The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_fault.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  *
    9  *
   10  * This code is derived from software contributed to Berkeley by
   11  * The Mach Operating System project at Carnegie-Mellon University.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1. Redistributions of source code must retain the above copyright
   17  *    notice, this list of conditions and the following disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  * 3. All advertising materials mentioning features or use of this software
   22  *    must display the following acknowledgement:
   23  *      This product includes software developed by the University of
   24  *      California, Berkeley and its contributors.
   25  * 4. Neither the name of the University nor the names of its contributors
   26  *    may be used to endorse or promote products derived from this software
   27  *    without specific prior written permission.
   28  *
   29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   39  * SUCH DAMAGE.
   40  *
   41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
   42  *
   43  *
   44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   45  * All rights reserved.
   46  *
   47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   48  *
   49  * Permission to use, copy, modify and distribute this software and
   50  * its documentation is hereby granted, provided that both the copyright
   51  * notice and this permission notice appear in all copies of the
   52  * software, derivative works or modified versions, and any portions
   53  * thereof, and that both notices appear in supporting documentation.
   54  *
   55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   58  *
   59  * Carnegie Mellon requests users of this software to return to
   60  *
   61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   62  *  School of Computer Science
   63  *  Carnegie Mellon University
   64  *  Pittsburgh PA 15213-3890
   65  *
   66  * any improvements or extensions that they make and grant Carnegie the
   67  * rights to redistribute these changes.
   68  */
   69 
   70 /*
   71  *      Page fault handling module.
   72  */
   73 
   74 #include <sys/cdefs.h>
   75 __FBSDID("$FreeBSD: releng/5.3/sys/vm/vm_fault.c 133807 2004-08-16 06:16:12Z alc $");
   76 
   77 #include <sys/param.h>
   78 #include <sys/systm.h>
   79 #include <sys/kernel.h>
   80 #include <sys/lock.h>
   81 #include <sys/mutex.h>
   82 #include <sys/proc.h>
   83 #include <sys/resourcevar.h>
   84 #include <sys/sysctl.h>
   85 #include <sys/vmmeter.h>
   86 #include <sys/vnode.h>
   87 
   88 #include <vm/vm.h>
   89 #include <vm/vm_param.h>
   90 #include <vm/pmap.h>
   91 #include <vm/vm_map.h>
   92 #include <vm/vm_object.h>
   93 #include <vm/vm_page.h>
   94 #include <vm/vm_pageout.h>
   95 #include <vm/vm_kern.h>
   96 #include <vm/vm_pager.h>
   97 #include <vm/vnode_pager.h>
   98 #include <vm/vm_extern.h>
   99 
  100 #define PFBAK 4
  101 #define PFFOR 4
  102 #define PAGEORDER_SIZE (PFBAK+PFFOR)
  103 
  104 static int prefault_pageorder[] = {
  105         -1 * PAGE_SIZE, 1 * PAGE_SIZE,
  106         -2 * PAGE_SIZE, 2 * PAGE_SIZE,
  107         -3 * PAGE_SIZE, 3 * PAGE_SIZE,
  108         -4 * PAGE_SIZE, 4 * PAGE_SIZE
  109 };
  110 
  111 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
  112 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
  113 
  114 #define VM_FAULT_READ_AHEAD 8
  115 #define VM_FAULT_READ_BEHIND 7
  116 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
  117 
  118 struct faultstate {
  119         vm_page_t m;
  120         vm_object_t object;
  121         vm_pindex_t pindex;
  122         vm_page_t first_m;
  123         vm_object_t     first_object;
  124         vm_pindex_t first_pindex;
  125         vm_map_t map;
  126         vm_map_entry_t entry;
  127         int lookup_still_valid;
  128         struct vnode *vp;
  129 };
  130 
  131 static __inline void
  132 release_page(struct faultstate *fs)
  133 {
  134         vm_page_lock_queues();
  135         vm_page_wakeup(fs->m);
  136         vm_page_deactivate(fs->m);
  137         vm_page_unlock_queues();
  138         fs->m = NULL;
  139 }
  140 
  141 static __inline void
  142 unlock_map(struct faultstate *fs)
  143 {
  144         if (fs->lookup_still_valid) {
  145                 vm_map_lookup_done(fs->map, fs->entry);
  146                 fs->lookup_still_valid = FALSE;
  147         }
  148 }
  149 
  150 static void
  151 _unlock_things(struct faultstate *fs, int dealloc)
  152 {
  153 
  154         vm_object_pip_wakeup(fs->object);
  155         VM_OBJECT_UNLOCK(fs->object);
  156         if (fs->object != fs->first_object) {
  157                 VM_OBJECT_LOCK(fs->first_object);
  158                 vm_page_lock_queues();
  159                 vm_page_free(fs->first_m);
  160                 vm_page_unlock_queues();
  161                 vm_object_pip_wakeup(fs->first_object);
  162                 VM_OBJECT_UNLOCK(fs->first_object);
  163                 fs->first_m = NULL;
  164         }
  165         if (dealloc) {
  166                 vm_object_deallocate(fs->first_object);
  167         }
  168         unlock_map(fs); 
  169         if (fs->vp != NULL) { 
  170                 vput(fs->vp);
  171                 if (debug_mpsafevm)
  172                         mtx_unlock(&Giant);
  173                 fs->vp = NULL;
  174         }
  175         if (dealloc)
  176                 VM_UNLOCK_GIANT();
  177 }
  178 
  179 #define unlock_things(fs) _unlock_things(fs, 0)
  180 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
  181 
  182 /*
  183  * TRYPAGER - used by vm_fault to calculate whether the pager for the
  184  *            current object *might* contain the page.
  185  *
  186  *            default objects are zero-fill, there is no real pager.
  187  */
  188 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
  189                         (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
  190 
  191 /*
  192  *      vm_fault:
  193  *
  194  *      Handle a page fault occurring at the given address,
  195  *      requiring the given permissions, in the map specified.
  196  *      If successful, the page is inserted into the
  197  *      associated physical map.
  198  *
  199  *      NOTE: the given address should be truncated to the
  200  *      proper page address.
  201  *
  202  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
  203  *      a standard error specifying why the fault is fatal is returned.
  204  *
  205  *
  206  *      The map in question must be referenced, and remains so.
  207  *      Caller may hold no locks.
  208  */
  209 int
  210 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
  211          int fault_flags)
  212 {
  213         vm_prot_t prot;
  214         int is_first_object_locked, result;
  215         boolean_t growstack, wired;
  216         int map_generation;
  217         vm_object_t next_object;
  218         vm_page_t marray[VM_FAULT_READ];
  219         int hardfault;
  220         int faultcount;
  221         struct faultstate fs;
  222 
  223         hardfault = 0;
  224         growstack = TRUE;
  225         atomic_add_int(&cnt.v_vm_faults, 1);
  226 
  227 RetryFault:;
  228 
  229         /*
  230          * Find the backing store object and offset into it to begin the
  231          * search.
  232          */
  233         fs.map = map;
  234         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
  235             &fs.first_object, &fs.first_pindex, &prot, &wired);
  236         if (result != KERN_SUCCESS) {
  237                 if (result != KERN_PROTECTION_FAILURE ||
  238                     (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
  239                         if (growstack && result == KERN_INVALID_ADDRESS &&
  240                             map != kernel_map && curproc != NULL) {
  241                                 result = vm_map_growstack(curproc, vaddr);
  242                                 if (result != KERN_SUCCESS)
  243                                         return (KERN_FAILURE);
  244                                 growstack = FALSE;
  245                                 goto RetryFault;
  246                         }
  247                         return (result);
  248                 }
  249 
  250                 /*
  251                  * If we are user-wiring a r/w segment, and it is COW, then
  252                  * we need to do the COW operation.  Note that we don't COW
  253                  * currently RO sections now, because it is NOT desirable
  254                  * to COW .text.  We simply keep .text from ever being COW'ed
  255                  * and take the heat that one cannot debug wired .text sections.
  256                  */
  257                 result = vm_map_lookup(&fs.map, vaddr,
  258                         VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
  259                         &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
  260                 if (result != KERN_SUCCESS)
  261                         return (result);
  262 
  263                 /*
  264                  * If we don't COW now, on a user wire, the user will never
  265                  * be able to write to the mapping.  If we don't make this
  266                  * restriction, the bookkeeping would be nearly impossible.
  267                  *
  268                  * XXX The following assignment modifies the map without
  269                  * holding a write lock on it.
  270                  */
  271                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
  272                         fs.entry->max_protection &= ~VM_PROT_WRITE;
  273         }
  274 
  275         map_generation = fs.map->timestamp;
  276 
  277         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
  278                 panic("vm_fault: fault on nofault entry, addr: %lx",
  279                     (u_long)vaddr);
  280         }
  281 
  282         /*
  283          * Make a reference to this object to prevent its disposal while we
  284          * are messing with it.  Once we have the reference, the map is free
  285          * to be diddled.  Since objects reference their shadows (and copies),
  286          * they will stay around as well.
  287          *
  288          * Bump the paging-in-progress count to prevent size changes (e.g. 
  289          * truncation operations) during I/O.  This must be done after
  290          * obtaining the vnode lock in order to avoid possible deadlocks.
  291          *
  292          * XXX vnode_pager_lock() can block without releasing the map lock.
  293          */
  294         mtx_lock(&Giant);
  295         VM_OBJECT_LOCK(fs.first_object);
  296         vm_object_reference_locked(fs.first_object);
  297         fs.vp = vnode_pager_lock(fs.first_object);
  298         if (fs.vp == NULL && debug_mpsafevm)
  299                 mtx_unlock(&Giant);
  300         vm_object_pip_add(fs.first_object, 1);
  301 
  302         fs.lookup_still_valid = TRUE;
  303 
  304         if (wired)
  305                 fault_type = prot;
  306 
  307         fs.first_m = NULL;
  308 
  309         /*
  310          * Search for the page at object/offset.
  311          */
  312         fs.object = fs.first_object;
  313         fs.pindex = fs.first_pindex;
  314         while (TRUE) {
  315                 /*
  316                  * If the object is dead, we stop here
  317                  */
  318                 if (fs.object->flags & OBJ_DEAD) {
  319                         unlock_and_deallocate(&fs);
  320                         return (KERN_PROTECTION_FAILURE);
  321                 }
  322 
  323                 /*
  324                  * See if page is resident
  325                  */
  326                 fs.m = vm_page_lookup(fs.object, fs.pindex);
  327                 if (fs.m != NULL) {
  328                         int queue;
  329 
  330                         /* 
  331                          * check for page-based copy on write.
  332                          * We check fs.object == fs.first_object so
  333                          * as to ensure the legacy COW mechanism is
  334                          * used when the page in question is part of
  335                          * a shadow object.  Otherwise, vm_page_cowfault()
  336                          * removes the page from the backing object, 
  337                          * which is not what we want.
  338                          */
  339                         vm_page_lock_queues();
  340                         if ((fs.m->cow) && 
  341                             (fault_type & VM_PROT_WRITE) &&
  342                             (fs.object == fs.first_object)) {
  343                                 vm_page_cowfault(fs.m);
  344                                 vm_page_unlock_queues();
  345                                 unlock_and_deallocate(&fs);
  346                                 goto RetryFault;
  347                         }
  348 
  349                         /*
  350                          * Wait/Retry if the page is busy.  We have to do this
  351                          * if the page is busy via either PG_BUSY or 
  352                          * vm_page_t->busy because the vm_pager may be using
  353                          * vm_page_t->busy for pageouts ( and even pageins if
  354                          * it is the vnode pager ), and we could end up trying
  355                          * to pagein and pageout the same page simultaneously.
  356                          *
  357                          * We can theoretically allow the busy case on a read
  358                          * fault if the page is marked valid, but since such
  359                          * pages are typically already pmap'd, putting that
  360                          * special case in might be more effort then it is 
  361                          * worth.  We cannot under any circumstances mess
  362                          * around with a vm_page_t->busy page except, perhaps,
  363                          * to pmap it.
  364                          */
  365                         if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
  366                                 vm_page_unlock_queues();
  367                                 unlock_things(&fs);
  368                                 vm_page_lock_queues();
  369                                 if (!vm_page_sleep_if_busy(fs.m, TRUE, "vmpfw"))
  370                                         vm_page_unlock_queues();
  371                                 atomic_add_int(&cnt.v_intrans, 1);
  372                                 VM_UNLOCK_GIANT();
  373                                 vm_object_deallocate(fs.first_object);
  374                                 goto RetryFault;
  375                         }
  376                         queue = fs.m->queue;
  377 
  378                         vm_pageq_remove_nowakeup(fs.m);
  379 
  380                         if ((queue - fs.m->pc) == PQ_CACHE && vm_page_count_severe()) {
  381                                 vm_page_activate(fs.m);
  382                                 vm_page_unlock_queues();
  383                                 unlock_and_deallocate(&fs);
  384                                 VM_WAITPFAULT;
  385                                 goto RetryFault;
  386                         }
  387 
  388                         /*
  389                          * Mark page busy for other processes, and the 
  390                          * pagedaemon.  If it still isn't completely valid
  391                          * (readable), jump to readrest, else break-out ( we
  392                          * found the page ).
  393                          */
  394                         vm_page_busy(fs.m);
  395                         vm_page_unlock_queues();
  396                         if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
  397                                 fs.m->object != kernel_object && fs.m->object != kmem_object) {
  398                                 goto readrest;
  399                         }
  400 
  401                         break;
  402                 }
  403 
  404                 /*
  405                  * Page is not resident, If this is the search termination
  406                  * or the pager might contain the page, allocate a new page.
  407                  */
  408                 if (TRYPAGER || fs.object == fs.first_object) {
  409                         if (fs.pindex >= fs.object->size) {
  410                                 unlock_and_deallocate(&fs);
  411                                 return (KERN_PROTECTION_FAILURE);
  412                         }
  413 
  414                         /*
  415                          * Allocate a new page for this object/offset pair.
  416                          */
  417                         fs.m = NULL;
  418                         if (!vm_page_count_severe()) {
  419                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
  420                                     (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
  421                         }
  422                         if (fs.m == NULL) {
  423                                 unlock_and_deallocate(&fs);
  424                                 VM_WAITPFAULT;
  425                                 goto RetryFault;
  426                         }
  427                 }
  428 
  429 readrest:
  430                 /*
  431                  * We have found a valid page or we have allocated a new page.
  432                  * The page thus may not be valid or may not be entirely 
  433                  * valid.
  434                  *
  435                  * Attempt to fault-in the page if there is a chance that the
  436                  * pager has it, and potentially fault in additional pages
  437                  * at the same time.
  438                  */
  439                 if (TRYPAGER) {
  440                         int rv;
  441                         int reqpage;
  442                         int ahead, behind;
  443                         u_char behavior = vm_map_entry_behavior(fs.entry);
  444 
  445                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
  446                                 ahead = 0;
  447                                 behind = 0;
  448                         } else {
  449                                 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
  450                                 if (behind > VM_FAULT_READ_BEHIND)
  451                                         behind = VM_FAULT_READ_BEHIND;
  452 
  453                                 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
  454                                 if (ahead > VM_FAULT_READ_AHEAD)
  455                                         ahead = VM_FAULT_READ_AHEAD;
  456                         }
  457                         is_first_object_locked = FALSE;
  458                         if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
  459                              (behavior != MAP_ENTRY_BEHAV_RANDOM &&
  460                               fs.pindex >= fs.entry->lastr &&
  461                               fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
  462                             (fs.first_object == fs.object ||
  463                              (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
  464                             fs.first_object->type != OBJT_DEVICE) {
  465                                 vm_pindex_t firstpindex, tmppindex;
  466 
  467                                 if (fs.first_pindex < 2 * VM_FAULT_READ)
  468                                         firstpindex = 0;
  469                                 else
  470                                         firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
  471 
  472                                 vm_page_lock_queues();
  473                                 /*
  474                                  * note: partially valid pages cannot be 
  475                                  * included in the lookahead - NFS piecemeal
  476                                  * writes will barf on it badly.
  477                                  */
  478                                 for (tmppindex = fs.first_pindex - 1;
  479                                         tmppindex >= firstpindex;
  480                                         --tmppindex) {
  481                                         vm_page_t mt;
  482 
  483                                         mt = vm_page_lookup(fs.first_object, tmppindex);
  484                                         if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
  485                                                 break;
  486                                         if (mt->busy ||
  487                                                 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
  488                                                 mt->hold_count ||
  489                                                 mt->wire_count) 
  490                                                 continue;
  491                                         pmap_remove_all(mt);
  492                                         if (mt->dirty) {
  493                                                 vm_page_deactivate(mt);
  494                                         } else {
  495                                                 vm_page_cache(mt);
  496                                         }
  497                                 }
  498                                 vm_page_unlock_queues();
  499                                 ahead += behind;
  500                                 behind = 0;
  501                         }
  502                         if (is_first_object_locked)
  503                                 VM_OBJECT_UNLOCK(fs.first_object);
  504                         /*
  505                          * now we find out if any other pages should be paged
  506                          * in at this time this routine checks to see if the
  507                          * pages surrounding this fault reside in the same
  508                          * object as the page for this fault.  If they do,
  509                          * then they are faulted in also into the object.  The
  510                          * array "marray" returned contains an array of
  511                          * vm_page_t structs where one of them is the
  512                          * vm_page_t passed to the routine.  The reqpage
  513                          * return value is the index into the marray for the
  514                          * vm_page_t passed to the routine.
  515                          *
  516                          * fs.m plus the additional pages are PG_BUSY'd.
  517                          *
  518                          * XXX vm_fault_additional_pages() can block
  519                          * without releasing the map lock.
  520                          */
  521                         faultcount = vm_fault_additional_pages(
  522                             fs.m, behind, ahead, marray, &reqpage);
  523 
  524                         /*
  525                          * update lastr imperfectly (we do not know how much
  526                          * getpages will actually read), but good enough.
  527                          *
  528                          * XXX The following assignment modifies the map
  529                          * without holding a write lock on it.
  530                          */
  531                         fs.entry->lastr = fs.pindex + faultcount - behind;
  532 
  533                         /*
  534                          * Call the pager to retrieve the data, if any, after
  535                          * releasing the lock on the map.  We hold a ref on
  536                          * fs.object and the pages are PG_BUSY'd.
  537                          */
  538                         unlock_map(&fs);
  539 
  540                         rv = faultcount ?
  541                             vm_pager_get_pages(fs.object, marray, faultcount,
  542                                 reqpage) : VM_PAGER_FAIL;
  543 
  544                         if (rv == VM_PAGER_OK) {
  545                                 /*
  546                                  * Found the page. Leave it busy while we play
  547                                  * with it.
  548                                  */
  549 
  550                                 /*
  551                                  * Relookup in case pager changed page. Pager
  552                                  * is responsible for disposition of old page
  553                                  * if moved.
  554                                  */
  555                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
  556                                 if (!fs.m) {
  557                                         unlock_and_deallocate(&fs);
  558                                         goto RetryFault;
  559                                 }
  560 
  561                                 hardfault++;
  562                                 break; /* break to PAGE HAS BEEN FOUND */
  563                         }
  564                         /*
  565                          * Remove the bogus page (which does not exist at this
  566                          * object/offset); before doing so, we must get back
  567                          * our object lock to preserve our invariant.
  568                          *
  569                          * Also wake up any other process that may want to bring
  570                          * in this page.
  571                          *
  572                          * If this is the top-level object, we must leave the
  573                          * busy page to prevent another process from rushing
  574                          * past us, and inserting the page in that object at
  575                          * the same time that we are.
  576                          */
  577                         if (rv == VM_PAGER_ERROR)
  578                                 printf("vm_fault: pager read error, pid %d (%s)\n",
  579                                     curproc->p_pid, curproc->p_comm);
  580                         /*
  581                          * Data outside the range of the pager or an I/O error
  582                          */
  583                         /*
  584                          * XXX - the check for kernel_map is a kludge to work
  585                          * around having the machine panic on a kernel space
  586                          * fault w/ I/O error.
  587                          */
  588                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
  589                                 (rv == VM_PAGER_BAD)) {
  590                                 vm_page_lock_queues();
  591                                 vm_page_free(fs.m);
  592                                 vm_page_unlock_queues();
  593                                 fs.m = NULL;
  594                                 unlock_and_deallocate(&fs);
  595                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
  596                         }
  597                         if (fs.object != fs.first_object) {
  598                                 vm_page_lock_queues();
  599                                 vm_page_free(fs.m);
  600                                 vm_page_unlock_queues();
  601                                 fs.m = NULL;
  602                                 /*
  603                                  * XXX - we cannot just fall out at this
  604                                  * point, m has been freed and is invalid!
  605                                  */
  606                         }
  607                 }
  608 
  609                 /*
  610                  * We get here if the object has default pager (or unwiring) 
  611                  * or the pager doesn't have the page.
  612                  */
  613                 if (fs.object == fs.first_object)
  614                         fs.first_m = fs.m;
  615 
  616                 /*
  617                  * Move on to the next object.  Lock the next object before
  618                  * unlocking the current one.
  619                  */
  620                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
  621                 next_object = fs.object->backing_object;
  622                 if (next_object == NULL) {
  623                         /*
  624                          * If there's no object left, fill the page in the top
  625                          * object with zeros.
  626                          */
  627                         if (fs.object != fs.first_object) {
  628                                 vm_object_pip_wakeup(fs.object);
  629                                 VM_OBJECT_UNLOCK(fs.object);
  630 
  631                                 fs.object = fs.first_object;
  632                                 fs.pindex = fs.first_pindex;
  633                                 fs.m = fs.first_m;
  634                                 VM_OBJECT_LOCK(fs.object);
  635                         }
  636                         fs.first_m = NULL;
  637 
  638                         /*
  639                          * Zero the page if necessary and mark it valid.
  640                          */
  641                         if ((fs.m->flags & PG_ZERO) == 0) {
  642                                 pmap_zero_page(fs.m);
  643                         } else {
  644                                 atomic_add_int(&cnt.v_ozfod, 1);
  645                         }
  646                         atomic_add_int(&cnt.v_zfod, 1);
  647                         fs.m->valid = VM_PAGE_BITS_ALL;
  648                         break;  /* break to PAGE HAS BEEN FOUND */
  649                 } else {
  650                         KASSERT(fs.object != next_object,
  651                             ("object loop %p", next_object));
  652                         VM_OBJECT_LOCK(next_object);
  653                         vm_object_pip_add(next_object, 1);
  654                         if (fs.object != fs.first_object)
  655                                 vm_object_pip_wakeup(fs.object);
  656                         VM_OBJECT_UNLOCK(fs.object);
  657                         fs.object = next_object;
  658                 }
  659         }
  660 
  661         KASSERT((fs.m->flags & PG_BUSY) != 0,
  662             ("vm_fault: not busy after main loop"));
  663 
  664         /*
  665          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
  666          * is held.]
  667          */
  668 
  669         /*
  670          * If the page is being written, but isn't already owned by the
  671          * top-level object, we have to copy it into a new page owned by the
  672          * top-level object.
  673          */
  674         if (fs.object != fs.first_object) {
  675                 /*
  676                  * We only really need to copy if we want to write it.
  677                  */
  678                 if (fault_type & VM_PROT_WRITE) {
  679                         /*
  680                          * This allows pages to be virtually copied from a 
  681                          * backing_object into the first_object, where the 
  682                          * backing object has no other refs to it, and cannot
  683                          * gain any more refs.  Instead of a bcopy, we just 
  684                          * move the page from the backing object to the 
  685                          * first object.  Note that we must mark the page 
  686                          * dirty in the first object so that it will go out 
  687                          * to swap when needed.
  688                          */
  689                         is_first_object_locked = FALSE;
  690                         if (
  691                                 /*
  692                                  * Only one shadow object
  693                                  */
  694                                 (fs.object->shadow_count == 1) &&
  695                                 /*
  696                                  * No COW refs, except us
  697                                  */
  698                                 (fs.object->ref_count == 1) &&
  699                                 /*
  700                                  * No one else can look this object up
  701                                  */
  702                                 (fs.object->handle == NULL) &&
  703                                 /*
  704                                  * No other ways to look the object up
  705                                  */
  706                                 ((fs.object->type == OBJT_DEFAULT) ||
  707                                  (fs.object->type == OBJT_SWAP)) &&
  708                             (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
  709                                 /*
  710                                  * We don't chase down the shadow chain
  711                                  */
  712                             fs.object == fs.first_object->backing_object) {
  713                                 vm_page_lock_queues();
  714                                 /*
  715                                  * get rid of the unnecessary page
  716                                  */
  717                                 pmap_remove_all(fs.first_m);
  718                                 vm_page_free(fs.first_m);
  719                                 /*
  720                                  * grab the page and put it into the 
  721                                  * process'es object.  The page is 
  722                                  * automatically made dirty.
  723                                  */
  724                                 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
  725                                 vm_page_busy(fs.m);
  726                                 vm_page_unlock_queues();
  727                                 fs.first_m = fs.m;
  728                                 fs.m = NULL;
  729                                 atomic_add_int(&cnt.v_cow_optim, 1);
  730                         } else {
  731                                 /*
  732                                  * Oh, well, lets copy it.
  733                                  */
  734                                 pmap_copy_page(fs.m, fs.first_m);
  735                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
  736                         }
  737                         if (fs.m) {
  738                                 /*
  739                                  * We no longer need the old page or object.
  740                                  */
  741                                 release_page(&fs);
  742                         }
  743                         /*
  744                          * fs.object != fs.first_object due to above 
  745                          * conditional
  746                          */
  747                         vm_object_pip_wakeup(fs.object);
  748                         VM_OBJECT_UNLOCK(fs.object);
  749                         /*
  750                          * Only use the new page below...
  751                          */
  752                         fs.object = fs.first_object;
  753                         fs.pindex = fs.first_pindex;
  754                         fs.m = fs.first_m;
  755                         if (!is_first_object_locked)
  756                                 VM_OBJECT_LOCK(fs.object);
  757                         atomic_add_int(&cnt.v_cow_faults, 1);
  758                 } else {
  759                         prot &= ~VM_PROT_WRITE;
  760                 }
  761         }
  762 
  763         /*
  764          * We must verify that the maps have not changed since our last
  765          * lookup.
  766          */
  767         if (!fs.lookup_still_valid) {
  768                 vm_object_t retry_object;
  769                 vm_pindex_t retry_pindex;
  770                 vm_prot_t retry_prot;
  771 
  772                 if (!vm_map_trylock_read(fs.map)) {
  773                         release_page(&fs);
  774                         unlock_and_deallocate(&fs);
  775                         goto RetryFault;
  776                 }
  777                 fs.lookup_still_valid = TRUE;
  778                 if (fs.map->timestamp != map_generation) {
  779                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
  780                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
  781 
  782                         /*
  783                          * If we don't need the page any longer, put it on the active
  784                          * list (the easiest thing to do here).  If no one needs it,
  785                          * pageout will grab it eventually.
  786                          */
  787                         if (result != KERN_SUCCESS) {
  788                                 release_page(&fs);
  789                                 unlock_and_deallocate(&fs);
  790 
  791                                 /*
  792                                  * If retry of map lookup would have blocked then
  793                                  * retry fault from start.
  794                                  */
  795                                 if (result == KERN_FAILURE)
  796                                         goto RetryFault;
  797                                 return (result);
  798                         }
  799                         if ((retry_object != fs.first_object) ||
  800                             (retry_pindex != fs.first_pindex)) {
  801                                 release_page(&fs);
  802                                 unlock_and_deallocate(&fs);
  803                                 goto RetryFault;
  804                         }
  805 
  806                         /*
  807                          * Check whether the protection has changed or the object has
  808                          * been copied while we left the map unlocked. Changing from
  809                          * read to write permission is OK - we leave the page
  810                          * write-protected, and catch the write fault. Changing from
  811                          * write to read permission means that we can't mark the page
  812                          * write-enabled after all.
  813                          */
  814                         prot &= retry_prot;
  815                 }
  816         }
  817         if (prot & VM_PROT_WRITE) {
  818                 vm_page_lock_queues();
  819                 vm_page_flag_set(fs.m, PG_WRITEABLE);
  820                 vm_object_set_writeable_dirty(fs.m->object);
  821 
  822                 /*
  823                  * If the fault is a write, we know that this page is being
  824                  * written NOW so dirty it explicitly to save on 
  825                  * pmap_is_modified() calls later.
  826                  *
  827                  * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
  828                  * if the page is already dirty to prevent data written with
  829                  * the expectation of being synced from not being synced.
  830                  * Likewise if this entry does not request NOSYNC then make
  831                  * sure the page isn't marked NOSYNC.  Applications sharing
  832                  * data should use the same flags to avoid ping ponging.
  833                  *
  834                  * Also tell the backing pager, if any, that it should remove
  835                  * any swap backing since the page is now dirty.
  836                  */
  837                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
  838                         if (fs.m->dirty == 0)
  839                                 vm_page_flag_set(fs.m, PG_NOSYNC);
  840                 } else {
  841                         vm_page_flag_clear(fs.m, PG_NOSYNC);
  842                 }
  843                 vm_page_unlock_queues();
  844                 if (fault_flags & VM_FAULT_DIRTY) {
  845                         vm_page_dirty(fs.m);
  846                         vm_pager_page_unswapped(fs.m);
  847                 }
  848         }
  849 
  850         /*
  851          * Page had better still be busy
  852          */
  853         KASSERT(fs.m->flags & PG_BUSY,
  854                 ("vm_fault: page %p not busy!", fs.m));
  855         /*
  856          * Sanity check: page must be completely valid or it is not fit to
  857          * map into user space.  vm_pager_get_pages() ensures this.
  858          */
  859         if (fs.m->valid != VM_PAGE_BITS_ALL) {
  860                 vm_page_zero_invalid(fs.m, TRUE);
  861                 printf("Warning: page %p partially invalid on fault\n", fs.m);
  862         }
  863         VM_OBJECT_UNLOCK(fs.object);
  864 
  865         /*
  866          * Put this page into the physical map.  We had to do the unlock above
  867          * because pmap_enter() may sleep.  We don't put the page
  868          * back on the active queue until later so that the pageout daemon
  869          * won't find it (yet).
  870          */
  871         pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
  872         if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
  873                 vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
  874         }
  875         VM_OBJECT_LOCK(fs.object);
  876         vm_page_lock_queues();
  877         vm_page_flag_set(fs.m, PG_REFERENCED);
  878 
  879         /*
  880          * If the page is not wired down, then put it where the pageout daemon
  881          * can find it.
  882          */
  883         if (fault_flags & VM_FAULT_WIRE_MASK) {
  884                 if (wired)
  885                         vm_page_wire(fs.m);
  886                 else
  887                         vm_page_unwire(fs.m, 1);
  888         } else {
  889                 vm_page_activate(fs.m);
  890         }
  891         vm_page_wakeup(fs.m);
  892         vm_page_unlock_queues();
  893 
  894         /*
  895          * Unlock everything, and return
  896          */
  897         unlock_and_deallocate(&fs);
  898         PROC_LOCK(curproc);
  899         if ((curproc->p_sflag & PS_INMEM) && curproc->p_stats) {
  900                 if (hardfault) {
  901                         curproc->p_stats->p_ru.ru_majflt++;
  902                 } else {
  903                         curproc->p_stats->p_ru.ru_minflt++;
  904                 }
  905         }
  906         PROC_UNLOCK(curproc);
  907 
  908         return (KERN_SUCCESS);
  909 }
  910 
  911 /*
  912  * vm_fault_prefault provides a quick way of clustering
  913  * pagefaults into a processes address space.  It is a "cousin"
  914  * of vm_map_pmap_enter, except it runs at page fault time instead
  915  * of mmap time.
  916  */
  917 static void
  918 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
  919 {
  920         int i;
  921         vm_offset_t addr, starta;
  922         vm_pindex_t pindex;
  923         vm_page_t m, mpte;
  924         vm_object_t object;
  925 
  926         if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
  927                 return;
  928 
  929         object = entry->object.vm_object;
  930 
  931         starta = addra - PFBAK * PAGE_SIZE;
  932         if (starta < entry->start) {
  933                 starta = entry->start;
  934         } else if (starta > addra) {
  935                 starta = 0;
  936         }
  937 
  938         mpte = NULL;
  939         for (i = 0; i < PAGEORDER_SIZE; i++) {
  940                 vm_object_t backing_object, lobject;
  941 
  942                 addr = addra + prefault_pageorder[i];
  943                 if (addr > addra + (PFFOR * PAGE_SIZE))
  944                         addr = 0;
  945 
  946                 if (addr < starta || addr >= entry->end)
  947                         continue;
  948 
  949                 if (!pmap_is_prefaultable(pmap, addr))
  950                         continue;
  951 
  952                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
  953                 lobject = object;
  954                 VM_OBJECT_LOCK(lobject);
  955                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
  956                     lobject->type == OBJT_DEFAULT &&
  957                     (backing_object = lobject->backing_object) != NULL) {
  958                         if (lobject->backing_object_offset & PAGE_MASK)
  959                                 break;
  960                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
  961                         VM_OBJECT_LOCK(backing_object);
  962                         VM_OBJECT_UNLOCK(lobject);
  963                         lobject = backing_object;
  964                 }
  965                 /*
  966                  * give-up when a page is not in memory
  967                  */
  968                 if (m == NULL) {
  969                         VM_OBJECT_UNLOCK(lobject);
  970                         break;
  971                 }
  972                 vm_page_lock_queues();
  973                 if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
  974                         (m->busy == 0) &&
  975                     (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
  976 
  977                         if ((m->queue - m->pc) == PQ_CACHE) {
  978                                 vm_page_deactivate(m);
  979                         }
  980                         vm_page_busy(m);
  981                         vm_page_unlock_queues();
  982                         VM_OBJECT_UNLOCK(lobject);
  983                         mpte = pmap_enter_quick(pmap, addr, m, mpte);
  984                         VM_OBJECT_LOCK(lobject);
  985                         vm_page_lock_queues();
  986                         vm_page_wakeup(m);
  987                 }
  988                 vm_page_unlock_queues();
  989                 VM_OBJECT_UNLOCK(lobject);
  990         }
  991 }
  992 
  993 /*
  994  *      vm_fault_quick:
  995  *
  996  *      Ensure that the requested virtual address, which may be in userland,
  997  *      is valid.  Fault-in the page if necessary.  Return -1 on failure.
  998  */
  999 int
 1000 vm_fault_quick(caddr_t v, int prot)
 1001 {
 1002         int r;
 1003 
 1004         if (prot & VM_PROT_WRITE)
 1005                 r = subyte(v, fubyte(v));
 1006         else
 1007                 r = fubyte(v);
 1008         return(r);
 1009 }
 1010 
 1011 /*
 1012  *      vm_fault_wire:
 1013  *
 1014  *      Wire down a range of virtual addresses in a map.
 1015  */
 1016 int
 1017 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
 1018     boolean_t user_wire, boolean_t fictitious)
 1019 {
 1020         vm_offset_t va;
 1021         int rv;
 1022 
 1023         /*
 1024          * We simulate a fault to get the page and enter it in the physical
 1025          * map.  For user wiring, we only ask for read access on currently
 1026          * read-only sections.
 1027          */
 1028         for (va = start; va < end; va += PAGE_SIZE) {
 1029                 rv = vm_fault(map, va,
 1030                     user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
 1031                     user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
 1032                 if (rv) {
 1033                         if (va != start)
 1034                                 vm_fault_unwire(map, start, va, fictitious);
 1035                         return (rv);
 1036                 }
 1037         }
 1038         return (KERN_SUCCESS);
 1039 }
 1040 
 1041 /*
 1042  *      vm_fault_unwire:
 1043  *
 1044  *      Unwire a range of virtual addresses in a map.
 1045  */
 1046 void
 1047 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
 1048     boolean_t fictitious)
 1049 {
 1050         vm_paddr_t pa;
 1051         vm_offset_t va;
 1052         pmap_t pmap;
 1053 
 1054         pmap = vm_map_pmap(map);
 1055 
 1056         if (pmap != kernel_pmap)
 1057                 mtx_lock(&Giant);
 1058         /*
 1059          * Since the pages are wired down, we must be able to get their
 1060          * mappings from the physical map system.
 1061          */
 1062         for (va = start; va < end; va += PAGE_SIZE) {
 1063                 pa = pmap_extract(pmap, va);
 1064                 if (pa != 0) {
 1065                         pmap_change_wiring(pmap, va, FALSE);
 1066                         if (!fictitious) {
 1067                                 vm_page_lock_queues();
 1068                                 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
 1069                                 vm_page_unlock_queues();
 1070                         }
 1071                 }
 1072         }
 1073         if (pmap != kernel_pmap)
 1074                 mtx_unlock(&Giant);
 1075 }
 1076 
 1077 /*
 1078  *      Routine:
 1079  *              vm_fault_copy_entry
 1080  *      Function:
 1081  *              Copy all of the pages from a wired-down map entry to another.
 1082  *
 1083  *      In/out conditions:
 1084  *              The source and destination maps must be locked for write.
 1085  *              The source map entry must be wired down (or be a sharing map
 1086  *              entry corresponding to a main map entry that is wired down).
 1087  */
 1088 void
 1089 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
 1090         vm_map_t dst_map;
 1091         vm_map_t src_map;
 1092         vm_map_entry_t dst_entry;
 1093         vm_map_entry_t src_entry;
 1094 {
 1095         vm_object_t backing_object, dst_object, object;
 1096         vm_object_t src_object;
 1097         vm_ooffset_t dst_offset;
 1098         vm_ooffset_t src_offset;
 1099         vm_pindex_t pindex;
 1100         vm_prot_t prot;
 1101         vm_offset_t vaddr;
 1102         vm_page_t dst_m;
 1103         vm_page_t src_m;
 1104 
 1105 #ifdef  lint
 1106         src_map++;
 1107 #endif  /* lint */
 1108 
 1109         src_object = src_entry->object.vm_object;
 1110         src_offset = src_entry->offset;
 1111 
 1112         /*
 1113          * Create the top-level object for the destination entry. (Doesn't
 1114          * actually shadow anything - we copy the pages directly.)
 1115          */
 1116         dst_object = vm_object_allocate(OBJT_DEFAULT,
 1117             (vm_size_t) OFF_TO_IDX(dst_entry->end - dst_entry->start));
 1118 
 1119         VM_OBJECT_LOCK(dst_object);
 1120         dst_entry->object.vm_object = dst_object;
 1121         dst_entry->offset = 0;
 1122 
 1123         prot = dst_entry->max_protection;
 1124 
 1125         /*
 1126          * Loop through all of the pages in the entry's range, copying each
 1127          * one from the source object (it should be there) to the destination
 1128          * object.
 1129          */
 1130         for (vaddr = dst_entry->start, dst_offset = 0;
 1131             vaddr < dst_entry->end;
 1132             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
 1133 
 1134                 /*
 1135                  * Allocate a page in the destination object
 1136                  */
 1137                 do {
 1138                         dst_m = vm_page_alloc(dst_object,
 1139                                 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
 1140                         if (dst_m == NULL) {
 1141                                 VM_OBJECT_UNLOCK(dst_object);
 1142                                 VM_WAIT;
 1143                                 VM_OBJECT_LOCK(dst_object);
 1144                         }
 1145                 } while (dst_m == NULL);
 1146 
 1147                 /*
 1148                  * Find the page in the source object, and copy it in.
 1149                  * (Because the source is wired down, the page will be in
 1150                  * memory.)
 1151                  */
 1152                 VM_OBJECT_LOCK(src_object);
 1153                 object = src_object;
 1154                 pindex = 0;
 1155                 while ((src_m = vm_page_lookup(object, pindex +
 1156                     OFF_TO_IDX(dst_offset + src_offset))) == NULL &&
 1157                     (src_entry->protection & VM_PROT_WRITE) == 0 &&
 1158                     (backing_object = object->backing_object) != NULL) {
 1159                         /*
 1160                          * Allow fallback to backing objects if we are reading.
 1161                          */
 1162                         VM_OBJECT_LOCK(backing_object);
 1163                         pindex += OFF_TO_IDX(object->backing_object_offset);
 1164                         VM_OBJECT_UNLOCK(object);
 1165                         object = backing_object;
 1166                 }
 1167                 if (src_m == NULL)
 1168                         panic("vm_fault_copy_wired: page missing");
 1169                 pmap_copy_page(src_m, dst_m);
 1170                 VM_OBJECT_UNLOCK(object);
 1171                 dst_m->valid = VM_PAGE_BITS_ALL;
 1172                 VM_OBJECT_UNLOCK(dst_object);
 1173 
 1174                 /*
 1175                  * Enter it in the pmap...
 1176                  */
 1177                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
 1178                 VM_OBJECT_LOCK(dst_object);
 1179                 vm_page_lock_queues();
 1180                 if ((prot & VM_PROT_WRITE) != 0)
 1181                         vm_page_flag_set(dst_m, PG_WRITEABLE);
 1182 
 1183                 /*
 1184                  * Mark it no longer busy, and put it on the active list.
 1185                  */
 1186                 vm_page_activate(dst_m);
 1187                 vm_page_wakeup(dst_m);
 1188                 vm_page_unlock_queues();
 1189         }
 1190         VM_OBJECT_UNLOCK(dst_object);
 1191 }
 1192 
 1193 
 1194 /*
 1195  * This routine checks around the requested page for other pages that
 1196  * might be able to be faulted in.  This routine brackets the viable
 1197  * pages for the pages to be paged in.
 1198  *
 1199  * Inputs:
 1200  *      m, rbehind, rahead
 1201  *
 1202  * Outputs:
 1203  *  marray (array of vm_page_t), reqpage (index of requested page)
 1204  *
 1205  * Return value:
 1206  *  number of pages in marray
 1207  *
 1208  * This routine can't block.
 1209  */
 1210 static int
 1211 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
 1212         vm_page_t m;
 1213         int rbehind;
 1214         int rahead;
 1215         vm_page_t *marray;
 1216         int *reqpage;
 1217 {
 1218         int i,j;
 1219         vm_object_t object;
 1220         vm_pindex_t pindex, startpindex, endpindex, tpindex;
 1221         vm_page_t rtm;
 1222         int cbehind, cahead;
 1223 
 1224         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1225 
 1226         object = m->object;
 1227         pindex = m->pindex;
 1228 
 1229         /*
 1230          * we don't fault-ahead for device pager
 1231          */
 1232         if (object->type == OBJT_DEVICE) {
 1233                 *reqpage = 0;
 1234                 marray[0] = m;
 1235                 return 1;
 1236         }
 1237 
 1238         /*
 1239          * if the requested page is not available, then give up now
 1240          */
 1241         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
 1242                 return 0;
 1243         }
 1244 
 1245         if ((cbehind == 0) && (cahead == 0)) {
 1246                 *reqpage = 0;
 1247                 marray[0] = m;
 1248                 return 1;
 1249         }
 1250 
 1251         if (rahead > cahead) {
 1252                 rahead = cahead;
 1253         }
 1254 
 1255         if (rbehind > cbehind) {
 1256                 rbehind = cbehind;
 1257         }
 1258 
 1259         /*
 1260          * try to do any readahead that we might have free pages for.
 1261          */
 1262         if ((rahead + rbehind) >
 1263                 ((cnt.v_free_count + cnt.v_cache_count) - cnt.v_free_reserved)) {
 1264                 pagedaemon_wakeup();
 1265                 marray[0] = m;
 1266                 *reqpage = 0;
 1267                 return 1;
 1268         }
 1269 
 1270         /*
 1271          * scan backward for the read behind pages -- in memory 
 1272          */
 1273         if (pindex > 0) {
 1274                 if (rbehind > pindex) {
 1275                         rbehind = pindex;
 1276                         startpindex = 0;
 1277                 } else {
 1278                         startpindex = pindex - rbehind;
 1279                 }
 1280 
 1281                 for (tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
 1282                         if (vm_page_lookup(object, tpindex)) {
 1283                                 startpindex = tpindex + 1;
 1284                                 break;
 1285                         }
 1286                         if (tpindex == 0)
 1287                                 break;
 1288                 }
 1289 
 1290                 for (i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
 1291 
 1292                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
 1293                         if (rtm == NULL) {
 1294                                 vm_page_lock_queues();
 1295                                 for (j = 0; j < i; j++) {
 1296                                         vm_page_free(marray[j]);
 1297                                 }
 1298                                 vm_page_unlock_queues();
 1299                                 marray[0] = m;
 1300                                 *reqpage = 0;
 1301                                 return 1;
 1302                         }
 1303 
 1304                         marray[i] = rtm;
 1305                 }
 1306         } else {
 1307                 startpindex = 0;
 1308                 i = 0;
 1309         }
 1310 
 1311         marray[i] = m;
 1312         /* page offset of the required page */
 1313         *reqpage = i;
 1314 
 1315         tpindex = pindex + 1;
 1316         i++;
 1317 
 1318         /*
 1319          * scan forward for the read ahead pages
 1320          */
 1321         endpindex = tpindex + rahead;
 1322         if (endpindex > object->size)
 1323                 endpindex = object->size;
 1324 
 1325         for (; tpindex < endpindex; i++, tpindex++) {
 1326 
 1327                 if (vm_page_lookup(object, tpindex)) {
 1328                         break;
 1329                 }
 1330 
 1331                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
 1332                 if (rtm == NULL) {
 1333                         break;
 1334                 }
 1335 
 1336                 marray[i] = rtm;
 1337         }
 1338 
 1339         /* return number of bytes of pages */
 1340         return i;
 1341 }

Cache object: 033e6cfcaaa1a111280a09b5dac2fafd


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.