The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_fault.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  *
    9  *
   10  * This code is derived from software contributed to Berkeley by
   11  * The Mach Operating System project at Carnegie-Mellon University.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1. Redistributions of source code must retain the above copyright
   17  *    notice, this list of conditions and the following disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  * 3. All advertising materials mentioning features or use of this software
   22  *    must display the following acknowledgement:
   23  *      This product includes software developed by the University of
   24  *      California, Berkeley and its contributors.
   25  * 4. Neither the name of the University nor the names of its contributors
   26  *    may be used to endorse or promote products derived from this software
   27  *    without specific prior written permission.
   28  *
   29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   39  * SUCH DAMAGE.
   40  *
   41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
   42  *
   43  *
   44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   45  * All rights reserved.
   46  *
   47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   48  *
   49  * Permission to use, copy, modify and distribute this software and
   50  * its documentation is hereby granted, provided that both the copyright
   51  * notice and this permission notice appear in all copies of the
   52  * software, derivative works or modified versions, and any portions
   53  * thereof, and that both notices appear in supporting documentation.
   54  *
   55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   58  *
   59  * Carnegie Mellon requests users of this software to return to
   60  *
   61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   62  *  School of Computer Science
   63  *  Carnegie Mellon University
   64  *  Pittsburgh PA 15213-3890
   65  *
   66  * any improvements or extensions that they make and grant Carnegie the
   67  * rights to redistribute these changes.
   68  */
   69 
   70 /*
   71  *      Page fault handling module.
   72  */
   73 
   74 #include <sys/cdefs.h>
   75 __FBSDID("$FreeBSD: releng/8.1/sys/vm/vm_fault.c 207596 2010-05-04 05:14:43Z kib $");
   76 
   77 #include "opt_vm.h"
   78 
   79 #include <sys/param.h>
   80 #include <sys/systm.h>
   81 #include <sys/kernel.h>
   82 #include <sys/lock.h>
   83 #include <sys/mutex.h>
   84 #include <sys/proc.h>
   85 #include <sys/resourcevar.h>
   86 #include <sys/sysctl.h>
   87 #include <sys/vmmeter.h>
   88 #include <sys/vnode.h>
   89 
   90 #include <vm/vm.h>
   91 #include <vm/vm_param.h>
   92 #include <vm/pmap.h>
   93 #include <vm/vm_map.h>
   94 #include <vm/vm_object.h>
   95 #include <vm/vm_page.h>
   96 #include <vm/vm_pageout.h>
   97 #include <vm/vm_kern.h>
   98 #include <vm/vm_pager.h>
   99 #include <vm/vnode_pager.h>
  100 #include <vm/vm_extern.h>
  101 
  102 #include <sys/mount.h>  /* XXX Temporary for VFS_LOCK_GIANT() */
  103 
  104 #define PFBAK 4
  105 #define PFFOR 4
  106 #define PAGEORDER_SIZE (PFBAK+PFFOR)
  107 
  108 static int prefault_pageorder[] = {
  109         -1 * PAGE_SIZE, 1 * PAGE_SIZE,
  110         -2 * PAGE_SIZE, 2 * PAGE_SIZE,
  111         -3 * PAGE_SIZE, 3 * PAGE_SIZE,
  112         -4 * PAGE_SIZE, 4 * PAGE_SIZE
  113 };
  114 
  115 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
  116 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
  117 
  118 #define VM_FAULT_READ_AHEAD 8
  119 #define VM_FAULT_READ_BEHIND 7
  120 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
  121 
  122 struct faultstate {
  123         vm_page_t m;
  124         vm_object_t object;
  125         vm_pindex_t pindex;
  126         vm_page_t first_m;
  127         vm_object_t     first_object;
  128         vm_pindex_t first_pindex;
  129         vm_map_t map;
  130         vm_map_entry_t entry;
  131         int lookup_still_valid;
  132         struct vnode *vp;
  133         int vfslocked;
  134 };
  135 
  136 static inline void
  137 release_page(struct faultstate *fs)
  138 {
  139 
  140         vm_page_wakeup(fs->m);
  141         vm_page_lock_queues();
  142         vm_page_deactivate(fs->m);
  143         vm_page_unlock_queues();
  144         fs->m = NULL;
  145 }
  146 
  147 static inline void
  148 unlock_map(struct faultstate *fs)
  149 {
  150 
  151         if (fs->lookup_still_valid) {
  152                 vm_map_lookup_done(fs->map, fs->entry);
  153                 fs->lookup_still_valid = FALSE;
  154         }
  155 }
  156 
  157 static void
  158 unlock_and_deallocate(struct faultstate *fs)
  159 {
  160 
  161         vm_object_pip_wakeup(fs->object);
  162         VM_OBJECT_UNLOCK(fs->object);
  163         if (fs->object != fs->first_object) {
  164                 VM_OBJECT_LOCK(fs->first_object);
  165                 vm_page_lock_queues();
  166                 vm_page_free(fs->first_m);
  167                 vm_page_unlock_queues();
  168                 vm_object_pip_wakeup(fs->first_object);
  169                 VM_OBJECT_UNLOCK(fs->first_object);
  170                 fs->first_m = NULL;
  171         }
  172         vm_object_deallocate(fs->first_object);
  173         unlock_map(fs); 
  174         if (fs->vp != NULL) { 
  175                 vput(fs->vp);
  176                 fs->vp = NULL;
  177         }
  178         VFS_UNLOCK_GIANT(fs->vfslocked);
  179         fs->vfslocked = 0;
  180 }
  181 
  182 /*
  183  * TRYPAGER - used by vm_fault to calculate whether the pager for the
  184  *            current object *might* contain the page.
  185  *
  186  *            default objects are zero-fill, there is no real pager.
  187  */
  188 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
  189                         (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
  190 
  191 /*
  192  *      vm_fault:
  193  *
  194  *      Handle a page fault occurring at the given address,
  195  *      requiring the given permissions, in the map specified.
  196  *      If successful, the page is inserted into the
  197  *      associated physical map.
  198  *
  199  *      NOTE: the given address should be truncated to the
  200  *      proper page address.
  201  *
  202  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
  203  *      a standard error specifying why the fault is fatal is returned.
  204  *
  205  *
  206  *      The map in question must be referenced, and remains so.
  207  *      Caller may hold no locks.
  208  */
  209 int
  210 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
  211          int fault_flags)
  212 {
  213         vm_prot_t prot;
  214         int is_first_object_locked, result;
  215         boolean_t are_queues_locked, growstack, wired;
  216         int map_generation;
  217         vm_object_t next_object;
  218         vm_page_t marray[VM_FAULT_READ];
  219         int hardfault;
  220         int faultcount, ahead, behind, alloc_req;
  221         struct faultstate fs;
  222         struct vnode *vp;
  223         int locked, error;
  224 
  225         hardfault = 0;
  226         growstack = TRUE;
  227         PCPU_INC(cnt.v_vm_faults);
  228         fs.vp = NULL;
  229         fs.vfslocked = 0;
  230         faultcount = behind = 0;
  231 
  232 RetryFault:;
  233 
  234         /*
  235          * Find the backing store object and offset into it to begin the
  236          * search.
  237          */
  238         fs.map = map;
  239         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
  240             &fs.first_object, &fs.first_pindex, &prot, &wired);
  241         if (result != KERN_SUCCESS) {
  242                 if (result != KERN_PROTECTION_FAILURE ||
  243                     (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
  244                         if (growstack && result == KERN_INVALID_ADDRESS &&
  245                             map != kernel_map && curproc != NULL) {
  246                                 result = vm_map_growstack(curproc, vaddr);
  247                                 if (result != KERN_SUCCESS)
  248                                         return (KERN_FAILURE);
  249                                 growstack = FALSE;
  250                                 goto RetryFault;
  251                         }
  252                         return (result);
  253                 }
  254 
  255                 /*
  256                  * If we are user-wiring a r/w segment, and it is COW, then
  257                  * we need to do the COW operation.  Note that we don't COW
  258                  * currently RO sections now, because it is NOT desirable
  259                  * to COW .text.  We simply keep .text from ever being COW'ed
  260                  * and take the heat that one cannot debug wired .text sections.
  261                  */
  262                 result = vm_map_lookup(&fs.map, vaddr,
  263                         VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
  264                         &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
  265                 if (result != KERN_SUCCESS)
  266                         return (result);
  267 
  268                 /*
  269                  * If we don't COW now, on a user wire, the user will never
  270                  * be able to write to the mapping.  If we don't make this
  271                  * restriction, the bookkeeping would be nearly impossible.
  272                  *
  273                  * XXX The following assignment modifies the map without
  274                  * holding a write lock on it.
  275                  */
  276                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
  277                         fs.entry->max_protection &= ~VM_PROT_WRITE;
  278         }
  279 
  280         map_generation = fs.map->timestamp;
  281 
  282         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
  283                 panic("vm_fault: fault on nofault entry, addr: %lx",
  284                     (u_long)vaddr);
  285         }
  286 
  287         /*
  288          * Make a reference to this object to prevent its disposal while we
  289          * are messing with it.  Once we have the reference, the map is free
  290          * to be diddled.  Since objects reference their shadows (and copies),
  291          * they will stay around as well.
  292          *
  293          * Bump the paging-in-progress count to prevent size changes (e.g. 
  294          * truncation operations) during I/O.  This must be done after
  295          * obtaining the vnode lock in order to avoid possible deadlocks.
  296          */
  297         VM_OBJECT_LOCK(fs.first_object);
  298         vm_object_reference_locked(fs.first_object);
  299         vm_object_pip_add(fs.first_object, 1);
  300 
  301         fs.lookup_still_valid = TRUE;
  302 
  303         if (wired)
  304                 fault_type = prot;
  305 
  306         fs.first_m = NULL;
  307 
  308         /*
  309          * Search for the page at object/offset.
  310          */
  311         fs.object = fs.first_object;
  312         fs.pindex = fs.first_pindex;
  313         while (TRUE) {
  314                 /*
  315                  * If the object is dead, we stop here
  316                  */
  317                 if (fs.object->flags & OBJ_DEAD) {
  318                         unlock_and_deallocate(&fs);
  319                         return (KERN_PROTECTION_FAILURE);
  320                 }
  321 
  322                 /*
  323                  * See if page is resident
  324                  */
  325                 fs.m = vm_page_lookup(fs.object, fs.pindex);
  326                 if (fs.m != NULL) {
  327                         /* 
  328                          * check for page-based copy on write.
  329                          * We check fs.object == fs.first_object so
  330                          * as to ensure the legacy COW mechanism is
  331                          * used when the page in question is part of
  332                          * a shadow object.  Otherwise, vm_page_cowfault()
  333                          * removes the page from the backing object, 
  334                          * which is not what we want.
  335                          */
  336                         vm_page_lock_queues();
  337                         if ((fs.m->cow) && 
  338                             (fault_type & VM_PROT_WRITE) &&
  339                             (fs.object == fs.first_object)) {
  340                                 vm_page_cowfault(fs.m);
  341                                 vm_page_unlock_queues();
  342                                 unlock_and_deallocate(&fs);
  343                                 goto RetryFault;
  344                         }
  345 
  346                         /*
  347                          * Wait/Retry if the page is busy.  We have to do this
  348                          * if the page is busy via either VPO_BUSY or 
  349                          * vm_page_t->busy because the vm_pager may be using
  350                          * vm_page_t->busy for pageouts ( and even pageins if
  351                          * it is the vnode pager ), and we could end up trying
  352                          * to pagein and pageout the same page simultaneously.
  353                          *
  354                          * We can theoretically allow the busy case on a read
  355                          * fault if the page is marked valid, but since such
  356                          * pages are typically already pmap'd, putting that
  357                          * special case in might be more effort then it is 
  358                          * worth.  We cannot under any circumstances mess
  359                          * around with a vm_page_t->busy page except, perhaps,
  360                          * to pmap it.
  361                          */
  362                         if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
  363                                 vm_page_unlock_queues();
  364                                 VM_OBJECT_UNLOCK(fs.object);
  365                                 if (fs.object != fs.first_object) {
  366                                         VM_OBJECT_LOCK(fs.first_object);
  367                                         vm_page_lock_queues();
  368                                         vm_page_free(fs.first_m);
  369                                         vm_page_unlock_queues();
  370                                         vm_object_pip_wakeup(fs.first_object);
  371                                         VM_OBJECT_UNLOCK(fs.first_object);
  372                                         fs.first_m = NULL;
  373                                 }
  374                                 unlock_map(&fs);
  375                                 VM_OBJECT_LOCK(fs.object);
  376                                 if (fs.m == vm_page_lookup(fs.object,
  377                                     fs.pindex)) {
  378                                         vm_page_sleep_if_busy(fs.m, TRUE,
  379                                             "vmpfw");
  380                                 }
  381                                 vm_object_pip_wakeup(fs.object);
  382                                 VM_OBJECT_UNLOCK(fs.object);
  383                                 PCPU_INC(cnt.v_intrans);
  384                                 vm_object_deallocate(fs.first_object);
  385                                 goto RetryFault;
  386                         }
  387                         vm_pageq_remove(fs.m);
  388                         vm_page_unlock_queues();
  389 
  390                         /*
  391                          * Mark page busy for other processes, and the 
  392                          * pagedaemon.  If it still isn't completely valid
  393                          * (readable), jump to readrest, else break-out ( we
  394                          * found the page ).
  395                          */
  396                         vm_page_busy(fs.m);
  397                         if (fs.m->valid != VM_PAGE_BITS_ALL &&
  398                                 fs.m->object != kernel_object && fs.m->object != kmem_object) {
  399                                 goto readrest;
  400                         }
  401 
  402                         break;
  403                 }
  404 
  405                 /*
  406                  * Page is not resident, If this is the search termination
  407                  * or the pager might contain the page, allocate a new page.
  408                  */
  409                 if (TRYPAGER || fs.object == fs.first_object) {
  410                         if (fs.pindex >= fs.object->size) {
  411                                 unlock_and_deallocate(&fs);
  412                                 return (KERN_PROTECTION_FAILURE);
  413                         }
  414 
  415                         /*
  416                          * Allocate a new page for this object/offset pair.
  417                          *
  418                          * Unlocked read of the p_flag is harmless. At
  419                          * worst, the P_KILLED might be not observed
  420                          * there, and allocation can fail, causing
  421                          * restart and new reading of the p_flag.
  422                          */
  423                         fs.m = NULL;
  424                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
  425 #if VM_NRESERVLEVEL > 0
  426                                 if ((fs.object->flags & OBJ_COLORED) == 0) {
  427                                         fs.object->flags |= OBJ_COLORED;
  428                                         fs.object->pg_color = atop(vaddr) -
  429                                             fs.pindex;
  430                                 }
  431 #endif
  432                                 alloc_req = P_KILLED(curproc) ?
  433                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
  434                                 if (fs.object->type != OBJT_VNODE &&
  435                                     fs.object->backing_object == NULL)
  436                                         alloc_req |= VM_ALLOC_ZERO;
  437                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
  438                                     alloc_req);
  439                         }
  440                         if (fs.m == NULL) {
  441                                 unlock_and_deallocate(&fs);
  442                                 VM_WAITPFAULT;
  443                                 goto RetryFault;
  444                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
  445                                 break;
  446                 }
  447 
  448 readrest:
  449                 /*
  450                  * We have found a valid page or we have allocated a new page.
  451                  * The page thus may not be valid or may not be entirely 
  452                  * valid.
  453                  *
  454                  * Attempt to fault-in the page if there is a chance that the
  455                  * pager has it, and potentially fault in additional pages
  456                  * at the same time.
  457                  */
  458                 if (TRYPAGER) {
  459                         int rv;
  460                         int reqpage = 0;
  461                         u_char behavior = vm_map_entry_behavior(fs.entry);
  462 
  463                         if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
  464                             P_KILLED(curproc)) {
  465                                 ahead = 0;
  466                                 behind = 0;
  467                         } else {
  468                                 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
  469                                 if (behind > VM_FAULT_READ_BEHIND)
  470                                         behind = VM_FAULT_READ_BEHIND;
  471 
  472                                 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
  473                                 if (ahead > VM_FAULT_READ_AHEAD)
  474                                         ahead = VM_FAULT_READ_AHEAD;
  475                         }
  476                         is_first_object_locked = FALSE;
  477                         if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
  478                              (behavior != MAP_ENTRY_BEHAV_RANDOM &&
  479                               fs.pindex >= fs.entry->lastr &&
  480                               fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
  481                             (fs.first_object == fs.object ||
  482                              (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
  483                             fs.first_object->type != OBJT_DEVICE &&
  484                             fs.first_object->type != OBJT_PHYS &&
  485                             fs.first_object->type != OBJT_SG) {
  486                                 vm_pindex_t firstpindex, tmppindex;
  487 
  488                                 if (fs.first_pindex < 2 * VM_FAULT_READ)
  489                                         firstpindex = 0;
  490                                 else
  491                                         firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
  492 
  493                                 are_queues_locked = FALSE;
  494                                 /*
  495                                  * note: partially valid pages cannot be 
  496                                  * included in the lookahead - NFS piecemeal
  497                                  * writes will barf on it badly.
  498                                  */
  499                                 for (tmppindex = fs.first_pindex - 1;
  500                                         tmppindex >= firstpindex;
  501                                         --tmppindex) {
  502                                         vm_page_t mt;
  503 
  504                                         mt = vm_page_lookup(fs.first_object, tmppindex);
  505                                         if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
  506                                                 break;
  507                                         if (mt->busy ||
  508                                             (mt->oflags & VPO_BUSY))
  509                                                 continue;
  510                                         if (!are_queues_locked) {
  511                                                 are_queues_locked = TRUE;
  512                                                 vm_page_lock_queues();
  513                                         }
  514                                         if (mt->hold_count ||
  515                                                 mt->wire_count) 
  516                                                 continue;
  517                                         pmap_remove_all(mt);
  518                                         if (mt->dirty) {
  519                                                 vm_page_deactivate(mt);
  520                                         } else {
  521                                                 vm_page_cache(mt);
  522                                         }
  523                                 }
  524                                 if (are_queues_locked)
  525                                         vm_page_unlock_queues();
  526                                 ahead += behind;
  527                                 behind = 0;
  528                         }
  529                         if (is_first_object_locked)
  530                                 VM_OBJECT_UNLOCK(fs.first_object);
  531 
  532                         /*
  533                          * Call the pager to retrieve the data, if any, after
  534                          * releasing the lock on the map.  We hold a ref on
  535                          * fs.object and the pages are VPO_BUSY'd.
  536                          */
  537                         unlock_map(&fs);
  538 
  539 vnode_lock:
  540                         if (fs.object->type == OBJT_VNODE) {
  541                                 vp = fs.object->handle;
  542                                 if (vp == fs.vp)
  543                                         goto vnode_locked;
  544                                 else if (fs.vp != NULL) {
  545                                         vput(fs.vp);
  546                                         fs.vp = NULL;
  547                                 }
  548                                 locked = VOP_ISLOCKED(vp);
  549 
  550                                 if (VFS_NEEDSGIANT(vp->v_mount) && !fs.vfslocked) {
  551                                         fs.vfslocked = 1;
  552                                         if (!mtx_trylock(&Giant)) {
  553                                                 VM_OBJECT_UNLOCK(fs.object);
  554                                                 mtx_lock(&Giant);
  555                                                 VM_OBJECT_LOCK(fs.object);
  556                                                 goto vnode_lock;
  557                                         }
  558                                 }
  559                                 if (locked != LK_EXCLUSIVE)
  560                                         locked = LK_SHARED;
  561                                 /* Do not sleep for vnode lock while fs.m is busy */
  562                                 error = vget(vp, locked | LK_CANRECURSE |
  563                                     LK_NOWAIT, curthread);
  564                                 if (error != 0) {
  565                                         int vfslocked;
  566 
  567                                         vfslocked = fs.vfslocked;
  568                                         fs.vfslocked = 0; /* Keep Giant */
  569                                         vhold(vp);
  570                                         release_page(&fs);
  571                                         unlock_and_deallocate(&fs);
  572                                         error = vget(vp, locked | LK_RETRY |
  573                                             LK_CANRECURSE, curthread);
  574                                         vdrop(vp);
  575                                         fs.vp = vp;
  576                                         fs.vfslocked = vfslocked;
  577                                         KASSERT(error == 0,
  578                                             ("vm_fault: vget failed"));
  579                                         goto RetryFault;
  580                                 }
  581                                 fs.vp = vp;
  582                         }
  583 vnode_locked:
  584                         KASSERT(fs.vp == NULL || !fs.map->system_map,
  585                             ("vm_fault: vnode-backed object mapped by system map"));
  586 
  587                         /*
  588                          * now we find out if any other pages should be paged
  589                          * in at this time this routine checks to see if the
  590                          * pages surrounding this fault reside in the same
  591                          * object as the page for this fault.  If they do,
  592                          * then they are faulted in also into the object.  The
  593                          * array "marray" returned contains an array of
  594                          * vm_page_t structs where one of them is the
  595                          * vm_page_t passed to the routine.  The reqpage
  596                          * return value is the index into the marray for the
  597                          * vm_page_t passed to the routine.
  598                          *
  599                          * fs.m plus the additional pages are VPO_BUSY'd.
  600                          */
  601                         faultcount = vm_fault_additional_pages(
  602                             fs.m, behind, ahead, marray, &reqpage);
  603 
  604                         rv = faultcount ?
  605                             vm_pager_get_pages(fs.object, marray, faultcount,
  606                                 reqpage) : VM_PAGER_FAIL;
  607 
  608                         if (rv == VM_PAGER_OK) {
  609                                 /*
  610                                  * Found the page. Leave it busy while we play
  611                                  * with it.
  612                                  */
  613 
  614                                 /*
  615                                  * Relookup in case pager changed page. Pager
  616                                  * is responsible for disposition of old page
  617                                  * if moved.
  618                                  */
  619                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
  620                                 if (!fs.m) {
  621                                         unlock_and_deallocate(&fs);
  622                                         goto RetryFault;
  623                                 }
  624 
  625                                 hardfault++;
  626                                 break; /* break to PAGE HAS BEEN FOUND */
  627                         }
  628                         /*
  629                          * Remove the bogus page (which does not exist at this
  630                          * object/offset); before doing so, we must get back
  631                          * our object lock to preserve our invariant.
  632                          *
  633                          * Also wake up any other process that may want to bring
  634                          * in this page.
  635                          *
  636                          * If this is the top-level object, we must leave the
  637                          * busy page to prevent another process from rushing
  638                          * past us, and inserting the page in that object at
  639                          * the same time that we are.
  640                          */
  641                         if (rv == VM_PAGER_ERROR)
  642                                 printf("vm_fault: pager read error, pid %d (%s)\n",
  643                                     curproc->p_pid, curproc->p_comm);
  644                         /*
  645                          * Data outside the range of the pager or an I/O error
  646                          */
  647                         /*
  648                          * XXX - the check for kernel_map is a kludge to work
  649                          * around having the machine panic on a kernel space
  650                          * fault w/ I/O error.
  651                          */
  652                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
  653                                 (rv == VM_PAGER_BAD)) {
  654                                 vm_page_lock_queues();
  655                                 vm_page_free(fs.m);
  656                                 vm_page_unlock_queues();
  657                                 fs.m = NULL;
  658                                 unlock_and_deallocate(&fs);
  659                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
  660                         }
  661                         if (fs.object != fs.first_object) {
  662                                 vm_page_lock_queues();
  663                                 vm_page_free(fs.m);
  664                                 vm_page_unlock_queues();
  665                                 fs.m = NULL;
  666                                 /*
  667                                  * XXX - we cannot just fall out at this
  668                                  * point, m has been freed and is invalid!
  669                                  */
  670                         }
  671                 }
  672 
  673                 /*
  674                  * We get here if the object has default pager (or unwiring) 
  675                  * or the pager doesn't have the page.
  676                  */
  677                 if (fs.object == fs.first_object)
  678                         fs.first_m = fs.m;
  679 
  680                 /*
  681                  * Move on to the next object.  Lock the next object before
  682                  * unlocking the current one.
  683                  */
  684                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
  685                 next_object = fs.object->backing_object;
  686                 if (next_object == NULL) {
  687                         /*
  688                          * If there's no object left, fill the page in the top
  689                          * object with zeros.
  690                          */
  691                         if (fs.object != fs.first_object) {
  692                                 vm_object_pip_wakeup(fs.object);
  693                                 VM_OBJECT_UNLOCK(fs.object);
  694 
  695                                 fs.object = fs.first_object;
  696                                 fs.pindex = fs.first_pindex;
  697                                 fs.m = fs.first_m;
  698                                 VM_OBJECT_LOCK(fs.object);
  699                         }
  700                         fs.first_m = NULL;
  701 
  702                         /*
  703                          * Zero the page if necessary and mark it valid.
  704                          */
  705                         if ((fs.m->flags & PG_ZERO) == 0) {
  706                                 pmap_zero_page(fs.m);
  707                         } else {
  708                                 PCPU_INC(cnt.v_ozfod);
  709                         }
  710                         PCPU_INC(cnt.v_zfod);
  711                         fs.m->valid = VM_PAGE_BITS_ALL;
  712                         break;  /* break to PAGE HAS BEEN FOUND */
  713                 } else {
  714                         KASSERT(fs.object != next_object,
  715                             ("object loop %p", next_object));
  716                         VM_OBJECT_LOCK(next_object);
  717                         vm_object_pip_add(next_object, 1);
  718                         if (fs.object != fs.first_object)
  719                                 vm_object_pip_wakeup(fs.object);
  720                         VM_OBJECT_UNLOCK(fs.object);
  721                         fs.object = next_object;
  722                 }
  723         }
  724 
  725         KASSERT((fs.m->oflags & VPO_BUSY) != 0,
  726             ("vm_fault: not busy after main loop"));
  727 
  728         /*
  729          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
  730          * is held.]
  731          */
  732 
  733         /*
  734          * If the page is being written, but isn't already owned by the
  735          * top-level object, we have to copy it into a new page owned by the
  736          * top-level object.
  737          */
  738         if (fs.object != fs.first_object) {
  739                 /*
  740                  * We only really need to copy if we want to write it.
  741                  */
  742                 if (fault_type & VM_PROT_WRITE) {
  743                         /*
  744                          * This allows pages to be virtually copied from a 
  745                          * backing_object into the first_object, where the 
  746                          * backing object has no other refs to it, and cannot
  747                          * gain any more refs.  Instead of a bcopy, we just 
  748                          * move the page from the backing object to the 
  749                          * first object.  Note that we must mark the page 
  750                          * dirty in the first object so that it will go out 
  751                          * to swap when needed.
  752                          */
  753                         is_first_object_locked = FALSE;
  754                         if (
  755                                 /*
  756                                  * Only one shadow object
  757                                  */
  758                                 (fs.object->shadow_count == 1) &&
  759                                 /*
  760                                  * No COW refs, except us
  761                                  */
  762                                 (fs.object->ref_count == 1) &&
  763                                 /*
  764                                  * No one else can look this object up
  765                                  */
  766                                 (fs.object->handle == NULL) &&
  767                                 /*
  768                                  * No other ways to look the object up
  769                                  */
  770                                 ((fs.object->type == OBJT_DEFAULT) ||
  771                                  (fs.object->type == OBJT_SWAP)) &&
  772                             (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
  773                                 /*
  774                                  * We don't chase down the shadow chain
  775                                  */
  776                             fs.object == fs.first_object->backing_object) {
  777                                 vm_page_lock_queues();
  778                                 /*
  779                                  * get rid of the unnecessary page
  780                                  */
  781                                 vm_page_free(fs.first_m);
  782                                 /*
  783                                  * grab the page and put it into the 
  784                                  * process'es object.  The page is 
  785                                  * automatically made dirty.
  786                                  */
  787                                 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
  788                                 vm_page_unlock_queues();
  789                                 vm_page_busy(fs.m);
  790                                 fs.first_m = fs.m;
  791                                 fs.m = NULL;
  792                                 PCPU_INC(cnt.v_cow_optim);
  793                         } else {
  794                                 /*
  795                                  * Oh, well, lets copy it.
  796                                  */
  797                                 pmap_copy_page(fs.m, fs.first_m);
  798                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
  799                         }
  800                         if (fs.m) {
  801                                 /*
  802                                  * We no longer need the old page or object.
  803                                  */
  804                                 release_page(&fs);
  805                         }
  806                         /*
  807                          * fs.object != fs.first_object due to above 
  808                          * conditional
  809                          */
  810                         vm_object_pip_wakeup(fs.object);
  811                         VM_OBJECT_UNLOCK(fs.object);
  812                         /*
  813                          * Only use the new page below...
  814                          */
  815                         fs.object = fs.first_object;
  816                         fs.pindex = fs.first_pindex;
  817                         fs.m = fs.first_m;
  818                         if (!is_first_object_locked)
  819                                 VM_OBJECT_LOCK(fs.object);
  820                         PCPU_INC(cnt.v_cow_faults);
  821                 } else {
  822                         prot &= ~VM_PROT_WRITE;
  823                 }
  824         }
  825 
  826         /*
  827          * We must verify that the maps have not changed since our last
  828          * lookup.
  829          */
  830         if (!fs.lookup_still_valid) {
  831                 vm_object_t retry_object;
  832                 vm_pindex_t retry_pindex;
  833                 vm_prot_t retry_prot;
  834 
  835                 if (!vm_map_trylock_read(fs.map)) {
  836                         release_page(&fs);
  837                         unlock_and_deallocate(&fs);
  838                         goto RetryFault;
  839                 }
  840                 fs.lookup_still_valid = TRUE;
  841                 if (fs.map->timestamp != map_generation) {
  842                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
  843                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
  844 
  845                         /*
  846                          * If we don't need the page any longer, put it on the inactive
  847                          * list (the easiest thing to do here).  If no one needs it,
  848                          * pageout will grab it eventually.
  849                          */
  850                         if (result != KERN_SUCCESS) {
  851                                 release_page(&fs);
  852                                 unlock_and_deallocate(&fs);
  853 
  854                                 /*
  855                                  * If retry of map lookup would have blocked then
  856                                  * retry fault from start.
  857                                  */
  858                                 if (result == KERN_FAILURE)
  859                                         goto RetryFault;
  860                                 return (result);
  861                         }
  862                         if ((retry_object != fs.first_object) ||
  863                             (retry_pindex != fs.first_pindex)) {
  864                                 release_page(&fs);
  865                                 unlock_and_deallocate(&fs);
  866                                 goto RetryFault;
  867                         }
  868 
  869                         /*
  870                          * Check whether the protection has changed or the object has
  871                          * been copied while we left the map unlocked. Changing from
  872                          * read to write permission is OK - we leave the page
  873                          * write-protected, and catch the write fault. Changing from
  874                          * write to read permission means that we can't mark the page
  875                          * write-enabled after all.
  876                          */
  877                         prot &= retry_prot;
  878                 }
  879         }
  880         /*
  881          * If the page was filled by a pager, update the map entry's
  882          * last read offset.  Since the pager does not return the
  883          * actual set of pages that it read, this update is based on
  884          * the requested set.  Typically, the requested and actual
  885          * sets are the same.
  886          *
  887          * XXX The following assignment modifies the map
  888          * without holding a write lock on it.
  889          */
  890         if (hardfault)
  891                 fs.entry->lastr = fs.pindex + faultcount - behind;
  892 
  893         if (prot & VM_PROT_WRITE) {
  894                 vm_object_set_writeable_dirty(fs.object);
  895 
  896                 /*
  897                  * If the fault is a write, we know that this page is being
  898                  * written NOW so dirty it explicitly to save on 
  899                  * pmap_is_modified() calls later.
  900                  *
  901                  * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
  902                  * if the page is already dirty to prevent data written with
  903                  * the expectation of being synced from not being synced.
  904                  * Likewise if this entry does not request NOSYNC then make
  905                  * sure the page isn't marked NOSYNC.  Applications sharing
  906                  * data should use the same flags to avoid ping ponging.
  907                  *
  908                  * Also tell the backing pager, if any, that it should remove
  909                  * any swap backing since the page is now dirty.
  910                  */
  911                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
  912                         if (fs.m->dirty == 0)
  913                                 fs.m->oflags |= VPO_NOSYNC;
  914                 } else {
  915                         fs.m->oflags &= ~VPO_NOSYNC;
  916                 }
  917                 if (fault_flags & VM_FAULT_DIRTY) {
  918                         vm_page_dirty(fs.m);
  919                         vm_pager_page_unswapped(fs.m);
  920                 }
  921         }
  922 
  923         /*
  924          * Page had better still be busy
  925          */
  926         KASSERT(fs.m->oflags & VPO_BUSY,
  927                 ("vm_fault: page %p not busy!", fs.m));
  928         /*
  929          * Page must be completely valid or it is not fit to
  930          * map into user space.  vm_pager_get_pages() ensures this.
  931          */
  932         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
  933             ("vm_fault: page %p partially invalid", fs.m));
  934         VM_OBJECT_UNLOCK(fs.object);
  935 
  936         /*
  937          * Put this page into the physical map.  We had to do the unlock above
  938          * because pmap_enter() may sleep.  We don't put the page
  939          * back on the active queue until later so that the pageout daemon
  940          * won't find it (yet).
  941          */
  942         pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
  943         if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
  944                 vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
  945         }
  946         VM_OBJECT_LOCK(fs.object);
  947         vm_page_lock_queues();
  948         vm_page_flag_set(fs.m, PG_REFERENCED);
  949 
  950         /*
  951          * If the page is not wired down, then put it where the pageout daemon
  952          * can find it.
  953          */
  954         if (fault_flags & VM_FAULT_WIRE_MASK) {
  955                 if (wired)
  956                         vm_page_wire(fs.m);
  957                 else
  958                         vm_page_unwire(fs.m, 1);
  959         } else {
  960                 vm_page_activate(fs.m);
  961         }
  962         vm_page_unlock_queues();
  963         vm_page_wakeup(fs.m);
  964 
  965         /*
  966          * Unlock everything, and return
  967          */
  968         unlock_and_deallocate(&fs);
  969         if (hardfault)
  970                 curthread->td_ru.ru_majflt++;
  971         else
  972                 curthread->td_ru.ru_minflt++;
  973 
  974         return (KERN_SUCCESS);
  975 }
  976 
  977 /*
  978  * vm_fault_prefault provides a quick way of clustering
  979  * pagefaults into a processes address space.  It is a "cousin"
  980  * of vm_map_pmap_enter, except it runs at page fault time instead
  981  * of mmap time.
  982  */
  983 static void
  984 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
  985 {
  986         int i;
  987         vm_offset_t addr, starta;
  988         vm_pindex_t pindex;
  989         vm_page_t m;
  990         vm_object_t object;
  991 
  992         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
  993                 return;
  994 
  995         object = entry->object.vm_object;
  996 
  997         starta = addra - PFBAK * PAGE_SIZE;
  998         if (starta < entry->start) {
  999                 starta = entry->start;
 1000         } else if (starta > addra) {
 1001                 starta = 0;
 1002         }
 1003 
 1004         for (i = 0; i < PAGEORDER_SIZE; i++) {
 1005                 vm_object_t backing_object, lobject;
 1006 
 1007                 addr = addra + prefault_pageorder[i];
 1008                 if (addr > addra + (PFFOR * PAGE_SIZE))
 1009                         addr = 0;
 1010 
 1011                 if (addr < starta || addr >= entry->end)
 1012                         continue;
 1013 
 1014                 if (!pmap_is_prefaultable(pmap, addr))
 1015                         continue;
 1016 
 1017                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
 1018                 lobject = object;
 1019                 VM_OBJECT_LOCK(lobject);
 1020                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
 1021                     lobject->type == OBJT_DEFAULT &&
 1022                     (backing_object = lobject->backing_object) != NULL) {
 1023                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
 1024                             0, ("vm_fault_prefault: unaligned object offset"));
 1025                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
 1026                         VM_OBJECT_LOCK(backing_object);
 1027                         VM_OBJECT_UNLOCK(lobject);
 1028                         lobject = backing_object;
 1029                 }
 1030                 /*
 1031                  * give-up when a page is not in memory
 1032                  */
 1033                 if (m == NULL) {
 1034                         VM_OBJECT_UNLOCK(lobject);
 1035                         break;
 1036                 }
 1037                 if (m->valid == VM_PAGE_BITS_ALL &&
 1038                     (m->flags & PG_FICTITIOUS) == 0) {
 1039                         vm_page_lock_queues();
 1040                         pmap_enter_quick(pmap, addr, m, entry->protection);
 1041                         vm_page_unlock_queues();
 1042                 }
 1043                 VM_OBJECT_UNLOCK(lobject);
 1044         }
 1045 }
 1046 
 1047 /*
 1048  *      vm_fault_quick:
 1049  *
 1050  *      Ensure that the requested virtual address, which may be in userland,
 1051  *      is valid.  Fault-in the page if necessary.  Return -1 on failure.
 1052  */
 1053 int
 1054 vm_fault_quick(caddr_t v, int prot)
 1055 {
 1056         int r;
 1057 
 1058         if (prot & VM_PROT_WRITE)
 1059                 r = subyte(v, fubyte(v));
 1060         else
 1061                 r = fubyte(v);
 1062         return(r);
 1063 }
 1064 
 1065 /*
 1066  *      vm_fault_wire:
 1067  *
 1068  *      Wire down a range of virtual addresses in a map.
 1069  */
 1070 int
 1071 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
 1072     boolean_t user_wire, boolean_t fictitious)
 1073 {
 1074         vm_offset_t va;
 1075         int rv;
 1076 
 1077         /*
 1078          * We simulate a fault to get the page and enter it in the physical
 1079          * map.  For user wiring, we only ask for read access on currently
 1080          * read-only sections.
 1081          */
 1082         for (va = start; va < end; va += PAGE_SIZE) {
 1083                 rv = vm_fault(map, va,
 1084                     user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
 1085                     user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
 1086                 if (rv) {
 1087                         if (va != start)
 1088                                 vm_fault_unwire(map, start, va, fictitious);
 1089                         return (rv);
 1090                 }
 1091         }
 1092         return (KERN_SUCCESS);
 1093 }
 1094 
 1095 /*
 1096  *      vm_fault_unwire:
 1097  *
 1098  *      Unwire a range of virtual addresses in a map.
 1099  */
 1100 void
 1101 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
 1102     boolean_t fictitious)
 1103 {
 1104         vm_paddr_t pa;
 1105         vm_offset_t va;
 1106         pmap_t pmap;
 1107 
 1108         pmap = vm_map_pmap(map);
 1109 
 1110         /*
 1111          * Since the pages are wired down, we must be able to get their
 1112          * mappings from the physical map system.
 1113          */
 1114         for (va = start; va < end; va += PAGE_SIZE) {
 1115                 pa = pmap_extract(pmap, va);
 1116                 if (pa != 0) {
 1117                         pmap_change_wiring(pmap, va, FALSE);
 1118                         if (!fictitious) {
 1119                                 vm_page_lock_queues();
 1120                                 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
 1121                                 vm_page_unlock_queues();
 1122                         }
 1123                 }
 1124         }
 1125 }
 1126 
 1127 /*
 1128  *      Routine:
 1129  *              vm_fault_copy_entry
 1130  *      Function:
 1131  *              Create new shadow object backing dst_entry with private copy of
 1132  *              all underlying pages. When src_entry is equal to dst_entry,
 1133  *              function implements COW for wired-down map entry. Otherwise,
 1134  *              it forks wired entry into dst_map.
 1135  *
 1136  *      In/out conditions:
 1137  *              The source and destination maps must be locked for write.
 1138  *              The source map entry must be wired down (or be a sharing map
 1139  *              entry corresponding to a main map entry that is wired down).
 1140  */
 1141 void
 1142 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
 1143     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
 1144     vm_ooffset_t *fork_charge)
 1145 {
 1146         vm_object_t backing_object, dst_object, object, src_object;
 1147         vm_pindex_t dst_pindex, pindex, src_pindex;
 1148         vm_prot_t access, prot;
 1149         vm_offset_t vaddr;
 1150         vm_page_t dst_m;
 1151         vm_page_t src_m;
 1152         boolean_t src_readonly, upgrade;
 1153 
 1154 #ifdef  lint
 1155         src_map++;
 1156 #endif  /* lint */
 1157 
 1158         upgrade = src_entry == dst_entry;
 1159 
 1160         src_object = src_entry->object.vm_object;
 1161         src_pindex = OFF_TO_IDX(src_entry->offset);
 1162         src_readonly = (src_entry->protection & VM_PROT_WRITE) == 0;
 1163 
 1164         /*
 1165          * Create the top-level object for the destination entry. (Doesn't
 1166          * actually shadow anything - we copy the pages directly.)
 1167          */
 1168         dst_object = vm_object_allocate(OBJT_DEFAULT,
 1169             OFF_TO_IDX(dst_entry->end - dst_entry->start));
 1170 #if VM_NRESERVLEVEL > 0
 1171         dst_object->flags |= OBJ_COLORED;
 1172         dst_object->pg_color = atop(dst_entry->start);
 1173 #endif
 1174 
 1175         VM_OBJECT_LOCK(dst_object);
 1176         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
 1177             ("vm_fault_copy_entry: vm_object not NULL"));
 1178         dst_entry->object.vm_object = dst_object;
 1179         dst_entry->offset = 0;
 1180         dst_object->charge = dst_entry->end - dst_entry->start;
 1181         if (fork_charge != NULL) {
 1182                 KASSERT(dst_entry->uip == NULL,
 1183                     ("vm_fault_copy_entry: leaked swp charge"));
 1184                 dst_object->uip = curthread->td_ucred->cr_ruidinfo;
 1185                 uihold(dst_object->uip);
 1186                 *fork_charge += dst_object->charge;
 1187         } else {
 1188                 dst_object->uip = dst_entry->uip;
 1189                 dst_entry->uip = NULL;
 1190         }
 1191         access = prot = dst_entry->max_protection;
 1192         /*
 1193          * If not an upgrade, then enter the mappings in the pmap as
 1194          * read and/or execute accesses.  Otherwise, enter them as
 1195          * write accesses.
 1196          *
 1197          * A writeable large page mapping is only created if all of
 1198          * the constituent small page mappings are modified. Marking
 1199          * PTEs as modified on inception allows promotion to happen
 1200          * without taking potentially large number of soft faults.
 1201          */
 1202         if (!upgrade)
 1203                 access &= ~VM_PROT_WRITE;
 1204 
 1205         /*
 1206          * Loop through all of the pages in the entry's range, copying each
 1207          * one from the source object (it should be there) to the destination
 1208          * object.
 1209          */
 1210         for (vaddr = dst_entry->start, dst_pindex = 0;
 1211             vaddr < dst_entry->end;
 1212             vaddr += PAGE_SIZE, dst_pindex++) {
 1213 
 1214                 /*
 1215                  * Allocate a page in the destination object.
 1216                  */
 1217                 do {
 1218                         dst_m = vm_page_alloc(dst_object, dst_pindex,
 1219                             VM_ALLOC_NORMAL);
 1220                         if (dst_m == NULL) {
 1221                                 VM_OBJECT_UNLOCK(dst_object);
 1222                                 VM_WAIT;
 1223                                 VM_OBJECT_LOCK(dst_object);
 1224                         }
 1225                 } while (dst_m == NULL);
 1226 
 1227                 /*
 1228                  * Find the page in the source object, and copy it in.
 1229                  * (Because the source is wired down, the page will be in
 1230                  * memory.)
 1231                  */
 1232                 VM_OBJECT_LOCK(src_object);
 1233                 object = src_object;
 1234                 pindex = src_pindex + dst_pindex;
 1235                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
 1236                     src_readonly &&
 1237                     (backing_object = object->backing_object) != NULL) {
 1238                         /*
 1239                          * Allow fallback to backing objects if we are reading.
 1240                          */
 1241                         VM_OBJECT_LOCK(backing_object);
 1242                         pindex += OFF_TO_IDX(object->backing_object_offset);
 1243                         VM_OBJECT_UNLOCK(object);
 1244                         object = backing_object;
 1245                 }
 1246                 if (src_m == NULL)
 1247                         panic("vm_fault_copy_wired: page missing");
 1248                 pmap_copy_page(src_m, dst_m);
 1249                 VM_OBJECT_UNLOCK(object);
 1250                 dst_m->valid = VM_PAGE_BITS_ALL;
 1251                 VM_OBJECT_UNLOCK(dst_object);
 1252 
 1253                 /*
 1254                  * Enter it in the pmap. If a wired, copy-on-write
 1255                  * mapping is being replaced by a write-enabled
 1256                  * mapping, then wire that new mapping.
 1257                  */
 1258                 pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade);
 1259 
 1260                 /*
 1261                  * Mark it no longer busy, and put it on the active list.
 1262                  */
 1263                 VM_OBJECT_LOCK(dst_object);
 1264                 vm_page_lock_queues();
 1265                 if (upgrade) {
 1266                         vm_page_unwire(src_m, 0);
 1267                         vm_page_wire(dst_m);
 1268                 } else
 1269                         vm_page_activate(dst_m);
 1270                 vm_page_unlock_queues();
 1271                 vm_page_wakeup(dst_m);
 1272         }
 1273         VM_OBJECT_UNLOCK(dst_object);
 1274         if (upgrade) {
 1275                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
 1276                 vm_object_deallocate(src_object);
 1277         }
 1278 }
 1279 
 1280 
 1281 /*
 1282  * This routine checks around the requested page for other pages that
 1283  * might be able to be faulted in.  This routine brackets the viable
 1284  * pages for the pages to be paged in.
 1285  *
 1286  * Inputs:
 1287  *      m, rbehind, rahead
 1288  *
 1289  * Outputs:
 1290  *  marray (array of vm_page_t), reqpage (index of requested page)
 1291  *
 1292  * Return value:
 1293  *  number of pages in marray
 1294  */
 1295 static int
 1296 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
 1297         vm_page_t m;
 1298         int rbehind;
 1299         int rahead;
 1300         vm_page_t *marray;
 1301         int *reqpage;
 1302 {
 1303         int i,j;
 1304         vm_object_t object;
 1305         vm_pindex_t pindex, startpindex, endpindex, tpindex;
 1306         vm_page_t rtm;
 1307         int cbehind, cahead;
 1308 
 1309         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1310 
 1311         object = m->object;
 1312         pindex = m->pindex;
 1313         cbehind = cahead = 0;
 1314 
 1315         /*
 1316          * if the requested page is not available, then give up now
 1317          */
 1318         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
 1319                 return 0;
 1320         }
 1321 
 1322         if ((cbehind == 0) && (cahead == 0)) {
 1323                 *reqpage = 0;
 1324                 marray[0] = m;
 1325                 return 1;
 1326         }
 1327 
 1328         if (rahead > cahead) {
 1329                 rahead = cahead;
 1330         }
 1331 
 1332         if (rbehind > cbehind) {
 1333                 rbehind = cbehind;
 1334         }
 1335 
 1336         /*
 1337          * scan backward for the read behind pages -- in memory 
 1338          */
 1339         if (pindex > 0) {
 1340                 if (rbehind > pindex) {
 1341                         rbehind = pindex;
 1342                         startpindex = 0;
 1343                 } else {
 1344                         startpindex = pindex - rbehind;
 1345                 }
 1346 
 1347                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
 1348                     rtm->pindex >= startpindex)
 1349                         startpindex = rtm->pindex + 1;
 1350 
 1351                 /* tpindex is unsigned; beware of numeric underflow. */
 1352                 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
 1353                     tpindex < pindex; i++, tpindex--) {
 1354 
 1355                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
 1356                             VM_ALLOC_IFNOTCACHED);
 1357                         if (rtm == NULL) {
 1358                                 /*
 1359                                  * Shift the allocated pages to the
 1360                                  * beginning of the array.
 1361                                  */
 1362                                 for (j = 0; j < i; j++) {
 1363                                         marray[j] = marray[j + tpindex + 1 -
 1364                                             startpindex];
 1365                                 }
 1366                                 break;
 1367                         }
 1368 
 1369                         marray[tpindex - startpindex] = rtm;
 1370                 }
 1371         } else {
 1372                 startpindex = 0;
 1373                 i = 0;
 1374         }
 1375 
 1376         marray[i] = m;
 1377         /* page offset of the required page */
 1378         *reqpage = i;
 1379 
 1380         tpindex = pindex + 1;
 1381         i++;
 1382 
 1383         /*
 1384          * scan forward for the read ahead pages
 1385          */
 1386         endpindex = tpindex + rahead;
 1387         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
 1388                 endpindex = rtm->pindex;
 1389         if (endpindex > object->size)
 1390                 endpindex = object->size;
 1391 
 1392         for (; tpindex < endpindex; i++, tpindex++) {
 1393 
 1394                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
 1395                     VM_ALLOC_IFNOTCACHED);
 1396                 if (rtm == NULL) {
 1397                         break;
 1398                 }
 1399 
 1400                 marray[i] = rtm;
 1401         }
 1402 
 1403         /* return number of pages */
 1404         return i;
 1405 }

Cache object: 9595979291ea6448609cf4d82694c14d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.