FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_fault.c
1 /*-
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94
42 *
43 *
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
46 *
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
62 * School of Computer Science
63 * Carnegie Mellon University
64 * Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70 /*
71 * Page fault handling module.
72 */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/lock.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/sysctl.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vnode.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/vm_extern.h>
99
100 #include <sys/mount.h> /* XXX Temporary for VFS_LOCK_GIANT() */
101
102 #define PFBAK 4
103 #define PFFOR 4
104 #define PAGEORDER_SIZE (PFBAK+PFFOR)
105
106 static int prefault_pageorder[] = {
107 -1 * PAGE_SIZE, 1 * PAGE_SIZE,
108 -2 * PAGE_SIZE, 2 * PAGE_SIZE,
109 -3 * PAGE_SIZE, 3 * PAGE_SIZE,
110 -4 * PAGE_SIZE, 4 * PAGE_SIZE
111 };
112
113 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
114 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
115
116 #define VM_FAULT_READ_AHEAD 8
117 #define VM_FAULT_READ_BEHIND 7
118 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
119
120 struct faultstate {
121 vm_page_t m;
122 vm_object_t object;
123 vm_pindex_t pindex;
124 vm_page_t first_m;
125 vm_object_t first_object;
126 vm_pindex_t first_pindex;
127 vm_map_t map;
128 vm_map_entry_t entry;
129 int lookup_still_valid;
130 struct vnode *vp;
131 };
132
133 static __inline void
134 release_page(struct faultstate *fs)
135 {
136 vm_page_lock_queues();
137 vm_page_wakeup(fs->m);
138 vm_page_deactivate(fs->m);
139 vm_page_unlock_queues();
140 fs->m = NULL;
141 }
142
143 static __inline void
144 unlock_map(struct faultstate *fs)
145 {
146 if (fs->lookup_still_valid) {
147 vm_map_lookup_done(fs->map, fs->entry);
148 fs->lookup_still_valid = FALSE;
149 }
150 }
151
152 static void
153 unlock_and_deallocate(struct faultstate *fs)
154 {
155 boolean_t firstobjneedgiant;
156
157 vm_object_pip_wakeup(fs->object);
158 VM_OBJECT_UNLOCK(fs->object);
159 if (fs->object != fs->first_object) {
160 VM_OBJECT_LOCK(fs->first_object);
161 vm_page_lock_queues();
162 vm_page_free(fs->first_m);
163 vm_page_unlock_queues();
164 vm_object_pip_wakeup(fs->first_object);
165 VM_OBJECT_UNLOCK(fs->first_object);
166 fs->first_m = NULL;
167 }
168 firstobjneedgiant = (fs->first_object->flags & OBJ_NEEDGIANT) != 0;
169 vm_object_deallocate(fs->first_object);
170 unlock_map(fs);
171 if (fs->vp != NULL) {
172 int vfslocked;
173
174 vfslocked = VFS_LOCK_GIANT(fs->vp->v_mount);
175 vput(fs->vp);
176 fs->vp = NULL;
177 VFS_UNLOCK_GIANT(vfslocked);
178 }
179 if (firstobjneedgiant)
180 VM_UNLOCK_GIANT();
181 }
182
183 /*
184 * TRYPAGER - used by vm_fault to calculate whether the pager for the
185 * current object *might* contain the page.
186 *
187 * default objects are zero-fill, there is no real pager.
188 */
189 #define TRYPAGER (fs.object->type != OBJT_DEFAULT && \
190 (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
191
192 /*
193 * vm_fault:
194 *
195 * Handle a page fault occurring at the given address,
196 * requiring the given permissions, in the map specified.
197 * If successful, the page is inserted into the
198 * associated physical map.
199 *
200 * NOTE: the given address should be truncated to the
201 * proper page address.
202 *
203 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
204 * a standard error specifying why the fault is fatal is returned.
205 *
206 *
207 * The map in question must be referenced, and remains so.
208 * Caller may hold no locks.
209 */
210 int
211 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
212 int fault_flags)
213 {
214 vm_prot_t prot;
215 int is_first_object_locked, result;
216 boolean_t growstack, wired;
217 int map_generation;
218 vm_object_t next_object;
219 vm_page_t marray[VM_FAULT_READ];
220 int hardfault;
221 int faultcount, alloc_req;
222 struct faultstate fs;
223
224 hardfault = 0;
225 growstack = TRUE;
226 atomic_add_int(&cnt.v_vm_faults, 1);
227
228 RetryFault:;
229
230 /*
231 * Find the backing store object and offset into it to begin the
232 * search.
233 */
234 fs.map = map;
235 result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
236 &fs.first_object, &fs.first_pindex, &prot, &wired);
237 if (result != KERN_SUCCESS) {
238 if (result != KERN_PROTECTION_FAILURE ||
239 (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
240 if (growstack && result == KERN_INVALID_ADDRESS &&
241 map != kernel_map && curproc != NULL) {
242 result = vm_map_growstack(curproc, vaddr);
243 if (result != KERN_SUCCESS)
244 return (KERN_FAILURE);
245 growstack = FALSE;
246 goto RetryFault;
247 }
248 return (result);
249 }
250
251 /*
252 * If we are user-wiring a r/w segment, and it is COW, then
253 * we need to do the COW operation. Note that we don't COW
254 * currently RO sections now, because it is NOT desirable
255 * to COW .text. We simply keep .text from ever being COW'ed
256 * and take the heat that one cannot debug wired .text sections.
257 */
258 result = vm_map_lookup(&fs.map, vaddr,
259 VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
260 &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
261 if (result != KERN_SUCCESS)
262 return (result);
263
264 /*
265 * If we don't COW now, on a user wire, the user will never
266 * be able to write to the mapping. If we don't make this
267 * restriction, the bookkeeping would be nearly impossible.
268 *
269 * XXX The following assignment modifies the map without
270 * holding a write lock on it.
271 */
272 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
273 fs.entry->max_protection &= ~VM_PROT_WRITE;
274 }
275
276 map_generation = fs.map->timestamp;
277
278 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
279 panic("vm_fault: fault on nofault entry, addr: %lx",
280 (u_long)vaddr);
281 }
282
283 /*
284 * Make a reference to this object to prevent its disposal while we
285 * are messing with it. Once we have the reference, the map is free
286 * to be diddled. Since objects reference their shadows (and copies),
287 * they will stay around as well.
288 *
289 * Bump the paging-in-progress count to prevent size changes (e.g.
290 * truncation operations) during I/O. This must be done after
291 * obtaining the vnode lock in order to avoid possible deadlocks.
292 *
293 * XXX vnode_pager_lock() can block without releasing the map lock.
294 */
295 if (fs.first_object->flags & OBJ_NEEDGIANT)
296 mtx_lock(&Giant);
297 VM_OBJECT_LOCK(fs.first_object);
298 vm_object_reference_locked(fs.first_object);
299 fs.vp = vnode_pager_lock(fs.first_object);
300 KASSERT(fs.vp == NULL || !fs.map->system_map,
301 ("vm_fault: vnode-backed object mapped by system map"));
302 KASSERT((fs.first_object->flags & OBJ_NEEDGIANT) == 0 ||
303 !fs.map->system_map,
304 ("vm_fault: Object requiring giant mapped by system map"));
305 if (fs.first_object->flags & OBJ_NEEDGIANT && debug_mpsafevm)
306 mtx_unlock(&Giant);
307 vm_object_pip_add(fs.first_object, 1);
308
309 fs.lookup_still_valid = TRUE;
310
311 if (wired)
312 fault_type = prot;
313
314 fs.first_m = NULL;
315
316 /*
317 * Search for the page at object/offset.
318 */
319 fs.object = fs.first_object;
320 fs.pindex = fs.first_pindex;
321 while (TRUE) {
322 /*
323 * If the object is dead, we stop here
324 */
325 if (fs.object->flags & OBJ_DEAD) {
326 unlock_and_deallocate(&fs);
327 return (KERN_PROTECTION_FAILURE);
328 }
329
330 /*
331 * See if page is resident
332 */
333 fs.m = vm_page_lookup(fs.object, fs.pindex);
334 if (fs.m != NULL) {
335 int queue;
336
337 /*
338 * check for page-based copy on write.
339 * We check fs.object == fs.first_object so
340 * as to ensure the legacy COW mechanism is
341 * used when the page in question is part of
342 * a shadow object. Otherwise, vm_page_cowfault()
343 * removes the page from the backing object,
344 * which is not what we want.
345 */
346 vm_page_lock_queues();
347 if ((fs.m->cow) &&
348 (fault_type & VM_PROT_WRITE) &&
349 (fs.object == fs.first_object)) {
350 vm_page_cowfault(fs.m);
351 vm_page_unlock_queues();
352 unlock_and_deallocate(&fs);
353 goto RetryFault;
354 }
355
356 /*
357 * Wait/Retry if the page is busy. We have to do this
358 * if the page is busy via either PG_BUSY or
359 * vm_page_t->busy because the vm_pager may be using
360 * vm_page_t->busy for pageouts ( and even pageins if
361 * it is the vnode pager ), and we could end up trying
362 * to pagein and pageout the same page simultaneously.
363 *
364 * We can theoretically allow the busy case on a read
365 * fault if the page is marked valid, but since such
366 * pages are typically already pmap'd, putting that
367 * special case in might be more effort then it is
368 * worth. We cannot under any circumstances mess
369 * around with a vm_page_t->busy page except, perhaps,
370 * to pmap it.
371 */
372 if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
373 vm_page_unlock_queues();
374 VM_OBJECT_UNLOCK(fs.object);
375 if (fs.object != fs.first_object) {
376 VM_OBJECT_LOCK(fs.first_object);
377 vm_page_lock_queues();
378 vm_page_free(fs.first_m);
379 vm_page_unlock_queues();
380 vm_object_pip_wakeup(fs.first_object);
381 VM_OBJECT_UNLOCK(fs.first_object);
382 fs.first_m = NULL;
383 }
384 unlock_map(&fs);
385 if (fs.vp != NULL) {
386 int vfslck;
387
388 vfslck = VFS_LOCK_GIANT(fs.vp->v_mount);
389 vput(fs.vp);
390 fs.vp = NULL;
391 VFS_UNLOCK_GIANT(vfslck);
392 }
393 VM_OBJECT_LOCK(fs.object);
394 if (fs.m == vm_page_lookup(fs.object,
395 fs.pindex)) {
396 vm_page_lock_queues();
397 if (!vm_page_sleep_if_busy(fs.m, TRUE,
398 "vmpfw"))
399 vm_page_unlock_queues();
400 }
401 vm_object_pip_wakeup(fs.object);
402 VM_OBJECT_UNLOCK(fs.object);
403 atomic_add_int(&cnt.v_intrans, 1);
404 if (fs.first_object->flags & OBJ_NEEDGIANT)
405 VM_UNLOCK_GIANT();
406 vm_object_deallocate(fs.first_object);
407 goto RetryFault;
408 }
409 queue = fs.m->queue;
410
411 vm_pageq_remove_nowakeup(fs.m);
412
413 if ((queue - fs.m->pc) == PQ_CACHE) {
414 cnt.v_reactivated++;
415 if (vm_page_count_severe()) {
416 vm_page_activate(fs.m);
417 vm_page_unlock_queues();
418 unlock_and_deallocate(&fs);
419 VM_WAITPFAULT;
420 goto RetryFault;
421 }
422 }
423
424 /*
425 * Mark page busy for other processes, and the
426 * pagedaemon. If it still isn't completely valid
427 * (readable), jump to readrest, else break-out ( we
428 * found the page ).
429 */
430 vm_page_busy(fs.m);
431 vm_page_unlock_queues();
432 if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
433 fs.m->object != kernel_object && fs.m->object != kmem_object) {
434 goto readrest;
435 }
436
437 break;
438 }
439
440 /*
441 * Page is not resident, If this is the search termination
442 * or the pager might contain the page, allocate a new page.
443 */
444 if (TRYPAGER || fs.object == fs.first_object) {
445 if (fs.pindex >= fs.object->size) {
446 unlock_and_deallocate(&fs);
447 return (KERN_PROTECTION_FAILURE);
448 }
449
450 /*
451 * Allocate a new page for this object/offset pair.
452 *
453 * Unlocked read of the p_flag is harmless. At
454 * worst, the P_KILLED might be not observed
455 * there, and allocation can fail, causing
456 * restart and new reading of the p_flag.
457 */
458 fs.m = NULL;
459 if (!vm_page_count_severe() || P_KILLED(curproc)) {
460 alloc_req = P_KILLED(curproc) ?
461 VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
462 if (fs.vp == NULL &&
463 fs.object->backing_object == NULL)
464 alloc_req |= VM_ALLOC_ZERO;
465 fs.m = vm_page_alloc(fs.object, fs.pindex,
466 alloc_req);
467 }
468 if (fs.m == NULL) {
469 unlock_and_deallocate(&fs);
470 VM_WAITPFAULT;
471 goto RetryFault;
472 }
473 }
474
475 readrest:
476 /*
477 * We have found a valid page or we have allocated a new page.
478 * The page thus may not be valid or may not be entirely
479 * valid.
480 *
481 * Attempt to fault-in the page if there is a chance that the
482 * pager has it, and potentially fault in additional pages
483 * at the same time.
484 */
485 if (TRYPAGER) {
486 int rv;
487 int reqpage;
488 int ahead, behind;
489 u_char behavior = vm_map_entry_behavior(fs.entry);
490
491 if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
492 P_KILLED(curproc)) {
493 ahead = 0;
494 behind = 0;
495 } else {
496 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
497 if (behind > VM_FAULT_READ_BEHIND)
498 behind = VM_FAULT_READ_BEHIND;
499
500 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
501 if (ahead > VM_FAULT_READ_AHEAD)
502 ahead = VM_FAULT_READ_AHEAD;
503 }
504 is_first_object_locked = FALSE;
505 if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
506 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
507 fs.pindex >= fs.entry->lastr &&
508 fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
509 (fs.first_object == fs.object ||
510 (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
511 fs.first_object->type != OBJT_DEVICE) {
512 vm_pindex_t firstpindex, tmppindex;
513
514 if (fs.first_pindex < 2 * VM_FAULT_READ)
515 firstpindex = 0;
516 else
517 firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
518
519 vm_page_lock_queues();
520 /*
521 * note: partially valid pages cannot be
522 * included in the lookahead - NFS piecemeal
523 * writes will barf on it badly.
524 */
525 for (tmppindex = fs.first_pindex - 1;
526 tmppindex >= firstpindex;
527 --tmppindex) {
528 vm_page_t mt;
529
530 mt = vm_page_lookup(fs.first_object, tmppindex);
531 if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
532 break;
533 if (mt->busy ||
534 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
535 mt->hold_count ||
536 mt->wire_count)
537 continue;
538 pmap_remove_all(mt);
539 if (mt->dirty) {
540 vm_page_deactivate(mt);
541 } else {
542 vm_page_cache(mt);
543 }
544 }
545 vm_page_unlock_queues();
546 ahead += behind;
547 behind = 0;
548 }
549 if (is_first_object_locked)
550 VM_OBJECT_UNLOCK(fs.first_object);
551 /*
552 * now we find out if any other pages should be paged
553 * in at this time this routine checks to see if the
554 * pages surrounding this fault reside in the same
555 * object as the page for this fault. If they do,
556 * then they are faulted in also into the object. The
557 * array "marray" returned contains an array of
558 * vm_page_t structs where one of them is the
559 * vm_page_t passed to the routine. The reqpage
560 * return value is the index into the marray for the
561 * vm_page_t passed to the routine.
562 *
563 * fs.m plus the additional pages are PG_BUSY'd.
564 *
565 * XXX vm_fault_additional_pages() can block
566 * without releasing the map lock.
567 */
568 faultcount = vm_fault_additional_pages(
569 fs.m, behind, ahead, marray, &reqpage);
570
571 /*
572 * update lastr imperfectly (we do not know how much
573 * getpages will actually read), but good enough.
574 *
575 * XXX The following assignment modifies the map
576 * without holding a write lock on it.
577 */
578 fs.entry->lastr = fs.pindex + faultcount - behind;
579
580 /*
581 * Call the pager to retrieve the data, if any, after
582 * releasing the lock on the map. We hold a ref on
583 * fs.object and the pages are PG_BUSY'd.
584 */
585 unlock_map(&fs);
586
587 rv = faultcount ?
588 vm_pager_get_pages(fs.object, marray, faultcount,
589 reqpage) : VM_PAGER_FAIL;
590
591 if (rv == VM_PAGER_OK) {
592 /*
593 * Found the page. Leave it busy while we play
594 * with it.
595 */
596
597 /*
598 * Relookup in case pager changed page. Pager
599 * is responsible for disposition of old page
600 * if moved.
601 */
602 fs.m = vm_page_lookup(fs.object, fs.pindex);
603 if (!fs.m) {
604 unlock_and_deallocate(&fs);
605 goto RetryFault;
606 }
607
608 hardfault++;
609 break; /* break to PAGE HAS BEEN FOUND */
610 }
611 /*
612 * Remove the bogus page (which does not exist at this
613 * object/offset); before doing so, we must get back
614 * our object lock to preserve our invariant.
615 *
616 * Also wake up any other process that may want to bring
617 * in this page.
618 *
619 * If this is the top-level object, we must leave the
620 * busy page to prevent another process from rushing
621 * past us, and inserting the page in that object at
622 * the same time that we are.
623 */
624 if (rv == VM_PAGER_ERROR)
625 printf("vm_fault: pager read error, pid %d (%s)\n",
626 curproc->p_pid, curproc->p_comm);
627 /*
628 * Data outside the range of the pager or an I/O error
629 */
630 /*
631 * XXX - the check for kernel_map is a kludge to work
632 * around having the machine panic on a kernel space
633 * fault w/ I/O error.
634 */
635 if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
636 (rv == VM_PAGER_BAD)) {
637 vm_page_lock_queues();
638 vm_page_free(fs.m);
639 vm_page_unlock_queues();
640 fs.m = NULL;
641 unlock_and_deallocate(&fs);
642 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
643 }
644 if (fs.object != fs.first_object) {
645 vm_page_lock_queues();
646 vm_page_free(fs.m);
647 vm_page_unlock_queues();
648 fs.m = NULL;
649 /*
650 * XXX - we cannot just fall out at this
651 * point, m has been freed and is invalid!
652 */
653 }
654 }
655
656 /*
657 * We get here if the object has default pager (or unwiring)
658 * or the pager doesn't have the page.
659 */
660 if (fs.object == fs.first_object)
661 fs.first_m = fs.m;
662
663 /*
664 * Move on to the next object. Lock the next object before
665 * unlocking the current one.
666 */
667 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
668 next_object = fs.object->backing_object;
669 if (next_object == NULL) {
670 /*
671 * If there's no object left, fill the page in the top
672 * object with zeros.
673 */
674 if (fs.object != fs.first_object) {
675 vm_object_pip_wakeup(fs.object);
676 VM_OBJECT_UNLOCK(fs.object);
677
678 fs.object = fs.first_object;
679 fs.pindex = fs.first_pindex;
680 fs.m = fs.first_m;
681 VM_OBJECT_LOCK(fs.object);
682 }
683 fs.first_m = NULL;
684
685 /*
686 * Zero the page if necessary and mark it valid.
687 */
688 if ((fs.m->flags & PG_ZERO) == 0) {
689 pmap_zero_page(fs.m);
690 } else {
691 atomic_add_int(&cnt.v_ozfod, 1);
692 }
693 atomic_add_int(&cnt.v_zfod, 1);
694 fs.m->valid = VM_PAGE_BITS_ALL;
695 break; /* break to PAGE HAS BEEN FOUND */
696 } else {
697 KASSERT(fs.object != next_object,
698 ("object loop %p", next_object));
699 VM_OBJECT_LOCK(next_object);
700 vm_object_pip_add(next_object, 1);
701 if (fs.object != fs.first_object)
702 vm_object_pip_wakeup(fs.object);
703 VM_OBJECT_UNLOCK(fs.object);
704 fs.object = next_object;
705 }
706 }
707
708 KASSERT((fs.m->flags & PG_BUSY) != 0,
709 ("vm_fault: not busy after main loop"));
710
711 /*
712 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
713 * is held.]
714 */
715
716 /*
717 * If the page is being written, but isn't already owned by the
718 * top-level object, we have to copy it into a new page owned by the
719 * top-level object.
720 */
721 if (fs.object != fs.first_object) {
722 /*
723 * We only really need to copy if we want to write it.
724 */
725 if (fault_type & VM_PROT_WRITE) {
726 /*
727 * This allows pages to be virtually copied from a
728 * backing_object into the first_object, where the
729 * backing object has no other refs to it, and cannot
730 * gain any more refs. Instead of a bcopy, we just
731 * move the page from the backing object to the
732 * first object. Note that we must mark the page
733 * dirty in the first object so that it will go out
734 * to swap when needed.
735 */
736 is_first_object_locked = FALSE;
737 if (
738 /*
739 * Only one shadow object
740 */
741 (fs.object->shadow_count == 1) &&
742 /*
743 * No COW refs, except us
744 */
745 (fs.object->ref_count == 1) &&
746 /*
747 * No one else can look this object up
748 */
749 (fs.object->handle == NULL) &&
750 /*
751 * No other ways to look the object up
752 */
753 ((fs.object->type == OBJT_DEFAULT) ||
754 (fs.object->type == OBJT_SWAP)) &&
755 (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
756 /*
757 * We don't chase down the shadow chain
758 */
759 fs.object == fs.first_object->backing_object) {
760 vm_page_lock_queues();
761 /*
762 * get rid of the unnecessary page
763 */
764 pmap_remove_all(fs.first_m);
765 vm_page_free(fs.first_m);
766 /*
767 * grab the page and put it into the
768 * process'es object. The page is
769 * automatically made dirty.
770 */
771 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
772 vm_page_busy(fs.m);
773 vm_page_unlock_queues();
774 fs.first_m = fs.m;
775 fs.m = NULL;
776 atomic_add_int(&cnt.v_cow_optim, 1);
777 } else {
778 /*
779 * Oh, well, lets copy it.
780 */
781 pmap_copy_page(fs.m, fs.first_m);
782 fs.first_m->valid = VM_PAGE_BITS_ALL;
783 }
784 if (fs.m) {
785 /*
786 * We no longer need the old page or object.
787 */
788 release_page(&fs);
789 }
790 /*
791 * fs.object != fs.first_object due to above
792 * conditional
793 */
794 vm_object_pip_wakeup(fs.object);
795 VM_OBJECT_UNLOCK(fs.object);
796 /*
797 * Only use the new page below...
798 */
799 fs.object = fs.first_object;
800 fs.pindex = fs.first_pindex;
801 fs.m = fs.first_m;
802 if (!is_first_object_locked)
803 VM_OBJECT_LOCK(fs.object);
804 atomic_add_int(&cnt.v_cow_faults, 1);
805 } else {
806 prot &= ~VM_PROT_WRITE;
807 }
808 }
809
810 /*
811 * We must verify that the maps have not changed since our last
812 * lookup.
813 */
814 if (!fs.lookup_still_valid) {
815 vm_object_t retry_object;
816 vm_pindex_t retry_pindex;
817 vm_prot_t retry_prot;
818
819 if (!vm_map_trylock_read(fs.map)) {
820 release_page(&fs);
821 unlock_and_deallocate(&fs);
822 goto RetryFault;
823 }
824 fs.lookup_still_valid = TRUE;
825 if (fs.map->timestamp != map_generation) {
826 result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
827 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
828
829 /*
830 * If we don't need the page any longer, put it on the inactive
831 * list (the easiest thing to do here). If no one needs it,
832 * pageout will grab it eventually.
833 */
834 if (result != KERN_SUCCESS) {
835 release_page(&fs);
836 unlock_and_deallocate(&fs);
837
838 /*
839 * If retry of map lookup would have blocked then
840 * retry fault from start.
841 */
842 if (result == KERN_FAILURE)
843 goto RetryFault;
844 return (result);
845 }
846 if ((retry_object != fs.first_object) ||
847 (retry_pindex != fs.first_pindex)) {
848 release_page(&fs);
849 unlock_and_deallocate(&fs);
850 goto RetryFault;
851 }
852
853 /*
854 * Check whether the protection has changed or the object has
855 * been copied while we left the map unlocked. Changing from
856 * read to write permission is OK - we leave the page
857 * write-protected, and catch the write fault. Changing from
858 * write to read permission means that we can't mark the page
859 * write-enabled after all.
860 */
861 prot &= retry_prot;
862 }
863 }
864 if (prot & VM_PROT_WRITE) {
865 vm_page_lock_queues();
866 vm_page_flag_set(fs.m, PG_WRITEABLE);
867 vm_object_set_writeable_dirty(fs.m->object);
868
869 /*
870 * If the fault is a write, we know that this page is being
871 * written NOW so dirty it explicitly to save on
872 * pmap_is_modified() calls later.
873 *
874 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
875 * if the page is already dirty to prevent data written with
876 * the expectation of being synced from not being synced.
877 * Likewise if this entry does not request NOSYNC then make
878 * sure the page isn't marked NOSYNC. Applications sharing
879 * data should use the same flags to avoid ping ponging.
880 *
881 * Also tell the backing pager, if any, that it should remove
882 * any swap backing since the page is now dirty.
883 */
884 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
885 if (fs.m->dirty == 0)
886 vm_page_flag_set(fs.m, PG_NOSYNC);
887 } else {
888 vm_page_flag_clear(fs.m, PG_NOSYNC);
889 }
890 vm_page_unlock_queues();
891 if (fault_flags & VM_FAULT_DIRTY) {
892 vm_page_dirty(fs.m);
893 vm_pager_page_unswapped(fs.m);
894 }
895 }
896
897 /*
898 * Page had better still be busy
899 */
900 KASSERT(fs.m->flags & PG_BUSY,
901 ("vm_fault: page %p not busy!", fs.m));
902 /*
903 * Sanity check: page must be completely valid or it is not fit to
904 * map into user space. vm_pager_get_pages() ensures this.
905 */
906 if (fs.m->valid != VM_PAGE_BITS_ALL) {
907 vm_page_zero_invalid(fs.m, TRUE);
908 printf("Warning: page %p partially invalid on fault\n", fs.m);
909 }
910 VM_OBJECT_UNLOCK(fs.object);
911
912 /*
913 * Put this page into the physical map. We had to do the unlock above
914 * because pmap_enter() may sleep. We don't put the page
915 * back on the active queue until later so that the pageout daemon
916 * won't find it (yet).
917 */
918 pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
919 if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
920 vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
921 }
922 VM_OBJECT_LOCK(fs.object);
923 vm_page_lock_queues();
924 vm_page_flag_set(fs.m, PG_REFERENCED);
925
926 /*
927 * If the page is not wired down, then put it where the pageout daemon
928 * can find it.
929 */
930 if (fault_flags & VM_FAULT_WIRE_MASK) {
931 if (wired)
932 vm_page_wire(fs.m);
933 else
934 vm_page_unwire(fs.m, 1);
935 } else {
936 vm_page_activate(fs.m);
937 }
938 vm_page_wakeup(fs.m);
939 vm_page_unlock_queues();
940
941 /*
942 * Unlock everything, and return
943 */
944 unlock_and_deallocate(&fs);
945 PROC_LOCK(curproc);
946 if ((curproc->p_sflag & PS_INMEM) && curproc->p_stats) {
947 if (hardfault) {
948 curproc->p_stats->p_ru.ru_majflt++;
949 } else {
950 curproc->p_stats->p_ru.ru_minflt++;
951 }
952 }
953 PROC_UNLOCK(curproc);
954
955 return (KERN_SUCCESS);
956 }
957
958 /*
959 * vm_fault_prefault provides a quick way of clustering
960 * pagefaults into a processes address space. It is a "cousin"
961 * of vm_map_pmap_enter, except it runs at page fault time instead
962 * of mmap time.
963 */
964 static void
965 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
966 {
967 int i;
968 vm_offset_t addr, starta;
969 vm_pindex_t pindex;
970 vm_page_t m;
971 vm_object_t object;
972
973 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
974 return;
975
976 object = entry->object.vm_object;
977
978 starta = addra - PFBAK * PAGE_SIZE;
979 if (starta < entry->start) {
980 starta = entry->start;
981 } else if (starta > addra) {
982 starta = 0;
983 }
984
985 for (i = 0; i < PAGEORDER_SIZE; i++) {
986 vm_object_t backing_object, lobject;
987
988 addr = addra + prefault_pageorder[i];
989 if (addr > addra + (PFFOR * PAGE_SIZE))
990 addr = 0;
991
992 if (addr < starta || addr >= entry->end)
993 continue;
994
995 if (!pmap_is_prefaultable(pmap, addr))
996 continue;
997
998 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
999 lobject = object;
1000 VM_OBJECT_LOCK(lobject);
1001 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1002 lobject->type == OBJT_DEFAULT &&
1003 (backing_object = lobject->backing_object) != NULL) {
1004 if (lobject->backing_object_offset & PAGE_MASK)
1005 break;
1006 pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1007 VM_OBJECT_LOCK(backing_object);
1008 VM_OBJECT_UNLOCK(lobject);
1009 lobject = backing_object;
1010 }
1011 /*
1012 * give-up when a page is not in memory
1013 */
1014 if (m == NULL) {
1015 VM_OBJECT_UNLOCK(lobject);
1016 break;
1017 }
1018 if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1019 (m->busy == 0) &&
1020 (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1021
1022 vm_page_lock_queues();
1023 if ((m->queue - m->pc) == PQ_CACHE)
1024 vm_page_deactivate(m);
1025 pmap_enter_quick(pmap, addr, m, entry->protection);
1026 vm_page_unlock_queues();
1027 }
1028 VM_OBJECT_UNLOCK(lobject);
1029 }
1030 }
1031
1032 /*
1033 * vm_fault_quick:
1034 *
1035 * Ensure that the requested virtual address, which may be in userland,
1036 * is valid. Fault-in the page if necessary. Return -1 on failure.
1037 */
1038 int
1039 vm_fault_quick(caddr_t v, int prot)
1040 {
1041 int r;
1042
1043 if (prot & VM_PROT_WRITE)
1044 r = subyte(v, fubyte(v));
1045 else
1046 r = fubyte(v);
1047 return(r);
1048 }
1049
1050 /*
1051 * vm_fault_wire:
1052 *
1053 * Wire down a range of virtual addresses in a map.
1054 */
1055 int
1056 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1057 boolean_t user_wire, boolean_t fictitious)
1058 {
1059 vm_offset_t va;
1060 int rv;
1061
1062 /*
1063 * We simulate a fault to get the page and enter it in the physical
1064 * map. For user wiring, we only ask for read access on currently
1065 * read-only sections.
1066 */
1067 for (va = start; va < end; va += PAGE_SIZE) {
1068 rv = vm_fault(map, va,
1069 user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
1070 user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
1071 if (rv) {
1072 if (va != start)
1073 vm_fault_unwire(map, start, va, fictitious);
1074 return (rv);
1075 }
1076 }
1077 return (KERN_SUCCESS);
1078 }
1079
1080 /*
1081 * vm_fault_unwire:
1082 *
1083 * Unwire a range of virtual addresses in a map.
1084 */
1085 void
1086 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1087 boolean_t fictitious)
1088 {
1089 vm_paddr_t pa;
1090 vm_offset_t va;
1091 pmap_t pmap;
1092
1093 pmap = vm_map_pmap(map);
1094
1095 /*
1096 * Since the pages are wired down, we must be able to get their
1097 * mappings from the physical map system.
1098 */
1099 for (va = start; va < end; va += PAGE_SIZE) {
1100 pa = pmap_extract(pmap, va);
1101 if (pa != 0) {
1102 pmap_change_wiring(pmap, va, FALSE);
1103 if (!fictitious) {
1104 vm_page_lock_queues();
1105 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1106 vm_page_unlock_queues();
1107 }
1108 }
1109 }
1110 }
1111
1112 /*
1113 * Routine:
1114 * vm_fault_copy_entry
1115 * Function:
1116 * Copy all of the pages from a wired-down map entry to another.
1117 *
1118 * In/out conditions:
1119 * The source and destination maps must be locked for write.
1120 * The source map entry must be wired down (or be a sharing map
1121 * entry corresponding to a main map entry that is wired down).
1122 */
1123 void
1124 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
1125 vm_map_t dst_map;
1126 vm_map_t src_map;
1127 vm_map_entry_t dst_entry;
1128 vm_map_entry_t src_entry;
1129 {
1130 vm_object_t backing_object, dst_object, object;
1131 vm_object_t src_object;
1132 vm_ooffset_t dst_offset;
1133 vm_ooffset_t src_offset;
1134 vm_pindex_t pindex;
1135 vm_prot_t prot;
1136 vm_offset_t vaddr;
1137 vm_page_t dst_m;
1138 vm_page_t src_m;
1139
1140 #ifdef lint
1141 src_map++;
1142 #endif /* lint */
1143
1144 src_object = src_entry->object.vm_object;
1145 src_offset = src_entry->offset;
1146
1147 /*
1148 * Create the top-level object for the destination entry. (Doesn't
1149 * actually shadow anything - we copy the pages directly.)
1150 */
1151 dst_object = vm_object_allocate(OBJT_DEFAULT,
1152 OFF_TO_IDX(dst_entry->end - dst_entry->start));
1153
1154 VM_OBJECT_LOCK(dst_object);
1155 dst_entry->object.vm_object = dst_object;
1156 dst_entry->offset = 0;
1157
1158 prot = dst_entry->max_protection;
1159
1160 /*
1161 * Loop through all of the pages in the entry's range, copying each
1162 * one from the source object (it should be there) to the destination
1163 * object.
1164 */
1165 for (vaddr = dst_entry->start, dst_offset = 0;
1166 vaddr < dst_entry->end;
1167 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1168
1169 /*
1170 * Allocate a page in the destination object
1171 */
1172 do {
1173 dst_m = vm_page_alloc(dst_object,
1174 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1175 if (dst_m == NULL) {
1176 VM_OBJECT_UNLOCK(dst_object);
1177 VM_WAIT;
1178 VM_OBJECT_LOCK(dst_object);
1179 }
1180 } while (dst_m == NULL);
1181
1182 /*
1183 * Find the page in the source object, and copy it in.
1184 * (Because the source is wired down, the page will be in
1185 * memory.)
1186 */
1187 VM_OBJECT_LOCK(src_object);
1188 object = src_object;
1189 pindex = 0;
1190 while ((src_m = vm_page_lookup(object, pindex +
1191 OFF_TO_IDX(dst_offset + src_offset))) == NULL &&
1192 (src_entry->protection & VM_PROT_WRITE) == 0 &&
1193 (backing_object = object->backing_object) != NULL) {
1194 /*
1195 * Allow fallback to backing objects if we are reading.
1196 */
1197 VM_OBJECT_LOCK(backing_object);
1198 pindex += OFF_TO_IDX(object->backing_object_offset);
1199 VM_OBJECT_UNLOCK(object);
1200 object = backing_object;
1201 }
1202 if (src_m == NULL)
1203 panic("vm_fault_copy_wired: page missing");
1204 pmap_copy_page(src_m, dst_m);
1205 VM_OBJECT_UNLOCK(object);
1206 dst_m->valid = VM_PAGE_BITS_ALL;
1207 VM_OBJECT_UNLOCK(dst_object);
1208
1209 /*
1210 * Enter it in the pmap...
1211 */
1212 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1213 VM_OBJECT_LOCK(dst_object);
1214 vm_page_lock_queues();
1215 if ((prot & VM_PROT_WRITE) != 0)
1216 vm_page_flag_set(dst_m, PG_WRITEABLE);
1217
1218 /*
1219 * Mark it no longer busy, and put it on the active list.
1220 */
1221 vm_page_activate(dst_m);
1222 vm_page_wakeup(dst_m);
1223 vm_page_unlock_queues();
1224 }
1225 VM_OBJECT_UNLOCK(dst_object);
1226 }
1227
1228
1229 /*
1230 * This routine checks around the requested page for other pages that
1231 * might be able to be faulted in. This routine brackets the viable
1232 * pages for the pages to be paged in.
1233 *
1234 * Inputs:
1235 * m, rbehind, rahead
1236 *
1237 * Outputs:
1238 * marray (array of vm_page_t), reqpage (index of requested page)
1239 *
1240 * Return value:
1241 * number of pages in marray
1242 *
1243 * This routine can't block.
1244 */
1245 static int
1246 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1247 vm_page_t m;
1248 int rbehind;
1249 int rahead;
1250 vm_page_t *marray;
1251 int *reqpage;
1252 {
1253 int i,j;
1254 vm_object_t object;
1255 vm_pindex_t pindex, startpindex, endpindex, tpindex;
1256 vm_page_t rtm;
1257 int cbehind, cahead;
1258
1259 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1260
1261 object = m->object;
1262 pindex = m->pindex;
1263
1264 /*
1265 * if the requested page is not available, then give up now
1266 */
1267 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1268 return 0;
1269 }
1270
1271 if ((cbehind == 0) && (cahead == 0)) {
1272 *reqpage = 0;
1273 marray[0] = m;
1274 return 1;
1275 }
1276
1277 if (rahead > cahead) {
1278 rahead = cahead;
1279 }
1280
1281 if (rbehind > cbehind) {
1282 rbehind = cbehind;
1283 }
1284
1285 /*
1286 * scan backward for the read behind pages -- in memory
1287 */
1288 if (pindex > 0) {
1289 if (rbehind > pindex) {
1290 rbehind = pindex;
1291 startpindex = 0;
1292 } else {
1293 startpindex = pindex - rbehind;
1294 }
1295
1296 for (tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1297 if (vm_page_lookup(object, tpindex)) {
1298 startpindex = tpindex + 1;
1299 break;
1300 }
1301 if (tpindex == 0)
1302 break;
1303 }
1304
1305 /* tpindex is unsigned; beware of numeric underflow. */
1306 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1307 tpindex < pindex; i++, tpindex--) {
1308
1309 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1310 if (rtm == NULL) {
1311 /*
1312 * Shift the allocated pages to the
1313 * beginning of the array.
1314 */
1315 for (j = 0; j < i; j++) {
1316 marray[j] = marray[j + tpindex + 1 -
1317 startpindex];
1318 }
1319 break;
1320 }
1321
1322 marray[tpindex - startpindex] = rtm;
1323 }
1324 } else {
1325 startpindex = 0;
1326 i = 0;
1327 }
1328
1329 marray[i] = m;
1330 /* page offset of the required page */
1331 *reqpage = i;
1332
1333 tpindex = pindex + 1;
1334 i++;
1335
1336 /*
1337 * scan forward for the read ahead pages
1338 */
1339 endpindex = tpindex + rahead;
1340 if (endpindex > object->size)
1341 endpindex = object->size;
1342
1343 for (; tpindex < endpindex; i++, tpindex++) {
1344
1345 if (vm_page_lookup(object, tpindex)) {
1346 break;
1347 }
1348
1349 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1350 if (rtm == NULL) {
1351 break;
1352 }
1353
1354 marray[i] = rtm;
1355 }
1356
1357 /* return number of pages */
1358 return i;
1359 }
Cache object: 4d1a17c17e00b45842cb2dfeb235532a
|