FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_fault.c
1 /*-
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94
42 *
43 *
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
46 *
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
62 * School of Computer Science
63 * Carnegie Mellon University
64 * Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70 /*
71 * Page fault handling module.
72 */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/lock.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/sysctl.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vnode.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/vm_extern.h>
99
100 #include <sys/mount.h> /* XXX Temporary for VFS_LOCK_GIANT() */
101
102 #define PFBAK 4
103 #define PFFOR 4
104 #define PAGEORDER_SIZE (PFBAK+PFFOR)
105
106 static int prefault_pageorder[] = {
107 -1 * PAGE_SIZE, 1 * PAGE_SIZE,
108 -2 * PAGE_SIZE, 2 * PAGE_SIZE,
109 -3 * PAGE_SIZE, 3 * PAGE_SIZE,
110 -4 * PAGE_SIZE, 4 * PAGE_SIZE
111 };
112
113 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
114 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
115
116 #define VM_FAULT_READ_AHEAD 8
117 #define VM_FAULT_READ_BEHIND 7
118 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
119
120 struct faultstate {
121 vm_page_t m;
122 vm_object_t object;
123 vm_pindex_t pindex;
124 vm_page_t first_m;
125 vm_object_t first_object;
126 vm_pindex_t first_pindex;
127 vm_map_t map;
128 vm_map_entry_t entry;
129 int lookup_still_valid;
130 struct vnode *vp;
131 };
132
133 static inline void
134 release_page(struct faultstate *fs)
135 {
136 vm_page_wakeup(fs->m);
137 vm_page_lock_queues();
138 vm_page_deactivate(fs->m);
139 vm_page_unlock_queues();
140 fs->m = NULL;
141 }
142
143 static inline void
144 unlock_map(struct faultstate *fs)
145 {
146 if (fs->lookup_still_valid) {
147 vm_map_lookup_done(fs->map, fs->entry);
148 fs->lookup_still_valid = FALSE;
149 }
150 }
151
152 static void
153 unlock_and_deallocate(struct faultstate *fs)
154 {
155
156 vm_object_pip_wakeup(fs->object);
157 VM_OBJECT_UNLOCK(fs->object);
158 if (fs->object != fs->first_object) {
159 VM_OBJECT_LOCK(fs->first_object);
160 vm_page_lock_queues();
161 vm_page_free(fs->first_m);
162 vm_page_unlock_queues();
163 vm_object_pip_wakeup(fs->first_object);
164 VM_OBJECT_UNLOCK(fs->first_object);
165 fs->first_m = NULL;
166 }
167 vm_object_deallocate(fs->first_object);
168 unlock_map(fs);
169 if (fs->vp != NULL) {
170 int vfslocked;
171
172 vfslocked = VFS_LOCK_GIANT(fs->vp->v_mount);
173 vput(fs->vp);
174 fs->vp = NULL;
175 VFS_UNLOCK_GIANT(vfslocked);
176 }
177 }
178
179 /*
180 * TRYPAGER - used by vm_fault to calculate whether the pager for the
181 * current object *might* contain the page.
182 *
183 * default objects are zero-fill, there is no real pager.
184 */
185 #define TRYPAGER (fs.object->type != OBJT_DEFAULT && \
186 (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
187
188 /*
189 * vm_fault:
190 *
191 * Handle a page fault occurring at the given address,
192 * requiring the given permissions, in the map specified.
193 * If successful, the page is inserted into the
194 * associated physical map.
195 *
196 * NOTE: the given address should be truncated to the
197 * proper page address.
198 *
199 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
200 * a standard error specifying why the fault is fatal is returned.
201 *
202 *
203 * The map in question must be referenced, and remains so.
204 * Caller may hold no locks.
205 */
206 int
207 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
208 int fault_flags)
209 {
210 vm_prot_t prot;
211 int is_first_object_locked, result;
212 boolean_t growstack, wired;
213 int map_generation;
214 vm_object_t next_object;
215 vm_page_t marray[VM_FAULT_READ];
216 int hardfault;
217 int faultcount;
218 struct faultstate fs;
219
220 hardfault = 0;
221 growstack = TRUE;
222 PCPU_INC(cnt.v_vm_faults);
223
224 RetryFault:;
225
226 /*
227 * Find the backing store object and offset into it to begin the
228 * search.
229 */
230 fs.map = map;
231 result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
232 &fs.first_object, &fs.first_pindex, &prot, &wired);
233 if (result != KERN_SUCCESS) {
234 if (result != KERN_PROTECTION_FAILURE ||
235 (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
236 if (growstack && result == KERN_INVALID_ADDRESS &&
237 map != kernel_map && curproc != NULL) {
238 result = vm_map_growstack(curproc, vaddr);
239 if (result != KERN_SUCCESS)
240 return (KERN_FAILURE);
241 growstack = FALSE;
242 goto RetryFault;
243 }
244 return (result);
245 }
246
247 /*
248 * If we are user-wiring a r/w segment, and it is COW, then
249 * we need to do the COW operation. Note that we don't COW
250 * currently RO sections now, because it is NOT desirable
251 * to COW .text. We simply keep .text from ever being COW'ed
252 * and take the heat that one cannot debug wired .text sections.
253 */
254 result = vm_map_lookup(&fs.map, vaddr,
255 VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
256 &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
257 if (result != KERN_SUCCESS)
258 return (result);
259
260 /*
261 * If we don't COW now, on a user wire, the user will never
262 * be able to write to the mapping. If we don't make this
263 * restriction, the bookkeeping would be nearly impossible.
264 *
265 * XXX The following assignment modifies the map without
266 * holding a write lock on it.
267 */
268 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
269 fs.entry->max_protection &= ~VM_PROT_WRITE;
270 }
271
272 map_generation = fs.map->timestamp;
273
274 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
275 panic("vm_fault: fault on nofault entry, addr: %lx",
276 (u_long)vaddr);
277 }
278
279 /*
280 * Make a reference to this object to prevent its disposal while we
281 * are messing with it. Once we have the reference, the map is free
282 * to be diddled. Since objects reference their shadows (and copies),
283 * they will stay around as well.
284 *
285 * Bump the paging-in-progress count to prevent size changes (e.g.
286 * truncation operations) during I/O. This must be done after
287 * obtaining the vnode lock in order to avoid possible deadlocks.
288 *
289 * XXX vnode_pager_lock() can block without releasing the map lock.
290 */
291 if (fs.first_object->flags & OBJ_NEEDGIANT)
292 mtx_lock(&Giant);
293 VM_OBJECT_LOCK(fs.first_object);
294 vm_object_reference_locked(fs.first_object);
295 fs.vp = vnode_pager_lock(fs.first_object);
296 KASSERT(fs.vp == NULL || !fs.map->system_map,
297 ("vm_fault: vnode-backed object mapped by system map"));
298 KASSERT((fs.first_object->flags & OBJ_NEEDGIANT) == 0 ||
299 !fs.map->system_map,
300 ("vm_fault: Object requiring giant mapped by system map"));
301 if (fs.first_object->flags & OBJ_NEEDGIANT)
302 mtx_unlock(&Giant);
303 vm_object_pip_add(fs.first_object, 1);
304
305 fs.lookup_still_valid = TRUE;
306
307 if (wired)
308 fault_type = prot;
309
310 fs.first_m = NULL;
311
312 /*
313 * Search for the page at object/offset.
314 */
315 fs.object = fs.first_object;
316 fs.pindex = fs.first_pindex;
317 while (TRUE) {
318 /*
319 * If the object is dead, we stop here
320 */
321 if (fs.object->flags & OBJ_DEAD) {
322 unlock_and_deallocate(&fs);
323 return (KERN_PROTECTION_FAILURE);
324 }
325
326 /*
327 * See if page is resident
328 */
329 fs.m = vm_page_lookup(fs.object, fs.pindex);
330 if (fs.m != NULL) {
331 /*
332 * check for page-based copy on write.
333 * We check fs.object == fs.first_object so
334 * as to ensure the legacy COW mechanism is
335 * used when the page in question is part of
336 * a shadow object. Otherwise, vm_page_cowfault()
337 * removes the page from the backing object,
338 * which is not what we want.
339 */
340 vm_page_lock_queues();
341 if ((fs.m->cow) &&
342 (fault_type & VM_PROT_WRITE) &&
343 (fs.object == fs.first_object)) {
344 vm_page_cowfault(fs.m);
345 vm_page_unlock_queues();
346 unlock_and_deallocate(&fs);
347 goto RetryFault;
348 }
349
350 /*
351 * Wait/Retry if the page is busy. We have to do this
352 * if the page is busy via either VPO_BUSY or
353 * vm_page_t->busy because the vm_pager may be using
354 * vm_page_t->busy for pageouts ( and even pageins if
355 * it is the vnode pager ), and we could end up trying
356 * to pagein and pageout the same page simultaneously.
357 *
358 * We can theoretically allow the busy case on a read
359 * fault if the page is marked valid, but since such
360 * pages are typically already pmap'd, putting that
361 * special case in might be more effort then it is
362 * worth. We cannot under any circumstances mess
363 * around with a vm_page_t->busy page except, perhaps,
364 * to pmap it.
365 */
366 if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
367 vm_page_unlock_queues();
368 VM_OBJECT_UNLOCK(fs.object);
369 if (fs.object != fs.first_object) {
370 VM_OBJECT_LOCK(fs.first_object);
371 vm_page_lock_queues();
372 vm_page_free(fs.first_m);
373 vm_page_unlock_queues();
374 vm_object_pip_wakeup(fs.first_object);
375 VM_OBJECT_UNLOCK(fs.first_object);
376 fs.first_m = NULL;
377 }
378 unlock_map(&fs);
379 if (fs.vp != NULL) {
380 int vfslck;
381
382 vfslck = VFS_LOCK_GIANT(fs.vp->v_mount);
383 vput(fs.vp);
384 fs.vp = NULL;
385 VFS_UNLOCK_GIANT(vfslck);
386 }
387 VM_OBJECT_LOCK(fs.object);
388 if (fs.m == vm_page_lookup(fs.object,
389 fs.pindex)) {
390 vm_page_sleep_if_busy(fs.m, TRUE,
391 "vmpfw");
392 }
393 vm_object_pip_wakeup(fs.object);
394 VM_OBJECT_UNLOCK(fs.object);
395 PCPU_INC(cnt.v_intrans);
396 vm_object_deallocate(fs.first_object);
397 goto RetryFault;
398 }
399 vm_pageq_remove(fs.m);
400 vm_page_unlock_queues();
401
402 /*
403 * Mark page busy for other processes, and the
404 * pagedaemon. If it still isn't completely valid
405 * (readable), jump to readrest, else break-out ( we
406 * found the page ).
407 */
408 vm_page_busy(fs.m);
409 if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
410 fs.m->object != kernel_object && fs.m->object != kmem_object) {
411 goto readrest;
412 }
413
414 break;
415 }
416
417 /*
418 * Page is not resident, If this is the search termination
419 * or the pager might contain the page, allocate a new page.
420 */
421 if (TRYPAGER || fs.object == fs.first_object) {
422 if (fs.pindex >= fs.object->size) {
423 unlock_and_deallocate(&fs);
424 return (KERN_PROTECTION_FAILURE);
425 }
426
427 /*
428 * Allocate a new page for this object/offset pair.
429 */
430 fs.m = NULL;
431 if (!vm_page_count_severe()) {
432 fs.m = vm_page_alloc(fs.object, fs.pindex,
433 (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
434 }
435 if (fs.m == NULL) {
436 unlock_and_deallocate(&fs);
437 VM_WAITPFAULT;
438 goto RetryFault;
439 } else if ((fs.m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL)
440 break;
441 }
442
443 readrest:
444 /*
445 * We have found a valid page or we have allocated a new page.
446 * The page thus may not be valid or may not be entirely
447 * valid.
448 *
449 * Attempt to fault-in the page if there is a chance that the
450 * pager has it, and potentially fault in additional pages
451 * at the same time.
452 */
453 if (TRYPAGER) {
454 int rv;
455 int reqpage = 0;
456 int ahead, behind;
457 u_char behavior = vm_map_entry_behavior(fs.entry);
458
459 if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
460 ahead = 0;
461 behind = 0;
462 } else {
463 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
464 if (behind > VM_FAULT_READ_BEHIND)
465 behind = VM_FAULT_READ_BEHIND;
466
467 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
468 if (ahead > VM_FAULT_READ_AHEAD)
469 ahead = VM_FAULT_READ_AHEAD;
470 }
471 is_first_object_locked = FALSE;
472 if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
473 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
474 fs.pindex >= fs.entry->lastr &&
475 fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
476 (fs.first_object == fs.object ||
477 (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
478 fs.first_object->type != OBJT_DEVICE) {
479 vm_pindex_t firstpindex, tmppindex;
480
481 if (fs.first_pindex < 2 * VM_FAULT_READ)
482 firstpindex = 0;
483 else
484 firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
485
486 vm_page_lock_queues();
487 /*
488 * note: partially valid pages cannot be
489 * included in the lookahead - NFS piecemeal
490 * writes will barf on it badly.
491 */
492 for (tmppindex = fs.first_pindex - 1;
493 tmppindex >= firstpindex;
494 --tmppindex) {
495 vm_page_t mt;
496
497 mt = vm_page_lookup(fs.first_object, tmppindex);
498 if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
499 break;
500 if (mt->busy ||
501 (mt->oflags & VPO_BUSY) ||
502 (mt->flags & (PG_FICTITIOUS | PG_UNMANAGED)) ||
503 mt->hold_count ||
504 mt->wire_count)
505 continue;
506 pmap_remove_all(mt);
507 if (mt->dirty) {
508 vm_page_deactivate(mt);
509 } else {
510 vm_page_cache(mt);
511 }
512 }
513 vm_page_unlock_queues();
514 ahead += behind;
515 behind = 0;
516 }
517 if (is_first_object_locked)
518 VM_OBJECT_UNLOCK(fs.first_object);
519 /*
520 * now we find out if any other pages should be paged
521 * in at this time this routine checks to see if the
522 * pages surrounding this fault reside in the same
523 * object as the page for this fault. If they do,
524 * then they are faulted in also into the object. The
525 * array "marray" returned contains an array of
526 * vm_page_t structs where one of them is the
527 * vm_page_t passed to the routine. The reqpage
528 * return value is the index into the marray for the
529 * vm_page_t passed to the routine.
530 *
531 * fs.m plus the additional pages are VPO_BUSY'd.
532 *
533 * XXX vm_fault_additional_pages() can block
534 * without releasing the map lock.
535 */
536 faultcount = vm_fault_additional_pages(
537 fs.m, behind, ahead, marray, &reqpage);
538
539 /*
540 * update lastr imperfectly (we do not know how much
541 * getpages will actually read), but good enough.
542 *
543 * XXX The following assignment modifies the map
544 * without holding a write lock on it.
545 */
546 fs.entry->lastr = fs.pindex + faultcount - behind;
547
548 /*
549 * Call the pager to retrieve the data, if any, after
550 * releasing the lock on the map. We hold a ref on
551 * fs.object and the pages are VPO_BUSY'd.
552 */
553 unlock_map(&fs);
554
555 rv = faultcount ?
556 vm_pager_get_pages(fs.object, marray, faultcount,
557 reqpage) : VM_PAGER_FAIL;
558
559 if (rv == VM_PAGER_OK) {
560 /*
561 * Found the page. Leave it busy while we play
562 * with it.
563 */
564
565 /*
566 * Relookup in case pager changed page. Pager
567 * is responsible for disposition of old page
568 * if moved.
569 */
570 fs.m = vm_page_lookup(fs.object, fs.pindex);
571 if (!fs.m) {
572 unlock_and_deallocate(&fs);
573 goto RetryFault;
574 }
575
576 hardfault++;
577 break; /* break to PAGE HAS BEEN FOUND */
578 }
579 /*
580 * Remove the bogus page (which does not exist at this
581 * object/offset); before doing so, we must get back
582 * our object lock to preserve our invariant.
583 *
584 * Also wake up any other process that may want to bring
585 * in this page.
586 *
587 * If this is the top-level object, we must leave the
588 * busy page to prevent another process from rushing
589 * past us, and inserting the page in that object at
590 * the same time that we are.
591 */
592 if (rv == VM_PAGER_ERROR)
593 printf("vm_fault: pager read error, pid %d (%s)\n",
594 curproc->p_pid, curproc->p_comm);
595 /*
596 * Data outside the range of the pager or an I/O error
597 */
598 /*
599 * XXX - the check for kernel_map is a kludge to work
600 * around having the machine panic on a kernel space
601 * fault w/ I/O error.
602 */
603 if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
604 (rv == VM_PAGER_BAD)) {
605 vm_page_lock_queues();
606 vm_page_free(fs.m);
607 vm_page_unlock_queues();
608 fs.m = NULL;
609 unlock_and_deallocate(&fs);
610 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
611 }
612 if (fs.object != fs.first_object) {
613 vm_page_lock_queues();
614 vm_page_free(fs.m);
615 vm_page_unlock_queues();
616 fs.m = NULL;
617 /*
618 * XXX - we cannot just fall out at this
619 * point, m has been freed and is invalid!
620 */
621 }
622 }
623
624 /*
625 * We get here if the object has default pager (or unwiring)
626 * or the pager doesn't have the page.
627 */
628 if (fs.object == fs.first_object)
629 fs.first_m = fs.m;
630
631 /*
632 * Move on to the next object. Lock the next object before
633 * unlocking the current one.
634 */
635 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
636 next_object = fs.object->backing_object;
637 if (next_object == NULL) {
638 /*
639 * If there's no object left, fill the page in the top
640 * object with zeros.
641 */
642 if (fs.object != fs.first_object) {
643 vm_object_pip_wakeup(fs.object);
644 VM_OBJECT_UNLOCK(fs.object);
645
646 fs.object = fs.first_object;
647 fs.pindex = fs.first_pindex;
648 fs.m = fs.first_m;
649 VM_OBJECT_LOCK(fs.object);
650 }
651 fs.first_m = NULL;
652
653 /*
654 * Zero the page if necessary and mark it valid.
655 */
656 if ((fs.m->flags & PG_ZERO) == 0) {
657 pmap_zero_page(fs.m);
658 } else {
659 PCPU_INC(cnt.v_ozfod);
660 }
661 PCPU_INC(cnt.v_zfod);
662 fs.m->valid = VM_PAGE_BITS_ALL;
663 break; /* break to PAGE HAS BEEN FOUND */
664 } else {
665 KASSERT(fs.object != next_object,
666 ("object loop %p", next_object));
667 VM_OBJECT_LOCK(next_object);
668 vm_object_pip_add(next_object, 1);
669 if (fs.object != fs.first_object)
670 vm_object_pip_wakeup(fs.object);
671 VM_OBJECT_UNLOCK(fs.object);
672 fs.object = next_object;
673 }
674 }
675
676 KASSERT((fs.m->oflags & VPO_BUSY) != 0,
677 ("vm_fault: not busy after main loop"));
678
679 /*
680 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
681 * is held.]
682 */
683
684 /*
685 * If the page is being written, but isn't already owned by the
686 * top-level object, we have to copy it into a new page owned by the
687 * top-level object.
688 */
689 if (fs.object != fs.first_object) {
690 /*
691 * We only really need to copy if we want to write it.
692 */
693 if (fault_type & VM_PROT_WRITE) {
694 /*
695 * This allows pages to be virtually copied from a
696 * backing_object into the first_object, where the
697 * backing object has no other refs to it, and cannot
698 * gain any more refs. Instead of a bcopy, we just
699 * move the page from the backing object to the
700 * first object. Note that we must mark the page
701 * dirty in the first object so that it will go out
702 * to swap when needed.
703 */
704 is_first_object_locked = FALSE;
705 if (
706 /*
707 * Only one shadow object
708 */
709 (fs.object->shadow_count == 1) &&
710 /*
711 * No COW refs, except us
712 */
713 (fs.object->ref_count == 1) &&
714 /*
715 * No one else can look this object up
716 */
717 (fs.object->handle == NULL) &&
718 /*
719 * No other ways to look the object up
720 */
721 ((fs.object->type == OBJT_DEFAULT) ||
722 (fs.object->type == OBJT_SWAP)) &&
723 (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
724 /*
725 * We don't chase down the shadow chain
726 */
727 fs.object == fs.first_object->backing_object) {
728 vm_page_lock_queues();
729 /*
730 * get rid of the unnecessary page
731 */
732 vm_page_free(fs.first_m);
733 /*
734 * grab the page and put it into the
735 * process'es object. The page is
736 * automatically made dirty.
737 */
738 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
739 vm_page_unlock_queues();
740 vm_page_busy(fs.m);
741 fs.first_m = fs.m;
742 fs.m = NULL;
743 PCPU_INC(cnt.v_cow_optim);
744 } else {
745 /*
746 * Oh, well, lets copy it.
747 */
748 pmap_copy_page(fs.m, fs.first_m);
749 fs.first_m->valid = VM_PAGE_BITS_ALL;
750 }
751 if (fs.m) {
752 /*
753 * We no longer need the old page or object.
754 */
755 release_page(&fs);
756 }
757 /*
758 * fs.object != fs.first_object due to above
759 * conditional
760 */
761 vm_object_pip_wakeup(fs.object);
762 VM_OBJECT_UNLOCK(fs.object);
763 /*
764 * Only use the new page below...
765 */
766 fs.object = fs.first_object;
767 fs.pindex = fs.first_pindex;
768 fs.m = fs.first_m;
769 if (!is_first_object_locked)
770 VM_OBJECT_LOCK(fs.object);
771 PCPU_INC(cnt.v_cow_faults);
772 } else {
773 prot &= ~VM_PROT_WRITE;
774 }
775 }
776
777 /*
778 * We must verify that the maps have not changed since our last
779 * lookup.
780 */
781 if (!fs.lookup_still_valid) {
782 vm_object_t retry_object;
783 vm_pindex_t retry_pindex;
784 vm_prot_t retry_prot;
785
786 if (!vm_map_trylock_read(fs.map)) {
787 release_page(&fs);
788 unlock_and_deallocate(&fs);
789 goto RetryFault;
790 }
791 fs.lookup_still_valid = TRUE;
792 if (fs.map->timestamp != map_generation) {
793 result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
794 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
795
796 /*
797 * If we don't need the page any longer, put it on the inactive
798 * list (the easiest thing to do here). If no one needs it,
799 * pageout will grab it eventually.
800 */
801 if (result != KERN_SUCCESS) {
802 release_page(&fs);
803 unlock_and_deallocate(&fs);
804
805 /*
806 * If retry of map lookup would have blocked then
807 * retry fault from start.
808 */
809 if (result == KERN_FAILURE)
810 goto RetryFault;
811 return (result);
812 }
813 if ((retry_object != fs.first_object) ||
814 (retry_pindex != fs.first_pindex)) {
815 release_page(&fs);
816 unlock_and_deallocate(&fs);
817 goto RetryFault;
818 }
819
820 /*
821 * Check whether the protection has changed or the object has
822 * been copied while we left the map unlocked. Changing from
823 * read to write permission is OK - we leave the page
824 * write-protected, and catch the write fault. Changing from
825 * write to read permission means that we can't mark the page
826 * write-enabled after all.
827 */
828 prot &= retry_prot;
829 }
830 }
831 if (prot & VM_PROT_WRITE) {
832 vm_object_set_writeable_dirty(fs.object);
833
834 /*
835 * If the fault is a write, we know that this page is being
836 * written NOW so dirty it explicitly to save on
837 * pmap_is_modified() calls later.
838 *
839 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
840 * if the page is already dirty to prevent data written with
841 * the expectation of being synced from not being synced.
842 * Likewise if this entry does not request NOSYNC then make
843 * sure the page isn't marked NOSYNC. Applications sharing
844 * data should use the same flags to avoid ping ponging.
845 *
846 * Also tell the backing pager, if any, that it should remove
847 * any swap backing since the page is now dirty.
848 */
849 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
850 if (fs.m->dirty == 0)
851 fs.m->oflags |= VPO_NOSYNC;
852 } else {
853 fs.m->oflags &= ~VPO_NOSYNC;
854 }
855 if (fault_flags & VM_FAULT_DIRTY) {
856 vm_page_dirty(fs.m);
857 vm_pager_page_unswapped(fs.m);
858 }
859 }
860
861 /*
862 * Page had better still be busy
863 */
864 KASSERT(fs.m->oflags & VPO_BUSY,
865 ("vm_fault: page %p not busy!", fs.m));
866 /*
867 * Sanity check: page must be completely valid or it is not fit to
868 * map into user space. vm_pager_get_pages() ensures this.
869 */
870 if (fs.m->valid != VM_PAGE_BITS_ALL) {
871 vm_page_zero_invalid(fs.m, TRUE);
872 printf("Warning: page %p partially invalid on fault\n", fs.m);
873 }
874 VM_OBJECT_UNLOCK(fs.object);
875
876 /*
877 * Put this page into the physical map. We had to do the unlock above
878 * because pmap_enter() may sleep. We don't put the page
879 * back on the active queue until later so that the pageout daemon
880 * won't find it (yet).
881 */
882 pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
883 if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
884 vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
885 }
886 VM_OBJECT_LOCK(fs.object);
887 vm_page_lock_queues();
888 vm_page_flag_set(fs.m, PG_REFERENCED);
889
890 /*
891 * If the page is not wired down, then put it where the pageout daemon
892 * can find it.
893 */
894 if (fault_flags & VM_FAULT_WIRE_MASK) {
895 if (wired)
896 vm_page_wire(fs.m);
897 else
898 vm_page_unwire(fs.m, 1);
899 } else {
900 vm_page_activate(fs.m);
901 }
902 vm_page_unlock_queues();
903 vm_page_wakeup(fs.m);
904
905 /*
906 * Unlock everything, and return
907 */
908 unlock_and_deallocate(&fs);
909 if (hardfault)
910 curthread->td_ru.ru_majflt++;
911 else
912 curthread->td_ru.ru_minflt++;
913
914 return (KERN_SUCCESS);
915 }
916
917 /*
918 * vm_fault_prefault provides a quick way of clustering
919 * pagefaults into a processes address space. It is a "cousin"
920 * of vm_map_pmap_enter, except it runs at page fault time instead
921 * of mmap time.
922 */
923 static void
924 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
925 {
926 int i;
927 vm_offset_t addr, starta;
928 vm_pindex_t pindex;
929 vm_page_t m;
930 vm_object_t object;
931
932 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
933 return;
934
935 object = entry->object.vm_object;
936
937 starta = addra - PFBAK * PAGE_SIZE;
938 if (starta < entry->start) {
939 starta = entry->start;
940 } else if (starta > addra) {
941 starta = 0;
942 }
943
944 for (i = 0; i < PAGEORDER_SIZE; i++) {
945 vm_object_t backing_object, lobject;
946
947 addr = addra + prefault_pageorder[i];
948 if (addr > addra + (PFFOR * PAGE_SIZE))
949 addr = 0;
950
951 if (addr < starta || addr >= entry->end)
952 continue;
953
954 if (!pmap_is_prefaultable(pmap, addr))
955 continue;
956
957 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
958 lobject = object;
959 VM_OBJECT_LOCK(lobject);
960 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
961 lobject->type == OBJT_DEFAULT &&
962 (backing_object = lobject->backing_object) != NULL) {
963 if (lobject->backing_object_offset & PAGE_MASK)
964 break;
965 pindex += lobject->backing_object_offset >> PAGE_SHIFT;
966 VM_OBJECT_LOCK(backing_object);
967 VM_OBJECT_UNLOCK(lobject);
968 lobject = backing_object;
969 }
970 /*
971 * give-up when a page is not in memory
972 */
973 if (m == NULL) {
974 VM_OBJECT_UNLOCK(lobject);
975 break;
976 }
977 if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
978 (m->busy == 0) &&
979 (m->flags & PG_FICTITIOUS) == 0) {
980
981 vm_page_lock_queues();
982 pmap_enter_quick(pmap, addr, m, entry->protection);
983 vm_page_unlock_queues();
984 }
985 VM_OBJECT_UNLOCK(lobject);
986 }
987 }
988
989 /*
990 * vm_fault_quick:
991 *
992 * Ensure that the requested virtual address, which may be in userland,
993 * is valid. Fault-in the page if necessary. Return -1 on failure.
994 */
995 int
996 vm_fault_quick(caddr_t v, int prot)
997 {
998 int r;
999
1000 if (prot & VM_PROT_WRITE)
1001 r = subyte(v, fubyte(v));
1002 else
1003 r = fubyte(v);
1004 return(r);
1005 }
1006
1007 /*
1008 * vm_fault_wire:
1009 *
1010 * Wire down a range of virtual addresses in a map.
1011 */
1012 int
1013 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1014 boolean_t user_wire, boolean_t fictitious)
1015 {
1016 vm_offset_t va;
1017 int rv;
1018
1019 /*
1020 * We simulate a fault to get the page and enter it in the physical
1021 * map. For user wiring, we only ask for read access on currently
1022 * read-only sections.
1023 */
1024 for (va = start; va < end; va += PAGE_SIZE) {
1025 rv = vm_fault(map, va,
1026 user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
1027 user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
1028 if (rv) {
1029 if (va != start)
1030 vm_fault_unwire(map, start, va, fictitious);
1031 return (rv);
1032 }
1033 }
1034 return (KERN_SUCCESS);
1035 }
1036
1037 /*
1038 * vm_fault_unwire:
1039 *
1040 * Unwire a range of virtual addresses in a map.
1041 */
1042 void
1043 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1044 boolean_t fictitious)
1045 {
1046 vm_paddr_t pa;
1047 vm_offset_t va;
1048 pmap_t pmap;
1049
1050 pmap = vm_map_pmap(map);
1051
1052 /*
1053 * Since the pages are wired down, we must be able to get their
1054 * mappings from the physical map system.
1055 */
1056 for (va = start; va < end; va += PAGE_SIZE) {
1057 pa = pmap_extract(pmap, va);
1058 if (pa != 0) {
1059 pmap_change_wiring(pmap, va, FALSE);
1060 if (!fictitious) {
1061 vm_page_lock_queues();
1062 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1063 vm_page_unlock_queues();
1064 }
1065 }
1066 }
1067 }
1068
1069 /*
1070 * Routine:
1071 * vm_fault_copy_entry
1072 * Function:
1073 * Copy all of the pages from a wired-down map entry to another.
1074 *
1075 * In/out conditions:
1076 * The source and destination maps must be locked for write.
1077 * The source map entry must be wired down (or be a sharing map
1078 * entry corresponding to a main map entry that is wired down).
1079 */
1080 void
1081 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
1082 vm_map_t dst_map;
1083 vm_map_t src_map;
1084 vm_map_entry_t dst_entry;
1085 vm_map_entry_t src_entry;
1086 {
1087 vm_object_t backing_object, dst_object, object;
1088 vm_object_t src_object;
1089 vm_ooffset_t dst_offset;
1090 vm_ooffset_t src_offset;
1091 vm_pindex_t pindex;
1092 vm_prot_t prot;
1093 vm_offset_t vaddr;
1094 vm_page_t dst_m;
1095 vm_page_t src_m;
1096
1097 #ifdef lint
1098 src_map++;
1099 #endif /* lint */
1100
1101 src_object = src_entry->object.vm_object;
1102 src_offset = src_entry->offset;
1103
1104 /*
1105 * Create the top-level object for the destination entry. (Doesn't
1106 * actually shadow anything - we copy the pages directly.)
1107 */
1108 dst_object = vm_object_allocate(OBJT_DEFAULT,
1109 OFF_TO_IDX(dst_entry->end - dst_entry->start));
1110
1111 VM_OBJECT_LOCK(dst_object);
1112 dst_entry->object.vm_object = dst_object;
1113 dst_entry->offset = 0;
1114
1115 prot = dst_entry->max_protection;
1116
1117 /*
1118 * Loop through all of the pages in the entry's range, copying each
1119 * one from the source object (it should be there) to the destination
1120 * object.
1121 */
1122 for (vaddr = dst_entry->start, dst_offset = 0;
1123 vaddr < dst_entry->end;
1124 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1125
1126 /*
1127 * Allocate a page in the destination object
1128 */
1129 do {
1130 dst_m = vm_page_alloc(dst_object,
1131 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1132 if (dst_m == NULL) {
1133 VM_OBJECT_UNLOCK(dst_object);
1134 VM_WAIT;
1135 VM_OBJECT_LOCK(dst_object);
1136 }
1137 } while (dst_m == NULL);
1138
1139 /*
1140 * Find the page in the source object, and copy it in.
1141 * (Because the source is wired down, the page will be in
1142 * memory.)
1143 */
1144 VM_OBJECT_LOCK(src_object);
1145 object = src_object;
1146 pindex = 0;
1147 while ((src_m = vm_page_lookup(object, pindex +
1148 OFF_TO_IDX(dst_offset + src_offset))) == NULL &&
1149 (src_entry->protection & VM_PROT_WRITE) == 0 &&
1150 (backing_object = object->backing_object) != NULL) {
1151 /*
1152 * Allow fallback to backing objects if we are reading.
1153 */
1154 VM_OBJECT_LOCK(backing_object);
1155 pindex += OFF_TO_IDX(object->backing_object_offset);
1156 VM_OBJECT_UNLOCK(object);
1157 object = backing_object;
1158 }
1159 if (src_m == NULL)
1160 panic("vm_fault_copy_wired: page missing");
1161 pmap_copy_page(src_m, dst_m);
1162 VM_OBJECT_UNLOCK(object);
1163 dst_m->valid = VM_PAGE_BITS_ALL;
1164 VM_OBJECT_UNLOCK(dst_object);
1165
1166 /*
1167 * Enter it in the pmap...
1168 */
1169 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1170
1171 /*
1172 * Mark it no longer busy, and put it on the active list.
1173 */
1174 VM_OBJECT_LOCK(dst_object);
1175 vm_page_lock_queues();
1176 vm_page_activate(dst_m);
1177 vm_page_unlock_queues();
1178 vm_page_wakeup(dst_m);
1179 }
1180 VM_OBJECT_UNLOCK(dst_object);
1181 }
1182
1183
1184 /*
1185 * This routine checks around the requested page for other pages that
1186 * might be able to be faulted in. This routine brackets the viable
1187 * pages for the pages to be paged in.
1188 *
1189 * Inputs:
1190 * m, rbehind, rahead
1191 *
1192 * Outputs:
1193 * marray (array of vm_page_t), reqpage (index of requested page)
1194 *
1195 * Return value:
1196 * number of pages in marray
1197 *
1198 * This routine can't block.
1199 */
1200 static int
1201 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1202 vm_page_t m;
1203 int rbehind;
1204 int rahead;
1205 vm_page_t *marray;
1206 int *reqpage;
1207 {
1208 int i,j;
1209 vm_object_t object;
1210 vm_pindex_t pindex, startpindex, endpindex, tpindex;
1211 vm_page_t rtm;
1212 int cbehind, cahead;
1213
1214 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1215
1216 object = m->object;
1217 pindex = m->pindex;
1218 cbehind = cahead = 0;
1219
1220 /*
1221 * if the requested page is not available, then give up now
1222 */
1223 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1224 return 0;
1225 }
1226
1227 if ((cbehind == 0) && (cahead == 0)) {
1228 *reqpage = 0;
1229 marray[0] = m;
1230 return 1;
1231 }
1232
1233 if (rahead > cahead) {
1234 rahead = cahead;
1235 }
1236
1237 if (rbehind > cbehind) {
1238 rbehind = cbehind;
1239 }
1240
1241 /*
1242 * scan backward for the read behind pages -- in memory
1243 */
1244 if (pindex > 0) {
1245 if (rbehind > pindex) {
1246 rbehind = pindex;
1247 startpindex = 0;
1248 } else {
1249 startpindex = pindex - rbehind;
1250 }
1251
1252 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1253 rtm->pindex >= startpindex)
1254 startpindex = rtm->pindex + 1;
1255
1256 /* tpindex is unsigned; beware of numeric underflow. */
1257 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1258 tpindex < pindex; i++, tpindex--) {
1259
1260 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1261 VM_ALLOC_IFNOTCACHED);
1262 if (rtm == NULL) {
1263 /*
1264 * Shift the allocated pages to the
1265 * beginning of the array.
1266 */
1267 for (j = 0; j < i; j++) {
1268 marray[j] = marray[j + tpindex + 1 -
1269 startpindex];
1270 }
1271 break;
1272 }
1273
1274 marray[tpindex - startpindex] = rtm;
1275 }
1276 } else {
1277 startpindex = 0;
1278 i = 0;
1279 }
1280
1281 marray[i] = m;
1282 /* page offset of the required page */
1283 *reqpage = i;
1284
1285 tpindex = pindex + 1;
1286 i++;
1287
1288 /*
1289 * scan forward for the read ahead pages
1290 */
1291 endpindex = tpindex + rahead;
1292 if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1293 endpindex = rtm->pindex;
1294 if (endpindex > object->size)
1295 endpindex = object->size;
1296
1297 for (; tpindex < endpindex; i++, tpindex++) {
1298
1299 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1300 VM_ALLOC_IFNOTCACHED);
1301 if (rtm == NULL) {
1302 break;
1303 }
1304
1305 marray[i] = rtm;
1306 }
1307
1308 /* return number of pages */
1309 return i;
1310 }
Cache object: 55d0ce75c1408dcaed8ce73f01ad2622
|