte(v, fubyte(v));
  952         else
  953                 r = fubyte(v);
  954         return(r);
  955 }
  956 
  957 /*
  958  *      vm_fault_wire:
  959  *
  960  *      Wire down a range of virtual addresses in a map.
  961  */
  962 int
  963 vm_fault_wire(map, start, end, user_wire)
  964         vm_map_t map;
  965         vm_offset_t start, end;
  966         boolean_t user_wire;
  967 {
  968         vm_offset_t va;
  969         int rv;
  970 
  971         /*
  972          * We simulate a fault to get the page and enter it in the physical
  973          * map.  For user wiring, we only ask for read access on currently
  974          * read-only sections.
  975          */
  976         for (va = start; va < end; va += PAGE_SIZE) {
  977                 rv = vm_fault(map, va,
  978                     user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
  979                     user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
  980                 if (rv) {
  981                         if (va != start)
  982                                 vm_fault_unwire(map, start, va);
  983                         return (rv);
  984                 }
  985         }
  986         return (KERN_SUCCESS);
  987 }
  988 
  989 /*
  990  *      vm_fault_unwire:
  991  *
  992  *      Unwire a range of virtual addresses in a map.
  993  */
  994 void
  995 vm_fault_unwire(map, start, end)
  996         vm_map_t map;
  997         vm_offset_t start, end;
  998 {
  999         vm_paddr_t pa;
 1000         vm_offset_t va;
 1001         pmap_t pmap;
 1002 
 1003         pmap = vm_map_pmap(map);
 1004 
 1005         mtx_lock(&Giant);
 1006         /*
 1007          * Since the pages are wired down, we must be able to get their
 1008          * mappings from the physical map system.
 1009          */
 1010         for (va = start; va < end; va += PAGE_SIZE) {
 1011                 pa = pmap_extract(pmap, va);
 1012                 if (pa != 0) {
 1013                         pmap_change_wiring(pmap, va, FALSE);
 1014                         vm_page_lock_queues();
 1015                         vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
 1016                         vm_page_unlock_queues();
 1017                 }
 1018         }
 1019         mtx_unlock(&Giant);
 1020 }
 1021 
 1022 /*
 1023  *      Routine:
 1024  *              vm_fault_copy_entry
 1025  *      Function:
 1026  *              Copy all of the pages from a wired-down map entry to another.
 1027  *
 1028  *      In/out conditions:
 1029  *              The source and destination maps must be locked for write.
 1030  *              The source map entry must be wired down (or be a sharing map
 1031  *              entry corresponding to a main map entry that is wired down).
 1032  */
 1033 void
 1034 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
 1035         vm_map_t dst_map;
 1036         vm_map_t src_map;
 1037         vm_map_entry_t dst_entry;
 1038         vm_map_entry_t src_entry;
 1039 {
 1040         vm_object_t dst_object;
 1041         vm_object_t src_object;
 1042         vm_ooffset_t dst_offset;
 1043         vm_ooffset_t src_offset;
 1044         vm_prot_t prot;
 1045         vm_offset_t vaddr;
 1046         vm_page_t dst_m;
 1047         vm_page_t src_m;
 1048 
 1049 #ifdef  lint
 1050         src_map++;
 1051 #endif  /* lint */
 1052 
 1053         src_object = src_entry->object.vm_object;
 1054         src_offset = src_entry->offset;
 1055 
 1056         /*
 1057          * Create the top-level object for the destination entry. (Doesn't
 1058          * actually shadow anything - we copy the pages directly.)
 1059          */
 1060         dst_object = vm_object_allocate(OBJT_DEFAULT,
 1061             (vm_size_t) OFF_TO_IDX(dst_entry->end - dst_entry->start));
 1062 
 1063         dst_entry->object.vm_object = dst_object;
 1064         dst_entry->offset = 0;
 1065 
 1066         prot = dst_entry->max_protection;
 1067 
 1068         /*
 1069          * Loop through all of the pages in the entry's range, copying each
 1070          * one from the source object (it should be there) to the destination
 1071          * object.
 1072          */
 1073         for (vaddr = dst_entry->start, dst_offset = 0;
 1074             vaddr < dst_entry->end;
 1075             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
 1076 
 1077                 /*
 1078                  * Allocate a page in the destination object
 1079                  */
 1080                 do {
 1081                         dst_m = vm_page_alloc(dst_object,
 1082                                 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
 1083                         if (dst_m == NULL) {
 1084                                 VM_WAIT;
 1085                         }
 1086                 } while (dst_m == NULL);
 1087 
 1088                 /*
 1089                  * Find the page in the source object, and copy it in.
 1090                  * (Because the source is wired down, the page will be in
 1091                  * memory.)
 1092                  */
 1093                 src_m = vm_page_lookup(src_object,
 1094                         OFF_TO_IDX(dst_offset + src_offset));
 1095                 if (src_m == NULL)
 1096                         panic("vm_fault_copy_wired: page missing");
 1097 
 1098                 vm_page_copy(src_m, dst_m);
 1099 
 1100                 /*
 1101                  * Enter it in the pmap...
 1102                  */
 1103                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
 1104                 vm_page_lock_queues();
 1105                 vm_page_flag_set(dst_m, PG_WRITEABLE);
 1106 
 1107                 /*
 1108                  * Mark it no longer busy, and put it on the active list.
 1109                  */
 1110                 vm_page_activate(dst_m);
 1111                 vm_page_wakeup(dst_m);
 1112                 vm_page_unlock_queues();
 1113         }
 1114 }
 1115 
 1116 
 1117 /*
 1118  * This routine checks around the requested page for other pages that
 1119  * might be able to be faulted in.  This routine brackets the viable
 1120  * pages for the pages to be paged in.
 1121  *
 1122  * Inputs:
 1123  *      m, rbehind, rahead
 1124  *
 1125  * Outputs:
 1126  *  marray (array of vm_page_t), reqpage (index of requested page)
 1127  *
 1128  * Return value:
 1129  *  number of pages in marray
 1130  *
 1131  * This routine can't block.
 1132  */
 1133 static int
 1134 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
 1135         vm_page_t m;
 1136         int rbehind;
 1137         int rahead;
 1138         vm_page_t *marray;
 1139         int *reqpage;
 1140 {
 1141         int i,j;
 1142         vm_object_t object;
 1143         vm_pindex_t pindex, startpindex, endpindex, tpindex;
 1144         vm_page_t rtm;
 1145         int cbehind, cahead;
 1146 
 1147         GIANT_REQUIRED;
 1148 
 1149         object = m->object;
 1150         pindex = m->pindex;
 1151 
 1152         /*
 1153          * we don't fault-ahead for device pager
 1154          */
 1155         if (object->type == OBJT_DEVICE) {
 1156                 *reqpage = 0;
 1157                 marray[0] = m;
 1158                 return 1;
 1159         }
 1160 
 1161         /*
 1162          * if the requested page is not available, then give up now
 1163          */
 1164         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
 1165                 return 0;
 1166         }
 1167 
 1168         if ((cbehind == 0) && (cahead == 0)) {
 1169                 *reqpage = 0;
 1170                 marray[0] = m;
 1171                 return 1;
 1172         }
 1173 
 1174         if (rahead > cahead) {
 1175                 rahead = cahead;
 1176         }
 1177 
 1178         if (rbehind > cbehind) {
 1179                 rbehind = cbehind;
 1180         }
 1181 
 1182         /*
 1183          * try to do any readahead that we might have free pages for.
 1184          */
 1185         if ((rahead + rbehind) >
 1186                 ((cnt.v_free_count + cnt.v_cache_count) - cnt.v_free_reserved)) {
 1187                 pagedaemon_wakeup();
 1188                 marray[0] = m;
 1189                 *reqpage = 0;
 1190                 return 1;
 1191         }
 1192 
 1193         /*
 1194          * scan backward for the read behind pages -- in memory 
 1195          */
 1196         if (pindex > 0) {
 1197                 if (rbehind > pindex) {
 1198                         rbehind = pindex;
 1199                         startpindex = 0;
 1200                 } else {
 1201                         startpindex = pindex - rbehind;
 1202                 }
 1203 
 1204                 for (tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
 1205                         if (vm_page_lookup(object, tpindex)) {
 1206                                 startpindex = tpindex + 1;
 1207                                 break;
 1208                         }
 1209                         if (tpindex == 0)
 1210                                 break;
 1211                 }
 1212 
 1213                 for (i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
 1214 
 1215                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
 1216                         if (rtm == NULL) {
 1217                                 vm_page_lock_queues();
 1218                                 for (j = 0; j < i; j++) {
 1219                                         vm_page_free(marray[j]);
 1220                                 }
 1221                                 vm_page_unlock_queues();
 1222                                 marray[0] = m;
 1223                                 *reqpage = 0;
 1224                                 return 1;
 1225                         }
 1226 
 1227                         marray[i] = rtm;
 1228                 }
 1229         } else {
 1230                 startpindex = 0;
 1231                 i = 0;
 1232         }
 1233 
 1234         marray[i] = m;
 1235         /* page offset of the required page */
 1236         *reqpage = i;
 1237 
 1238         tpindex = pindex + 1;
 1239         i++;
 1240 
 1241         /*
 1242          * scan forward for the read ahead pages
 1243          */
 1244         endpindex = tpindex + rahead;
 1245         if (endpindex > object->size)
 1246                 endpindex = object->size;
 1247 
 1248         for (; tpindex < endpindex; i++, tpindex++) {
 1249 
 1250                 if (vm_page_lookup(object, tpindex)) {
 1251                         break;
 1252                 }
 1253 
 1254                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
 1255                 if (rtm == NULL) {
 1256                         break;
 1257                 }
 1258 
 1259                 marray[i] = rtm;
 1260         }
 1261 
 1262         /* return number of bytes of pages */
 1263         return i;
 1264 }

Cache object: ce71a8f9716943fe7c44e72bd857202b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.