The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_fault.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  *
    9  *
   10  * This code is derived from software contributed to Berkeley by
   11  * The Mach Operating System project at Carnegie-Mellon University.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1. Redistributions of source code must retain the above copyright
   17  *    notice, this list of conditions and the following disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  * 3. All advertising materials mentioning features or use of this software
   22  *    must display the following acknowledgement:
   23  *      This product includes software developed by the University of
   24  *      California, Berkeley and its contributors.
   25  * 4. Neither the name of the University nor the names of its contributors
   26  *    may be used to endorse or promote products derived from this software
   27  *    without specific prior written permission.
   28  *
   29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   39  * SUCH DAMAGE.
   40  *
   41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
   42  *
   43  *
   44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   45  * All rights reserved.
   46  *
   47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   48  *
   49  * Permission to use, copy, modify and distribute this software and
   50  * its documentation is hereby granted, provided that both the copyright
   51  * notice and this permission notice appear in all copies of the
   52  * software, derivative works or modified versions, and any portions
   53  * thereof, and that both notices appear in supporting documentation.
   54  *
   55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   58  *
   59  * Carnegie Mellon requests users of this software to return to
   60  *
   61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   62  *  School of Computer Science
   63  *  Carnegie Mellon University
   64  *  Pittsburgh PA 15213-3890
   65  *
   66  * any improvements or extensions that they make and grant Carnegie the
   67  * rights to redistribute these changes.
   68  */
   69 
   70 /*
   71  *      Page fault handling module.
   72  */
   73 
   74 #include <sys/cdefs.h>
   75 __FBSDID("$FreeBSD: releng/9.2/sys/vm/vm_fault.c 242397 2012-10-31 14:02:51Z kib $");
   76 
   77 #include "opt_ktrace.h"
   78 #include "opt_vm.h"
   79 
   80 #include <sys/param.h>
   81 #include <sys/systm.h>
   82 #include <sys/kernel.h>
   83 #include <sys/lock.h>
   84 #include <sys/mutex.h>
   85 #include <sys/proc.h>
   86 #include <sys/resourcevar.h>
   87 #include <sys/sysctl.h>
   88 #include <sys/vmmeter.h>
   89 #include <sys/vnode.h>
   90 #ifdef KTRACE
   91 #include <sys/ktrace.h>
   92 #endif
   93 
   94 #include <vm/vm.h>
   95 #include <vm/vm_param.h>
   96 #include <vm/pmap.h>
   97 #include <vm/vm_map.h>
   98 #include <vm/vm_object.h>
   99 #include <vm/vm_page.h>
  100 #include <vm/vm_pageout.h>
  101 #include <vm/vm_kern.h>
  102 #include <vm/vm_pager.h>
  103 #include <vm/vm_extern.h>
  104 
  105 #include <sys/mount.h>  /* XXX Temporary for VFS_LOCK_GIANT() */
  106 
  107 #define PFBAK 4
  108 #define PFFOR 4
  109 #define PAGEORDER_SIZE (PFBAK+PFFOR)
  110 
  111 static int prefault_pageorder[] = {
  112         -1 * PAGE_SIZE, 1 * PAGE_SIZE,
  113         -2 * PAGE_SIZE, 2 * PAGE_SIZE,
  114         -3 * PAGE_SIZE, 3 * PAGE_SIZE,
  115         -4 * PAGE_SIZE, 4 * PAGE_SIZE
  116 };
  117 
  118 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
  119 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
  120 
  121 #define VM_FAULT_READ_BEHIND    8
  122 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
  123 #define VM_FAULT_NINCR          (VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
  124 #define VM_FAULT_SUM            (VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
  125 #define VM_FAULT_CACHE_BEHIND   (VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
  126 
  127 struct faultstate {
  128         vm_page_t m;
  129         vm_object_t object;
  130         vm_pindex_t pindex;
  131         vm_page_t first_m;
  132         vm_object_t     first_object;
  133         vm_pindex_t first_pindex;
  134         vm_map_t map;
  135         vm_map_entry_t entry;
  136         int lookup_still_valid;
  137         struct vnode *vp;
  138         int vfslocked;
  139 };
  140 
  141 static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
  142 
  143 static inline void
  144 release_page(struct faultstate *fs)
  145 {
  146 
  147         vm_page_wakeup(fs->m);
  148         vm_page_lock(fs->m);
  149         vm_page_deactivate(fs->m);
  150         vm_page_unlock(fs->m);
  151         fs->m = NULL;
  152 }
  153 
  154 static inline void
  155 unlock_map(struct faultstate *fs)
  156 {
  157 
  158         if (fs->lookup_still_valid) {
  159                 vm_map_lookup_done(fs->map, fs->entry);
  160                 fs->lookup_still_valid = FALSE;
  161         }
  162 }
  163 
  164 static void
  165 unlock_and_deallocate(struct faultstate *fs)
  166 {
  167 
  168         vm_object_pip_wakeup(fs->object);
  169         VM_OBJECT_UNLOCK(fs->object);
  170         if (fs->object != fs->first_object) {
  171                 VM_OBJECT_LOCK(fs->first_object);
  172                 vm_page_lock(fs->first_m);
  173                 vm_page_free(fs->first_m);
  174                 vm_page_unlock(fs->first_m);
  175                 vm_object_pip_wakeup(fs->first_object);
  176                 VM_OBJECT_UNLOCK(fs->first_object);
  177                 fs->first_m = NULL;
  178         }
  179         vm_object_deallocate(fs->first_object);
  180         unlock_map(fs); 
  181         if (fs->vp != NULL) { 
  182                 vput(fs->vp);
  183                 fs->vp = NULL;
  184         }
  185         VFS_UNLOCK_GIANT(fs->vfslocked);
  186         fs->vfslocked = 0;
  187 }
  188 
  189 /*
  190  * TRYPAGER - used by vm_fault to calculate whether the pager for the
  191  *            current object *might* contain the page.
  192  *
  193  *            default objects are zero-fill, there is no real pager.
  194  */
  195 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
  196                         ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
  197 
  198 /*
  199  *      vm_fault:
  200  *
  201  *      Handle a page fault occurring at the given address,
  202  *      requiring the given permissions, in the map specified.
  203  *      If successful, the page is inserted into the
  204  *      associated physical map.
  205  *
  206  *      NOTE: the given address should be truncated to the
  207  *      proper page address.
  208  *
  209  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
  210  *      a standard error specifying why the fault is fatal is returned.
  211  *
  212  *      The map in question must be referenced, and remains so.
  213  *      Caller may hold no locks.
  214  */
  215 int
  216 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
  217     int fault_flags)
  218 {
  219         struct thread *td;
  220         int result;
  221 
  222         td = curthread;
  223         if ((td->td_pflags & TDP_NOFAULTING) != 0)
  224                 return (KERN_PROTECTION_FAILURE);
  225 #ifdef KTRACE
  226         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
  227                 ktrfault(vaddr, fault_type);
  228 #endif
  229         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
  230             NULL);
  231 #ifdef KTRACE
  232         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
  233                 ktrfaultend(result);
  234 #endif
  235         return (result);
  236 }
  237 
  238 int
  239 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
  240     int fault_flags, vm_page_t *m_hold)
  241 {
  242         vm_prot_t prot;
  243         long ahead, behind;
  244         int alloc_req, era, faultcount, nera, reqpage, result;
  245         boolean_t growstack, is_first_object_locked, wired;
  246         int map_generation;
  247         vm_object_t next_object;
  248         vm_page_t marray[VM_FAULT_READ_MAX];
  249         int hardfault;
  250         struct faultstate fs;
  251         struct vnode *vp;
  252         int locked, error;
  253 
  254         hardfault = 0;
  255         growstack = TRUE;
  256         PCPU_INC(cnt.v_vm_faults);
  257         fs.vp = NULL;
  258         fs.vfslocked = 0;
  259         faultcount = reqpage = 0;
  260 
  261 RetryFault:;
  262 
  263         /*
  264          * Find the backing store object and offset into it to begin the
  265          * search.
  266          */
  267         fs.map = map;
  268         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
  269             &fs.first_object, &fs.first_pindex, &prot, &wired);
  270         if (result != KERN_SUCCESS) {
  271                 if (growstack && result == KERN_INVALID_ADDRESS &&
  272                     map != kernel_map) {
  273                         result = vm_map_growstack(curproc, vaddr);
  274                         if (result != KERN_SUCCESS)
  275                                 return (KERN_FAILURE);
  276                         growstack = FALSE;
  277                         goto RetryFault;
  278                 }
  279                 return (result);
  280         }
  281 
  282         map_generation = fs.map->timestamp;
  283 
  284         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
  285                 panic("vm_fault: fault on nofault entry, addr: %lx",
  286                     (u_long)vaddr);
  287         }
  288 
  289         /*
  290          * Make a reference to this object to prevent its disposal while we
  291          * are messing with it.  Once we have the reference, the map is free
  292          * to be diddled.  Since objects reference their shadows (and copies),
  293          * they will stay around as well.
  294          *
  295          * Bump the paging-in-progress count to prevent size changes (e.g. 
  296          * truncation operations) during I/O.  This must be done after
  297          * obtaining the vnode lock in order to avoid possible deadlocks.
  298          */
  299         VM_OBJECT_LOCK(fs.first_object);
  300         vm_object_reference_locked(fs.first_object);
  301         vm_object_pip_add(fs.first_object, 1);
  302 
  303         fs.lookup_still_valid = TRUE;
  304 
  305         if (wired)
  306                 fault_type = prot | (fault_type & VM_PROT_COPY);
  307 
  308         fs.first_m = NULL;
  309 
  310         /*
  311          * Search for the page at object/offset.
  312          */
  313         fs.object = fs.first_object;
  314         fs.pindex = fs.first_pindex;
  315         while (TRUE) {
  316                 /*
  317                  * If the object is dead, we stop here
  318                  */
  319                 if (fs.object->flags & OBJ_DEAD) {
  320                         unlock_and_deallocate(&fs);
  321                         return (KERN_PROTECTION_FAILURE);
  322                 }
  323 
  324                 /*
  325                  * See if page is resident
  326                  */
  327                 fs.m = vm_page_lookup(fs.object, fs.pindex);
  328                 if (fs.m != NULL) {
  329                         /* 
  330                          * check for page-based copy on write.
  331                          * We check fs.object == fs.first_object so
  332                          * as to ensure the legacy COW mechanism is
  333                          * used when the page in question is part of
  334                          * a shadow object.  Otherwise, vm_page_cowfault()
  335                          * removes the page from the backing object, 
  336                          * which is not what we want.
  337                          */
  338                         vm_page_lock(fs.m);
  339                         if ((fs.m->cow) && 
  340                             (fault_type & VM_PROT_WRITE) &&
  341                             (fs.object == fs.first_object)) {
  342                                 vm_page_cowfault(fs.m);
  343                                 unlock_and_deallocate(&fs);
  344                                 goto RetryFault;
  345                         }
  346 
  347                         /*
  348                          * Wait/Retry if the page is busy.  We have to do this
  349                          * if the page is busy via either VPO_BUSY or 
  350                          * vm_page_t->busy because the vm_pager may be using
  351                          * vm_page_t->busy for pageouts ( and even pageins if
  352                          * it is the vnode pager ), and we could end up trying
  353                          * to pagein and pageout the same page simultaneously.
  354                          *
  355                          * We can theoretically allow the busy case on a read
  356                          * fault if the page is marked valid, but since such
  357                          * pages are typically already pmap'd, putting that
  358                          * special case in might be more effort then it is 
  359                          * worth.  We cannot under any circumstances mess
  360                          * around with a vm_page_t->busy page except, perhaps,
  361                          * to pmap it.
  362                          */
  363                         if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
  364                                 /*
  365                                  * Reference the page before unlocking and
  366                                  * sleeping so that the page daemon is less
  367                                  * likely to reclaim it. 
  368                                  */
  369                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
  370                                 vm_page_unlock(fs.m);
  371                                 if (fs.object != fs.first_object) {
  372                                         if (!VM_OBJECT_TRYLOCK(
  373                                             fs.first_object)) {
  374                                                 VM_OBJECT_UNLOCK(fs.object);
  375                                                 VM_OBJECT_LOCK(fs.first_object);
  376                                                 VM_OBJECT_LOCK(fs.object);
  377                                         }
  378                                         vm_page_lock(fs.first_m);
  379                                         vm_page_free(fs.first_m);
  380                                         vm_page_unlock(fs.first_m);
  381                                         vm_object_pip_wakeup(fs.first_object);
  382                                         VM_OBJECT_UNLOCK(fs.first_object);
  383                                         fs.first_m = NULL;
  384                                 }
  385                                 unlock_map(&fs);
  386                                 if (fs.m == vm_page_lookup(fs.object,
  387                                     fs.pindex)) {
  388                                         vm_page_sleep_if_busy(fs.m, TRUE,
  389                                             "vmpfw");
  390                                 }
  391                                 vm_object_pip_wakeup(fs.object);
  392                                 VM_OBJECT_UNLOCK(fs.object);
  393                                 PCPU_INC(cnt.v_intrans);
  394                                 vm_object_deallocate(fs.first_object);
  395                                 goto RetryFault;
  396                         }
  397                         vm_pageq_remove(fs.m);
  398                         vm_page_unlock(fs.m);
  399 
  400                         /*
  401                          * Mark page busy for other processes, and the 
  402                          * pagedaemon.  If it still isn't completely valid
  403                          * (readable), jump to readrest, else break-out ( we
  404                          * found the page ).
  405                          */
  406                         vm_page_busy(fs.m);
  407                         if (fs.m->valid != VM_PAGE_BITS_ALL)
  408                                 goto readrest;
  409                         break;
  410                 }
  411 
  412                 /*
  413                  * Page is not resident, If this is the search termination
  414                  * or the pager might contain the page, allocate a new page.
  415                  */
  416                 if (TRYPAGER || fs.object == fs.first_object) {
  417                         if (fs.pindex >= fs.object->size) {
  418                                 unlock_and_deallocate(&fs);
  419                                 return (KERN_PROTECTION_FAILURE);
  420                         }
  421 
  422                         /*
  423                          * Allocate a new page for this object/offset pair.
  424                          *
  425                          * Unlocked read of the p_flag is harmless. At
  426                          * worst, the P_KILLED might be not observed
  427                          * there, and allocation can fail, causing
  428                          * restart and new reading of the p_flag.
  429                          */
  430                         fs.m = NULL;
  431                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
  432 #if VM_NRESERVLEVEL > 0
  433                                 if ((fs.object->flags & OBJ_COLORED) == 0) {
  434                                         fs.object->flags |= OBJ_COLORED;
  435                                         fs.object->pg_color = atop(vaddr) -
  436                                             fs.pindex;
  437                                 }
  438 #endif
  439                                 alloc_req = P_KILLED(curproc) ?
  440                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
  441                                 if (fs.object->type != OBJT_VNODE &&
  442                                     fs.object->backing_object == NULL)
  443                                         alloc_req |= VM_ALLOC_ZERO;
  444                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
  445                                     alloc_req);
  446                         }
  447                         if (fs.m == NULL) {
  448                                 unlock_and_deallocate(&fs);
  449                                 VM_WAITPFAULT;
  450                                 goto RetryFault;
  451                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
  452                                 break;
  453                 }
  454 
  455 readrest:
  456                 /*
  457                  * We have found a valid page or we have allocated a new page.
  458                  * The page thus may not be valid or may not be entirely 
  459                  * valid.
  460                  *
  461                  * Attempt to fault-in the page if there is a chance that the
  462                  * pager has it, and potentially fault in additional pages
  463                  * at the same time.
  464                  */
  465                 if (TRYPAGER) {
  466                         int rv;
  467                         u_char behavior = vm_map_entry_behavior(fs.entry);
  468 
  469                         if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
  470                             P_KILLED(curproc)) {
  471                                 behind = 0;
  472                                 ahead = 0;
  473                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
  474                                 behind = 0;
  475                                 ahead = atop(fs.entry->end - vaddr) - 1;
  476                                 if (ahead > VM_FAULT_READ_AHEAD_MAX)
  477                                         ahead = VM_FAULT_READ_AHEAD_MAX;
  478                                 if (fs.pindex == fs.entry->next_read)
  479                                         vm_fault_cache_behind(&fs,
  480                                             VM_FAULT_READ_MAX);
  481                         } else {
  482                                 /*
  483                                  * If this is a sequential page fault, then
  484                                  * arithmetically increase the number of pages
  485                                  * in the read-ahead window.  Otherwise, reset
  486                                  * the read-ahead window to its smallest size.
  487                                  */
  488                                 behind = atop(vaddr - fs.entry->start);
  489                                 if (behind > VM_FAULT_READ_BEHIND)
  490                                         behind = VM_FAULT_READ_BEHIND;
  491                                 ahead = atop(fs.entry->end - vaddr) - 1;
  492                                 era = fs.entry->read_ahead;
  493                                 if (fs.pindex == fs.entry->next_read) {
  494                                         nera = era + behind;
  495                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
  496                                                 nera = VM_FAULT_READ_AHEAD_MAX;
  497                                         behind = 0;
  498                                         if (ahead > nera)
  499                                                 ahead = nera;
  500                                         if (era == VM_FAULT_READ_AHEAD_MAX)
  501                                                 vm_fault_cache_behind(&fs,
  502                                                     VM_FAULT_CACHE_BEHIND);
  503                                 } else if (ahead > VM_FAULT_READ_AHEAD_MIN)
  504                                         ahead = VM_FAULT_READ_AHEAD_MIN;
  505                                 if (era != ahead)
  506                                         fs.entry->read_ahead = ahead;
  507                         }
  508 
  509                         /*
  510                          * Call the pager to retrieve the data, if any, after
  511                          * releasing the lock on the map.  We hold a ref on
  512                          * fs.object and the pages are VPO_BUSY'd.
  513                          */
  514                         unlock_map(&fs);
  515 
  516 vnode_lock:
  517                         if (fs.object->type == OBJT_VNODE) {
  518                                 vp = fs.object->handle;
  519                                 if (vp == fs.vp)
  520                                         goto vnode_locked;
  521                                 else if (fs.vp != NULL) {
  522                                         vput(fs.vp);
  523                                         fs.vp = NULL;
  524                                 }
  525                                 locked = VOP_ISLOCKED(vp);
  526 
  527                                 if (VFS_NEEDSGIANT(vp->v_mount) && !fs.vfslocked) {
  528                                         fs.vfslocked = 1;
  529                                         if (!mtx_trylock(&Giant)) {
  530                                                 VM_OBJECT_UNLOCK(fs.object);
  531                                                 mtx_lock(&Giant);
  532                                                 VM_OBJECT_LOCK(fs.object);
  533                                                 goto vnode_lock;
  534                                         }
  535                                 }
  536                                 if (locked != LK_EXCLUSIVE)
  537                                         locked = LK_SHARED;
  538                                 /* Do not sleep for vnode lock while fs.m is busy */
  539                                 error = vget(vp, locked | LK_CANRECURSE |
  540                                     LK_NOWAIT, curthread);
  541                                 if (error != 0) {
  542                                         int vfslocked;
  543 
  544                                         vfslocked = fs.vfslocked;
  545                                         fs.vfslocked = 0; /* Keep Giant */
  546                                         vhold(vp);
  547                                         release_page(&fs);
  548                                         unlock_and_deallocate(&fs);
  549                                         error = vget(vp, locked | LK_RETRY |
  550                                             LK_CANRECURSE, curthread);
  551                                         vdrop(vp);
  552                                         fs.vp = vp;
  553                                         fs.vfslocked = vfslocked;
  554                                         KASSERT(error == 0,
  555                                             ("vm_fault: vget failed"));
  556                                         goto RetryFault;
  557                                 }
  558                                 fs.vp = vp;
  559                         }
  560 vnode_locked:
  561                         KASSERT(fs.vp == NULL || !fs.map->system_map,
  562                             ("vm_fault: vnode-backed object mapped by system map"));
  563 
  564                         /*
  565                          * now we find out if any other pages should be paged
  566                          * in at this time this routine checks to see if the
  567                          * pages surrounding this fault reside in the same
  568                          * object as the page for this fault.  If they do,
  569                          * then they are faulted in also into the object.  The
  570                          * array "marray" returned contains an array of
  571                          * vm_page_t structs where one of them is the
  572                          * vm_page_t passed to the routine.  The reqpage
  573                          * return value is the index into the marray for the
  574                          * vm_page_t passed to the routine.
  575                          *
  576                          * fs.m plus the additional pages are VPO_BUSY'd.
  577                          */
  578                         faultcount = vm_fault_additional_pages(
  579                             fs.m, behind, ahead, marray, &reqpage);
  580 
  581                         rv = faultcount ?
  582                             vm_pager_get_pages(fs.object, marray, faultcount,
  583                                 reqpage) : VM_PAGER_FAIL;
  584 
  585                         if (rv == VM_PAGER_OK) {
  586                                 /*
  587                                  * Found the page. Leave it busy while we play
  588                                  * with it.
  589                                  */
  590 
  591                                 /*
  592                                  * Relookup in case pager changed page. Pager
  593                                  * is responsible for disposition of old page
  594                                  * if moved.
  595                                  */
  596                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
  597                                 if (!fs.m) {
  598                                         unlock_and_deallocate(&fs);
  599                                         goto RetryFault;
  600                                 }
  601 
  602                                 hardfault++;
  603                                 break; /* break to PAGE HAS BEEN FOUND */
  604                         }
  605                         /*
  606                          * Remove the bogus page (which does not exist at this
  607                          * object/offset); before doing so, we must get back
  608                          * our object lock to preserve our invariant.
  609                          *
  610                          * Also wake up any other process that may want to bring
  611                          * in this page.
  612                          *
  613                          * If this is the top-level object, we must leave the
  614                          * busy page to prevent another process from rushing
  615                          * past us, and inserting the page in that object at
  616                          * the same time that we are.
  617                          */
  618                         if (rv == VM_PAGER_ERROR)
  619                                 printf("vm_fault: pager read error, pid %d (%s)\n",
  620                                     curproc->p_pid, curproc->p_comm);
  621                         /*
  622                          * Data outside the range of the pager or an I/O error
  623                          */
  624                         /*
  625                          * XXX - the check for kernel_map is a kludge to work
  626                          * around having the machine panic on a kernel space
  627                          * fault w/ I/O error.
  628                          */
  629                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
  630                                 (rv == VM_PAGER_BAD)) {
  631                                 vm_page_lock(fs.m);
  632                                 vm_page_free(fs.m);
  633                                 vm_page_unlock(fs.m);
  634                                 fs.m = NULL;
  635                                 unlock_and_deallocate(&fs);
  636                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
  637                         }
  638                         if (fs.object != fs.first_object) {
  639                                 vm_page_lock(fs.m);
  640                                 vm_page_free(fs.m);
  641                                 vm_page_unlock(fs.m);
  642                                 fs.m = NULL;
  643                                 /*
  644                                  * XXX - we cannot just fall out at this
  645                                  * point, m has been freed and is invalid!
  646                                  */
  647                         }
  648                 }
  649 
  650                 /*
  651                  * We get here if the object has default pager (or unwiring) 
  652                  * or the pager doesn't have the page.
  653                  */
  654                 if (fs.object == fs.first_object)
  655                         fs.first_m = fs.m;
  656 
  657                 /*
  658                  * Move on to the next object.  Lock the next object before
  659                  * unlocking the current one.
  660                  */
  661                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
  662                 next_object = fs.object->backing_object;
  663                 if (next_object == NULL) {
  664                         /*
  665                          * If there's no object left, fill the page in the top
  666                          * object with zeros.
  667                          */
  668                         if (fs.object != fs.first_object) {
  669                                 vm_object_pip_wakeup(fs.object);
  670                                 VM_OBJECT_UNLOCK(fs.object);
  671 
  672                                 fs.object = fs.first_object;
  673                                 fs.pindex = fs.first_pindex;
  674                                 fs.m = fs.first_m;
  675                                 VM_OBJECT_LOCK(fs.object);
  676                         }
  677                         fs.first_m = NULL;
  678 
  679                         /*
  680                          * Zero the page if necessary and mark it valid.
  681                          */
  682                         if ((fs.m->flags & PG_ZERO) == 0) {
  683                                 pmap_zero_page(fs.m);
  684                         } else {
  685                                 PCPU_INC(cnt.v_ozfod);
  686                         }
  687                         PCPU_INC(cnt.v_zfod);
  688                         fs.m->valid = VM_PAGE_BITS_ALL;
  689                         break;  /* break to PAGE HAS BEEN FOUND */
  690                 } else {
  691                         KASSERT(fs.object != next_object,
  692                             ("object loop %p", next_object));
  693                         VM_OBJECT_LOCK(next_object);
  694                         vm_object_pip_add(next_object, 1);
  695                         if (fs.object != fs.first_object)
  696                                 vm_object_pip_wakeup(fs.object);
  697                         VM_OBJECT_UNLOCK(fs.object);
  698                         fs.object = next_object;
  699                 }
  700         }
  701 
  702         KASSERT((fs.m->oflags & VPO_BUSY) != 0,
  703             ("vm_fault: not busy after main loop"));
  704 
  705         /*
  706          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
  707          * is held.]
  708          */
  709 
  710         /*
  711          * If the page is being written, but isn't already owned by the
  712          * top-level object, we have to copy it into a new page owned by the
  713          * top-level object.
  714          */
  715         if (fs.object != fs.first_object) {
  716                 /*
  717                  * We only really need to copy if we want to write it.
  718                  */
  719                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
  720                         /*
  721                          * This allows pages to be virtually copied from a 
  722                          * backing_object into the first_object, where the 
  723                          * backing object has no other refs to it, and cannot
  724                          * gain any more refs.  Instead of a bcopy, we just 
  725                          * move the page from the backing object to the 
  726                          * first object.  Note that we must mark the page 
  727                          * dirty in the first object so that it will go out 
  728                          * to swap when needed.
  729                          */
  730                         is_first_object_locked = FALSE;
  731                         if (
  732                                 /*
  733                                  * Only one shadow object
  734                                  */
  735                                 (fs.object->shadow_count == 1) &&
  736                                 /*
  737                                  * No COW refs, except us
  738                                  */
  739                                 (fs.object->ref_count == 1) &&
  740                                 /*
  741                                  * No one else can look this object up
  742                                  */
  743                                 (fs.object->handle == NULL) &&
  744                                 /*
  745                                  * No other ways to look the object up
  746                                  */
  747                                 ((fs.object->type == OBJT_DEFAULT) ||
  748                                  (fs.object->type == OBJT_SWAP)) &&
  749                             (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
  750                                 /*
  751                                  * We don't chase down the shadow chain
  752                                  */
  753                             fs.object == fs.first_object->backing_object) {
  754                                 /*
  755                                  * get rid of the unnecessary page
  756                                  */
  757                                 vm_page_lock(fs.first_m);
  758                                 vm_page_free(fs.first_m);
  759                                 vm_page_unlock(fs.first_m);
  760                                 /*
  761                                  * grab the page and put it into the 
  762                                  * process'es object.  The page is 
  763                                  * automatically made dirty.
  764                                  */
  765                                 vm_page_lock(fs.m);
  766                                 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
  767                                 vm_page_unlock(fs.m);
  768                                 vm_page_busy(fs.m);
  769                                 fs.first_m = fs.m;
  770                                 fs.m = NULL;
  771                                 PCPU_INC(cnt.v_cow_optim);
  772                         } else {
  773                                 /*
  774                                  * Oh, well, lets copy it.
  775                                  */
  776                                 pmap_copy_page(fs.m, fs.first_m);
  777                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
  778                                 if (wired && (fault_flags &
  779                                     VM_FAULT_CHANGE_WIRING) == 0) {
  780                                         vm_page_lock(fs.first_m);
  781                                         vm_page_wire(fs.first_m);
  782                                         vm_page_unlock(fs.first_m);
  783                                         
  784                                         vm_page_lock(fs.m);
  785                                         vm_page_unwire(fs.m, FALSE);
  786                                         vm_page_unlock(fs.m);
  787                                 }
  788                                 /*
  789                                  * We no longer need the old page or object.
  790                                  */
  791                                 release_page(&fs);
  792                         }
  793                         /*
  794                          * fs.object != fs.first_object due to above 
  795                          * conditional
  796                          */
  797                         vm_object_pip_wakeup(fs.object);
  798                         VM_OBJECT_UNLOCK(fs.object);
  799                         /*
  800                          * Only use the new page below...
  801                          */
  802                         fs.object = fs.first_object;
  803                         fs.pindex = fs.first_pindex;
  804                         fs.m = fs.first_m;
  805                         if (!is_first_object_locked)
  806                                 VM_OBJECT_LOCK(fs.object);
  807                         PCPU_INC(cnt.v_cow_faults);
  808                         curthread->td_cow++;
  809                 } else {
  810                         prot &= ~VM_PROT_WRITE;
  811                 }
  812         }
  813 
  814         /*
  815          * We must verify that the maps have not changed since our last
  816          * lookup.
  817          */
  818         if (!fs.lookup_still_valid) {
  819                 vm_object_t retry_object;
  820                 vm_pindex_t retry_pindex;
  821                 vm_prot_t retry_prot;
  822 
  823                 if (!vm_map_trylock_read(fs.map)) {
  824                         release_page(&fs);
  825                         unlock_and_deallocate(&fs);
  826                         goto RetryFault;
  827                 }
  828                 fs.lookup_still_valid = TRUE;
  829                 if (fs.map->timestamp != map_generation) {
  830                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
  831                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
  832 
  833                         /*
  834                          * If we don't need the page any longer, put it on the inactive
  835                          * list (the easiest thing to do here).  If no one needs it,
  836                          * pageout will grab it eventually.
  837                          */
  838                         if (result != KERN_SUCCESS) {
  839                                 release_page(&fs);
  840                                 unlock_and_deallocate(&fs);
  841 
  842                                 /*
  843                                  * If retry of map lookup would have blocked then
  844                                  * retry fault from start.
  845                                  */
  846                                 if (result == KERN_FAILURE)
  847                                         goto RetryFault;
  848                                 return (result);
  849                         }
  850                         if ((retry_object != fs.first_object) ||
  851                             (retry_pindex != fs.first_pindex)) {
  852                                 release_page(&fs);
  853                                 unlock_and_deallocate(&fs);
  854                                 goto RetryFault;
  855                         }
  856 
  857                         /*
  858                          * Check whether the protection has changed or the object has
  859                          * been copied while we left the map unlocked. Changing from
  860                          * read to write permission is OK - we leave the page
  861                          * write-protected, and catch the write fault. Changing from
  862                          * write to read permission means that we can't mark the page
  863                          * write-enabled after all.
  864                          */
  865                         prot &= retry_prot;
  866                 }
  867         }
  868         /*
  869          * If the page was filled by a pager, update the map entry's
  870          * last read offset.  Since the pager does not return the
  871          * actual set of pages that it read, this update is based on
  872          * the requested set.  Typically, the requested and actual
  873          * sets are the same.
  874          *
  875          * XXX The following assignment modifies the map
  876          * without holding a write lock on it.
  877          */
  878         if (hardfault)
  879                 fs.entry->next_read = fs.pindex + faultcount - reqpage;
  880 
  881         if ((prot & VM_PROT_WRITE) != 0 ||
  882             (fault_flags & VM_FAULT_DIRTY) != 0) {
  883                 vm_object_set_writeable_dirty(fs.object);
  884 
  885                 /*
  886                  * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
  887                  * if the page is already dirty to prevent data written with
  888                  * the expectation of being synced from not being synced.
  889                  * Likewise if this entry does not request NOSYNC then make
  890                  * sure the page isn't marked NOSYNC.  Applications sharing
  891                  * data should use the same flags to avoid ping ponging.
  892                  */
  893                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
  894                         if (fs.m->dirty == 0)
  895                                 fs.m->oflags |= VPO_NOSYNC;
  896                 } else {
  897                         fs.m->oflags &= ~VPO_NOSYNC;
  898                 }
  899 
  900                 /*
  901                  * If the fault is a write, we know that this page is being
  902                  * written NOW so dirty it explicitly to save on 
  903                  * pmap_is_modified() calls later.
  904                  *
  905                  * Also tell the backing pager, if any, that it should remove
  906                  * any swap backing since the page is now dirty.
  907                  */
  908                 if (((fault_type & VM_PROT_WRITE) != 0 &&
  909                     (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) ||
  910                     (fault_flags & VM_FAULT_DIRTY) != 0) {
  911                         vm_page_dirty(fs.m);
  912                         vm_pager_page_unswapped(fs.m);
  913                 }
  914         }
  915 
  916         /*
  917          * Page had better still be busy
  918          */
  919         KASSERT(fs.m->oflags & VPO_BUSY,
  920                 ("vm_fault: page %p not busy!", fs.m));
  921         /*
  922          * Page must be completely valid or it is not fit to
  923          * map into user space.  vm_pager_get_pages() ensures this.
  924          */
  925         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
  926             ("vm_fault: page %p partially invalid", fs.m));
  927         VM_OBJECT_UNLOCK(fs.object);
  928 
  929         /*
  930          * Put this page into the physical map.  We had to do the unlock above
  931          * because pmap_enter() may sleep.  We don't put the page
  932          * back on the active queue until later so that the pageout daemon
  933          * won't find it (yet).
  934          */
  935         pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
  936         if ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 && wired == 0)
  937                 vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
  938         VM_OBJECT_LOCK(fs.object);
  939         vm_page_lock(fs.m);
  940 
  941         /*
  942          * If the page is not wired down, then put it where the pageout daemon
  943          * can find it.
  944          */
  945         if (fault_flags & VM_FAULT_CHANGE_WIRING) {
  946                 if (wired)
  947                         vm_page_wire(fs.m);
  948                 else
  949                         vm_page_unwire(fs.m, 1);
  950         } else
  951                 vm_page_activate(fs.m);
  952         if (m_hold != NULL) {
  953                 *m_hold = fs.m;
  954                 vm_page_hold(fs.m);
  955         }
  956         vm_page_unlock(fs.m);
  957         vm_page_wakeup(fs.m);
  958 
  959         /*
  960          * Unlock everything, and return
  961          */
  962         unlock_and_deallocate(&fs);
  963         if (hardfault)
  964                 curthread->td_ru.ru_majflt++;
  965         else
  966                 curthread->td_ru.ru_minflt++;
  967 
  968         return (KERN_SUCCESS);
  969 }
  970 
  971 /*
  972  * Speed up the reclamation of up to "distance" pages that precede the
  973  * faulting pindex within the first object of the shadow chain.
  974  */
  975 static void
  976 vm_fault_cache_behind(const struct faultstate *fs, int distance)
  977 {
  978         vm_object_t first_object, object;
  979         vm_page_t m, m_prev;
  980         vm_pindex_t pindex;
  981 
  982         object = fs->object;
  983         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
  984         first_object = fs->first_object;
  985         if (first_object != object) {
  986                 if (!VM_OBJECT_TRYLOCK(first_object)) {
  987                         VM_OBJECT_UNLOCK(object);
  988                         VM_OBJECT_LOCK(first_object);
  989                         VM_OBJECT_LOCK(object);
  990                 }
  991         }
  992         if (first_object->type != OBJT_DEVICE &&
  993             first_object->type != OBJT_PHYS && first_object->type != OBJT_SG) {
  994                 if (fs->first_pindex < distance)
  995                         pindex = 0;
  996                 else
  997                         pindex = fs->first_pindex - distance;
  998                 if (pindex < OFF_TO_IDX(fs->entry->offset))
  999                         pindex = OFF_TO_IDX(fs->entry->offset);
 1000                 m = first_object != object ? fs->first_m : fs->m;
 1001                 KASSERT((m->oflags & VPO_BUSY) != 0,
 1002                     ("vm_fault_cache_behind: page %p is not busy", m));
 1003                 m_prev = vm_page_prev(m);
 1004                 while ((m = m_prev) != NULL && m->pindex >= pindex &&
 1005                     m->valid == VM_PAGE_BITS_ALL) {
 1006                         m_prev = vm_page_prev(m);
 1007                         if (m->busy != 0 || (m->oflags & VPO_BUSY) != 0)
 1008                                 continue;
 1009                         vm_page_lock(m);
 1010                         if (m->hold_count == 0 && m->wire_count == 0) {
 1011                                 pmap_remove_all(m);
 1012                                 vm_page_aflag_clear(m, PGA_REFERENCED);
 1013                                 if (m->dirty != 0)
 1014                                         vm_page_deactivate(m);
 1015                                 else
 1016                                         vm_page_cache(m);
 1017                         }
 1018                         vm_page_unlock(m);
 1019                 }
 1020         }
 1021         if (first_object != object)
 1022                 VM_OBJECT_UNLOCK(first_object);
 1023 }
 1024 
 1025 /*
 1026  * vm_fault_prefault provides a quick way of clustering
 1027  * pagefaults into a processes address space.  It is a "cousin"
 1028  * of vm_map_pmap_enter, except it runs at page fault time instead
 1029  * of mmap time.
 1030  */
 1031 static void
 1032 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
 1033 {
 1034         int i;
 1035         vm_offset_t addr, starta;
 1036         vm_pindex_t pindex;
 1037         vm_page_t m;
 1038         vm_object_t object;
 1039 
 1040         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
 1041                 return;
 1042 
 1043         object = entry->object.vm_object;
 1044 
 1045         starta = addra - PFBAK * PAGE_SIZE;
 1046         if (starta < entry->start) {
 1047                 starta = entry->start;
 1048         } else if (starta > addra) {
 1049                 starta = 0;
 1050         }
 1051 
 1052         for (i = 0; i < PAGEORDER_SIZE; i++) {
 1053                 vm_object_t backing_object, lobject;
 1054 
 1055                 addr = addra + prefault_pageorder[i];
 1056                 if (addr > addra + (PFFOR * PAGE_SIZE))
 1057                         addr = 0;
 1058 
 1059                 if (addr < starta || addr >= entry->end)
 1060                         continue;
 1061 
 1062                 if (!pmap_is_prefaultable(pmap, addr))
 1063                         continue;
 1064 
 1065                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
 1066                 lobject = object;
 1067                 VM_OBJECT_LOCK(lobject);
 1068                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
 1069                     lobject->type == OBJT_DEFAULT &&
 1070                     (backing_object = lobject->backing_object) != NULL) {
 1071                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
 1072                             0, ("vm_fault_prefault: unaligned object offset"));
 1073                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
 1074                         VM_OBJECT_LOCK(backing_object);
 1075                         VM_OBJECT_UNLOCK(lobject);
 1076                         lobject = backing_object;
 1077                 }
 1078                 /*
 1079                  * give-up when a page is not in memory
 1080                  */
 1081                 if (m == NULL) {
 1082                         VM_OBJECT_UNLOCK(lobject);
 1083                         break;
 1084                 }
 1085                 if (m->valid == VM_PAGE_BITS_ALL &&
 1086                     (m->flags & PG_FICTITIOUS) == 0)
 1087                         pmap_enter_quick(pmap, addr, m, entry->protection);
 1088                 VM_OBJECT_UNLOCK(lobject);
 1089         }
 1090 }
 1091 
 1092 /*
 1093  * Hold each of the physical pages that are mapped by the specified range of
 1094  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
 1095  * and allow the specified types of access, "prot".  If all of the implied
 1096  * pages are successfully held, then the number of held pages is returned
 1097  * together with pointers to those pages in the array "ma".  However, if any
 1098  * of the pages cannot be held, -1 is returned.
 1099  */
 1100 int
 1101 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
 1102     vm_prot_t prot, vm_page_t *ma, int max_count)
 1103 {
 1104         vm_offset_t end, va;
 1105         vm_page_t *mp;
 1106         int count;
 1107         boolean_t pmap_failed;
 1108 
 1109         if (len == 0)
 1110                 return (0);
 1111         end = round_page(addr + len);   
 1112         addr = trunc_page(addr);
 1113 
 1114         /*
 1115          * Check for illegal addresses.
 1116          */
 1117         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
 1118                 return (-1);
 1119 
 1120         count = howmany(end - addr, PAGE_SIZE);
 1121         if (count > max_count)
 1122                 panic("vm_fault_quick_hold_pages: count > max_count");
 1123 
 1124         /*
 1125          * Most likely, the physical pages are resident in the pmap, so it is
 1126          * faster to try pmap_extract_and_hold() first.
 1127          */
 1128         pmap_failed = FALSE;
 1129         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
 1130                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
 1131                 if (*mp == NULL)
 1132                         pmap_failed = TRUE;
 1133                 else if ((prot & VM_PROT_WRITE) != 0 &&
 1134                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
 1135                         /*
 1136                          * Explicitly dirty the physical page.  Otherwise, the
 1137                          * caller's changes may go unnoticed because they are
 1138                          * performed through an unmanaged mapping or by a DMA
 1139                          * operation.
 1140                          *
 1141                          * The object lock is not held here.
 1142                          * See vm_page_clear_dirty_mask().
 1143                          */
 1144                         vm_page_dirty(*mp);
 1145                 }
 1146         }
 1147         if (pmap_failed) {
 1148                 /*
 1149                  * One or more pages could not be held by the pmap.  Either no
 1150                  * page was mapped at the specified virtual address or that
 1151                  * mapping had insufficient permissions.  Attempt to fault in
 1152                  * and hold these pages.
 1153                  */
 1154                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
 1155                         if (*mp == NULL && vm_fault_hold(map, va, prot,
 1156                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
 1157                                 goto error;
 1158         }
 1159         return (count);
 1160 error:  
 1161         for (mp = ma; mp < ma + count; mp++)
 1162                 if (*mp != NULL) {
 1163                         vm_page_lock(*mp);
 1164                         vm_page_unhold(*mp);
 1165                         vm_page_unlock(*mp);
 1166                 }
 1167         return (-1);
 1168 }
 1169 
 1170 /*
 1171  *      vm_fault_wire:
 1172  *
 1173  *      Wire down a range of virtual addresses in a map.
 1174  */
 1175 int
 1176 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
 1177     boolean_t fictitious)
 1178 {
 1179         vm_offset_t va;
 1180         int rv;
 1181 
 1182         /*
 1183          * We simulate a fault to get the page and enter it in the physical
 1184          * map.  For user wiring, we only ask for read access on currently
 1185          * read-only sections.
 1186          */
 1187         for (va = start; va < end; va += PAGE_SIZE) {
 1188                 rv = vm_fault(map, va, VM_PROT_NONE, VM_FAULT_CHANGE_WIRING);
 1189                 if (rv) {
 1190                         if (va != start)
 1191                                 vm_fault_unwire(map, start, va, fictitious);
 1192                         return (rv);
 1193                 }
 1194         }
 1195         return (KERN_SUCCESS);
 1196 }
 1197 
 1198 /*
 1199  *      vm_fault_unwire:
 1200  *
 1201  *      Unwire a range of virtual addresses in a map.
 1202  */
 1203 void
 1204 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
 1205     boolean_t fictitious)
 1206 {
 1207         vm_paddr_t pa;
 1208         vm_offset_t va;
 1209         vm_page_t m;
 1210         pmap_t pmap;
 1211 
 1212         pmap = vm_map_pmap(map);
 1213 
 1214         /*
 1215          * Since the pages are wired down, we must be able to get their
 1216          * mappings from the physical map system.
 1217          */
 1218         for (va = start; va < end; va += PAGE_SIZE) {
 1219                 pa = pmap_extract(pmap, va);
 1220                 if (pa != 0) {
 1221                         pmap_change_wiring(pmap, va, FALSE);
 1222                         if (!fictitious) {
 1223                                 m = PHYS_TO_VM_PAGE(pa);
 1224                                 vm_page_lock(m);
 1225                                 vm_page_unwire(m, TRUE);
 1226                                 vm_page_unlock(m);
 1227                         }
 1228                 }
 1229         }
 1230 }
 1231 
 1232 /*
 1233  *      Routine:
 1234  *              vm_fault_copy_entry
 1235  *      Function:
 1236  *              Create new shadow object backing dst_entry with private copy of
 1237  *              all underlying pages. When src_entry is equal to dst_entry,
 1238  *              function implements COW for wired-down map entry. Otherwise,
 1239  *              it forks wired entry into dst_map.
 1240  *
 1241  *      In/out conditions:
 1242  *              The source and destination maps must be locked for write.
 1243  *              The source map entry must be wired down (or be a sharing map
 1244  *              entry corresponding to a main map entry that is wired down).
 1245  */
 1246 void
 1247 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
 1248     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
 1249     vm_ooffset_t *fork_charge)
 1250 {
 1251         vm_object_t backing_object, dst_object, object, src_object;
 1252         vm_pindex_t dst_pindex, pindex, src_pindex;
 1253         vm_prot_t access, prot;
 1254         vm_offset_t vaddr;
 1255         vm_page_t dst_m;
 1256         vm_page_t src_m;
 1257         boolean_t src_readonly, upgrade;
 1258 
 1259 #ifdef  lint
 1260         src_map++;
 1261 #endif  /* lint */
 1262 
 1263         upgrade = src_entry == dst_entry;
 1264 
 1265         src_object = src_entry->object.vm_object;
 1266         src_pindex = OFF_TO_IDX(src_entry->offset);
 1267         src_readonly = (src_entry->protection & VM_PROT_WRITE) == 0;
 1268 
 1269         /*
 1270          * Create the top-level object for the destination entry. (Doesn't
 1271          * actually shadow anything - we copy the pages directly.)
 1272          */
 1273         dst_object = vm_object_allocate(OBJT_DEFAULT,
 1274             OFF_TO_IDX(dst_entry->end - dst_entry->start));
 1275 #if VM_NRESERVLEVEL > 0
 1276         dst_object->flags |= OBJ_COLORED;
 1277         dst_object->pg_color = atop(dst_entry->start);
 1278 #endif
 1279 
 1280         VM_OBJECT_LOCK(dst_object);
 1281         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
 1282             ("vm_fault_copy_entry: vm_object not NULL"));
 1283         dst_entry->object.vm_object = dst_object;
 1284         dst_entry->offset = 0;
 1285         dst_object->charge = dst_entry->end - dst_entry->start;
 1286         if (fork_charge != NULL) {
 1287                 KASSERT(dst_entry->cred == NULL,
 1288                     ("vm_fault_copy_entry: leaked swp charge"));
 1289                 dst_object->cred = curthread->td_ucred;
 1290                 crhold(dst_object->cred);
 1291                 *fork_charge += dst_object->charge;
 1292         } else {
 1293                 dst_object->cred = dst_entry->cred;
 1294                 dst_entry->cred = NULL;
 1295         }
 1296         access = prot = dst_entry->protection;
 1297         /*
 1298          * If not an upgrade, then enter the mappings in the pmap as
 1299          * read and/or execute accesses.  Otherwise, enter them as
 1300          * write accesses.
 1301          *
 1302          * A writeable large page mapping is only created if all of
 1303          * the constituent small page mappings are modified. Marking
 1304          * PTEs as modified on inception allows promotion to happen
 1305          * without taking potentially large number of soft faults.
 1306          */
 1307         if (!upgrade)
 1308                 access &= ~VM_PROT_WRITE;
 1309 
 1310         /*
 1311          * Loop through all of the virtual pages within the entry's
 1312          * range, copying each page from the source object to the
 1313          * destination object.  Since the source is wired, those pages
 1314          * must exist.  In contrast, the destination is pageable.
 1315          * Since the destination object does share any backing storage
 1316          * with the source object, all of its pages must be dirtied,
 1317          * regardless of whether they can be written.
 1318          */
 1319         for (vaddr = dst_entry->start, dst_pindex = 0;
 1320             vaddr < dst_entry->end;
 1321             vaddr += PAGE_SIZE, dst_pindex++) {
 1322 
 1323                 /*
 1324                  * Allocate a page in the destination object.
 1325                  */
 1326                 do {
 1327                         dst_m = vm_page_alloc(dst_object, dst_pindex,
 1328                             VM_ALLOC_NORMAL);
 1329                         if (dst_m == NULL) {
 1330                                 VM_OBJECT_UNLOCK(dst_object);
 1331                                 VM_WAIT;
 1332                                 VM_OBJECT_LOCK(dst_object);
 1333                         }
 1334                 } while (dst_m == NULL);
 1335 
 1336                 /*
 1337                  * Find the page in the source object, and copy it in.
 1338                  * (Because the source is wired down, the page will be in
 1339                  * memory.)
 1340                  */
 1341                 VM_OBJECT_LOCK(src_object);
 1342                 object = src_object;
 1343                 pindex = src_pindex + dst_pindex;
 1344                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
 1345                     src_readonly &&
 1346                     (backing_object = object->backing_object) != NULL) {
 1347                         /*
 1348                          * Allow fallback to backing objects if we are reading.
 1349                          */
 1350                         VM_OBJECT_LOCK(backing_object);
 1351                         pindex += OFF_TO_IDX(object->backing_object_offset);
 1352                         VM_OBJECT_UNLOCK(object);
 1353                         object = backing_object;
 1354                 }
 1355                 if (src_m == NULL)
 1356                         panic("vm_fault_copy_wired: page missing");
 1357                 pmap_copy_page(src_m, dst_m);
 1358                 VM_OBJECT_UNLOCK(object);
 1359                 dst_m->valid = VM_PAGE_BITS_ALL;
 1360                 dst_m->dirty = VM_PAGE_BITS_ALL;
 1361                 VM_OBJECT_UNLOCK(dst_object);
 1362 
 1363                 /*
 1364                  * Enter it in the pmap. If a wired, copy-on-write
 1365                  * mapping is being replaced by a write-enabled
 1366                  * mapping, then wire that new mapping.
 1367                  */
 1368                 pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade);
 1369 
 1370                 /*
 1371                  * Mark it no longer busy, and put it on the active list.
 1372                  */
 1373                 VM_OBJECT_LOCK(dst_object);
 1374                 
 1375                 if (upgrade) {
 1376                         vm_page_lock(src_m);
 1377                         vm_page_unwire(src_m, 0);
 1378                         vm_page_unlock(src_m);
 1379 
 1380                         vm_page_lock(dst_m);
 1381                         vm_page_wire(dst_m);
 1382                         vm_page_unlock(dst_m);
 1383                 } else {
 1384                         vm_page_lock(dst_m);
 1385                         vm_page_activate(dst_m);
 1386                         vm_page_unlock(dst_m);
 1387                 }
 1388                 vm_page_wakeup(dst_m);
 1389         }
 1390         VM_OBJECT_UNLOCK(dst_object);
 1391         if (upgrade) {
 1392                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
 1393                 vm_object_deallocate(src_object);
 1394         }
 1395 }
 1396 
 1397 
 1398 /*
 1399  * This routine checks around the requested page for other pages that
 1400  * might be able to be faulted in.  This routine brackets the viable
 1401  * pages for the pages to be paged in.
 1402  *
 1403  * Inputs:
 1404  *      m, rbehind, rahead
 1405  *
 1406  * Outputs:
 1407  *  marray (array of vm_page_t), reqpage (index of requested page)
 1408  *
 1409  * Return value:
 1410  *  number of pages in marray
 1411  */
 1412 static int
 1413 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
 1414         vm_page_t m;
 1415         int rbehind;
 1416         int rahead;
 1417         vm_page_t *marray;
 1418         int *reqpage;
 1419 {
 1420         int i,j;
 1421         vm_object_t object;
 1422         vm_pindex_t pindex, startpindex, endpindex, tpindex;
 1423         vm_page_t rtm;
 1424         int cbehind, cahead;
 1425 
 1426         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1427 
 1428         object = m->object;
 1429         pindex = m->pindex;
 1430         cbehind = cahead = 0;
 1431 
 1432         /*
 1433          * if the requested page is not available, then give up now
 1434          */
 1435         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
 1436                 return 0;
 1437         }
 1438 
 1439         if ((cbehind == 0) && (cahead == 0)) {
 1440                 *reqpage = 0;
 1441                 marray[0] = m;
 1442                 return 1;
 1443         }
 1444 
 1445         if (rahead > cahead) {
 1446                 rahead = cahead;
 1447         }
 1448 
 1449         if (rbehind > cbehind) {
 1450                 rbehind = cbehind;
 1451         }
 1452 
 1453         /*
 1454          * scan backward for the read behind pages -- in memory 
 1455          */
 1456         if (pindex > 0) {
 1457                 if (rbehind > pindex) {
 1458                         rbehind = pindex;
 1459                         startpindex = 0;
 1460                 } else {
 1461                         startpindex = pindex - rbehind;
 1462                 }
 1463 
 1464                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
 1465                     rtm->pindex >= startpindex)
 1466                         startpindex = rtm->pindex + 1;
 1467 
 1468                 /* tpindex is unsigned; beware of numeric underflow. */
 1469                 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
 1470                     tpindex < pindex; i++, tpindex--) {
 1471 
 1472                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
 1473                             VM_ALLOC_IFNOTCACHED);
 1474                         if (rtm == NULL) {
 1475                                 /*
 1476                                  * Shift the allocated pages to the
 1477                                  * beginning of the array.
 1478                                  */
 1479                                 for (j = 0; j < i; j++) {
 1480                                         marray[j] = marray[j + tpindex + 1 -
 1481                                             startpindex];
 1482                                 }
 1483                                 break;
 1484                         }
 1485 
 1486                         marray[tpindex - startpindex] = rtm;
 1487                 }
 1488         } else {
 1489                 startpindex = 0;
 1490                 i = 0;
 1491         }
 1492 
 1493         marray[i] = m;
 1494         /* page offset of the required page */
 1495         *reqpage = i;
 1496 
 1497         tpindex = pindex + 1;
 1498         i++;
 1499 
 1500         /*
 1501          * scan forward for the read ahead pages
 1502          */
 1503         endpindex = tpindex + rahead;
 1504         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
 1505                 endpindex = rtm->pindex;
 1506         if (endpindex > object->size)
 1507                 endpindex = object->size;
 1508 
 1509         for (; tpindex < endpindex; i++, tpindex++) {
 1510 
 1511                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
 1512                     VM_ALLOC_IFNOTCACHED);
 1513                 if (rtm == NULL) {
 1514                         break;
 1515                 }
 1516 
 1517                 marray[i] = rtm;
 1518         }
 1519 
 1520         /* return number of pages */
 1521         return i;
 1522 }
 1523 
 1524 /*
 1525  * Block entry into the machine-independent layer's page fault handler by
 1526  * the calling thread.  Subsequent calls to vm_fault() by that thread will
 1527  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
 1528  * spurious page faults. 
 1529  */
 1530 int
 1531 vm_fault_disable_pagefaults(void)
 1532 {
 1533 
 1534         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
 1535 }
 1536 
 1537 void
 1538 vm_fault_enable_pagefaults(int save)
 1539 {
 1540 
 1541         curthread_pflags_restore(save);
 1542 }

Cache object: f4d5e324d6185fce48231c3cbc106704


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.