The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_fault.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  *
    9  *
   10  * This code is derived from software contributed to Berkeley by
   11  * The Mach Operating System project at Carnegie-Mellon University.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1. Redistributions of source code must retain the above copyright
   17  *    notice, this list of conditions and the following disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  * 3. All advertising materials mentioning features or use of this software
   22  *    must display the following acknowledgement:
   23  *      This product includes software developed by the University of
   24  *      California, Berkeley and its contributors.
   25  * 4. Neither the name of the University nor the names of its contributors
   26  *    may be used to endorse or promote products derived from this software
   27  *    without specific prior written permission.
   28  *
   29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   39  * SUCH DAMAGE.
   40  *
   41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
   42  *
   43  *
   44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   45  * All rights reserved.
   46  *
   47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   48  *
   49  * Permission to use, copy, modify and distribute this software and
   50  * its documentation is hereby granted, provided that both the copyright
   51  * notice and this permission notice appear in all copies of the
   52  * software, derivative works or modified versions, and any portions
   53  * thereof, and that both notices appear in supporting documentation.
   54  *
   55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   58  *
   59  * Carnegie Mellon requests users of this software to return to
   60  *
   61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   62  *  School of Computer Science
   63  *  Carnegie Mellon University
   64  *  Pittsburgh PA 15213-3890
   65  *
   66  * any improvements or extensions that they make and grant Carnegie the
   67  * rights to redistribute these changes.
   68  */
   69 
   70 /*
   71  *      Page fault handling module.
   72  */
   73 
   74 #include <sys/cdefs.h>
   75 __FBSDID("$FreeBSD: releng/7.3/sys/vm/vm_fault.c 198727 2009-10-31 18:46:55Z alc $");
   76 
   77 #include "opt_vm.h"
   78 
   79 #include <sys/param.h>
   80 #include <sys/systm.h>
   81 #include <sys/kernel.h>
   82 #include <sys/lock.h>
   83 #include <sys/mutex.h>
   84 #include <sys/proc.h>
   85 #include <sys/resourcevar.h>
   86 #include <sys/sysctl.h>
   87 #include <sys/vmmeter.h>
   88 #include <sys/vnode.h>
   89 
   90 #include <vm/vm.h>
   91 #include <vm/vm_param.h>
   92 #include <vm/pmap.h>
   93 #include <vm/vm_map.h>
   94 #include <vm/vm_object.h>
   95 #include <vm/vm_page.h>
   96 #include <vm/vm_pageout.h>
   97 #include <vm/vm_kern.h>
   98 #include <vm/vm_pager.h>
   99 #include <vm/vnode_pager.h>
  100 #include <vm/vm_extern.h>
  101 
  102 #include <sys/mount.h>  /* XXX Temporary for VFS_LOCK_GIANT() */
  103 
  104 #define PFBAK 4
  105 #define PFFOR 4
  106 #define PAGEORDER_SIZE (PFBAK+PFFOR)
  107 
  108 static int prefault_pageorder[] = {
  109         -1 * PAGE_SIZE, 1 * PAGE_SIZE,
  110         -2 * PAGE_SIZE, 2 * PAGE_SIZE,
  111         -3 * PAGE_SIZE, 3 * PAGE_SIZE,
  112         -4 * PAGE_SIZE, 4 * PAGE_SIZE
  113 };
  114 
  115 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
  116 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
  117 
  118 #define VM_FAULT_READ_AHEAD 8
  119 #define VM_FAULT_READ_BEHIND 7
  120 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
  121 
  122 struct faultstate {
  123         vm_page_t m;
  124         vm_object_t object;
  125         vm_pindex_t pindex;
  126         vm_page_t first_m;
  127         vm_object_t     first_object;
  128         vm_pindex_t first_pindex;
  129         vm_map_t map;
  130         vm_map_entry_t entry;
  131         int lookup_still_valid;
  132         struct vnode *vp;
  133 };
  134 
  135 static inline void
  136 release_page(struct faultstate *fs)
  137 {
  138         vm_page_wakeup(fs->m);
  139         vm_page_lock_queues();
  140         vm_page_deactivate(fs->m);
  141         vm_page_unlock_queues();
  142         fs->m = NULL;
  143 }
  144 
  145 static inline void
  146 unlock_map(struct faultstate *fs)
  147 {
  148         if (fs->lookup_still_valid) {
  149                 vm_map_lookup_done(fs->map, fs->entry);
  150                 fs->lookup_still_valid = FALSE;
  151         }
  152 }
  153 
  154 static void
  155 unlock_and_deallocate(struct faultstate *fs)
  156 {
  157 
  158         vm_object_pip_wakeup(fs->object);
  159         VM_OBJECT_UNLOCK(fs->object);
  160         if (fs->object != fs->first_object) {
  161                 VM_OBJECT_LOCK(fs->first_object);
  162                 vm_page_lock_queues();
  163                 vm_page_free(fs->first_m);
  164                 vm_page_unlock_queues();
  165                 vm_object_pip_wakeup(fs->first_object);
  166                 VM_OBJECT_UNLOCK(fs->first_object);
  167                 fs->first_m = NULL;
  168         }
  169         vm_object_deallocate(fs->first_object);
  170         unlock_map(fs); 
  171         if (fs->vp != NULL) { 
  172                 int vfslocked;
  173 
  174                 vfslocked = VFS_LOCK_GIANT(fs->vp->v_mount);
  175                 vput(fs->vp);
  176                 fs->vp = NULL;
  177                 VFS_UNLOCK_GIANT(vfslocked);
  178         }
  179 }
  180 
  181 /*
  182  * TRYPAGER - used by vm_fault to calculate whether the pager for the
  183  *            current object *might* contain the page.
  184  *
  185  *            default objects are zero-fill, there is no real pager.
  186  */
  187 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
  188                         (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
  189 
  190 /*
  191  *      vm_fault:
  192  *
  193  *      Handle a page fault occurring at the given address,
  194  *      requiring the given permissions, in the map specified.
  195  *      If successful, the page is inserted into the
  196  *      associated physical map.
  197  *
  198  *      NOTE: the given address should be truncated to the
  199  *      proper page address.
  200  *
  201  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
  202  *      a standard error specifying why the fault is fatal is returned.
  203  *
  204  *
  205  *      The map in question must be referenced, and remains so.
  206  *      Caller may hold no locks.
  207  */
  208 int
  209 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
  210          int fault_flags)
  211 {
  212         vm_prot_t prot;
  213         int is_first_object_locked, result;
  214         boolean_t growstack, wired;
  215         int map_generation;
  216         vm_object_t next_object;
  217         vm_page_t marray[VM_FAULT_READ];
  218         int hardfault;
  219         int faultcount;
  220         struct faultstate fs;
  221 
  222         hardfault = 0;
  223         growstack = TRUE;
  224         PCPU_INC(cnt.v_vm_faults);
  225 
  226 RetryFault:;
  227 
  228         /*
  229          * Find the backing store object and offset into it to begin the
  230          * search.
  231          */
  232         fs.map = map;
  233         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
  234             &fs.first_object, &fs.first_pindex, &prot, &wired);
  235         if (result != KERN_SUCCESS) {
  236                 if (result != KERN_PROTECTION_FAILURE ||
  237                     (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
  238                         if (growstack && result == KERN_INVALID_ADDRESS &&
  239                             map != kernel_map && curproc != NULL) {
  240                                 result = vm_map_growstack(curproc, vaddr);
  241                                 if (result != KERN_SUCCESS)
  242                                         return (KERN_FAILURE);
  243                                 growstack = FALSE;
  244                                 goto RetryFault;
  245                         }
  246                         return (result);
  247                 }
  248 
  249                 /*
  250                  * If we are user-wiring a r/w segment, and it is COW, then
  251                  * we need to do the COW operation.  Note that we don't COW
  252                  * currently RO sections now, because it is NOT desirable
  253                  * to COW .text.  We simply keep .text from ever being COW'ed
  254                  * and take the heat that one cannot debug wired .text sections.
  255                  */
  256                 result = vm_map_lookup(&fs.map, vaddr,
  257                         VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
  258                         &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
  259                 if (result != KERN_SUCCESS)
  260                         return (result);
  261 
  262                 /*
  263                  * If we don't COW now, on a user wire, the user will never
  264                  * be able to write to the mapping.  If we don't make this
  265                  * restriction, the bookkeeping would be nearly impossible.
  266                  *
  267                  * XXX The following assignment modifies the map without
  268                  * holding a write lock on it.
  269                  */
  270                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
  271                         fs.entry->max_protection &= ~VM_PROT_WRITE;
  272         }
  273 
  274         map_generation = fs.map->timestamp;
  275 
  276         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
  277                 panic("vm_fault: fault on nofault entry, addr: %lx",
  278                     (u_long)vaddr);
  279         }
  280 
  281         /*
  282          * Make a reference to this object to prevent its disposal while we
  283          * are messing with it.  Once we have the reference, the map is free
  284          * to be diddled.  Since objects reference their shadows (and copies),
  285          * they will stay around as well.
  286          *
  287          * Bump the paging-in-progress count to prevent size changes (e.g. 
  288          * truncation operations) during I/O.  This must be done after
  289          * obtaining the vnode lock in order to avoid possible deadlocks.
  290          *
  291          * XXX vnode_pager_lock() can block without releasing the map lock.
  292          */
  293         if (fs.first_object->flags & OBJ_NEEDGIANT)
  294                 mtx_lock(&Giant);
  295         VM_OBJECT_LOCK(fs.first_object);
  296         vm_object_reference_locked(fs.first_object);
  297         fs.vp = vnode_pager_lock(fs.first_object);
  298         KASSERT(fs.vp == NULL || !fs.map->system_map,
  299             ("vm_fault: vnode-backed object mapped by system map"));
  300         KASSERT((fs.first_object->flags & OBJ_NEEDGIANT) == 0 ||
  301             !fs.map->system_map,
  302             ("vm_fault: Object requiring giant mapped by system map"));
  303         if (fs.first_object->flags & OBJ_NEEDGIANT)
  304                 mtx_unlock(&Giant);
  305         vm_object_pip_add(fs.first_object, 1);
  306 
  307         fs.lookup_still_valid = TRUE;
  308 
  309         if (wired)
  310                 fault_type = prot;
  311 
  312         fs.first_m = NULL;
  313 
  314         /*
  315          * Search for the page at object/offset.
  316          */
  317         fs.object = fs.first_object;
  318         fs.pindex = fs.first_pindex;
  319         while (TRUE) {
  320                 /*
  321                  * If the object is dead, we stop here
  322                  */
  323                 if (fs.object->flags & OBJ_DEAD) {
  324                         unlock_and_deallocate(&fs);
  325                         return (KERN_PROTECTION_FAILURE);
  326                 }
  327 
  328                 /*
  329                  * See if page is resident
  330                  */
  331                 fs.m = vm_page_lookup(fs.object, fs.pindex);
  332                 if (fs.m != NULL) {
  333                         /* 
  334                          * check for page-based copy on write.
  335                          * We check fs.object == fs.first_object so
  336                          * as to ensure the legacy COW mechanism is
  337                          * used when the page in question is part of
  338                          * a shadow object.  Otherwise, vm_page_cowfault()
  339                          * removes the page from the backing object, 
  340                          * which is not what we want.
  341                          */
  342                         vm_page_lock_queues();
  343                         if ((fs.m->cow) && 
  344                             (fault_type & VM_PROT_WRITE) &&
  345                             (fs.object == fs.first_object)) {
  346                                 vm_page_cowfault(fs.m);
  347                                 vm_page_unlock_queues();
  348                                 unlock_and_deallocate(&fs);
  349                                 goto RetryFault;
  350                         }
  351 
  352                         /*
  353                          * Wait/Retry if the page is busy.  We have to do this
  354                          * if the page is busy via either VPO_BUSY or 
  355                          * vm_page_t->busy because the vm_pager may be using
  356                          * vm_page_t->busy for pageouts ( and even pageins if
  357                          * it is the vnode pager ), and we could end up trying
  358                          * to pagein and pageout the same page simultaneously.
  359                          *
  360                          * We can theoretically allow the busy case on a read
  361                          * fault if the page is marked valid, but since such
  362                          * pages are typically already pmap'd, putting that
  363                          * special case in might be more effort then it is 
  364                          * worth.  We cannot under any circumstances mess
  365                          * around with a vm_page_t->busy page except, perhaps,
  366                          * to pmap it.
  367                          */
  368                         if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
  369                                 vm_page_unlock_queues();
  370                                 VM_OBJECT_UNLOCK(fs.object);
  371                                 if (fs.object != fs.first_object) {
  372                                         VM_OBJECT_LOCK(fs.first_object);
  373                                         vm_page_lock_queues();
  374                                         vm_page_free(fs.first_m);
  375                                         vm_page_unlock_queues();
  376                                         vm_object_pip_wakeup(fs.first_object);
  377                                         VM_OBJECT_UNLOCK(fs.first_object);
  378                                         fs.first_m = NULL;
  379                                 }
  380                                 unlock_map(&fs);
  381                                 if (fs.vp != NULL) {
  382                                         int vfslck;
  383 
  384                                         vfslck = VFS_LOCK_GIANT(fs.vp->v_mount);
  385                                         vput(fs.vp);
  386                                         fs.vp = NULL;
  387                                         VFS_UNLOCK_GIANT(vfslck);
  388                                 }
  389                                 VM_OBJECT_LOCK(fs.object);
  390                                 if (fs.m == vm_page_lookup(fs.object,
  391                                     fs.pindex)) {
  392                                         vm_page_sleep_if_busy(fs.m, TRUE,
  393                                             "vmpfw");
  394                                 }
  395                                 vm_object_pip_wakeup(fs.object);
  396                                 VM_OBJECT_UNLOCK(fs.object);
  397                                 PCPU_INC(cnt.v_intrans);
  398                                 vm_object_deallocate(fs.first_object);
  399                                 goto RetryFault;
  400                         }
  401                         vm_pageq_remove(fs.m);
  402                         vm_page_unlock_queues();
  403 
  404                         /*
  405                          * Mark page busy for other processes, and the 
  406                          * pagedaemon.  If it still isn't completely valid
  407                          * (readable), jump to readrest, else break-out ( we
  408                          * found the page ).
  409                          */
  410                         vm_page_busy(fs.m);
  411                         if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
  412                                 fs.m->object != kernel_object && fs.m->object != kmem_object) {
  413                                 goto readrest;
  414                         }
  415 
  416                         break;
  417                 }
  418 
  419                 /*
  420                  * Page is not resident, If this is the search termination
  421                  * or the pager might contain the page, allocate a new page.
  422                  */
  423                 if (TRYPAGER || fs.object == fs.first_object) {
  424                         if (fs.pindex >= fs.object->size) {
  425                                 unlock_and_deallocate(&fs);
  426                                 return (KERN_PROTECTION_FAILURE);
  427                         }
  428 
  429                         /*
  430                          * Allocate a new page for this object/offset pair.
  431                          */
  432                         fs.m = NULL;
  433                         if (!vm_page_count_severe()) {
  434 #if VM_NRESERVLEVEL > 0
  435                                 if ((fs.object->flags & OBJ_COLORED) == 0) {
  436                                         fs.object->flags |= OBJ_COLORED;
  437                                         fs.object->pg_color = atop(vaddr) -
  438                                             fs.pindex;
  439                                 }
  440 #endif
  441                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
  442                                     (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
  443                         }
  444                         if (fs.m == NULL) {
  445                                 unlock_and_deallocate(&fs);
  446                                 VM_WAITPFAULT;
  447                                 goto RetryFault;
  448                         } else if ((fs.m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL)
  449                                 break;
  450                 }
  451 
  452 readrest:
  453                 /*
  454                  * We have found a valid page or we have allocated a new page.
  455                  * The page thus may not be valid or may not be entirely 
  456                  * valid.
  457                  *
  458                  * Attempt to fault-in the page if there is a chance that the
  459                  * pager has it, and potentially fault in additional pages
  460                  * at the same time.
  461                  */
  462                 if (TRYPAGER) {
  463                         int rv;
  464                         int reqpage = 0;
  465                         int ahead, behind;
  466                         u_char behavior = vm_map_entry_behavior(fs.entry);
  467 
  468                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
  469                                 ahead = 0;
  470                                 behind = 0;
  471                         } else {
  472                                 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
  473                                 if (behind > VM_FAULT_READ_BEHIND)
  474                                         behind = VM_FAULT_READ_BEHIND;
  475 
  476                                 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
  477                                 if (ahead > VM_FAULT_READ_AHEAD)
  478                                         ahead = VM_FAULT_READ_AHEAD;
  479                         }
  480                         is_first_object_locked = FALSE;
  481                         if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
  482                              (behavior != MAP_ENTRY_BEHAV_RANDOM &&
  483                               fs.pindex >= fs.entry->lastr &&
  484                               fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
  485                             (fs.first_object == fs.object ||
  486                              (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
  487                             fs.first_object->type != OBJT_DEVICE &&
  488                             fs.first_object->type != OBJT_PHYS &&
  489                             fs.first_object->type != OBJT_SG) {
  490                                 vm_pindex_t firstpindex, tmppindex;
  491 
  492                                 if (fs.first_pindex < 2 * VM_FAULT_READ)
  493                                         firstpindex = 0;
  494                                 else
  495                                         firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
  496 
  497                                 vm_page_lock_queues();
  498                                 /*
  499                                  * note: partially valid pages cannot be 
  500                                  * included in the lookahead - NFS piecemeal
  501                                  * writes will barf on it badly.
  502                                  */
  503                                 for (tmppindex = fs.first_pindex - 1;
  504                                         tmppindex >= firstpindex;
  505                                         --tmppindex) {
  506                                         vm_page_t mt;
  507 
  508                                         mt = vm_page_lookup(fs.first_object, tmppindex);
  509                                         if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
  510                                                 break;
  511                                         if (mt->busy ||
  512                                             (mt->oflags & VPO_BUSY) ||
  513                                                 mt->hold_count ||
  514                                                 mt->wire_count) 
  515                                                 continue;
  516                                         pmap_remove_all(mt);
  517                                         if (mt->dirty) {
  518                                                 vm_page_deactivate(mt);
  519                                         } else {
  520                                                 vm_page_cache(mt);
  521                                         }
  522                                 }
  523                                 vm_page_unlock_queues();
  524                                 ahead += behind;
  525                                 behind = 0;
  526                         }
  527                         if (is_first_object_locked)
  528                                 VM_OBJECT_UNLOCK(fs.first_object);
  529                         /*
  530                          * now we find out if any other pages should be paged
  531                          * in at this time this routine checks to see if the
  532                          * pages surrounding this fault reside in the same
  533                          * object as the page for this fault.  If they do,
  534                          * then they are faulted in also into the object.  The
  535                          * array "marray" returned contains an array of
  536                          * vm_page_t structs where one of them is the
  537                          * vm_page_t passed to the routine.  The reqpage
  538                          * return value is the index into the marray for the
  539                          * vm_page_t passed to the routine.
  540                          *
  541                          * fs.m plus the additional pages are VPO_BUSY'd.
  542                          *
  543                          * XXX vm_fault_additional_pages() can block
  544                          * without releasing the map lock.
  545                          */
  546                         faultcount = vm_fault_additional_pages(
  547                             fs.m, behind, ahead, marray, &reqpage);
  548 
  549                         /*
  550                          * update lastr imperfectly (we do not know how much
  551                          * getpages will actually read), but good enough.
  552                          *
  553                          * XXX The following assignment modifies the map
  554                          * without holding a write lock on it.
  555                          */
  556                         fs.entry->lastr = fs.pindex + faultcount - behind;
  557 
  558                         /*
  559                          * Call the pager to retrieve the data, if any, after
  560                          * releasing the lock on the map.  We hold a ref on
  561                          * fs.object and the pages are VPO_BUSY'd.
  562                          */
  563                         unlock_map(&fs);
  564 
  565                         rv = faultcount ?
  566                             vm_pager_get_pages(fs.object, marray, faultcount,
  567                                 reqpage) : VM_PAGER_FAIL;
  568 
  569                         if (rv == VM_PAGER_OK) {
  570                                 /*
  571                                  * Found the page. Leave it busy while we play
  572                                  * with it.
  573                                  */
  574 
  575                                 /*
  576                                  * Relookup in case pager changed page. Pager
  577                                  * is responsible for disposition of old page
  578                                  * if moved.
  579                                  */
  580                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
  581                                 if (!fs.m) {
  582                                         unlock_and_deallocate(&fs);
  583                                         goto RetryFault;
  584                                 }
  585 
  586                                 hardfault++;
  587                                 break; /* break to PAGE HAS BEEN FOUND */
  588                         }
  589                         /*
  590                          * Remove the bogus page (which does not exist at this
  591                          * object/offset); before doing so, we must get back
  592                          * our object lock to preserve our invariant.
  593                          *
  594                          * Also wake up any other process that may want to bring
  595                          * in this page.
  596                          *
  597                          * If this is the top-level object, we must leave the
  598                          * busy page to prevent another process from rushing
  599                          * past us, and inserting the page in that object at
  600                          * the same time that we are.
  601                          */
  602                         if (rv == VM_PAGER_ERROR)
  603                                 printf("vm_fault: pager read error, pid %d (%s)\n",
  604                                     curproc->p_pid, curproc->p_comm);
  605                         /*
  606                          * Data outside the range of the pager or an I/O error
  607                          */
  608                         /*
  609                          * XXX - the check for kernel_map is a kludge to work
  610                          * around having the machine panic on a kernel space
  611                          * fault w/ I/O error.
  612                          */
  613                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
  614                                 (rv == VM_PAGER_BAD)) {
  615                                 vm_page_lock_queues();
  616                                 vm_page_free(fs.m);
  617                                 vm_page_unlock_queues();
  618                                 fs.m = NULL;
  619                                 unlock_and_deallocate(&fs);
  620                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
  621                         }
  622                         if (fs.object != fs.first_object) {
  623                                 vm_page_lock_queues();
  624                                 vm_page_free(fs.m);
  625                                 vm_page_unlock_queues();
  626                                 fs.m = NULL;
  627                                 /*
  628                                  * XXX - we cannot just fall out at this
  629                                  * point, m has been freed and is invalid!
  630                                  */
  631                         }
  632                 }
  633 
  634                 /*
  635                  * We get here if the object has default pager (or unwiring) 
  636                  * or the pager doesn't have the page.
  637                  */
  638                 if (fs.object == fs.first_object)
  639                         fs.first_m = fs.m;
  640 
  641                 /*
  642                  * Move on to the next object.  Lock the next object before
  643                  * unlocking the current one.
  644                  */
  645                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
  646                 next_object = fs.object->backing_object;
  647                 if (next_object == NULL) {
  648                         /*
  649                          * If there's no object left, fill the page in the top
  650                          * object with zeros.
  651                          */
  652                         if (fs.object != fs.first_object) {
  653                                 vm_object_pip_wakeup(fs.object);
  654                                 VM_OBJECT_UNLOCK(fs.object);
  655 
  656                                 fs.object = fs.first_object;
  657                                 fs.pindex = fs.first_pindex;
  658                                 fs.m = fs.first_m;
  659                                 VM_OBJECT_LOCK(fs.object);
  660                         }
  661                         fs.first_m = NULL;
  662 
  663                         /*
  664                          * Zero the page if necessary and mark it valid.
  665                          */
  666                         if ((fs.m->flags & PG_ZERO) == 0) {
  667                                 pmap_zero_page(fs.m);
  668                         } else {
  669                                 PCPU_INC(cnt.v_ozfod);
  670                         }
  671                         PCPU_INC(cnt.v_zfod);
  672                         fs.m->valid = VM_PAGE_BITS_ALL;
  673                         break;  /* break to PAGE HAS BEEN FOUND */
  674                 } else {
  675                         KASSERT(fs.object != next_object,
  676                             ("object loop %p", next_object));
  677                         VM_OBJECT_LOCK(next_object);
  678                         vm_object_pip_add(next_object, 1);
  679                         if (fs.object != fs.first_object)
  680                                 vm_object_pip_wakeup(fs.object);
  681                         VM_OBJECT_UNLOCK(fs.object);
  682                         fs.object = next_object;
  683                 }
  684         }
  685 
  686         KASSERT((fs.m->oflags & VPO_BUSY) != 0,
  687             ("vm_fault: not busy after main loop"));
  688 
  689         /*
  690          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
  691          * is held.]
  692          */
  693 
  694         /*
  695          * If the page is being written, but isn't already owned by the
  696          * top-level object, we have to copy it into a new page owned by the
  697          * top-level object.
  698          */
  699         if (fs.object != fs.first_object) {
  700                 /*
  701                  * We only really need to copy if we want to write it.
  702                  */
  703                 if (fault_type & VM_PROT_WRITE) {
  704                         /*
  705                          * This allows pages to be virtually copied from a 
  706                          * backing_object into the first_object, where the 
  707                          * backing object has no other refs to it, and cannot
  708                          * gain any more refs.  Instead of a bcopy, we just 
  709                          * move the page from the backing object to the 
  710                          * first object.  Note that we must mark the page 
  711                          * dirty in the first object so that it will go out 
  712                          * to swap when needed.
  713                          */
  714                         is_first_object_locked = FALSE;
  715                         if (
  716                                 /*
  717                                  * Only one shadow object
  718                                  */
  719                                 (fs.object->shadow_count == 1) &&
  720                                 /*
  721                                  * No COW refs, except us
  722                                  */
  723                                 (fs.object->ref_count == 1) &&
  724                                 /*
  725                                  * No one else can look this object up
  726                                  */
  727                                 (fs.object->handle == NULL) &&
  728                                 /*
  729                                  * No other ways to look the object up
  730                                  */
  731                                 ((fs.object->type == OBJT_DEFAULT) ||
  732                                  (fs.object->type == OBJT_SWAP)) &&
  733                             (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
  734                                 /*
  735                                  * We don't chase down the shadow chain
  736                                  */
  737                             fs.object == fs.first_object->backing_object) {
  738                                 vm_page_lock_queues();
  739                                 /*
  740                                  * get rid of the unnecessary page
  741                                  */
  742                                 vm_page_free(fs.first_m);
  743                                 /*
  744                                  * grab the page and put it into the 
  745                                  * process'es object.  The page is 
  746                                  * automatically made dirty.
  747                                  */
  748                                 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
  749                                 vm_page_unlock_queues();
  750                                 vm_page_busy(fs.m);
  751                                 fs.first_m = fs.m;
  752                                 fs.m = NULL;
  753                                 PCPU_INC(cnt.v_cow_optim);
  754                         } else {
  755                                 /*
  756                                  * Oh, well, lets copy it.
  757                                  */
  758                                 pmap_copy_page(fs.m, fs.first_m);
  759                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
  760                         }
  761                         if (fs.m) {
  762                                 /*
  763                                  * We no longer need the old page or object.
  764                                  */
  765                                 release_page(&fs);
  766                         }
  767                         /*
  768                          * fs.object != fs.first_object due to above 
  769                          * conditional
  770                          */
  771                         vm_object_pip_wakeup(fs.object);
  772                         VM_OBJECT_UNLOCK(fs.object);
  773                         /*
  774                          * Only use the new page below...
  775                          */
  776                         fs.object = fs.first_object;
  777                         fs.pindex = fs.first_pindex;
  778                         fs.m = fs.first_m;
  779                         if (!is_first_object_locked)
  780                                 VM_OBJECT_LOCK(fs.object);
  781                         PCPU_INC(cnt.v_cow_faults);
  782                 } else {
  783                         prot &= ~VM_PROT_WRITE;
  784                 }
  785         }
  786 
  787         /*
  788          * We must verify that the maps have not changed since our last
  789          * lookup.
  790          */
  791         if (!fs.lookup_still_valid) {
  792                 vm_object_t retry_object;
  793                 vm_pindex_t retry_pindex;
  794                 vm_prot_t retry_prot;
  795 
  796                 if (!vm_map_trylock_read(fs.map)) {
  797                         release_page(&fs);
  798                         unlock_and_deallocate(&fs);
  799                         goto RetryFault;
  800                 }
  801                 fs.lookup_still_valid = TRUE;
  802                 if (fs.map->timestamp != map_generation) {
  803                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
  804                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
  805 
  806                         /*
  807                          * If we don't need the page any longer, put it on the inactive
  808                          * list (the easiest thing to do here).  If no one needs it,
  809                          * pageout will grab it eventually.
  810                          */
  811                         if (result != KERN_SUCCESS) {
  812                                 release_page(&fs);
  813                                 unlock_and_deallocate(&fs);
  814 
  815                                 /*
  816                                  * If retry of map lookup would have blocked then
  817                                  * retry fault from start.
  818                                  */
  819                                 if (result == KERN_FAILURE)
  820                                         goto RetryFault;
  821                                 return (result);
  822                         }
  823                         if ((retry_object != fs.first_object) ||
  824                             (retry_pindex != fs.first_pindex)) {
  825                                 release_page(&fs);
  826                                 unlock_and_deallocate(&fs);
  827                                 goto RetryFault;
  828                         }
  829 
  830                         /*
  831                          * Check whether the protection has changed or the object has
  832                          * been copied while we left the map unlocked. Changing from
  833                          * read to write permission is OK - we leave the page
  834                          * write-protected, and catch the write fault. Changing from
  835                          * write to read permission means that we can't mark the page
  836                          * write-enabled after all.
  837                          */
  838                         prot &= retry_prot;
  839                 }
  840         }
  841         if (prot & VM_PROT_WRITE) {
  842                 vm_object_set_writeable_dirty(fs.object);
  843 
  844                 /*
  845                  * If the fault is a write, we know that this page is being
  846                  * written NOW so dirty it explicitly to save on 
  847                  * pmap_is_modified() calls later.
  848                  *
  849                  * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
  850                  * if the page is already dirty to prevent data written with
  851                  * the expectation of being synced from not being synced.
  852                  * Likewise if this entry does not request NOSYNC then make
  853                  * sure the page isn't marked NOSYNC.  Applications sharing
  854                  * data should use the same flags to avoid ping ponging.
  855                  *
  856                  * Also tell the backing pager, if any, that it should remove
  857                  * any swap backing since the page is now dirty.
  858                  */
  859                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
  860                         if (fs.m->dirty == 0)
  861                                 fs.m->oflags |= VPO_NOSYNC;
  862                 } else {
  863                         fs.m->oflags &= ~VPO_NOSYNC;
  864                 }
  865                 if (fault_flags & VM_FAULT_DIRTY) {
  866                         vm_page_dirty(fs.m);
  867                         vm_pager_page_unswapped(fs.m);
  868                 }
  869         }
  870 
  871         /*
  872          * Page had better still be busy
  873          */
  874         KASSERT(fs.m->oflags & VPO_BUSY,
  875                 ("vm_fault: page %p not busy!", fs.m));
  876         /*
  877          * Sanity check: page must be completely valid or it is not fit to
  878          * map into user space.  vm_pager_get_pages() ensures this.
  879          */
  880         if (fs.m->valid != VM_PAGE_BITS_ALL) {
  881                 vm_page_zero_invalid(fs.m, TRUE);
  882                 printf("Warning: page %p partially invalid on fault\n", fs.m);
  883         }
  884         VM_OBJECT_UNLOCK(fs.object);
  885 
  886         /*
  887          * Put this page into the physical map.  We had to do the unlock above
  888          * because pmap_enter() may sleep.  We don't put the page
  889          * back on the active queue until later so that the pageout daemon
  890          * won't find it (yet).
  891          */
  892         pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
  893         if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
  894                 vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
  895         }
  896         VM_OBJECT_LOCK(fs.object);
  897         vm_page_lock_queues();
  898         vm_page_flag_set(fs.m, PG_REFERENCED);
  899 
  900         /*
  901          * If the page is not wired down, then put it where the pageout daemon
  902          * can find it.
  903          */
  904         if (fault_flags & VM_FAULT_WIRE_MASK) {
  905                 if (wired)
  906                         vm_page_wire(fs.m);
  907                 else
  908                         vm_page_unwire(fs.m, 1);
  909         } else {
  910                 vm_page_activate(fs.m);
  911         }
  912         vm_page_unlock_queues();
  913         vm_page_wakeup(fs.m);
  914 
  915         /*
  916          * Unlock everything, and return
  917          */
  918         unlock_and_deallocate(&fs);
  919         if (hardfault)
  920                 curthread->td_ru.ru_majflt++;
  921         else
  922                 curthread->td_ru.ru_minflt++;
  923 
  924         return (KERN_SUCCESS);
  925 }
  926 
  927 /*
  928  * vm_fault_prefault provides a quick way of clustering
  929  * pagefaults into a processes address space.  It is a "cousin"
  930  * of vm_map_pmap_enter, except it runs at page fault time instead
  931  * of mmap time.
  932  */
  933 static void
  934 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
  935 {
  936         int i;
  937         vm_offset_t addr, starta;
  938         vm_pindex_t pindex;
  939         vm_page_t m;
  940         vm_object_t object;
  941 
  942         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
  943                 return;
  944 
  945         object = entry->object.vm_object;
  946 
  947         starta = addra - PFBAK * PAGE_SIZE;
  948         if (starta < entry->start) {
  949                 starta = entry->start;
  950         } else if (starta > addra) {
  951                 starta = 0;
  952         }
  953 
  954         for (i = 0; i < PAGEORDER_SIZE; i++) {
  955                 vm_object_t backing_object, lobject;
  956 
  957                 addr = addra + prefault_pageorder[i];
  958                 if (addr > addra + (PFFOR * PAGE_SIZE))
  959                         addr = 0;
  960 
  961                 if (addr < starta || addr >= entry->end)
  962                         continue;
  963 
  964                 if (!pmap_is_prefaultable(pmap, addr))
  965                         continue;
  966 
  967                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
  968                 lobject = object;
  969                 VM_OBJECT_LOCK(lobject);
  970                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
  971                     lobject->type == OBJT_DEFAULT &&
  972                     (backing_object = lobject->backing_object) != NULL) {
  973                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
  974                             0, ("vm_fault_prefault: unaligned object offset"));
  975                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
  976                         VM_OBJECT_LOCK(backing_object);
  977                         VM_OBJECT_UNLOCK(lobject);
  978                         lobject = backing_object;
  979                 }
  980                 /*
  981                  * give-up when a page is not in memory
  982                  */
  983                 if (m == NULL) {
  984                         VM_OBJECT_UNLOCK(lobject);
  985                         break;
  986                 }
  987                 if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
  988                         (m->busy == 0) &&
  989                     (m->flags & PG_FICTITIOUS) == 0) {
  990 
  991                         vm_page_lock_queues();
  992                         pmap_enter_quick(pmap, addr, m, entry->protection);
  993                         vm_page_unlock_queues();
  994                 }
  995                 VM_OBJECT_UNLOCK(lobject);
  996         }
  997 }
  998 
  999 /*
 1000  *      vm_fault_quick:
 1001  *
 1002  *      Ensure that the requested virtual address, which may be in userland,
 1003  *      is valid.  Fault-in the page if necessary.  Return -1 on failure.
 1004  */
 1005 int
 1006 vm_fault_quick(caddr_t v, int prot)
 1007 {
 1008         int r;
 1009 
 1010         if (prot & VM_PROT_WRITE)
 1011                 r = subyte(v, fubyte(v));
 1012         else
 1013                 r = fubyte(v);
 1014         return(r);
 1015 }
 1016 
 1017 /*
 1018  *      vm_fault_wire:
 1019  *
 1020  *      Wire down a range of virtual addresses in a map.
 1021  */
 1022 int
 1023 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
 1024     boolean_t user_wire, boolean_t fictitious)
 1025 {
 1026         vm_offset_t va;
 1027         int rv;
 1028 
 1029         /*
 1030          * We simulate a fault to get the page and enter it in the physical
 1031          * map.  For user wiring, we only ask for read access on currently
 1032          * read-only sections.
 1033          */
 1034         for (va = start; va < end; va += PAGE_SIZE) {
 1035                 rv = vm_fault(map, va,
 1036                     user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
 1037                     user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
 1038                 if (rv) {
 1039                         if (va != start)
 1040                                 vm_fault_unwire(map, start, va, fictitious);
 1041                         return (rv);
 1042                 }
 1043         }
 1044         return (KERN_SUCCESS);
 1045 }
 1046 
 1047 /*
 1048  *      vm_fault_unwire:
 1049  *
 1050  *      Unwire a range of virtual addresses in a map.
 1051  */
 1052 void
 1053 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
 1054     boolean_t fictitious)
 1055 {
 1056         vm_paddr_t pa;
 1057         vm_offset_t va;
 1058         pmap_t pmap;
 1059 
 1060         pmap = vm_map_pmap(map);
 1061 
 1062         /*
 1063          * Since the pages are wired down, we must be able to get their
 1064          * mappings from the physical map system.
 1065          */
 1066         for (va = start; va < end; va += PAGE_SIZE) {
 1067                 pa = pmap_extract(pmap, va);
 1068                 if (pa != 0) {
 1069                         pmap_change_wiring(pmap, va, FALSE);
 1070                         if (!fictitious) {
 1071                                 vm_page_lock_queues();
 1072                                 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
 1073                                 vm_page_unlock_queues();
 1074                         }
 1075                 }
 1076         }
 1077 }
 1078 
 1079 /*
 1080  *      Routine:
 1081  *              vm_fault_copy_entry
 1082  *      Function:
 1083  *              Copy all of the pages from a wired-down map entry to another.
 1084  *
 1085  *      In/out conditions:
 1086  *              The source and destination maps must be locked for write.
 1087  *              The source map entry must be wired down (or be a sharing map
 1088  *              entry corresponding to a main map entry that is wired down).
 1089  */
 1090 void
 1091 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
 1092         vm_map_t dst_map;
 1093         vm_map_t src_map;
 1094         vm_map_entry_t dst_entry;
 1095         vm_map_entry_t src_entry;
 1096 {
 1097         vm_object_t backing_object, dst_object, object;
 1098         vm_object_t src_object;
 1099         vm_ooffset_t dst_offset;
 1100         vm_ooffset_t src_offset;
 1101         vm_pindex_t pindex;
 1102         vm_prot_t prot;
 1103         vm_offset_t vaddr;
 1104         vm_page_t dst_m;
 1105         vm_page_t src_m;
 1106 
 1107 #ifdef  lint
 1108         src_map++;
 1109 #endif  /* lint */
 1110 
 1111         src_object = src_entry->object.vm_object;
 1112         src_offset = src_entry->offset;
 1113 
 1114         /*
 1115          * Create the top-level object for the destination entry. (Doesn't
 1116          * actually shadow anything - we copy the pages directly.)
 1117          */
 1118         dst_object = vm_object_allocate(OBJT_DEFAULT,
 1119             OFF_TO_IDX(dst_entry->end - dst_entry->start));
 1120 #if VM_NRESERVLEVEL > 0
 1121         dst_object->flags |= OBJ_COLORED;
 1122         dst_object->pg_color = atop(dst_entry->start);
 1123 #endif
 1124 
 1125         VM_OBJECT_LOCK(dst_object);
 1126         dst_entry->object.vm_object = dst_object;
 1127         dst_entry->offset = 0;
 1128 
 1129         prot = dst_entry->max_protection;
 1130 
 1131         /*
 1132          * Loop through all of the pages in the entry's range, copying each
 1133          * one from the source object (it should be there) to the destination
 1134          * object.
 1135          */
 1136         for (vaddr = dst_entry->start, dst_offset = 0;
 1137             vaddr < dst_entry->end;
 1138             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
 1139 
 1140                 /*
 1141                  * Allocate a page in the destination object
 1142                  */
 1143                 do {
 1144                         dst_m = vm_page_alloc(dst_object,
 1145                                 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
 1146                         if (dst_m == NULL) {
 1147                                 VM_OBJECT_UNLOCK(dst_object);
 1148                                 VM_WAIT;
 1149                                 VM_OBJECT_LOCK(dst_object);
 1150                         }
 1151                 } while (dst_m == NULL);
 1152 
 1153                 /*
 1154                  * Find the page in the source object, and copy it in.
 1155                  * (Because the source is wired down, the page will be in
 1156                  * memory.)
 1157                  */
 1158                 VM_OBJECT_LOCK(src_object);
 1159                 object = src_object;
 1160                 pindex = 0;
 1161                 while ((src_m = vm_page_lookup(object, pindex +
 1162                     OFF_TO_IDX(dst_offset + src_offset))) == NULL &&
 1163                     (src_entry->protection & VM_PROT_WRITE) == 0 &&
 1164                     (backing_object = object->backing_object) != NULL) {
 1165                         /*
 1166                          * Allow fallback to backing objects if we are reading.
 1167                          */
 1168                         VM_OBJECT_LOCK(backing_object);
 1169                         pindex += OFF_TO_IDX(object->backing_object_offset);
 1170                         VM_OBJECT_UNLOCK(object);
 1171                         object = backing_object;
 1172                 }
 1173                 if (src_m == NULL)
 1174                         panic("vm_fault_copy_wired: page missing");
 1175                 pmap_copy_page(src_m, dst_m);
 1176                 VM_OBJECT_UNLOCK(object);
 1177                 dst_m->valid = VM_PAGE_BITS_ALL;
 1178                 VM_OBJECT_UNLOCK(dst_object);
 1179 
 1180                 /*
 1181                  * Enter it in the pmap as a read and/or execute access.
 1182                  */
 1183                 pmap_enter(dst_map->pmap, vaddr, prot & ~VM_PROT_WRITE, dst_m,
 1184                     prot, FALSE);
 1185 
 1186                 /*
 1187                  * Mark it no longer busy, and put it on the active list.
 1188                  */
 1189                 VM_OBJECT_LOCK(dst_object);
 1190                 vm_page_lock_queues();
 1191                 vm_page_activate(dst_m);
 1192                 vm_page_unlock_queues();
 1193                 vm_page_wakeup(dst_m);
 1194         }
 1195         VM_OBJECT_UNLOCK(dst_object);
 1196 }
 1197 
 1198 
 1199 /*
 1200  * This routine checks around the requested page for other pages that
 1201  * might be able to be faulted in.  This routine brackets the viable
 1202  * pages for the pages to be paged in.
 1203  *
 1204  * Inputs:
 1205  *      m, rbehind, rahead
 1206  *
 1207  * Outputs:
 1208  *  marray (array of vm_page_t), reqpage (index of requested page)
 1209  *
 1210  * Return value:
 1211  *  number of pages in marray
 1212  *
 1213  * This routine can't block.
 1214  */
 1215 static int
 1216 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
 1217         vm_page_t m;
 1218         int rbehind;
 1219         int rahead;
 1220         vm_page_t *marray;
 1221         int *reqpage;
 1222 {
 1223         int i,j;
 1224         vm_object_t object;
 1225         vm_pindex_t pindex, startpindex, endpindex, tpindex;
 1226         vm_page_t rtm;
 1227         int cbehind, cahead;
 1228 
 1229         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1230 
 1231         object = m->object;
 1232         pindex = m->pindex;
 1233         cbehind = cahead = 0;
 1234 
 1235         /*
 1236          * if the requested page is not available, then give up now
 1237          */
 1238         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
 1239                 return 0;
 1240         }
 1241 
 1242         if ((cbehind == 0) && (cahead == 0)) {
 1243                 *reqpage = 0;
 1244                 marray[0] = m;
 1245                 return 1;
 1246         }
 1247 
 1248         if (rahead > cahead) {
 1249                 rahead = cahead;
 1250         }
 1251 
 1252         if (rbehind > cbehind) {
 1253                 rbehind = cbehind;
 1254         }
 1255 
 1256         /*
 1257          * scan backward for the read behind pages -- in memory 
 1258          */
 1259         if (pindex > 0) {
 1260                 if (rbehind > pindex) {
 1261                         rbehind = pindex;
 1262                         startpindex = 0;
 1263                 } else {
 1264                         startpindex = pindex - rbehind;
 1265                 }
 1266 
 1267                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
 1268                     rtm->pindex >= startpindex)
 1269                         startpindex = rtm->pindex + 1;
 1270 
 1271                 /* tpindex is unsigned; beware of numeric underflow. */
 1272                 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
 1273                     tpindex < pindex; i++, tpindex--) {
 1274 
 1275                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
 1276                             VM_ALLOC_IFNOTCACHED);
 1277                         if (rtm == NULL) {
 1278                                 /*
 1279                                  * Shift the allocated pages to the
 1280                                  * beginning of the array.
 1281                                  */
 1282                                 for (j = 0; j < i; j++) {
 1283                                         marray[j] = marray[j + tpindex + 1 -
 1284                                             startpindex];
 1285                                 }
 1286                                 break;
 1287                         }
 1288 
 1289                         marray[tpindex - startpindex] = rtm;
 1290                 }
 1291         } else {
 1292                 startpindex = 0;
 1293                 i = 0;
 1294         }
 1295 
 1296         marray[i] = m;
 1297         /* page offset of the required page */
 1298         *reqpage = i;
 1299 
 1300         tpindex = pindex + 1;
 1301         i++;
 1302 
 1303         /*
 1304          * scan forward for the read ahead pages
 1305          */
 1306         endpindex = tpindex + rahead;
 1307         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
 1308                 endpindex = rtm->pindex;
 1309         if (endpindex > object->size)
 1310                 endpindex = object->size;
 1311 
 1312         for (; tpindex < endpindex; i++, tpindex++) {
 1313 
 1314                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
 1315                     VM_ALLOC_IFNOTCACHED);
 1316                 if (rtm == NULL) {
 1317                         break;
 1318                 }
 1319 
 1320                 marray[i] = rtm;
 1321         }
 1322 
 1323         /* return number of pages */
 1324         return i;
 1325 }

Cache object: 82814ee83e8cc2ca56cf0742081a2282


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.