FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_fault.c
1 /*-
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94
42 *
43 *
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
46 *
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
62 * School of Computer Science
63 * Carnegie Mellon University
64 * Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70 /*
71 * Page fault handling module.
72 */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD: releng/8.0/sys/vm/vm_fault.c 195840 2009-07-24 13:50:29Z jhb $");
76
77 #include "opt_vm.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/lock.h>
83 #include <sys/mutex.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/sysctl.h>
87 #include <sys/vmmeter.h>
88 #include <sys/vnode.h>
89
90 #include <vm/vm.h>
91 #include <vm/vm_param.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_pageout.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/vm_extern.h>
101
102 #include <sys/mount.h> /* XXX Temporary for VFS_LOCK_GIANT() */
103
104 #define PFBAK 4
105 #define PFFOR 4
106 #define PAGEORDER_SIZE (PFBAK+PFFOR)
107
108 static int prefault_pageorder[] = {
109 -1 * PAGE_SIZE, 1 * PAGE_SIZE,
110 -2 * PAGE_SIZE, 2 * PAGE_SIZE,
111 -3 * PAGE_SIZE, 3 * PAGE_SIZE,
112 -4 * PAGE_SIZE, 4 * PAGE_SIZE
113 };
114
115 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
116 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
117
118 #define VM_FAULT_READ_AHEAD 8
119 #define VM_FAULT_READ_BEHIND 7
120 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
121
122 struct faultstate {
123 vm_page_t m;
124 vm_object_t object;
125 vm_pindex_t pindex;
126 vm_page_t first_m;
127 vm_object_t first_object;
128 vm_pindex_t first_pindex;
129 vm_map_t map;
130 vm_map_entry_t entry;
131 int lookup_still_valid;
132 struct vnode *vp;
133 int vfslocked;
134 };
135
136 static inline void
137 release_page(struct faultstate *fs)
138 {
139
140 vm_page_wakeup(fs->m);
141 vm_page_lock_queues();
142 vm_page_deactivate(fs->m);
143 vm_page_unlock_queues();
144 fs->m = NULL;
145 }
146
147 static inline void
148 unlock_map(struct faultstate *fs)
149 {
150
151 if (fs->lookup_still_valid) {
152 vm_map_lookup_done(fs->map, fs->entry);
153 fs->lookup_still_valid = FALSE;
154 }
155 }
156
157 static void
158 unlock_and_deallocate(struct faultstate *fs)
159 {
160
161 vm_object_pip_wakeup(fs->object);
162 VM_OBJECT_UNLOCK(fs->object);
163 if (fs->object != fs->first_object) {
164 VM_OBJECT_LOCK(fs->first_object);
165 vm_page_lock_queues();
166 vm_page_free(fs->first_m);
167 vm_page_unlock_queues();
168 vm_object_pip_wakeup(fs->first_object);
169 VM_OBJECT_UNLOCK(fs->first_object);
170 fs->first_m = NULL;
171 }
172 vm_object_deallocate(fs->first_object);
173 unlock_map(fs);
174 if (fs->vp != NULL) {
175 vput(fs->vp);
176 fs->vp = NULL;
177 }
178 VFS_UNLOCK_GIANT(fs->vfslocked);
179 fs->vfslocked = 0;
180 }
181
182 /*
183 * TRYPAGER - used by vm_fault to calculate whether the pager for the
184 * current object *might* contain the page.
185 *
186 * default objects are zero-fill, there is no real pager.
187 */
188 #define TRYPAGER (fs.object->type != OBJT_DEFAULT && \
189 (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
190
191 /*
192 * vm_fault:
193 *
194 * Handle a page fault occurring at the given address,
195 * requiring the given permissions, in the map specified.
196 * If successful, the page is inserted into the
197 * associated physical map.
198 *
199 * NOTE: the given address should be truncated to the
200 * proper page address.
201 *
202 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
203 * a standard error specifying why the fault is fatal is returned.
204 *
205 *
206 * The map in question must be referenced, and remains so.
207 * Caller may hold no locks.
208 */
209 int
210 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
211 int fault_flags)
212 {
213 vm_prot_t prot;
214 int is_first_object_locked, result;
215 boolean_t are_queues_locked, growstack, wired;
216 int map_generation;
217 vm_object_t next_object;
218 vm_page_t marray[VM_FAULT_READ];
219 int hardfault;
220 int faultcount, ahead, behind;
221 struct faultstate fs;
222 struct vnode *vp;
223 int locked, error;
224
225 hardfault = 0;
226 growstack = TRUE;
227 PCPU_INC(cnt.v_vm_faults);
228 fs.vp = NULL;
229 fs.vfslocked = 0;
230 faultcount = behind = 0;
231
232 RetryFault:;
233
234 /*
235 * Find the backing store object and offset into it to begin the
236 * search.
237 */
238 fs.map = map;
239 result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
240 &fs.first_object, &fs.first_pindex, &prot, &wired);
241 if (result != KERN_SUCCESS) {
242 if (result != KERN_PROTECTION_FAILURE ||
243 (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
244 if (growstack && result == KERN_INVALID_ADDRESS &&
245 map != kernel_map && curproc != NULL) {
246 result = vm_map_growstack(curproc, vaddr);
247 if (result != KERN_SUCCESS)
248 return (KERN_FAILURE);
249 growstack = FALSE;
250 goto RetryFault;
251 }
252 return (result);
253 }
254
255 /*
256 * If we are user-wiring a r/w segment, and it is COW, then
257 * we need to do the COW operation. Note that we don't COW
258 * currently RO sections now, because it is NOT desirable
259 * to COW .text. We simply keep .text from ever being COW'ed
260 * and take the heat that one cannot debug wired .text sections.
261 */
262 result = vm_map_lookup(&fs.map, vaddr,
263 VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
264 &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
265 if (result != KERN_SUCCESS)
266 return (result);
267
268 /*
269 * If we don't COW now, on a user wire, the user will never
270 * be able to write to the mapping. If we don't make this
271 * restriction, the bookkeeping would be nearly impossible.
272 *
273 * XXX The following assignment modifies the map without
274 * holding a write lock on it.
275 */
276 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
277 fs.entry->max_protection &= ~VM_PROT_WRITE;
278 }
279
280 map_generation = fs.map->timestamp;
281
282 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
283 panic("vm_fault: fault on nofault entry, addr: %lx",
284 (u_long)vaddr);
285 }
286
287 /*
288 * Make a reference to this object to prevent its disposal while we
289 * are messing with it. Once we have the reference, the map is free
290 * to be diddled. Since objects reference their shadows (and copies),
291 * they will stay around as well.
292 *
293 * Bump the paging-in-progress count to prevent size changes (e.g.
294 * truncation operations) during I/O. This must be done after
295 * obtaining the vnode lock in order to avoid possible deadlocks.
296 */
297 VM_OBJECT_LOCK(fs.first_object);
298 vm_object_reference_locked(fs.first_object);
299 vm_object_pip_add(fs.first_object, 1);
300
301 fs.lookup_still_valid = TRUE;
302
303 if (wired)
304 fault_type = prot;
305
306 fs.first_m = NULL;
307
308 /*
309 * Search for the page at object/offset.
310 */
311 fs.object = fs.first_object;
312 fs.pindex = fs.first_pindex;
313 while (TRUE) {
314 /*
315 * If the object is dead, we stop here
316 */
317 if (fs.object->flags & OBJ_DEAD) {
318 unlock_and_deallocate(&fs);
319 return (KERN_PROTECTION_FAILURE);
320 }
321
322 /*
323 * See if page is resident
324 */
325 fs.m = vm_page_lookup(fs.object, fs.pindex);
326 if (fs.m != NULL) {
327 /*
328 * check for page-based copy on write.
329 * We check fs.object == fs.first_object so
330 * as to ensure the legacy COW mechanism is
331 * used when the page in question is part of
332 * a shadow object. Otherwise, vm_page_cowfault()
333 * removes the page from the backing object,
334 * which is not what we want.
335 */
336 vm_page_lock_queues();
337 if ((fs.m->cow) &&
338 (fault_type & VM_PROT_WRITE) &&
339 (fs.object == fs.first_object)) {
340 vm_page_cowfault(fs.m);
341 vm_page_unlock_queues();
342 unlock_and_deallocate(&fs);
343 goto RetryFault;
344 }
345
346 /*
347 * Wait/Retry if the page is busy. We have to do this
348 * if the page is busy via either VPO_BUSY or
349 * vm_page_t->busy because the vm_pager may be using
350 * vm_page_t->busy for pageouts ( and even pageins if
351 * it is the vnode pager ), and we could end up trying
352 * to pagein and pageout the same page simultaneously.
353 *
354 * We can theoretically allow the busy case on a read
355 * fault if the page is marked valid, but since such
356 * pages are typically already pmap'd, putting that
357 * special case in might be more effort then it is
358 * worth. We cannot under any circumstances mess
359 * around with a vm_page_t->busy page except, perhaps,
360 * to pmap it.
361 */
362 if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
363 vm_page_unlock_queues();
364 VM_OBJECT_UNLOCK(fs.object);
365 if (fs.object != fs.first_object) {
366 VM_OBJECT_LOCK(fs.first_object);
367 vm_page_lock_queues();
368 vm_page_free(fs.first_m);
369 vm_page_unlock_queues();
370 vm_object_pip_wakeup(fs.first_object);
371 VM_OBJECT_UNLOCK(fs.first_object);
372 fs.first_m = NULL;
373 }
374 unlock_map(&fs);
375 VM_OBJECT_LOCK(fs.object);
376 if (fs.m == vm_page_lookup(fs.object,
377 fs.pindex)) {
378 vm_page_sleep_if_busy(fs.m, TRUE,
379 "vmpfw");
380 }
381 vm_object_pip_wakeup(fs.object);
382 VM_OBJECT_UNLOCK(fs.object);
383 PCPU_INC(cnt.v_intrans);
384 vm_object_deallocate(fs.first_object);
385 goto RetryFault;
386 }
387 vm_pageq_remove(fs.m);
388 vm_page_unlock_queues();
389
390 /*
391 * Mark page busy for other processes, and the
392 * pagedaemon. If it still isn't completely valid
393 * (readable), jump to readrest, else break-out ( we
394 * found the page ).
395 */
396 vm_page_busy(fs.m);
397 if (fs.m->valid != VM_PAGE_BITS_ALL &&
398 fs.m->object != kernel_object && fs.m->object != kmem_object) {
399 goto readrest;
400 }
401
402 break;
403 }
404
405 /*
406 * Page is not resident, If this is the search termination
407 * or the pager might contain the page, allocate a new page.
408 */
409 if (TRYPAGER || fs.object == fs.first_object) {
410 if (fs.pindex >= fs.object->size) {
411 unlock_and_deallocate(&fs);
412 return (KERN_PROTECTION_FAILURE);
413 }
414
415 /*
416 * Allocate a new page for this object/offset pair.
417 */
418 fs.m = NULL;
419 if (!vm_page_count_severe()) {
420 #if VM_NRESERVLEVEL > 0
421 if ((fs.object->flags & OBJ_COLORED) == 0) {
422 fs.object->flags |= OBJ_COLORED;
423 fs.object->pg_color = atop(vaddr) -
424 fs.pindex;
425 }
426 #endif
427 fs.m = vm_page_alloc(fs.object, fs.pindex,
428 (fs.object->type == OBJT_VNODE ||
429 fs.object->backing_object != NULL) ?
430 VM_ALLOC_NORMAL : VM_ALLOC_ZERO);
431 }
432 if (fs.m == NULL) {
433 unlock_and_deallocate(&fs);
434 VM_WAITPFAULT;
435 goto RetryFault;
436 } else if (fs.m->valid == VM_PAGE_BITS_ALL)
437 break;
438 }
439
440 readrest:
441 /*
442 * We have found a valid page or we have allocated a new page.
443 * The page thus may not be valid or may not be entirely
444 * valid.
445 *
446 * Attempt to fault-in the page if there is a chance that the
447 * pager has it, and potentially fault in additional pages
448 * at the same time.
449 */
450 if (TRYPAGER) {
451 int rv;
452 int reqpage = 0;
453 u_char behavior = vm_map_entry_behavior(fs.entry);
454
455 if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
456 ahead = 0;
457 behind = 0;
458 } else {
459 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
460 if (behind > VM_FAULT_READ_BEHIND)
461 behind = VM_FAULT_READ_BEHIND;
462
463 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
464 if (ahead > VM_FAULT_READ_AHEAD)
465 ahead = VM_FAULT_READ_AHEAD;
466 }
467 is_first_object_locked = FALSE;
468 if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
469 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
470 fs.pindex >= fs.entry->lastr &&
471 fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
472 (fs.first_object == fs.object ||
473 (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
474 fs.first_object->type != OBJT_DEVICE &&
475 fs.first_object->type != OBJT_PHYS &&
476 fs.first_object->type != OBJT_SG) {
477 vm_pindex_t firstpindex, tmppindex;
478
479 if (fs.first_pindex < 2 * VM_FAULT_READ)
480 firstpindex = 0;
481 else
482 firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
483
484 are_queues_locked = FALSE;
485 /*
486 * note: partially valid pages cannot be
487 * included in the lookahead - NFS piecemeal
488 * writes will barf on it badly.
489 */
490 for (tmppindex = fs.first_pindex - 1;
491 tmppindex >= firstpindex;
492 --tmppindex) {
493 vm_page_t mt;
494
495 mt = vm_page_lookup(fs.first_object, tmppindex);
496 if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
497 break;
498 if (mt->busy ||
499 (mt->oflags & VPO_BUSY))
500 continue;
501 if (!are_queues_locked) {
502 are_queues_locked = TRUE;
503 vm_page_lock_queues();
504 }
505 if (mt->hold_count ||
506 mt->wire_count)
507 continue;
508 pmap_remove_all(mt);
509 if (mt->dirty) {
510 vm_page_deactivate(mt);
511 } else {
512 vm_page_cache(mt);
513 }
514 }
515 if (are_queues_locked)
516 vm_page_unlock_queues();
517 ahead += behind;
518 behind = 0;
519 }
520 if (is_first_object_locked)
521 VM_OBJECT_UNLOCK(fs.first_object);
522
523 /*
524 * Call the pager to retrieve the data, if any, after
525 * releasing the lock on the map. We hold a ref on
526 * fs.object and the pages are VPO_BUSY'd.
527 */
528 unlock_map(&fs);
529
530 vnode_lock:
531 if (fs.object->type == OBJT_VNODE) {
532 vp = fs.object->handle;
533 if (vp == fs.vp)
534 goto vnode_locked;
535 else if (fs.vp != NULL) {
536 vput(fs.vp);
537 fs.vp = NULL;
538 }
539 locked = VOP_ISLOCKED(vp);
540
541 if (VFS_NEEDSGIANT(vp->v_mount) && !fs.vfslocked) {
542 fs.vfslocked = 1;
543 if (!mtx_trylock(&Giant)) {
544 VM_OBJECT_UNLOCK(fs.object);
545 mtx_lock(&Giant);
546 VM_OBJECT_LOCK(fs.object);
547 goto vnode_lock;
548 }
549 }
550 if (locked != LK_EXCLUSIVE)
551 locked = LK_SHARED;
552 /* Do not sleep for vnode lock while fs.m is busy */
553 error = vget(vp, locked | LK_CANRECURSE |
554 LK_NOWAIT, curthread);
555 if (error != 0) {
556 int vfslocked;
557
558 vfslocked = fs.vfslocked;
559 fs.vfslocked = 0; /* Keep Giant */
560 vhold(vp);
561 release_page(&fs);
562 unlock_and_deallocate(&fs);
563 error = vget(vp, locked | LK_RETRY |
564 LK_CANRECURSE, curthread);
565 vdrop(vp);
566 fs.vp = vp;
567 fs.vfslocked = vfslocked;
568 KASSERT(error == 0,
569 ("vm_fault: vget failed"));
570 goto RetryFault;
571 }
572 fs.vp = vp;
573 }
574 vnode_locked:
575 KASSERT(fs.vp == NULL || !fs.map->system_map,
576 ("vm_fault: vnode-backed object mapped by system map"));
577
578 /*
579 * now we find out if any other pages should be paged
580 * in at this time this routine checks to see if the
581 * pages surrounding this fault reside in the same
582 * object as the page for this fault. If they do,
583 * then they are faulted in also into the object. The
584 * array "marray" returned contains an array of
585 * vm_page_t structs where one of them is the
586 * vm_page_t passed to the routine. The reqpage
587 * return value is the index into the marray for the
588 * vm_page_t passed to the routine.
589 *
590 * fs.m plus the additional pages are VPO_BUSY'd.
591 */
592 faultcount = vm_fault_additional_pages(
593 fs.m, behind, ahead, marray, &reqpage);
594
595 rv = faultcount ?
596 vm_pager_get_pages(fs.object, marray, faultcount,
597 reqpage) : VM_PAGER_FAIL;
598
599 if (rv == VM_PAGER_OK) {
600 /*
601 * Found the page. Leave it busy while we play
602 * with it.
603 */
604
605 /*
606 * Relookup in case pager changed page. Pager
607 * is responsible for disposition of old page
608 * if moved.
609 */
610 fs.m = vm_page_lookup(fs.object, fs.pindex);
611 if (!fs.m) {
612 unlock_and_deallocate(&fs);
613 goto RetryFault;
614 }
615
616 hardfault++;
617 break; /* break to PAGE HAS BEEN FOUND */
618 }
619 /*
620 * Remove the bogus page (which does not exist at this
621 * object/offset); before doing so, we must get back
622 * our object lock to preserve our invariant.
623 *
624 * Also wake up any other process that may want to bring
625 * in this page.
626 *
627 * If this is the top-level object, we must leave the
628 * busy page to prevent another process from rushing
629 * past us, and inserting the page in that object at
630 * the same time that we are.
631 */
632 if (rv == VM_PAGER_ERROR)
633 printf("vm_fault: pager read error, pid %d (%s)\n",
634 curproc->p_pid, curproc->p_comm);
635 /*
636 * Data outside the range of the pager or an I/O error
637 */
638 /*
639 * XXX - the check for kernel_map is a kludge to work
640 * around having the machine panic on a kernel space
641 * fault w/ I/O error.
642 */
643 if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
644 (rv == VM_PAGER_BAD)) {
645 vm_page_lock_queues();
646 vm_page_free(fs.m);
647 vm_page_unlock_queues();
648 fs.m = NULL;
649 unlock_and_deallocate(&fs);
650 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
651 }
652 if (fs.object != fs.first_object) {
653 vm_page_lock_queues();
654 vm_page_free(fs.m);
655 vm_page_unlock_queues();
656 fs.m = NULL;
657 /*
658 * XXX - we cannot just fall out at this
659 * point, m has been freed and is invalid!
660 */
661 }
662 }
663
664 /*
665 * We get here if the object has default pager (or unwiring)
666 * or the pager doesn't have the page.
667 */
668 if (fs.object == fs.first_object)
669 fs.first_m = fs.m;
670
671 /*
672 * Move on to the next object. Lock the next object before
673 * unlocking the current one.
674 */
675 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
676 next_object = fs.object->backing_object;
677 if (next_object == NULL) {
678 /*
679 * If there's no object left, fill the page in the top
680 * object with zeros.
681 */
682 if (fs.object != fs.first_object) {
683 vm_object_pip_wakeup(fs.object);
684 VM_OBJECT_UNLOCK(fs.object);
685
686 fs.object = fs.first_object;
687 fs.pindex = fs.first_pindex;
688 fs.m = fs.first_m;
689 VM_OBJECT_LOCK(fs.object);
690 }
691 fs.first_m = NULL;
692
693 /*
694 * Zero the page if necessary and mark it valid.
695 */
696 if ((fs.m->flags & PG_ZERO) == 0) {
697 pmap_zero_page(fs.m);
698 } else {
699 PCPU_INC(cnt.v_ozfod);
700 }
701 PCPU_INC(cnt.v_zfod);
702 fs.m->valid = VM_PAGE_BITS_ALL;
703 break; /* break to PAGE HAS BEEN FOUND */
704 } else {
705 KASSERT(fs.object != next_object,
706 ("object loop %p", next_object));
707 VM_OBJECT_LOCK(next_object);
708 vm_object_pip_add(next_object, 1);
709 if (fs.object != fs.first_object)
710 vm_object_pip_wakeup(fs.object);
711 VM_OBJECT_UNLOCK(fs.object);
712 fs.object = next_object;
713 }
714 }
715
716 KASSERT((fs.m->oflags & VPO_BUSY) != 0,
717 ("vm_fault: not busy after main loop"));
718
719 /*
720 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
721 * is held.]
722 */
723
724 /*
725 * If the page is being written, but isn't already owned by the
726 * top-level object, we have to copy it into a new page owned by the
727 * top-level object.
728 */
729 if (fs.object != fs.first_object) {
730 /*
731 * We only really need to copy if we want to write it.
732 */
733 if (fault_type & VM_PROT_WRITE) {
734 /*
735 * This allows pages to be virtually copied from a
736 * backing_object into the first_object, where the
737 * backing object has no other refs to it, and cannot
738 * gain any more refs. Instead of a bcopy, we just
739 * move the page from the backing object to the
740 * first object. Note that we must mark the page
741 * dirty in the first object so that it will go out
742 * to swap when needed.
743 */
744 is_first_object_locked = FALSE;
745 if (
746 /*
747 * Only one shadow object
748 */
749 (fs.object->shadow_count == 1) &&
750 /*
751 * No COW refs, except us
752 */
753 (fs.object->ref_count == 1) &&
754 /*
755 * No one else can look this object up
756 */
757 (fs.object->handle == NULL) &&
758 /*
759 * No other ways to look the object up
760 */
761 ((fs.object->type == OBJT_DEFAULT) ||
762 (fs.object->type == OBJT_SWAP)) &&
763 (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
764 /*
765 * We don't chase down the shadow chain
766 */
767 fs.object == fs.first_object->backing_object) {
768 vm_page_lock_queues();
769 /*
770 * get rid of the unnecessary page
771 */
772 vm_page_free(fs.first_m);
773 /*
774 * grab the page and put it into the
775 * process'es object. The page is
776 * automatically made dirty.
777 */
778 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
779 vm_page_unlock_queues();
780 vm_page_busy(fs.m);
781 fs.first_m = fs.m;
782 fs.m = NULL;
783 PCPU_INC(cnt.v_cow_optim);
784 } else {
785 /*
786 * Oh, well, lets copy it.
787 */
788 pmap_copy_page(fs.m, fs.first_m);
789 fs.first_m->valid = VM_PAGE_BITS_ALL;
790 }
791 if (fs.m) {
792 /*
793 * We no longer need the old page or object.
794 */
795 release_page(&fs);
796 }
797 /*
798 * fs.object != fs.first_object due to above
799 * conditional
800 */
801 vm_object_pip_wakeup(fs.object);
802 VM_OBJECT_UNLOCK(fs.object);
803 /*
804 * Only use the new page below...
805 */
806 fs.object = fs.first_object;
807 fs.pindex = fs.first_pindex;
808 fs.m = fs.first_m;
809 if (!is_first_object_locked)
810 VM_OBJECT_LOCK(fs.object);
811 PCPU_INC(cnt.v_cow_faults);
812 } else {
813 prot &= ~VM_PROT_WRITE;
814 }
815 }
816
817 /*
818 * We must verify that the maps have not changed since our last
819 * lookup.
820 */
821 if (!fs.lookup_still_valid) {
822 vm_object_t retry_object;
823 vm_pindex_t retry_pindex;
824 vm_prot_t retry_prot;
825
826 if (!vm_map_trylock_read(fs.map)) {
827 release_page(&fs);
828 unlock_and_deallocate(&fs);
829 goto RetryFault;
830 }
831 fs.lookup_still_valid = TRUE;
832 if (fs.map->timestamp != map_generation) {
833 result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
834 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
835
836 /*
837 * If we don't need the page any longer, put it on the inactive
838 * list (the easiest thing to do here). If no one needs it,
839 * pageout will grab it eventually.
840 */
841 if (result != KERN_SUCCESS) {
842 release_page(&fs);
843 unlock_and_deallocate(&fs);
844
845 /*
846 * If retry of map lookup would have blocked then
847 * retry fault from start.
848 */
849 if (result == KERN_FAILURE)
850 goto RetryFault;
851 return (result);
852 }
853 if ((retry_object != fs.first_object) ||
854 (retry_pindex != fs.first_pindex)) {
855 release_page(&fs);
856 unlock_and_deallocate(&fs);
857 goto RetryFault;
858 }
859
860 /*
861 * Check whether the protection has changed or the object has
862 * been copied while we left the map unlocked. Changing from
863 * read to write permission is OK - we leave the page
864 * write-protected, and catch the write fault. Changing from
865 * write to read permission means that we can't mark the page
866 * write-enabled after all.
867 */
868 prot &= retry_prot;
869 }
870 }
871 /*
872 * If the page was filled by a pager, update the map entry's
873 * last read offset. Since the pager does not return the
874 * actual set of pages that it read, this update is based on
875 * the requested set. Typically, the requested and actual
876 * sets are the same.
877 *
878 * XXX The following assignment modifies the map
879 * without holding a write lock on it.
880 */
881 if (hardfault)
882 fs.entry->lastr = fs.pindex + faultcount - behind;
883
884 if (prot & VM_PROT_WRITE) {
885 vm_object_set_writeable_dirty(fs.object);
886
887 /*
888 * If the fault is a write, we know that this page is being
889 * written NOW so dirty it explicitly to save on
890 * pmap_is_modified() calls later.
891 *
892 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
893 * if the page is already dirty to prevent data written with
894 * the expectation of being synced from not being synced.
895 * Likewise if this entry does not request NOSYNC then make
896 * sure the page isn't marked NOSYNC. Applications sharing
897 * data should use the same flags to avoid ping ponging.
898 *
899 * Also tell the backing pager, if any, that it should remove
900 * any swap backing since the page is now dirty.
901 */
902 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
903 if (fs.m->dirty == 0)
904 fs.m->oflags |= VPO_NOSYNC;
905 } else {
906 fs.m->oflags &= ~VPO_NOSYNC;
907 }
908 if (fault_flags & VM_FAULT_DIRTY) {
909 vm_page_dirty(fs.m);
910 vm_pager_page_unswapped(fs.m);
911 }
912 }
913
914 /*
915 * Page had better still be busy
916 */
917 KASSERT(fs.m->oflags & VPO_BUSY,
918 ("vm_fault: page %p not busy!", fs.m));
919 /*
920 * Page must be completely valid or it is not fit to
921 * map into user space. vm_pager_get_pages() ensures this.
922 */
923 KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
924 ("vm_fault: page %p partially invalid", fs.m));
925 VM_OBJECT_UNLOCK(fs.object);
926
927 /*
928 * Put this page into the physical map. We had to do the unlock above
929 * because pmap_enter() may sleep. We don't put the page
930 * back on the active queue until later so that the pageout daemon
931 * won't find it (yet).
932 */
933 pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
934 if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
935 vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
936 }
937 VM_OBJECT_LOCK(fs.object);
938 vm_page_lock_queues();
939 vm_page_flag_set(fs.m, PG_REFERENCED);
940
941 /*
942 * If the page is not wired down, then put it where the pageout daemon
943 * can find it.
944 */
945 if (fault_flags & VM_FAULT_WIRE_MASK) {
946 if (wired)
947 vm_page_wire(fs.m);
948 else
949 vm_page_unwire(fs.m, 1);
950 } else {
951 vm_page_activate(fs.m);
952 }
953 vm_page_unlock_queues();
954 vm_page_wakeup(fs.m);
955
956 /*
957 * Unlock everything, and return
958 */
959 unlock_and_deallocate(&fs);
960 if (hardfault)
961 curthread->td_ru.ru_majflt++;
962 else
963 curthread->td_ru.ru_minflt++;
964
965 return (KERN_SUCCESS);
966 }
967
968 /*
969 * vm_fault_prefault provides a quick way of clustering
970 * pagefaults into a processes address space. It is a "cousin"
971 * of vm_map_pmap_enter, except it runs at page fault time instead
972 * of mmap time.
973 */
974 static void
975 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
976 {
977 int i;
978 vm_offset_t addr, starta;
979 vm_pindex_t pindex;
980 vm_page_t m;
981 vm_object_t object;
982
983 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
984 return;
985
986 object = entry->object.vm_object;
987
988 starta = addra - PFBAK * PAGE_SIZE;
989 if (starta < entry->start) {
990 starta = entry->start;
991 } else if (starta > addra) {
992 starta = 0;
993 }
994
995 for (i = 0; i < PAGEORDER_SIZE; i++) {
996 vm_object_t backing_object, lobject;
997
998 addr = addra + prefault_pageorder[i];
999 if (addr > addra + (PFFOR * PAGE_SIZE))
1000 addr = 0;
1001
1002 if (addr < starta || addr >= entry->end)
1003 continue;
1004
1005 if (!pmap_is_prefaultable(pmap, addr))
1006 continue;
1007
1008 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1009 lobject = object;
1010 VM_OBJECT_LOCK(lobject);
1011 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1012 lobject->type == OBJT_DEFAULT &&
1013 (backing_object = lobject->backing_object) != NULL) {
1014 if (lobject->backing_object_offset & PAGE_MASK)
1015 break;
1016 pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1017 VM_OBJECT_LOCK(backing_object);
1018 VM_OBJECT_UNLOCK(lobject);
1019 lobject = backing_object;
1020 }
1021 /*
1022 * give-up when a page is not in memory
1023 */
1024 if (m == NULL) {
1025 VM_OBJECT_UNLOCK(lobject);
1026 break;
1027 }
1028 if (m->valid == VM_PAGE_BITS_ALL &&
1029 (m->flags & PG_FICTITIOUS) == 0) {
1030 vm_page_lock_queues();
1031 pmap_enter_quick(pmap, addr, m, entry->protection);
1032 vm_page_unlock_queues();
1033 }
1034 VM_OBJECT_UNLOCK(lobject);
1035 }
1036 }
1037
1038 /*
1039 * vm_fault_quick:
1040 *
1041 * Ensure that the requested virtual address, which may be in userland,
1042 * is valid. Fault-in the page if necessary. Return -1 on failure.
1043 */
1044 int
1045 vm_fault_quick(caddr_t v, int prot)
1046 {
1047 int r;
1048
1049 if (prot & VM_PROT_WRITE)
1050 r = subyte(v, fubyte(v));
1051 else
1052 r = fubyte(v);
1053 return(r);
1054 }
1055
1056 /*
1057 * vm_fault_wire:
1058 *
1059 * Wire down a range of virtual addresses in a map.
1060 */
1061 int
1062 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1063 boolean_t user_wire, boolean_t fictitious)
1064 {
1065 vm_offset_t va;
1066 int rv;
1067
1068 /*
1069 * We simulate a fault to get the page and enter it in the physical
1070 * map. For user wiring, we only ask for read access on currently
1071 * read-only sections.
1072 */
1073 for (va = start; va < end; va += PAGE_SIZE) {
1074 rv = vm_fault(map, va,
1075 user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
1076 user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
1077 if (rv) {
1078 if (va != start)
1079 vm_fault_unwire(map, start, va, fictitious);
1080 return (rv);
1081 }
1082 }
1083 return (KERN_SUCCESS);
1084 }
1085
1086 /*
1087 * vm_fault_unwire:
1088 *
1089 * Unwire a range of virtual addresses in a map.
1090 */
1091 void
1092 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1093 boolean_t fictitious)
1094 {
1095 vm_paddr_t pa;
1096 vm_offset_t va;
1097 pmap_t pmap;
1098
1099 pmap = vm_map_pmap(map);
1100
1101 /*
1102 * Since the pages are wired down, we must be able to get their
1103 * mappings from the physical map system.
1104 */
1105 for (va = start; va < end; va += PAGE_SIZE) {
1106 pa = pmap_extract(pmap, va);
1107 if (pa != 0) {
1108 pmap_change_wiring(pmap, va, FALSE);
1109 if (!fictitious) {
1110 vm_page_lock_queues();
1111 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1112 vm_page_unlock_queues();
1113 }
1114 }
1115 }
1116 }
1117
1118 /*
1119 * Routine:
1120 * vm_fault_copy_entry
1121 * Function:
1122 * Copy all of the pages from a wired-down map entry to another.
1123 *
1124 * In/out conditions:
1125 * The source and destination maps must be locked for write.
1126 * The source map entry must be wired down (or be a sharing map
1127 * entry corresponding to a main map entry that is wired down).
1128 */
1129 void
1130 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1131 vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1132 vm_ooffset_t *fork_charge)
1133 {
1134 vm_object_t backing_object, dst_object, object;
1135 vm_object_t src_object;
1136 vm_ooffset_t dst_offset;
1137 vm_ooffset_t src_offset;
1138 vm_pindex_t pindex;
1139 vm_prot_t prot;
1140 vm_offset_t vaddr;
1141 vm_page_t dst_m;
1142 vm_page_t src_m;
1143
1144 #ifdef lint
1145 src_map++;
1146 #endif /* lint */
1147
1148 src_object = src_entry->object.vm_object;
1149 src_offset = src_entry->offset;
1150
1151 /*
1152 * Create the top-level object for the destination entry. (Doesn't
1153 * actually shadow anything - we copy the pages directly.)
1154 */
1155 dst_object = vm_object_allocate(OBJT_DEFAULT,
1156 OFF_TO_IDX(dst_entry->end - dst_entry->start));
1157 #if VM_NRESERVLEVEL > 0
1158 dst_object->flags |= OBJ_COLORED;
1159 dst_object->pg_color = atop(dst_entry->start);
1160 #endif
1161
1162 VM_OBJECT_LOCK(dst_object);
1163 KASSERT(dst_entry->object.vm_object == NULL,
1164 ("vm_fault_copy_entry: vm_object not NULL"));
1165 dst_entry->object.vm_object = dst_object;
1166 dst_entry->offset = 0;
1167 dst_object->uip = curthread->td_ucred->cr_ruidinfo;
1168 uihold(dst_object->uip);
1169 dst_object->charge = dst_entry->end - dst_entry->start;
1170 KASSERT(dst_entry->uip == NULL,
1171 ("vm_fault_copy_entry: leaked swp charge"));
1172 *fork_charge += dst_object->charge;
1173 prot = dst_entry->max_protection;
1174
1175 /*
1176 * Loop through all of the pages in the entry's range, copying each
1177 * one from the source object (it should be there) to the destination
1178 * object.
1179 */
1180 for (vaddr = dst_entry->start, dst_offset = 0;
1181 vaddr < dst_entry->end;
1182 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1183
1184 /*
1185 * Allocate a page in the destination object
1186 */
1187 do {
1188 dst_m = vm_page_alloc(dst_object,
1189 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1190 if (dst_m == NULL) {
1191 VM_OBJECT_UNLOCK(dst_object);
1192 VM_WAIT;
1193 VM_OBJECT_LOCK(dst_object);
1194 }
1195 } while (dst_m == NULL);
1196
1197 /*
1198 * Find the page in the source object, and copy it in.
1199 * (Because the source is wired down, the page will be in
1200 * memory.)
1201 */
1202 VM_OBJECT_LOCK(src_object);
1203 object = src_object;
1204 pindex = 0;
1205 while ((src_m = vm_page_lookup(object, pindex +
1206 OFF_TO_IDX(dst_offset + src_offset))) == NULL &&
1207 (src_entry->protection & VM_PROT_WRITE) == 0 &&
1208 (backing_object = object->backing_object) != NULL) {
1209 /*
1210 * Allow fallback to backing objects if we are reading.
1211 */
1212 VM_OBJECT_LOCK(backing_object);
1213 pindex += OFF_TO_IDX(object->backing_object_offset);
1214 VM_OBJECT_UNLOCK(object);
1215 object = backing_object;
1216 }
1217 if (src_m == NULL)
1218 panic("vm_fault_copy_wired: page missing");
1219 pmap_copy_page(src_m, dst_m);
1220 VM_OBJECT_UNLOCK(object);
1221 dst_m->valid = VM_PAGE_BITS_ALL;
1222 VM_OBJECT_UNLOCK(dst_object);
1223
1224 /*
1225 * Enter it in the pmap as a read and/or execute access.
1226 */
1227 pmap_enter(dst_map->pmap, vaddr, prot & ~VM_PROT_WRITE, dst_m,
1228 prot, FALSE);
1229
1230 /*
1231 * Mark it no longer busy, and put it on the active list.
1232 */
1233 VM_OBJECT_LOCK(dst_object);
1234 vm_page_lock_queues();
1235 vm_page_activate(dst_m);
1236 vm_page_unlock_queues();
1237 vm_page_wakeup(dst_m);
1238 }
1239 VM_OBJECT_UNLOCK(dst_object);
1240 }
1241
1242
1243 /*
1244 * This routine checks around the requested page for other pages that
1245 * might be able to be faulted in. This routine brackets the viable
1246 * pages for the pages to be paged in.
1247 *
1248 * Inputs:
1249 * m, rbehind, rahead
1250 *
1251 * Outputs:
1252 * marray (array of vm_page_t), reqpage (index of requested page)
1253 *
1254 * Return value:
1255 * number of pages in marray
1256 */
1257 static int
1258 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1259 vm_page_t m;
1260 int rbehind;
1261 int rahead;
1262 vm_page_t *marray;
1263 int *reqpage;
1264 {
1265 int i,j;
1266 vm_object_t object;
1267 vm_pindex_t pindex, startpindex, endpindex, tpindex;
1268 vm_page_t rtm;
1269 int cbehind, cahead;
1270
1271 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1272
1273 object = m->object;
1274 pindex = m->pindex;
1275 cbehind = cahead = 0;
1276
1277 /*
1278 * if the requested page is not available, then give up now
1279 */
1280 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1281 return 0;
1282 }
1283
1284 if ((cbehind == 0) && (cahead == 0)) {
1285 *reqpage = 0;
1286 marray[0] = m;
1287 return 1;
1288 }
1289
1290 if (rahead > cahead) {
1291 rahead = cahead;
1292 }
1293
1294 if (rbehind > cbehind) {
1295 rbehind = cbehind;
1296 }
1297
1298 /*
1299 * scan backward for the read behind pages -- in memory
1300 */
1301 if (pindex > 0) {
1302 if (rbehind > pindex) {
1303 rbehind = pindex;
1304 startpindex = 0;
1305 } else {
1306 startpindex = pindex - rbehind;
1307 }
1308
1309 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1310 rtm->pindex >= startpindex)
1311 startpindex = rtm->pindex + 1;
1312
1313 /* tpindex is unsigned; beware of numeric underflow. */
1314 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1315 tpindex < pindex; i++, tpindex--) {
1316
1317 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1318 VM_ALLOC_IFNOTCACHED);
1319 if (rtm == NULL) {
1320 /*
1321 * Shift the allocated pages to the
1322 * beginning of the array.
1323 */
1324 for (j = 0; j < i; j++) {
1325 marray[j] = marray[j + tpindex + 1 -
1326 startpindex];
1327 }
1328 break;
1329 }
1330
1331 marray[tpindex - startpindex] = rtm;
1332 }
1333 } else {
1334 startpindex = 0;
1335 i = 0;
1336 }
1337
1338 marray[i] = m;
1339 /* page offset of the required page */
1340 *reqpage = i;
1341
1342 tpindex = pindex + 1;
1343 i++;
1344
1345 /*
1346 * scan forward for the read ahead pages
1347 */
1348 endpindex = tpindex + rahead;
1349 if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1350 endpindex = rtm->pindex;
1351 if (endpindex > object->size)
1352 endpindex = object->size;
1353
1354 for (; tpindex < endpindex; i++, tpindex++) {
1355
1356 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1357 VM_ALLOC_IFNOTCACHED);
1358 if (rtm == NULL) {
1359 break;
1360 }
1361
1362 marray[i] = rtm;
1363 }
1364
1365 /* return number of pages */
1366 return i;
1367 }
Cache object: 6aaf1375f10c8dd662e67234f6fec607
|