FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_fault.c
1 /*-
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94
42 *
43 *
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
46 *
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
62 * School of Computer Science
63 * Carnegie Mellon University
64 * Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70 /*
71 * Page fault handling module.
72 */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD: releng/6.0/sys/vm/vm_fault.c 151118 2005-10-09 03:08:28Z delphij $");
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/lock.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/sysctl.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vnode.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/vm_extern.h>
99
100 #include <sys/mount.h> /* XXX Temporary for VFS_LOCK_GIANT() */
101
102 #define PFBAK 4
103 #define PFFOR 4
104 #define PAGEORDER_SIZE (PFBAK+PFFOR)
105
106 static int prefault_pageorder[] = {
107 -1 * PAGE_SIZE, 1 * PAGE_SIZE,
108 -2 * PAGE_SIZE, 2 * PAGE_SIZE,
109 -3 * PAGE_SIZE, 3 * PAGE_SIZE,
110 -4 * PAGE_SIZE, 4 * PAGE_SIZE
111 };
112
113 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
114 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
115
116 #define VM_FAULT_READ_AHEAD 8
117 #define VM_FAULT_READ_BEHIND 7
118 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
119
120 struct faultstate {
121 vm_page_t m;
122 vm_object_t object;
123 vm_pindex_t pindex;
124 vm_page_t first_m;
125 vm_object_t first_object;
126 vm_pindex_t first_pindex;
127 vm_map_t map;
128 vm_map_entry_t entry;
129 int lookup_still_valid;
130 struct vnode *vp;
131 };
132
133 static __inline void
134 release_page(struct faultstate *fs)
135 {
136 vm_page_lock_queues();
137 vm_page_wakeup(fs->m);
138 vm_page_deactivate(fs->m);
139 vm_page_unlock_queues();
140 fs->m = NULL;
141 }
142
143 static __inline void
144 unlock_map(struct faultstate *fs)
145 {
146 if (fs->lookup_still_valid) {
147 vm_map_lookup_done(fs->map, fs->entry);
148 fs->lookup_still_valid = FALSE;
149 }
150 }
151
152 static void
153 unlock_and_deallocate(struct faultstate *fs)
154 {
155
156 vm_object_pip_wakeup(fs->object);
157 VM_OBJECT_UNLOCK(fs->object);
158 if (fs->object != fs->first_object) {
159 VM_OBJECT_LOCK(fs->first_object);
160 vm_page_lock_queues();
161 vm_page_free(fs->first_m);
162 vm_page_unlock_queues();
163 vm_object_pip_wakeup(fs->first_object);
164 VM_OBJECT_UNLOCK(fs->first_object);
165 fs->first_m = NULL;
166 }
167 vm_object_deallocate(fs->first_object);
168 unlock_map(fs);
169 if (fs->vp != NULL) {
170 int vfslocked;
171
172 vfslocked = VFS_LOCK_GIANT(fs->vp->v_mount);
173 vput(fs->vp);
174 fs->vp = NULL;
175 VFS_UNLOCK_GIANT(vfslocked);
176 }
177 if (fs->first_object->flags & OBJ_NEEDGIANT)
178 VM_UNLOCK_GIANT();
179 }
180
181 /*
182 * TRYPAGER - used by vm_fault to calculate whether the pager for the
183 * current object *might* contain the page.
184 *
185 * default objects are zero-fill, there is no real pager.
186 */
187 #define TRYPAGER (fs.object->type != OBJT_DEFAULT && \
188 (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
189
190 /*
191 * vm_fault:
192 *
193 * Handle a page fault occurring at the given address,
194 * requiring the given permissions, in the map specified.
195 * If successful, the page is inserted into the
196 * associated physical map.
197 *
198 * NOTE: the given address should be truncated to the
199 * proper page address.
200 *
201 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
202 * a standard error specifying why the fault is fatal is returned.
203 *
204 *
205 * The map in question must be referenced, and remains so.
206 * Caller may hold no locks.
207 */
208 int
209 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
210 int fault_flags)
211 {
212 vm_prot_t prot;
213 int is_first_object_locked, result;
214 boolean_t growstack, wired;
215 int map_generation;
216 vm_object_t next_object;
217 vm_page_t marray[VM_FAULT_READ];
218 int hardfault;
219 int faultcount;
220 struct faultstate fs;
221
222 hardfault = 0;
223 growstack = TRUE;
224 atomic_add_int(&cnt.v_vm_faults, 1);
225
226 RetryFault:;
227
228 /*
229 * Find the backing store object and offset into it to begin the
230 * search.
231 */
232 fs.map = map;
233 result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
234 &fs.first_object, &fs.first_pindex, &prot, &wired);
235 if (result != KERN_SUCCESS) {
236 if (result != KERN_PROTECTION_FAILURE ||
237 (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
238 if (growstack && result == KERN_INVALID_ADDRESS &&
239 map != kernel_map && curproc != NULL) {
240 result = vm_map_growstack(curproc, vaddr);
241 if (result != KERN_SUCCESS)
242 return (KERN_FAILURE);
243 growstack = FALSE;
244 goto RetryFault;
245 }
246 return (result);
247 }
248
249 /*
250 * If we are user-wiring a r/w segment, and it is COW, then
251 * we need to do the COW operation. Note that we don't COW
252 * currently RO sections now, because it is NOT desirable
253 * to COW .text. We simply keep .text from ever being COW'ed
254 * and take the heat that one cannot debug wired .text sections.
255 */
256 result = vm_map_lookup(&fs.map, vaddr,
257 VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
258 &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
259 if (result != KERN_SUCCESS)
260 return (result);
261
262 /*
263 * If we don't COW now, on a user wire, the user will never
264 * be able to write to the mapping. If we don't make this
265 * restriction, the bookkeeping would be nearly impossible.
266 *
267 * XXX The following assignment modifies the map without
268 * holding a write lock on it.
269 */
270 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
271 fs.entry->max_protection &= ~VM_PROT_WRITE;
272 }
273
274 map_generation = fs.map->timestamp;
275
276 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
277 panic("vm_fault: fault on nofault entry, addr: %lx",
278 (u_long)vaddr);
279 }
280
281 /*
282 * Make a reference to this object to prevent its disposal while we
283 * are messing with it. Once we have the reference, the map is free
284 * to be diddled. Since objects reference their shadows (and copies),
285 * they will stay around as well.
286 *
287 * Bump the paging-in-progress count to prevent size changes (e.g.
288 * truncation operations) during I/O. This must be done after
289 * obtaining the vnode lock in order to avoid possible deadlocks.
290 *
291 * XXX vnode_pager_lock() can block without releasing the map lock.
292 */
293 if (fs.first_object->flags & OBJ_NEEDGIANT)
294 mtx_lock(&Giant);
295 VM_OBJECT_LOCK(fs.first_object);
296 vm_object_reference_locked(fs.first_object);
297 fs.vp = vnode_pager_lock(fs.first_object);
298 KASSERT(fs.vp == NULL || !fs.map->system_map,
299 ("vm_fault: vnode-backed object mapped by system map"));
300 KASSERT((fs.first_object->flags & OBJ_NEEDGIANT) == 0 ||
301 !fs.map->system_map,
302 ("vm_fault: Object requiring giant mapped by system map"));
303 if (fs.first_object->flags & OBJ_NEEDGIANT && debug_mpsafevm)
304 mtx_unlock(&Giant);
305 vm_object_pip_add(fs.first_object, 1);
306
307 fs.lookup_still_valid = TRUE;
308
309 if (wired)
310 fault_type = prot;
311
312 fs.first_m = NULL;
313
314 /*
315 * Search for the page at object/offset.
316 */
317 fs.object = fs.first_object;
318 fs.pindex = fs.first_pindex;
319 while (TRUE) {
320 /*
321 * If the object is dead, we stop here
322 */
323 if (fs.object->flags & OBJ_DEAD) {
324 unlock_and_deallocate(&fs);
325 return (KERN_PROTECTION_FAILURE);
326 }
327
328 /*
329 * See if page is resident
330 */
331 fs.m = vm_page_lookup(fs.object, fs.pindex);
332 if (fs.m != NULL) {
333 int queue;
334
335 /*
336 * check for page-based copy on write.
337 * We check fs.object == fs.first_object so
338 * as to ensure the legacy COW mechanism is
339 * used when the page in question is part of
340 * a shadow object. Otherwise, vm_page_cowfault()
341 * removes the page from the backing object,
342 * which is not what we want.
343 */
344 vm_page_lock_queues();
345 if ((fs.m->cow) &&
346 (fault_type & VM_PROT_WRITE) &&
347 (fs.object == fs.first_object)) {
348 vm_page_cowfault(fs.m);
349 vm_page_unlock_queues();
350 unlock_and_deallocate(&fs);
351 goto RetryFault;
352 }
353
354 /*
355 * Wait/Retry if the page is busy. We have to do this
356 * if the page is busy via either PG_BUSY or
357 * vm_page_t->busy because the vm_pager may be using
358 * vm_page_t->busy for pageouts ( and even pageins if
359 * it is the vnode pager ), and we could end up trying
360 * to pagein and pageout the same page simultaneously.
361 *
362 * We can theoretically allow the busy case on a read
363 * fault if the page is marked valid, but since such
364 * pages are typically already pmap'd, putting that
365 * special case in might be more effort then it is
366 * worth. We cannot under any circumstances mess
367 * around with a vm_page_t->busy page except, perhaps,
368 * to pmap it.
369 */
370 if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
371 vm_page_unlock_queues();
372 VM_OBJECT_UNLOCK(fs.object);
373 if (fs.object != fs.first_object) {
374 VM_OBJECT_LOCK(fs.first_object);
375 vm_page_lock_queues();
376 vm_page_free(fs.first_m);
377 vm_page_unlock_queues();
378 vm_object_pip_wakeup(fs.first_object);
379 VM_OBJECT_UNLOCK(fs.first_object);
380 fs.first_m = NULL;
381 }
382 unlock_map(&fs);
383 if (fs.vp != NULL) {
384 int vfslck;
385
386 vfslck = VFS_LOCK_GIANT(fs.vp->v_mount);
387 vput(fs.vp);
388 fs.vp = NULL;
389 VFS_UNLOCK_GIANT(vfslck);
390 }
391 VM_OBJECT_LOCK(fs.object);
392 if (fs.m == vm_page_lookup(fs.object,
393 fs.pindex)) {
394 vm_page_lock_queues();
395 if (!vm_page_sleep_if_busy(fs.m, TRUE,
396 "vmpfw"))
397 vm_page_unlock_queues();
398 }
399 vm_object_pip_wakeup(fs.object);
400 VM_OBJECT_UNLOCK(fs.object);
401 atomic_add_int(&cnt.v_intrans, 1);
402 if (fs.first_object->flags & OBJ_NEEDGIANT)
403 VM_UNLOCK_GIANT();
404 vm_object_deallocate(fs.first_object);
405 goto RetryFault;
406 }
407 queue = fs.m->queue;
408
409 vm_pageq_remove_nowakeup(fs.m);
410
411 if ((queue - fs.m->pc) == PQ_CACHE && vm_page_count_severe()) {
412 vm_page_activate(fs.m);
413 vm_page_unlock_queues();
414 unlock_and_deallocate(&fs);
415 VM_WAITPFAULT;
416 goto RetryFault;
417 }
418
419 /*
420 * Mark page busy for other processes, and the
421 * pagedaemon. If it still isn't completely valid
422 * (readable), jump to readrest, else break-out ( we
423 * found the page ).
424 */
425 vm_page_busy(fs.m);
426 vm_page_unlock_queues();
427 if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
428 fs.m->object != kernel_object && fs.m->object != kmem_object) {
429 goto readrest;
430 }
431
432 break;
433 }
434
435 /*
436 * Page is not resident, If this is the search termination
437 * or the pager might contain the page, allocate a new page.
438 */
439 if (TRYPAGER || fs.object == fs.first_object) {
440 if (fs.pindex >= fs.object->size) {
441 unlock_and_deallocate(&fs);
442 return (KERN_PROTECTION_FAILURE);
443 }
444
445 /*
446 * Allocate a new page for this object/offset pair.
447 */
448 fs.m = NULL;
449 if (!vm_page_count_severe()) {
450 fs.m = vm_page_alloc(fs.object, fs.pindex,
451 (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
452 }
453 if (fs.m == NULL) {
454 unlock_and_deallocate(&fs);
455 VM_WAITPFAULT;
456 goto RetryFault;
457 }
458 }
459
460 readrest:
461 /*
462 * We have found a valid page or we have allocated a new page.
463 * The page thus may not be valid or may not be entirely
464 * valid.
465 *
466 * Attempt to fault-in the page if there is a chance that the
467 * pager has it, and potentially fault in additional pages
468 * at the same time.
469 */
470 if (TRYPAGER) {
471 int rv;
472 int reqpage;
473 int ahead, behind;
474 u_char behavior = vm_map_entry_behavior(fs.entry);
475
476 if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
477 ahead = 0;
478 behind = 0;
479 } else {
480 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
481 if (behind > VM_FAULT_READ_BEHIND)
482 behind = VM_FAULT_READ_BEHIND;
483
484 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
485 if (ahead > VM_FAULT_READ_AHEAD)
486 ahead = VM_FAULT_READ_AHEAD;
487 }
488 is_first_object_locked = FALSE;
489 if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
490 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
491 fs.pindex >= fs.entry->lastr &&
492 fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
493 (fs.first_object == fs.object ||
494 (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
495 fs.first_object->type != OBJT_DEVICE) {
496 vm_pindex_t firstpindex, tmppindex;
497
498 if (fs.first_pindex < 2 * VM_FAULT_READ)
499 firstpindex = 0;
500 else
501 firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
502
503 vm_page_lock_queues();
504 /*
505 * note: partially valid pages cannot be
506 * included in the lookahead - NFS piecemeal
507 * writes will barf on it badly.
508 */
509 for (tmppindex = fs.first_pindex - 1;
510 tmppindex >= firstpindex;
511 --tmppindex) {
512 vm_page_t mt;
513
514 mt = vm_page_lookup(fs.first_object, tmppindex);
515 if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
516 break;
517 if (mt->busy ||
518 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
519 mt->hold_count ||
520 mt->wire_count)
521 continue;
522 pmap_remove_all(mt);
523 if (mt->dirty) {
524 vm_page_deactivate(mt);
525 } else {
526 vm_page_cache(mt);
527 }
528 }
529 vm_page_unlock_queues();
530 ahead += behind;
531 behind = 0;
532 }
533 if (is_first_object_locked)
534 VM_OBJECT_UNLOCK(fs.first_object);
535 /*
536 * now we find out if any other pages should be paged
537 * in at this time this routine checks to see if the
538 * pages surrounding this fault reside in the same
539 * object as the page for this fault. If they do,
540 * then they are faulted in also into the object. The
541 * array "marray" returned contains an array of
542 * vm_page_t structs where one of them is the
543 * vm_page_t passed to the routine. The reqpage
544 * return value is the index into the marray for the
545 * vm_page_t passed to the routine.
546 *
547 * fs.m plus the additional pages are PG_BUSY'd.
548 *
549 * XXX vm_fault_additional_pages() can block
550 * without releasing the map lock.
551 */
552 faultcount = vm_fault_additional_pages(
553 fs.m, behind, ahead, marray, &reqpage);
554
555 /*
556 * update lastr imperfectly (we do not know how much
557 * getpages will actually read), but good enough.
558 *
559 * XXX The following assignment modifies the map
560 * without holding a write lock on it.
561 */
562 fs.entry->lastr = fs.pindex + faultcount - behind;
563
564 /*
565 * Call the pager to retrieve the data, if any, after
566 * releasing the lock on the map. We hold a ref on
567 * fs.object and the pages are PG_BUSY'd.
568 */
569 unlock_map(&fs);
570
571 rv = faultcount ?
572 vm_pager_get_pages(fs.object, marray, faultcount,
573 reqpage) : VM_PAGER_FAIL;
574
575 if (rv == VM_PAGER_OK) {
576 /*
577 * Found the page. Leave it busy while we play
578 * with it.
579 */
580
581 /*
582 * Relookup in case pager changed page. Pager
583 * is responsible for disposition of old page
584 * if moved.
585 */
586 fs.m = vm_page_lookup(fs.object, fs.pindex);
587 if (!fs.m) {
588 unlock_and_deallocate(&fs);
589 goto RetryFault;
590 }
591
592 hardfault++;
593 break; /* break to PAGE HAS BEEN FOUND */
594 }
595 /*
596 * Remove the bogus page (which does not exist at this
597 * object/offset); before doing so, we must get back
598 * our object lock to preserve our invariant.
599 *
600 * Also wake up any other process that may want to bring
601 * in this page.
602 *
603 * If this is the top-level object, we must leave the
604 * busy page to prevent another process from rushing
605 * past us, and inserting the page in that object at
606 * the same time that we are.
607 */
608 if (rv == VM_PAGER_ERROR)
609 printf("vm_fault: pager read error, pid %d (%s)\n",
610 curproc->p_pid, curproc->p_comm);
611 /*
612 * Data outside the range of the pager or an I/O error
613 */
614 /*
615 * XXX - the check for kernel_map is a kludge to work
616 * around having the machine panic on a kernel space
617 * fault w/ I/O error.
618 */
619 if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
620 (rv == VM_PAGER_BAD)) {
621 vm_page_lock_queues();
622 vm_page_free(fs.m);
623 vm_page_unlock_queues();
624 fs.m = NULL;
625 unlock_and_deallocate(&fs);
626 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
627 }
628 if (fs.object != fs.first_object) {
629 vm_page_lock_queues();
630 vm_page_free(fs.m);
631 vm_page_unlock_queues();
632 fs.m = NULL;
633 /*
634 * XXX - we cannot just fall out at this
635 * point, m has been freed and is invalid!
636 */
637 }
638 }
639
640 /*
641 * We get here if the object has default pager (or unwiring)
642 * or the pager doesn't have the page.
643 */
644 if (fs.object == fs.first_object)
645 fs.first_m = fs.m;
646
647 /*
648 * Move on to the next object. Lock the next object before
649 * unlocking the current one.
650 */
651 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
652 next_object = fs.object->backing_object;
653 if (next_object == NULL) {
654 /*
655 * If there's no object left, fill the page in the top
656 * object with zeros.
657 */
658 if (fs.object != fs.first_object) {
659 vm_object_pip_wakeup(fs.object);
660 VM_OBJECT_UNLOCK(fs.object);
661
662 fs.object = fs.first_object;
663 fs.pindex = fs.first_pindex;
664 fs.m = fs.first_m;
665 VM_OBJECT_LOCK(fs.object);
666 }
667 fs.first_m = NULL;
668
669 /*
670 * Zero the page if necessary and mark it valid.
671 */
672 if ((fs.m->flags & PG_ZERO) == 0) {
673 pmap_zero_page(fs.m);
674 } else {
675 atomic_add_int(&cnt.v_ozfod, 1);
676 }
677 atomic_add_int(&cnt.v_zfod, 1);
678 fs.m->valid = VM_PAGE_BITS_ALL;
679 break; /* break to PAGE HAS BEEN FOUND */
680 } else {
681 KASSERT(fs.object != next_object,
682 ("object loop %p", next_object));
683 VM_OBJECT_LOCK(next_object);
684 vm_object_pip_add(next_object, 1);
685 if (fs.object != fs.first_object)
686 vm_object_pip_wakeup(fs.object);
687 VM_OBJECT_UNLOCK(fs.object);
688 fs.object = next_object;
689 }
690 }
691
692 KASSERT((fs.m->flags & PG_BUSY) != 0,
693 ("vm_fault: not busy after main loop"));
694
695 /*
696 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
697 * is held.]
698 */
699
700 /*
701 * If the page is being written, but isn't already owned by the
702 * top-level object, we have to copy it into a new page owned by the
703 * top-level object.
704 */
705 if (fs.object != fs.first_object) {
706 /*
707 * We only really need to copy if we want to write it.
708 */
709 if (fault_type & VM_PROT_WRITE) {
710 /*
711 * This allows pages to be virtually copied from a
712 * backing_object into the first_object, where the
713 * backing object has no other refs to it, and cannot
714 * gain any more refs. Instead of a bcopy, we just
715 * move the page from the backing object to the
716 * first object. Note that we must mark the page
717 * dirty in the first object so that it will go out
718 * to swap when needed.
719 */
720 is_first_object_locked = FALSE;
721 if (
722 /*
723 * Only one shadow object
724 */
725 (fs.object->shadow_count == 1) &&
726 /*
727 * No COW refs, except us
728 */
729 (fs.object->ref_count == 1) &&
730 /*
731 * No one else can look this object up
732 */
733 (fs.object->handle == NULL) &&
734 /*
735 * No other ways to look the object up
736 */
737 ((fs.object->type == OBJT_DEFAULT) ||
738 (fs.object->type == OBJT_SWAP)) &&
739 (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
740 /*
741 * We don't chase down the shadow chain
742 */
743 fs.object == fs.first_object->backing_object) {
744 vm_page_lock_queues();
745 /*
746 * get rid of the unnecessary page
747 */
748 pmap_remove_all(fs.first_m);
749 vm_page_free(fs.first_m);
750 /*
751 * grab the page and put it into the
752 * process'es object. The page is
753 * automatically made dirty.
754 */
755 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
756 vm_page_busy(fs.m);
757 vm_page_unlock_queues();
758 fs.first_m = fs.m;
759 fs.m = NULL;
760 atomic_add_int(&cnt.v_cow_optim, 1);
761 } else {
762 /*
763 * Oh, well, lets copy it.
764 */
765 pmap_copy_page(fs.m, fs.first_m);
766 fs.first_m->valid = VM_PAGE_BITS_ALL;
767 }
768 if (fs.m) {
769 /*
770 * We no longer need the old page or object.
771 */
772 release_page(&fs);
773 }
774 /*
775 * fs.object != fs.first_object due to above
776 * conditional
777 */
778 vm_object_pip_wakeup(fs.object);
779 VM_OBJECT_UNLOCK(fs.object);
780 /*
781 * Only use the new page below...
782 */
783 fs.object = fs.first_object;
784 fs.pindex = fs.first_pindex;
785 fs.m = fs.first_m;
786 if (!is_first_object_locked)
787 VM_OBJECT_LOCK(fs.object);
788 atomic_add_int(&cnt.v_cow_faults, 1);
789 } else {
790 prot &= ~VM_PROT_WRITE;
791 }
792 }
793
794 /*
795 * We must verify that the maps have not changed since our last
796 * lookup.
797 */
798 if (!fs.lookup_still_valid) {
799 vm_object_t retry_object;
800 vm_pindex_t retry_pindex;
801 vm_prot_t retry_prot;
802
803 if (!vm_map_trylock_read(fs.map)) {
804 release_page(&fs);
805 unlock_and_deallocate(&fs);
806 goto RetryFault;
807 }
808 fs.lookup_still_valid = TRUE;
809 if (fs.map->timestamp != map_generation) {
810 result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
811 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
812
813 /*
814 * If we don't need the page any longer, put it on the active
815 * list (the easiest thing to do here). If no one needs it,
816 * pageout will grab it eventually.
817 */
818 if (result != KERN_SUCCESS) {
819 release_page(&fs);
820 unlock_and_deallocate(&fs);
821
822 /*
823 * If retry of map lookup would have blocked then
824 * retry fault from start.
825 */
826 if (result == KERN_FAILURE)
827 goto RetryFault;
828 return (result);
829 }
830 if ((retry_object != fs.first_object) ||
831 (retry_pindex != fs.first_pindex)) {
832 release_page(&fs);
833 unlock_and_deallocate(&fs);
834 goto RetryFault;
835 }
836
837 /*
838 * Check whether the protection has changed or the object has
839 * been copied while we left the map unlocked. Changing from
840 * read to write permission is OK - we leave the page
841 * write-protected, and catch the write fault. Changing from
842 * write to read permission means that we can't mark the page
843 * write-enabled after all.
844 */
845 prot &= retry_prot;
846 }
847 }
848 if (prot & VM_PROT_WRITE) {
849 vm_page_lock_queues();
850 vm_page_flag_set(fs.m, PG_WRITEABLE);
851 vm_object_set_writeable_dirty(fs.m->object);
852
853 /*
854 * If the fault is a write, we know that this page is being
855 * written NOW so dirty it explicitly to save on
856 * pmap_is_modified() calls later.
857 *
858 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
859 * if the page is already dirty to prevent data written with
860 * the expectation of being synced from not being synced.
861 * Likewise if this entry does not request NOSYNC then make
862 * sure the page isn't marked NOSYNC. Applications sharing
863 * data should use the same flags to avoid ping ponging.
864 *
865 * Also tell the backing pager, if any, that it should remove
866 * any swap backing since the page is now dirty.
867 */
868 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
869 if (fs.m->dirty == 0)
870 vm_page_flag_set(fs.m, PG_NOSYNC);
871 } else {
872 vm_page_flag_clear(fs.m, PG_NOSYNC);
873 }
874 vm_page_unlock_queues();
875 if (fault_flags & VM_FAULT_DIRTY) {
876 vm_page_dirty(fs.m);
877 vm_pager_page_unswapped(fs.m);
878 }
879 }
880
881 /*
882 * Page had better still be busy
883 */
884 KASSERT(fs.m->flags & PG_BUSY,
885 ("vm_fault: page %p not busy!", fs.m));
886 /*
887 * Sanity check: page must be completely valid or it is not fit to
888 * map into user space. vm_pager_get_pages() ensures this.
889 */
890 if (fs.m->valid != VM_PAGE_BITS_ALL) {
891 vm_page_zero_invalid(fs.m, TRUE);
892 printf("Warning: page %p partially invalid on fault\n", fs.m);
893 }
894 VM_OBJECT_UNLOCK(fs.object);
895
896 /*
897 * Put this page into the physical map. We had to do the unlock above
898 * because pmap_enter() may sleep. We don't put the page
899 * back on the active queue until later so that the pageout daemon
900 * won't find it (yet).
901 */
902 pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
903 if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
904 vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
905 }
906 VM_OBJECT_LOCK(fs.object);
907 vm_page_lock_queues();
908 vm_page_flag_set(fs.m, PG_REFERENCED);
909
910 /*
911 * If the page is not wired down, then put it where the pageout daemon
912 * can find it.
913 */
914 if (fault_flags & VM_FAULT_WIRE_MASK) {
915 if (wired)
916 vm_page_wire(fs.m);
917 else
918 vm_page_unwire(fs.m, 1);
919 } else {
920 vm_page_activate(fs.m);
921 }
922 vm_page_wakeup(fs.m);
923 vm_page_unlock_queues();
924
925 /*
926 * Unlock everything, and return
927 */
928 unlock_and_deallocate(&fs);
929 PROC_LOCK(curproc);
930 if ((curproc->p_sflag & PS_INMEM) && curproc->p_stats) {
931 if (hardfault) {
932 curproc->p_stats->p_ru.ru_majflt++;
933 } else {
934 curproc->p_stats->p_ru.ru_minflt++;
935 }
936 }
937 PROC_UNLOCK(curproc);
938
939 return (KERN_SUCCESS);
940 }
941
942 /*
943 * vm_fault_prefault provides a quick way of clustering
944 * pagefaults into a processes address space. It is a "cousin"
945 * of vm_map_pmap_enter, except it runs at page fault time instead
946 * of mmap time.
947 */
948 static void
949 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
950 {
951 int i;
952 vm_offset_t addr, starta;
953 vm_pindex_t pindex;
954 vm_page_t m, mpte;
955 vm_object_t object;
956
957 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
958 return;
959
960 object = entry->object.vm_object;
961
962 starta = addra - PFBAK * PAGE_SIZE;
963 if (starta < entry->start) {
964 starta = entry->start;
965 } else if (starta > addra) {
966 starta = 0;
967 }
968
969 mpte = NULL;
970 for (i = 0; i < PAGEORDER_SIZE; i++) {
971 vm_object_t backing_object, lobject;
972
973 addr = addra + prefault_pageorder[i];
974 if (addr > addra + (PFFOR * PAGE_SIZE))
975 addr = 0;
976
977 if (addr < starta || addr >= entry->end)
978 continue;
979
980 if (!pmap_is_prefaultable(pmap, addr))
981 continue;
982
983 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
984 lobject = object;
985 VM_OBJECT_LOCK(lobject);
986 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
987 lobject->type == OBJT_DEFAULT &&
988 (backing_object = lobject->backing_object) != NULL) {
989 if (lobject->backing_object_offset & PAGE_MASK)
990 break;
991 pindex += lobject->backing_object_offset >> PAGE_SHIFT;
992 VM_OBJECT_LOCK(backing_object);
993 VM_OBJECT_UNLOCK(lobject);
994 lobject = backing_object;
995 }
996 /*
997 * give-up when a page is not in memory
998 */
999 if (m == NULL) {
1000 VM_OBJECT_UNLOCK(lobject);
1001 break;
1002 }
1003 if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1004 (m->busy == 0) &&
1005 (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1006
1007 vm_page_lock_queues();
1008 if ((m->queue - m->pc) == PQ_CACHE)
1009 vm_page_deactivate(m);
1010 mpte = pmap_enter_quick(pmap, addr, m, mpte);
1011 vm_page_unlock_queues();
1012 }
1013 VM_OBJECT_UNLOCK(lobject);
1014 }
1015 }
1016
1017 /*
1018 * vm_fault_quick:
1019 *
1020 * Ensure that the requested virtual address, which may be in userland,
1021 * is valid. Fault-in the page if necessary. Return -1 on failure.
1022 */
1023 int
1024 vm_fault_quick(caddr_t v, int prot)
1025 {
1026 int r;
1027
1028 if (prot & VM_PROT_WRITE)
1029 r = subyte(v, fubyte(v));
1030 else
1031 r = fubyte(v);
1032 return(r);
1033 }
1034
1035 /*
1036 * vm_fault_wire:
1037 *
1038 * Wire down a range of virtual addresses in a map.
1039 */
1040 int
1041 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1042 boolean_t user_wire, boolean_t fictitious)
1043 {
1044 vm_offset_t va;
1045 int rv;
1046
1047 /*
1048 * We simulate a fault to get the page and enter it in the physical
1049 * map. For user wiring, we only ask for read access on currently
1050 * read-only sections.
1051 */
1052 for (va = start; va < end; va += PAGE_SIZE) {
1053 rv = vm_fault(map, va,
1054 user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
1055 user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
1056 if (rv) {
1057 if (va != start)
1058 vm_fault_unwire(map, start, va, fictitious);
1059 return (rv);
1060 }
1061 }
1062 return (KERN_SUCCESS);
1063 }
1064
1065 /*
1066 * vm_fault_unwire:
1067 *
1068 * Unwire a range of virtual addresses in a map.
1069 */
1070 void
1071 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1072 boolean_t fictitious)
1073 {
1074 vm_paddr_t pa;
1075 vm_offset_t va;
1076 pmap_t pmap;
1077
1078 pmap = vm_map_pmap(map);
1079
1080 /*
1081 * Since the pages are wired down, we must be able to get their
1082 * mappings from the physical map system.
1083 */
1084 for (va = start; va < end; va += PAGE_SIZE) {
1085 pa = pmap_extract(pmap, va);
1086 if (pa != 0) {
1087 pmap_change_wiring(pmap, va, FALSE);
1088 if (!fictitious) {
1089 vm_page_lock_queues();
1090 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1091 vm_page_unlock_queues();
1092 }
1093 }
1094 }
1095 }
1096
1097 /*
1098 * Routine:
1099 * vm_fault_copy_entry
1100 * Function:
1101 * Copy all of the pages from a wired-down map entry to another.
1102 *
1103 * In/out conditions:
1104 * The source and destination maps must be locked for write.
1105 * The source map entry must be wired down (or be a sharing map
1106 * entry corresponding to a main map entry that is wired down).
1107 */
1108 void
1109 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
1110 vm_map_t dst_map;
1111 vm_map_t src_map;
1112 vm_map_entry_t dst_entry;
1113 vm_map_entry_t src_entry;
1114 {
1115 vm_object_t backing_object, dst_object, object;
1116 vm_object_t src_object;
1117 vm_ooffset_t dst_offset;
1118 vm_ooffset_t src_offset;
1119 vm_pindex_t pindex;
1120 vm_prot_t prot;
1121 vm_offset_t vaddr;
1122 vm_page_t dst_m;
1123 vm_page_t src_m;
1124
1125 #ifdef lint
1126 src_map++;
1127 #endif /* lint */
1128
1129 src_object = src_entry->object.vm_object;
1130 src_offset = src_entry->offset;
1131
1132 /*
1133 * Create the top-level object for the destination entry. (Doesn't
1134 * actually shadow anything - we copy the pages directly.)
1135 */
1136 dst_object = vm_object_allocate(OBJT_DEFAULT,
1137 OFF_TO_IDX(dst_entry->end - dst_entry->start));
1138
1139 VM_OBJECT_LOCK(dst_object);
1140 dst_entry->object.vm_object = dst_object;
1141 dst_entry->offset = 0;
1142
1143 prot = dst_entry->max_protection;
1144
1145 /*
1146 * Loop through all of the pages in the entry's range, copying each
1147 * one from the source object (it should be there) to the destination
1148 * object.
1149 */
1150 for (vaddr = dst_entry->start, dst_offset = 0;
1151 vaddr < dst_entry->end;
1152 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1153
1154 /*
1155 * Allocate a page in the destination object
1156 */
1157 do {
1158 dst_m = vm_page_alloc(dst_object,
1159 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1160 if (dst_m == NULL) {
1161 VM_OBJECT_UNLOCK(dst_object);
1162 VM_WAIT;
1163 VM_OBJECT_LOCK(dst_object);
1164 }
1165 } while (dst_m == NULL);
1166
1167 /*
1168 * Find the page in the source object, and copy it in.
1169 * (Because the source is wired down, the page will be in
1170 * memory.)
1171 */
1172 VM_OBJECT_LOCK(src_object);
1173 object = src_object;
1174 pindex = 0;
1175 while ((src_m = vm_page_lookup(object, pindex +
1176 OFF_TO_IDX(dst_offset + src_offset))) == NULL &&
1177 (src_entry->protection & VM_PROT_WRITE) == 0 &&
1178 (backing_object = object->backing_object) != NULL) {
1179 /*
1180 * Allow fallback to backing objects if we are reading.
1181 */
1182 VM_OBJECT_LOCK(backing_object);
1183 pindex += OFF_TO_IDX(object->backing_object_offset);
1184 VM_OBJECT_UNLOCK(object);
1185 object = backing_object;
1186 }
1187 if (src_m == NULL)
1188 panic("vm_fault_copy_wired: page missing");
1189 pmap_copy_page(src_m, dst_m);
1190 VM_OBJECT_UNLOCK(object);
1191 dst_m->valid = VM_PAGE_BITS_ALL;
1192 VM_OBJECT_UNLOCK(dst_object);
1193
1194 /*
1195 * Enter it in the pmap...
1196 */
1197 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1198 VM_OBJECT_LOCK(dst_object);
1199 vm_page_lock_queues();
1200 if ((prot & VM_PROT_WRITE) != 0)
1201 vm_page_flag_set(dst_m, PG_WRITEABLE);
1202
1203 /*
1204 * Mark it no longer busy, and put it on the active list.
1205 */
1206 vm_page_activate(dst_m);
1207 vm_page_wakeup(dst_m);
1208 vm_page_unlock_queues();
1209 }
1210 VM_OBJECT_UNLOCK(dst_object);
1211 }
1212
1213
1214 /*
1215 * This routine checks around the requested page for other pages that
1216 * might be able to be faulted in. This routine brackets the viable
1217 * pages for the pages to be paged in.
1218 *
1219 * Inputs:
1220 * m, rbehind, rahead
1221 *
1222 * Outputs:
1223 * marray (array of vm_page_t), reqpage (index of requested page)
1224 *
1225 * Return value:
1226 * number of pages in marray
1227 *
1228 * This routine can't block.
1229 */
1230 static int
1231 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1232 vm_page_t m;
1233 int rbehind;
1234 int rahead;
1235 vm_page_t *marray;
1236 int *reqpage;
1237 {
1238 int i,j;
1239 vm_object_t object;
1240 vm_pindex_t pindex, startpindex, endpindex, tpindex;
1241 vm_page_t rtm;
1242 int cbehind, cahead;
1243
1244 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1245
1246 object = m->object;
1247 pindex = m->pindex;
1248
1249 /*
1250 * we don't fault-ahead for device pager
1251 */
1252 if (object->type == OBJT_DEVICE) {
1253 *reqpage = 0;
1254 marray[0] = m;
1255 return 1;
1256 }
1257
1258 /*
1259 * if the requested page is not available, then give up now
1260 */
1261 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1262 return 0;
1263 }
1264
1265 if ((cbehind == 0) && (cahead == 0)) {
1266 *reqpage = 0;
1267 marray[0] = m;
1268 return 1;
1269 }
1270
1271 if (rahead > cahead) {
1272 rahead = cahead;
1273 }
1274
1275 if (rbehind > cbehind) {
1276 rbehind = cbehind;
1277 }
1278
1279 /*
1280 * try to do any readahead that we might have free pages for.
1281 */
1282 if ((rahead + rbehind) >
1283 ((cnt.v_free_count + cnt.v_cache_count) - cnt.v_free_reserved)) {
1284 pagedaemon_wakeup();
1285 marray[0] = m;
1286 *reqpage = 0;
1287 return 1;
1288 }
1289
1290 /*
1291 * scan backward for the read behind pages -- in memory
1292 */
1293 if (pindex > 0) {
1294 if (rbehind > pindex) {
1295 rbehind = pindex;
1296 startpindex = 0;
1297 } else {
1298 startpindex = pindex - rbehind;
1299 }
1300
1301 for (tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1302 if (vm_page_lookup(object, tpindex)) {
1303 startpindex = tpindex + 1;
1304 break;
1305 }
1306 if (tpindex == 0)
1307 break;
1308 }
1309
1310 for (i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1311
1312 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1313 if (rtm == NULL) {
1314 vm_page_lock_queues();
1315 for (j = 0; j < i; j++) {
1316 vm_page_free(marray[j]);
1317 }
1318 vm_page_unlock_queues();
1319 marray[0] = m;
1320 *reqpage = 0;
1321 return 1;
1322 }
1323
1324 marray[i] = rtm;
1325 }
1326 } else {
1327 startpindex = 0;
1328 i = 0;
1329 }
1330
1331 marray[i] = m;
1332 /* page offset of the required page */
1333 *reqpage = i;
1334
1335 tpindex = pindex + 1;
1336 i++;
1337
1338 /*
1339 * scan forward for the read ahead pages
1340 */
1341 endpindex = tpindex + rahead;
1342 if (endpindex > object->size)
1343 endpindex = object->size;
1344
1345 for (; tpindex < endpindex; i++, tpindex++) {
1346
1347 if (vm_page_lookup(object, tpindex)) {
1348 break;
1349 }
1350
1351 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1352 if (rtm == NULL) {
1353 break;
1354 }
1355
1356 marray[i] = rtm;
1357 }
1358
1359 /* return number of bytes of pages */
1360 return i;
1361 }
Cache object: 535bf66aa88039a8001bfd06977c3ee0
|