The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_fault.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  * Copyright (c) 1994 John S. Dyson
    5  * All rights reserved.
    6  * Copyright (c) 1994 David Greenman
    7  * All rights reserved.
    8  *
    9  *
   10  * This code is derived from software contributed to Berkeley by
   11  * The Mach Operating System project at Carnegie-Mellon University.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1. Redistributions of source code must retain the above copyright
   17  *    notice, this list of conditions and the following disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  * 3. All advertising materials mentioning features or use of this software
   22  *    must display the following acknowledgement:
   23  *      This product includes software developed by the University of
   24  *      California, Berkeley and its contributors.
   25  * 4. Neither the name of the University nor the names of its contributors
   26  *    may be used to endorse or promote products derived from this software
   27  *    without specific prior written permission.
   28  *
   29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   39  * SUCH DAMAGE.
   40  *
   41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
   42  *
   43  *
   44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   45  * All rights reserved.
   46  *
   47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   48  *
   49  * Permission to use, copy, modify and distribute this software and
   50  * its documentation is hereby granted, provided that both the copyright
   51  * notice and this permission notice appear in all copies of the
   52  * software, derivative works or modified versions, and any portions
   53  * thereof, and that both notices appear in supporting documentation.
   54  *
   55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   58  *
   59  * Carnegie Mellon requests users of this software to return to
   60  *
   61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   62  *  School of Computer Science
   63  *  Carnegie Mellon University
   64  *  Pittsburgh PA 15213-3890
   65  *
   66  * any improvements or extensions that they make and grant Carnegie the
   67  * rights to redistribute these changes.
   68  */
   69 
   70 /*
   71  *      Page fault handling module.
   72  */
   73 
   74 #include <sys/cdefs.h>
   75 __FBSDID("$FreeBSD$");
   76 
   77 #include "opt_ktrace.h"
   78 #include "opt_vm.h"
   79 
   80 #include <sys/param.h>
   81 #include <sys/systm.h>
   82 #include <sys/kernel.h>
   83 #include <sys/lock.h>
   84 #include <sys/mutex.h>
   85 #include <sys/proc.h>
   86 #include <sys/resourcevar.h>
   87 #include <sys/sysctl.h>
   88 #include <sys/vmmeter.h>
   89 #include <sys/vnode.h>
   90 #ifdef KTRACE
   91 #include <sys/ktrace.h>
   92 #endif
   93 
   94 #include <vm/vm.h>
   95 #include <vm/vm_param.h>
   96 #include <vm/pmap.h>
   97 #include <vm/vm_map.h>
   98 #include <vm/vm_object.h>
   99 #include <vm/vm_page.h>
  100 #include <vm/vm_pageout.h>
  101 #include <vm/vm_kern.h>
  102 #include <vm/vm_pager.h>
  103 #include <vm/vm_extern.h>
  104 
  105 #include <sys/mount.h>  /* XXX Temporary for VFS_LOCK_GIANT() */
  106 
  107 #define PFBAK 4
  108 #define PFFOR 4
  109 #define PAGEORDER_SIZE (PFBAK+PFFOR)
  110 
  111 static int prefault_pageorder[] = {
  112         -1 * PAGE_SIZE, 1 * PAGE_SIZE,
  113         -2 * PAGE_SIZE, 2 * PAGE_SIZE,
  114         -3 * PAGE_SIZE, 3 * PAGE_SIZE,
  115         -4 * PAGE_SIZE, 4 * PAGE_SIZE
  116 };
  117 
  118 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
  119 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
  120 
  121 #define VM_FAULT_READ_BEHIND    8
  122 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
  123 #define VM_FAULT_NINCR          (VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
  124 #define VM_FAULT_SUM            (VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
  125 #define VM_FAULT_CACHE_BEHIND   (VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
  126 
  127 struct faultstate {
  128         vm_page_t m;
  129         vm_object_t object;
  130         vm_pindex_t pindex;
  131         vm_page_t first_m;
  132         vm_object_t     first_object;
  133         vm_pindex_t first_pindex;
  134         vm_map_t map;
  135         vm_map_entry_t entry;
  136         int lookup_still_valid;
  137         struct vnode *vp;
  138         int vfslocked;
  139 };
  140 
  141 static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
  142 
  143 static inline void
  144 release_page(struct faultstate *fs)
  145 {
  146 
  147         vm_page_wakeup(fs->m);
  148         vm_page_lock(fs->m);
  149         vm_page_deactivate(fs->m);
  150         vm_page_unlock(fs->m);
  151         fs->m = NULL;
  152 }
  153 
  154 static inline void
  155 unlock_map(struct faultstate *fs)
  156 {
  157 
  158         if (fs->lookup_still_valid) {
  159                 vm_map_lookup_done(fs->map, fs->entry);
  160                 fs->lookup_still_valid = FALSE;
  161         }
  162 }
  163 
  164 static void
  165 unlock_and_deallocate(struct faultstate *fs)
  166 {
  167 
  168         vm_object_pip_wakeup(fs->object);
  169         VM_OBJECT_UNLOCK(fs->object);
  170         if (fs->object != fs->first_object) {
  171                 VM_OBJECT_LOCK(fs->first_object);
  172                 vm_page_lock(fs->first_m);
  173                 vm_page_free(fs->first_m);
  174                 vm_page_unlock(fs->first_m);
  175                 vm_object_pip_wakeup(fs->first_object);
  176                 VM_OBJECT_UNLOCK(fs->first_object);
  177                 fs->first_m = NULL;
  178         }
  179         vm_object_deallocate(fs->first_object);
  180         unlock_map(fs); 
  181         if (fs->vp != NULL) { 
  182                 vput(fs->vp);
  183                 fs->vp = NULL;
  184         }
  185         VFS_UNLOCK_GIANT(fs->vfslocked);
  186         fs->vfslocked = 0;
  187 }
  188 
  189 /*
  190  * TRYPAGER - used by vm_fault to calculate whether the pager for the
  191  *            current object *might* contain the page.
  192  *
  193  *            default objects are zero-fill, there is no real pager.
  194  */
  195 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
  196                         ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
  197 
  198 /*
  199  *      vm_fault:
  200  *
  201  *      Handle a page fault occurring at the given address,
  202  *      requiring the given permissions, in the map specified.
  203  *      If successful, the page is inserted into the
  204  *      associated physical map.
  205  *
  206  *      NOTE: the given address should be truncated to the
  207  *      proper page address.
  208  *
  209  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
  210  *      a standard error specifying why the fault is fatal is returned.
  211  *
  212  *      The map in question must be referenced, and remains so.
  213  *      Caller may hold no locks.
  214  */
  215 int
  216 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
  217     int fault_flags)
  218 {
  219         struct thread *td;
  220         int result;
  221 
  222         td = curthread;
  223         if ((td->td_pflags & TDP_NOFAULTING) != 0)
  224                 return (KERN_PROTECTION_FAILURE);
  225 #ifdef KTRACE
  226         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
  227                 ktrfault(vaddr, fault_type);
  228 #endif
  229         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
  230             NULL);
  231 #ifdef KTRACE
  232         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
  233                 ktrfaultend(result);
  234 #endif
  235         return (result);
  236 }
  237 
  238 int
  239 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
  240     int fault_flags, vm_page_t *m_hold)
  241 {
  242         vm_prot_t prot;
  243         long ahead, behind;
  244         int alloc_req, era, faultcount, nera, reqpage, result;
  245         boolean_t growstack, is_first_object_locked, wired;
  246         int map_generation;
  247         vm_object_t next_object;
  248         vm_page_t marray[VM_FAULT_READ_MAX];
  249         int hardfault;
  250         struct faultstate fs;
  251         struct vnode *vp;
  252         int locked, error;
  253 
  254         hardfault = 0;
  255         growstack = TRUE;
  256         PCPU_INC(cnt.v_vm_faults);
  257         fs.vp = NULL;
  258         fs.vfslocked = 0;
  259         faultcount = reqpage = 0;
  260 
  261 RetryFault:;
  262 
  263         /*
  264          * Find the backing store object and offset into it to begin the
  265          * search.
  266          */
  267         fs.map = map;
  268         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
  269             &fs.first_object, &fs.first_pindex, &prot, &wired);
  270         if (result != KERN_SUCCESS) {
  271                 if (growstack && result == KERN_INVALID_ADDRESS &&
  272                     map != kernel_map) {
  273                         result = vm_map_growstack(curproc, vaddr);
  274                         if (result != KERN_SUCCESS)
  275                                 return (KERN_FAILURE);
  276                         growstack = FALSE;
  277                         goto RetryFault;
  278                 }
  279                 return (result);
  280         }
  281 
  282         map_generation = fs.map->timestamp;
  283 
  284         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
  285                 if ((curthread->td_pflags & TDP_DEVMEMIO) != 0) {
  286                         vm_map_unlock_read(fs.map);
  287                         return (KERN_FAILURE);
  288                 }
  289                 panic("vm_fault: fault on nofault entry, addr: %lx",
  290                     (u_long)vaddr);
  291         }
  292 
  293         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
  294             fs.entry->wiring_thread != curthread) {
  295                 vm_map_unlock_read(fs.map);
  296                 vm_map_lock(fs.map);
  297                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
  298                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
  299                         if (fs.vp != NULL) {
  300                                 vput(fs.vp);
  301                                 fs.vp = NULL;
  302                         }
  303                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
  304                         vm_map_unlock_and_wait(fs.map, 0);
  305                 } else
  306                         vm_map_unlock(fs.map);
  307                 goto RetryFault;
  308         }
  309 
  310         /*
  311          * Make a reference to this object to prevent its disposal while we
  312          * are messing with it.  Once we have the reference, the map is free
  313          * to be diddled.  Since objects reference their shadows (and copies),
  314          * they will stay around as well.
  315          *
  316          * Bump the paging-in-progress count to prevent size changes (e.g. 
  317          * truncation operations) during I/O.  This must be done after
  318          * obtaining the vnode lock in order to avoid possible deadlocks.
  319          */
  320         VM_OBJECT_LOCK(fs.first_object);
  321         vm_object_reference_locked(fs.first_object);
  322         vm_object_pip_add(fs.first_object, 1);
  323 
  324         fs.lookup_still_valid = TRUE;
  325 
  326         if (wired)
  327                 fault_type = prot | (fault_type & VM_PROT_COPY);
  328 
  329         fs.first_m = NULL;
  330 
  331         /*
  332          * Search for the page at object/offset.
  333          */
  334         fs.object = fs.first_object;
  335         fs.pindex = fs.first_pindex;
  336         while (TRUE) {
  337                 /*
  338                  * If the object is dead, we stop here
  339                  */
  340                 if (fs.object->flags & OBJ_DEAD) {
  341                         unlock_and_deallocate(&fs);
  342                         return (KERN_PROTECTION_FAILURE);
  343                 }
  344 
  345                 /*
  346                  * See if page is resident
  347                  */
  348                 fs.m = vm_page_lookup(fs.object, fs.pindex);
  349                 if (fs.m != NULL) {
  350                         /* 
  351                          * check for page-based copy on write.
  352                          * We check fs.object == fs.first_object so
  353                          * as to ensure the legacy COW mechanism is
  354                          * used when the page in question is part of
  355                          * a shadow object.  Otherwise, vm_page_cowfault()
  356                          * removes the page from the backing object, 
  357                          * which is not what we want.
  358                          */
  359                         vm_page_lock(fs.m);
  360                         if ((fs.m->cow) && 
  361                             (fault_type & VM_PROT_WRITE) &&
  362                             (fs.object == fs.first_object)) {
  363                                 vm_page_cowfault(fs.m);
  364                                 unlock_and_deallocate(&fs);
  365                                 goto RetryFault;
  366                         }
  367 
  368                         /*
  369                          * Wait/Retry if the page is busy.  We have to do this
  370                          * if the page is busy via either VPO_BUSY or 
  371                          * vm_page_t->busy because the vm_pager may be using
  372                          * vm_page_t->busy for pageouts ( and even pageins if
  373                          * it is the vnode pager ), and we could end up trying
  374                          * to pagein and pageout the same page simultaneously.
  375                          *
  376                          * We can theoretically allow the busy case on a read
  377                          * fault if the page is marked valid, but since such
  378                          * pages are typically already pmap'd, putting that
  379                          * special case in might be more effort then it is 
  380                          * worth.  We cannot under any circumstances mess
  381                          * around with a vm_page_t->busy page except, perhaps,
  382                          * to pmap it.
  383                          */
  384                         if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
  385                                 /*
  386                                  * Reference the page before unlocking and
  387                                  * sleeping so that the page daemon is less
  388                                  * likely to reclaim it. 
  389                                  */
  390                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
  391                                 vm_page_unlock(fs.m);
  392                                 if (fs.object != fs.first_object) {
  393                                         if (!VM_OBJECT_TRYLOCK(
  394                                             fs.first_object)) {
  395                                                 VM_OBJECT_UNLOCK(fs.object);
  396                                                 VM_OBJECT_LOCK(fs.first_object);
  397                                                 VM_OBJECT_LOCK(fs.object);
  398                                         }
  399                                         vm_page_lock(fs.first_m);
  400                                         vm_page_free(fs.first_m);
  401                                         vm_page_unlock(fs.first_m);
  402                                         vm_object_pip_wakeup(fs.first_object);
  403                                         VM_OBJECT_UNLOCK(fs.first_object);
  404                                         fs.first_m = NULL;
  405                                 }
  406                                 unlock_map(&fs);
  407                                 if (fs.m == vm_page_lookup(fs.object,
  408                                     fs.pindex)) {
  409                                         vm_page_sleep_if_busy(fs.m, TRUE,
  410                                             "vmpfw");
  411                                 }
  412                                 vm_object_pip_wakeup(fs.object);
  413                                 VM_OBJECT_UNLOCK(fs.object);
  414                                 PCPU_INC(cnt.v_intrans);
  415                                 vm_object_deallocate(fs.first_object);
  416                                 goto RetryFault;
  417                         }
  418                         vm_pageq_remove(fs.m);
  419                         vm_page_unlock(fs.m);
  420 
  421                         /*
  422                          * Mark page busy for other processes, and the 
  423                          * pagedaemon.  If it still isn't completely valid
  424                          * (readable), jump to readrest, else break-out ( we
  425                          * found the page ).
  426                          */
  427                         vm_page_busy(fs.m);
  428                         if (fs.m->valid != VM_PAGE_BITS_ALL)
  429                                 goto readrest;
  430                         break;
  431                 }
  432 
  433                 /*
  434                  * Page is not resident, If this is the search termination
  435                  * or the pager might contain the page, allocate a new page.
  436                  */
  437                 if (TRYPAGER || fs.object == fs.first_object) {
  438                         if (fs.pindex >= fs.object->size) {
  439                                 unlock_and_deallocate(&fs);
  440                                 return (KERN_PROTECTION_FAILURE);
  441                         }
  442 
  443                         /*
  444                          * Allocate a new page for this object/offset pair.
  445                          *
  446                          * Unlocked read of the p_flag is harmless. At
  447                          * worst, the P_KILLED might be not observed
  448                          * there, and allocation can fail, causing
  449                          * restart and new reading of the p_flag.
  450                          */
  451                         fs.m = NULL;
  452                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
  453 #if VM_NRESERVLEVEL > 0
  454                                 if ((fs.object->flags & OBJ_COLORED) == 0) {
  455                                         fs.object->flags |= OBJ_COLORED;
  456                                         fs.object->pg_color = atop(vaddr) -
  457                                             fs.pindex;
  458                                 }
  459 #endif
  460                                 alloc_req = P_KILLED(curproc) ?
  461                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
  462                                 if (fs.object->type != OBJT_VNODE &&
  463                                     fs.object->backing_object == NULL)
  464                                         alloc_req |= VM_ALLOC_ZERO;
  465                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
  466                                     alloc_req);
  467                         }
  468                         if (fs.m == NULL) {
  469                                 unlock_and_deallocate(&fs);
  470                                 VM_WAITPFAULT;
  471                                 goto RetryFault;
  472                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
  473                                 break;
  474                 }
  475 
  476 readrest:
  477                 /*
  478                  * We have found a valid page or we have allocated a new page.
  479                  * The page thus may not be valid or may not be entirely 
  480                  * valid.
  481                  *
  482                  * Attempt to fault-in the page if there is a chance that the
  483                  * pager has it, and potentially fault in additional pages
  484                  * at the same time.
  485                  */
  486                 if (TRYPAGER) {
  487                         int rv;
  488                         u_char behavior = vm_map_entry_behavior(fs.entry);
  489 
  490                         if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
  491                             P_KILLED(curproc)) {
  492                                 behind = 0;
  493                                 ahead = 0;
  494                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
  495                                 behind = 0;
  496                                 ahead = atop(fs.entry->end - vaddr) - 1;
  497                                 if (ahead > VM_FAULT_READ_AHEAD_MAX)
  498                                         ahead = VM_FAULT_READ_AHEAD_MAX;
  499                                 if (fs.pindex == fs.entry->next_read)
  500                                         vm_fault_cache_behind(&fs,
  501                                             VM_FAULT_READ_MAX);
  502                         } else {
  503                                 /*
  504                                  * If this is a sequential page fault, then
  505                                  * arithmetically increase the number of pages
  506                                  * in the read-ahead window.  Otherwise, reset
  507                                  * the read-ahead window to its smallest size.
  508                                  */
  509                                 behind = atop(vaddr - fs.entry->start);
  510                                 if (behind > VM_FAULT_READ_BEHIND)
  511                                         behind = VM_FAULT_READ_BEHIND;
  512                                 ahead = atop(fs.entry->end - vaddr) - 1;
  513                                 era = fs.entry->read_ahead;
  514                                 if (fs.pindex == fs.entry->next_read) {
  515                                         nera = era + behind;
  516                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
  517                                                 nera = VM_FAULT_READ_AHEAD_MAX;
  518                                         behind = 0;
  519                                         if (ahead > nera)
  520                                                 ahead = nera;
  521                                         if (era == VM_FAULT_READ_AHEAD_MAX)
  522                                                 vm_fault_cache_behind(&fs,
  523                                                     VM_FAULT_CACHE_BEHIND);
  524                                 } else if (ahead > VM_FAULT_READ_AHEAD_MIN)
  525                                         ahead = VM_FAULT_READ_AHEAD_MIN;
  526                                 if (era != ahead)
  527                                         fs.entry->read_ahead = ahead;
  528                         }
  529 
  530                         /*
  531                          * Call the pager to retrieve the data, if any, after
  532                          * releasing the lock on the map.  We hold a ref on
  533                          * fs.object and the pages are VPO_BUSY'd.
  534                          */
  535                         unlock_map(&fs);
  536 
  537 vnode_lock:
  538                         if (fs.object->type == OBJT_VNODE) {
  539                                 vp = fs.object->handle;
  540                                 if (vp == fs.vp)
  541                                         goto vnode_locked;
  542                                 else if (fs.vp != NULL) {
  543                                         vput(fs.vp);
  544                                         fs.vp = NULL;
  545                                 }
  546                                 locked = VOP_ISLOCKED(vp);
  547 
  548                                 if (VFS_NEEDSGIANT(vp->v_mount) && !fs.vfslocked) {
  549                                         fs.vfslocked = 1;
  550                                         if (!mtx_trylock(&Giant)) {
  551                                                 VM_OBJECT_UNLOCK(fs.object);
  552                                                 mtx_lock(&Giant);
  553                                                 VM_OBJECT_LOCK(fs.object);
  554                                                 goto vnode_lock;
  555                                         }
  556                                 }
  557                                 if (locked != LK_EXCLUSIVE)
  558                                         locked = LK_SHARED;
  559                                 /* Do not sleep for vnode lock while fs.m is busy */
  560                                 error = vget(vp, locked | LK_CANRECURSE |
  561                                     LK_NOWAIT, curthread);
  562                                 if (error != 0) {
  563                                         int vfslocked;
  564 
  565                                         vfslocked = fs.vfslocked;
  566                                         fs.vfslocked = 0; /* Keep Giant */
  567                                         vhold(vp);
  568                                         release_page(&fs);
  569                                         unlock_and_deallocate(&fs);
  570                                         error = vget(vp, locked | LK_RETRY |
  571                                             LK_CANRECURSE, curthread);
  572                                         vdrop(vp);
  573                                         fs.vp = vp;
  574                                         fs.vfslocked = vfslocked;
  575                                         KASSERT(error == 0,
  576                                             ("vm_fault: vget failed"));
  577                                         goto RetryFault;
  578                                 }
  579                                 fs.vp = vp;
  580                         }
  581 vnode_locked:
  582                         KASSERT(fs.vp == NULL || !fs.map->system_map,
  583                             ("vm_fault: vnode-backed object mapped by system map"));
  584 
  585                         /*
  586                          * now we find out if any other pages should be paged
  587                          * in at this time this routine checks to see if the
  588                          * pages surrounding this fault reside in the same
  589                          * object as the page for this fault.  If they do,
  590                          * then they are faulted in also into the object.  The
  591                          * array "marray" returned contains an array of
  592                          * vm_page_t structs where one of them is the
  593                          * vm_page_t passed to the routine.  The reqpage
  594                          * return value is the index into the marray for the
  595                          * vm_page_t passed to the routine.
  596                          *
  597                          * fs.m plus the additional pages are VPO_BUSY'd.
  598                          */
  599                         faultcount = vm_fault_additional_pages(
  600                             fs.m, behind, ahead, marray, &reqpage);
  601 
  602                         rv = faultcount ?
  603                             vm_pager_get_pages(fs.object, marray, faultcount,
  604                                 reqpage) : VM_PAGER_FAIL;
  605 
  606                         if (rv == VM_PAGER_OK) {
  607                                 /*
  608                                  * Found the page. Leave it busy while we play
  609                                  * with it.
  610                                  */
  611 
  612                                 /*
  613                                  * Relookup in case pager changed page. Pager
  614                                  * is responsible for disposition of old page
  615                                  * if moved.
  616                                  */
  617                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
  618                                 if (!fs.m) {
  619                                         unlock_and_deallocate(&fs);
  620                                         goto RetryFault;
  621                                 }
  622 
  623                                 hardfault++;
  624                                 break; /* break to PAGE HAS BEEN FOUND */
  625                         }
  626                         /*
  627                          * Remove the bogus page (which does not exist at this
  628                          * object/offset); before doing so, we must get back
  629                          * our object lock to preserve our invariant.
  630                          *
  631                          * Also wake up any other process that may want to bring
  632                          * in this page.
  633                          *
  634                          * If this is the top-level object, we must leave the
  635                          * busy page to prevent another process from rushing
  636                          * past us, and inserting the page in that object at
  637                          * the same time that we are.
  638                          */
  639                         if (rv == VM_PAGER_ERROR)
  640                                 printf("vm_fault: pager read error, pid %d (%s)\n",
  641                                     curproc->p_pid, curproc->p_comm);
  642                         /*
  643                          * Data outside the range of the pager or an I/O error
  644                          */
  645                         /*
  646                          * XXX - the check for kernel_map is a kludge to work
  647                          * around having the machine panic on a kernel space
  648                          * fault w/ I/O error.
  649                          */
  650                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
  651                                 (rv == VM_PAGER_BAD)) {
  652                                 vm_page_lock(fs.m);
  653                                 vm_page_free(fs.m);
  654                                 vm_page_unlock(fs.m);
  655                                 fs.m = NULL;
  656                                 unlock_and_deallocate(&fs);
  657                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
  658                         }
  659                         if (fs.object != fs.first_object) {
  660                                 vm_page_lock(fs.m);
  661                                 vm_page_free(fs.m);
  662                                 vm_page_unlock(fs.m);
  663                                 fs.m = NULL;
  664                                 /*
  665                                  * XXX - we cannot just fall out at this
  666                                  * point, m has been freed and is invalid!
  667                                  */
  668                         }
  669                 }
  670 
  671                 /*
  672                  * We get here if the object has default pager (or unwiring) 
  673                  * or the pager doesn't have the page.
  674                  */
  675                 if (fs.object == fs.first_object)
  676                         fs.first_m = fs.m;
  677 
  678                 /*
  679                  * Move on to the next object.  Lock the next object before
  680                  * unlocking the current one.
  681                  */
  682                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
  683                 next_object = fs.object->backing_object;
  684                 if (next_object == NULL) {
  685                         /*
  686                          * If there's no object left, fill the page in the top
  687                          * object with zeros.
  688                          */
  689                         if (fs.object != fs.first_object) {
  690                                 vm_object_pip_wakeup(fs.object);
  691                                 VM_OBJECT_UNLOCK(fs.object);
  692 
  693                                 fs.object = fs.first_object;
  694                                 fs.pindex = fs.first_pindex;
  695                                 fs.m = fs.first_m;
  696                                 VM_OBJECT_LOCK(fs.object);
  697                         }
  698                         fs.first_m = NULL;
  699 
  700                         /*
  701                          * Zero the page if necessary and mark it valid.
  702                          */
  703                         if ((fs.m->flags & PG_ZERO) == 0) {
  704                                 pmap_zero_page(fs.m);
  705                         } else {
  706                                 PCPU_INC(cnt.v_ozfod);
  707                         }
  708                         PCPU_INC(cnt.v_zfod);
  709                         fs.m->valid = VM_PAGE_BITS_ALL;
  710                         break;  /* break to PAGE HAS BEEN FOUND */
  711                 } else {
  712                         KASSERT(fs.object != next_object,
  713                             ("object loop %p", next_object));
  714                         VM_OBJECT_LOCK(next_object);
  715                         vm_object_pip_add(next_object, 1);
  716                         if (fs.object != fs.first_object)
  717                                 vm_object_pip_wakeup(fs.object);
  718                         VM_OBJECT_UNLOCK(fs.object);
  719                         fs.object = next_object;
  720                 }
  721         }
  722 
  723         KASSERT((fs.m->oflags & VPO_BUSY) != 0,
  724             ("vm_fault: not busy after main loop"));
  725 
  726         /*
  727          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
  728          * is held.]
  729          */
  730 
  731         /*
  732          * If the page is being written, but isn't already owned by the
  733          * top-level object, we have to copy it into a new page owned by the
  734          * top-level object.
  735          */
  736         if (fs.object != fs.first_object) {
  737                 /*
  738                  * We only really need to copy if we want to write it.
  739                  */
  740                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
  741                         /*
  742                          * This allows pages to be virtually copied from a 
  743                          * backing_object into the first_object, where the 
  744                          * backing object has no other refs to it, and cannot
  745                          * gain any more refs.  Instead of a bcopy, we just 
  746                          * move the page from the backing object to the 
  747                          * first object.  Note that we must mark the page 
  748                          * dirty in the first object so that it will go out 
  749                          * to swap when needed.
  750                          */
  751                         is_first_object_locked = FALSE;
  752                         if (
  753                                 /*
  754                                  * Only one shadow object
  755                                  */
  756                                 (fs.object->shadow_count == 1) &&
  757                                 /*
  758                                  * No COW refs, except us
  759                                  */
  760                                 (fs.object->ref_count == 1) &&
  761                                 /*
  762                                  * No one else can look this object up
  763                                  */
  764                                 (fs.object->handle == NULL) &&
  765                                 /*
  766                                  * No other ways to look the object up
  767                                  */
  768                                 ((fs.object->type == OBJT_DEFAULT) ||
  769                                  (fs.object->type == OBJT_SWAP)) &&
  770                             (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
  771                                 /*
  772                                  * We don't chase down the shadow chain
  773                                  */
  774                             fs.object == fs.first_object->backing_object) {
  775                                 /*
  776                                  * get rid of the unnecessary page
  777                                  */
  778                                 vm_page_lock(fs.first_m);
  779                                 vm_page_free(fs.first_m);
  780                                 vm_page_unlock(fs.first_m);
  781                                 /*
  782                                  * grab the page and put it into the 
  783                                  * process'es object.  The page is 
  784                                  * automatically made dirty.
  785                                  */
  786                                 vm_page_lock(fs.m);
  787                                 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
  788                                 vm_page_unlock(fs.m);
  789                                 vm_page_busy(fs.m);
  790                                 fs.first_m = fs.m;
  791                                 fs.m = NULL;
  792                                 PCPU_INC(cnt.v_cow_optim);
  793                         } else {
  794                                 /*
  795                                  * Oh, well, lets copy it.
  796                                  */
  797                                 pmap_copy_page(fs.m, fs.first_m);
  798                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
  799                                 if (wired && (fault_flags &
  800                                     VM_FAULT_CHANGE_WIRING) == 0) {
  801                                         vm_page_lock(fs.first_m);
  802                                         vm_page_wire(fs.first_m);
  803                                         vm_page_unlock(fs.first_m);
  804                                         
  805                                         vm_page_lock(fs.m);
  806                                         vm_page_unwire(fs.m, FALSE);
  807                                         vm_page_unlock(fs.m);
  808                                 }
  809                                 /*
  810                                  * We no longer need the old page or object.
  811                                  */
  812                                 release_page(&fs);
  813                         }
  814                         /*
  815                          * fs.object != fs.first_object due to above 
  816                          * conditional
  817                          */
  818                         vm_object_pip_wakeup(fs.object);
  819                         VM_OBJECT_UNLOCK(fs.object);
  820                         /*
  821                          * Only use the new page below...
  822                          */
  823                         fs.object = fs.first_object;
  824                         fs.pindex = fs.first_pindex;
  825                         fs.m = fs.first_m;
  826                         if (!is_first_object_locked)
  827                                 VM_OBJECT_LOCK(fs.object);
  828                         PCPU_INC(cnt.v_cow_faults);
  829                         curthread->td_cow++;
  830                 } else {
  831                         prot &= ~VM_PROT_WRITE;
  832                 }
  833         }
  834 
  835         /*
  836          * We must verify that the maps have not changed since our last
  837          * lookup.
  838          */
  839         if (!fs.lookup_still_valid) {
  840                 vm_object_t retry_object;
  841                 vm_pindex_t retry_pindex;
  842                 vm_prot_t retry_prot;
  843 
  844                 if (!vm_map_trylock_read(fs.map)) {
  845                         release_page(&fs);
  846                         unlock_and_deallocate(&fs);
  847                         goto RetryFault;
  848                 }
  849                 fs.lookup_still_valid = TRUE;
  850                 if (fs.map->timestamp != map_generation) {
  851                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
  852                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
  853 
  854                         /*
  855                          * If we don't need the page any longer, put it on the inactive
  856                          * list (the easiest thing to do here).  If no one needs it,
  857                          * pageout will grab it eventually.
  858                          */
  859                         if (result != KERN_SUCCESS) {
  860                                 release_page(&fs);
  861                                 unlock_and_deallocate(&fs);
  862 
  863                                 /*
  864                                  * If retry of map lookup would have blocked then
  865                                  * retry fault from start.
  866                                  */
  867                                 if (result == KERN_FAILURE)
  868                                         goto RetryFault;
  869                                 return (result);
  870                         }
  871                         if ((retry_object != fs.first_object) ||
  872                             (retry_pindex != fs.first_pindex)) {
  873                                 release_page(&fs);
  874                                 unlock_and_deallocate(&fs);
  875                                 goto RetryFault;
  876                         }
  877 
  878                         /*
  879                          * Check whether the protection has changed or the object has
  880                          * been copied while we left the map unlocked. Changing from
  881                          * read to write permission is OK - we leave the page
  882                          * write-protected, and catch the write fault. Changing from
  883                          * write to read permission means that we can't mark the page
  884                          * write-enabled after all.
  885                          */
  886                         prot &= retry_prot;
  887                 }
  888         }
  889         /*
  890          * If the page was filled by a pager, update the map entry's
  891          * last read offset.  Since the pager does not return the
  892          * actual set of pages that it read, this update is based on
  893          * the requested set.  Typically, the requested and actual
  894          * sets are the same.
  895          *
  896          * XXX The following assignment modifies the map
  897          * without holding a write lock on it.
  898          */
  899         if (hardfault)
  900                 fs.entry->next_read = fs.pindex + faultcount - reqpage;
  901 
  902         if ((prot & VM_PROT_WRITE) != 0 ||
  903             (fault_flags & VM_FAULT_DIRTY) != 0) {
  904                 vm_object_set_writeable_dirty(fs.object);
  905 
  906                 /*
  907                  * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
  908                  * if the page is already dirty to prevent data written with
  909                  * the expectation of being synced from not being synced.
  910                  * Likewise if this entry does not request NOSYNC then make
  911                  * sure the page isn't marked NOSYNC.  Applications sharing
  912                  * data should use the same flags to avoid ping ponging.
  913                  */
  914                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
  915                         if (fs.m->dirty == 0)
  916                                 fs.m->oflags |= VPO_NOSYNC;
  917                 } else {
  918                         fs.m->oflags &= ~VPO_NOSYNC;
  919                 }
  920 
  921                 /*
  922                  * If the fault is a write, we know that this page is being
  923                  * written NOW so dirty it explicitly to save on 
  924                  * pmap_is_modified() calls later.
  925                  *
  926                  * Also tell the backing pager, if any, that it should remove
  927                  * any swap backing since the page is now dirty.
  928                  */
  929                 if (((fault_type & VM_PROT_WRITE) != 0 &&
  930                     (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) ||
  931                     (fault_flags & VM_FAULT_DIRTY) != 0) {
  932                         vm_page_dirty(fs.m);
  933                         vm_pager_page_unswapped(fs.m);
  934                 }
  935         }
  936 
  937         /*
  938          * Page had better still be busy
  939          */
  940         KASSERT(fs.m->oflags & VPO_BUSY,
  941                 ("vm_fault: page %p not busy!", fs.m));
  942         /*
  943          * Page must be completely valid or it is not fit to
  944          * map into user space.  vm_pager_get_pages() ensures this.
  945          */
  946         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
  947             ("vm_fault: page %p partially invalid", fs.m));
  948         VM_OBJECT_UNLOCK(fs.object);
  949 
  950         /*
  951          * Put this page into the physical map.  We had to do the unlock above
  952          * because pmap_enter() may sleep.  We don't put the page
  953          * back on the active queue until later so that the pageout daemon
  954          * won't find it (yet).
  955          */
  956         pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
  957         if ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 && wired == 0)
  958                 vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
  959         VM_OBJECT_LOCK(fs.object);
  960         vm_page_lock(fs.m);
  961 
  962         /*
  963          * If the page is not wired down, then put it where the pageout daemon
  964          * can find it.
  965          */
  966         if (fault_flags & VM_FAULT_CHANGE_WIRING) {
  967                 if (wired)
  968                         vm_page_wire(fs.m);
  969                 else
  970                         vm_page_unwire(fs.m, 1);
  971         } else
  972                 vm_page_activate(fs.m);
  973         if (m_hold != NULL) {
  974                 *m_hold = fs.m;
  975                 vm_page_hold(fs.m);
  976         }
  977         vm_page_unlock(fs.m);
  978         vm_page_wakeup(fs.m);
  979 
  980         /*
  981          * Unlock everything, and return
  982          */
  983         unlock_and_deallocate(&fs);
  984         if (hardfault)
  985                 curthread->td_ru.ru_majflt++;
  986         else
  987                 curthread->td_ru.ru_minflt++;
  988 
  989         return (KERN_SUCCESS);
  990 }
  991 
  992 /*
  993  * Speed up the reclamation of up to "distance" pages that precede the
  994  * faulting pindex within the first object of the shadow chain.
  995  */
  996 static void
  997 vm_fault_cache_behind(const struct faultstate *fs, int distance)
  998 {
  999         vm_object_t first_object, object;
 1000         vm_page_t m, m_prev;
 1001         vm_pindex_t pindex;
 1002 
 1003         object = fs->object;
 1004         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 1005         first_object = fs->first_object;
 1006         if (first_object != object) {
 1007                 if (!VM_OBJECT_TRYLOCK(first_object)) {
 1008                         VM_OBJECT_UNLOCK(object);
 1009                         VM_OBJECT_LOCK(first_object);
 1010                         VM_OBJECT_LOCK(object);
 1011                 }
 1012         }
 1013         if (first_object->type != OBJT_DEVICE &&
 1014             first_object->type != OBJT_PHYS && first_object->type != OBJT_SG) {
 1015                 if (fs->first_pindex < distance)
 1016                         pindex = 0;
 1017                 else
 1018                         pindex = fs->first_pindex - distance;
 1019                 if (pindex < OFF_TO_IDX(fs->entry->offset))
 1020                         pindex = OFF_TO_IDX(fs->entry->offset);
 1021                 m = first_object != object ? fs->first_m : fs->m;
 1022                 KASSERT((m->oflags & VPO_BUSY) != 0,
 1023                     ("vm_fault_cache_behind: page %p is not busy", m));
 1024                 m_prev = vm_page_prev(m);
 1025                 while ((m = m_prev) != NULL && m->pindex >= pindex &&
 1026                     m->valid == VM_PAGE_BITS_ALL) {
 1027                         m_prev = vm_page_prev(m);
 1028                         if (m->busy != 0 || (m->oflags & VPO_BUSY) != 0)
 1029                                 continue;
 1030                         vm_page_lock(m);
 1031                         if (m->hold_count == 0 && m->wire_count == 0) {
 1032                                 pmap_remove_all(m);
 1033                                 vm_page_aflag_clear(m, PGA_REFERENCED);
 1034                                 if (m->dirty != 0)
 1035                                         vm_page_deactivate(m);
 1036                                 else
 1037                                         vm_page_cache(m);
 1038                         }
 1039                         vm_page_unlock(m);
 1040                 }
 1041         }
 1042         if (first_object != object)
 1043                 VM_OBJECT_UNLOCK(first_object);
 1044 }
 1045 
 1046 /*
 1047  * vm_fault_prefault provides a quick way of clustering
 1048  * pagefaults into a processes address space.  It is a "cousin"
 1049  * of vm_map_pmap_enter, except it runs at page fault time instead
 1050  * of mmap time.
 1051  */
 1052 static void
 1053 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
 1054 {
 1055         int i;
 1056         vm_offset_t addr, starta;
 1057         vm_pindex_t pindex;
 1058         vm_page_t m;
 1059         vm_object_t object;
 1060 
 1061         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
 1062                 return;
 1063 
 1064         object = entry->object.vm_object;
 1065 
 1066         starta = addra - PFBAK * PAGE_SIZE;
 1067         if (starta < entry->start) {
 1068                 starta = entry->start;
 1069         } else if (starta > addra) {
 1070                 starta = 0;
 1071         }
 1072 
 1073         for (i = 0; i < PAGEORDER_SIZE; i++) {
 1074                 vm_object_t backing_object, lobject;
 1075 
 1076                 addr = addra + prefault_pageorder[i];
 1077                 if (addr > addra + (PFFOR * PAGE_SIZE))
 1078                         addr = 0;
 1079 
 1080                 if (addr < starta || addr >= entry->end)
 1081                         continue;
 1082 
 1083                 if (!pmap_is_prefaultable(pmap, addr))
 1084                         continue;
 1085 
 1086                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
 1087                 lobject = object;
 1088                 VM_OBJECT_LOCK(lobject);
 1089                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
 1090                     lobject->type == OBJT_DEFAULT &&
 1091                     (backing_object = lobject->backing_object) != NULL) {
 1092                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
 1093                             0, ("vm_fault_prefault: unaligned object offset"));
 1094                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
 1095                         VM_OBJECT_LOCK(backing_object);
 1096                         VM_OBJECT_UNLOCK(lobject);
 1097                         lobject = backing_object;
 1098                 }
 1099                 /*
 1100                  * give-up when a page is not in memory
 1101                  */
 1102                 if (m == NULL) {
 1103                         VM_OBJECT_UNLOCK(lobject);
 1104                         break;
 1105                 }
 1106                 if (m->valid == VM_PAGE_BITS_ALL &&
 1107                     (m->flags & PG_FICTITIOUS) == 0)
 1108                         pmap_enter_quick(pmap, addr, m, entry->protection);
 1109                 VM_OBJECT_UNLOCK(lobject);
 1110         }
 1111 }
 1112 
 1113 /*
 1114  * Hold each of the physical pages that are mapped by the specified range of
 1115  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
 1116  * and allow the specified types of access, "prot".  If all of the implied
 1117  * pages are successfully held, then the number of held pages is returned
 1118  * together with pointers to those pages in the array "ma".  However, if any
 1119  * of the pages cannot be held, -1 is returned.
 1120  */
 1121 int
 1122 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
 1123     vm_prot_t prot, vm_page_t *ma, int max_count)
 1124 {
 1125         vm_offset_t end, va;
 1126         vm_page_t *mp;
 1127         int count;
 1128         boolean_t pmap_failed;
 1129 
 1130         if (len == 0)
 1131                 return (0);
 1132         end = round_page(addr + len);
 1133         addr = trunc_page(addr);
 1134 
 1135         /*
 1136          * Check for illegal addresses.
 1137          */
 1138         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
 1139                 return (-1);
 1140 
 1141         if (atop(end - addr) > max_count)
 1142                 panic("vm_fault_quick_hold_pages: count > max_count");
 1143         count = atop(end - addr);
 1144 
 1145         /*
 1146          * Most likely, the physical pages are resident in the pmap, so it is
 1147          * faster to try pmap_extract_and_hold() first.
 1148          */
 1149         pmap_failed = FALSE;
 1150         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
 1151                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
 1152                 if (*mp == NULL)
 1153                         pmap_failed = TRUE;
 1154                 else if ((prot & VM_PROT_WRITE) != 0 &&
 1155                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
 1156                         /*
 1157                          * Explicitly dirty the physical page.  Otherwise, the
 1158                          * caller's changes may go unnoticed because they are
 1159                          * performed through an unmanaged mapping or by a DMA
 1160                          * operation.
 1161                          *
 1162                          * The object lock is not held here.
 1163                          * See vm_page_clear_dirty_mask().
 1164                          */
 1165                         vm_page_dirty(*mp);
 1166                 }
 1167         }
 1168         if (pmap_failed) {
 1169                 /*
 1170                  * One or more pages could not be held by the pmap.  Either no
 1171                  * page was mapped at the specified virtual address or that
 1172                  * mapping had insufficient permissions.  Attempt to fault in
 1173                  * and hold these pages.
 1174                  */
 1175                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
 1176                         if (*mp == NULL && vm_fault_hold(map, va, prot,
 1177                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
 1178                                 goto error;
 1179         }
 1180         return (count);
 1181 error:  
 1182         for (mp = ma; mp < ma + count; mp++)
 1183                 if (*mp != NULL) {
 1184                         vm_page_lock(*mp);
 1185                         vm_page_unhold(*mp);
 1186                         vm_page_unlock(*mp);
 1187                 }
 1188         return (-1);
 1189 }
 1190 
 1191 /*
 1192  *      vm_fault_wire:
 1193  *
 1194  *      Wire down a range of virtual addresses in a map.
 1195  */
 1196 int
 1197 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
 1198     boolean_t fictitious)
 1199 {
 1200         vm_offset_t va;
 1201         int rv;
 1202 
 1203         /*
 1204          * We simulate a fault to get the page and enter it in the physical
 1205          * map.  For user wiring, we only ask for read access on currently
 1206          * read-only sections.
 1207          */
 1208         for (va = start; va < end; va += PAGE_SIZE) {
 1209                 rv = vm_fault(map, va, VM_PROT_NONE, VM_FAULT_CHANGE_WIRING);
 1210                 if (rv) {
 1211                         if (va != start)
 1212                                 vm_fault_unwire(map, start, va, fictitious);
 1213                         return (rv);
 1214                 }
 1215         }
 1216         return (KERN_SUCCESS);
 1217 }
 1218 
 1219 /*
 1220  *      vm_fault_unwire:
 1221  *
 1222  *      Unwire a range of virtual addresses in a map.
 1223  */
 1224 void
 1225 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
 1226     boolean_t fictitious)
 1227 {
 1228         vm_paddr_t pa;
 1229         vm_offset_t va;
 1230         vm_page_t m;
 1231         pmap_t pmap;
 1232 
 1233         pmap = vm_map_pmap(map);
 1234 
 1235         /*
 1236          * Since the pages are wired down, we must be able to get their
 1237          * mappings from the physical map system.
 1238          */
 1239         for (va = start; va < end; va += PAGE_SIZE) {
 1240                 pa = pmap_extract(pmap, va);
 1241                 if (pa != 0) {
 1242                         pmap_change_wiring(pmap, va, FALSE);
 1243                         if (!fictitious) {
 1244                                 m = PHYS_TO_VM_PAGE(pa);
 1245                                 vm_page_lock(m);
 1246                                 vm_page_unwire(m, TRUE);
 1247                                 vm_page_unlock(m);
 1248                         }
 1249                 }
 1250         }
 1251 }
 1252 
 1253 /*
 1254  *      Routine:
 1255  *              vm_fault_copy_entry
 1256  *      Function:
 1257  *              Create new shadow object backing dst_entry with private copy of
 1258  *              all underlying pages. When src_entry is equal to dst_entry,
 1259  *              function implements COW for wired-down map entry. Otherwise,
 1260  *              it forks wired entry into dst_map.
 1261  *
 1262  *      In/out conditions:
 1263  *              The source and destination maps must be locked for write.
 1264  *              The source map entry must be wired down (or be a sharing map
 1265  *              entry corresponding to a main map entry that is wired down).
 1266  */
 1267 void
 1268 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
 1269     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
 1270     vm_ooffset_t *fork_charge)
 1271 {
 1272         vm_object_t backing_object, dst_object, object, src_object;
 1273         vm_pindex_t dst_pindex, pindex, src_pindex;
 1274         vm_prot_t access, prot;
 1275         vm_offset_t vaddr;
 1276         vm_page_t dst_m;
 1277         vm_page_t src_m;
 1278         boolean_t upgrade;
 1279 
 1280 #ifdef  lint
 1281         src_map++;
 1282 #endif  /* lint */
 1283 
 1284         upgrade = src_entry == dst_entry;
 1285 
 1286         src_object = src_entry->object.vm_object;
 1287         src_pindex = OFF_TO_IDX(src_entry->offset);
 1288 
 1289         /*
 1290          * Create the top-level object for the destination entry. (Doesn't
 1291          * actually shadow anything - we copy the pages directly.)
 1292          */
 1293         dst_object = vm_object_allocate(OBJT_DEFAULT,
 1294             OFF_TO_IDX(dst_entry->end - dst_entry->start));
 1295 #if VM_NRESERVLEVEL > 0
 1296         dst_object->flags |= OBJ_COLORED;
 1297         dst_object->pg_color = atop(dst_entry->start);
 1298 #endif
 1299 
 1300         VM_OBJECT_LOCK(dst_object);
 1301         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
 1302             ("vm_fault_copy_entry: vm_object not NULL"));
 1303         dst_entry->object.vm_object = dst_object;
 1304         dst_entry->offset = 0;
 1305         dst_object->charge = dst_entry->end - dst_entry->start;
 1306         if (fork_charge != NULL) {
 1307                 KASSERT(dst_entry->cred == NULL,
 1308                     ("vm_fault_copy_entry: leaked swp charge"));
 1309                 dst_object->cred = curthread->td_ucred;
 1310                 crhold(dst_object->cred);
 1311                 *fork_charge += dst_object->charge;
 1312         } else {
 1313                 dst_object->cred = dst_entry->cred;
 1314                 dst_entry->cred = NULL;
 1315         }
 1316         access = prot = dst_entry->protection;
 1317         /*
 1318          * If not an upgrade, then enter the mappings in the pmap as
 1319          * read and/or execute accesses.  Otherwise, enter them as
 1320          * write accesses.
 1321          *
 1322          * A writeable large page mapping is only created if all of
 1323          * the constituent small page mappings are modified. Marking
 1324          * PTEs as modified on inception allows promotion to happen
 1325          * without taking potentially large number of soft faults.
 1326          */
 1327         if (!upgrade)
 1328                 access &= ~VM_PROT_WRITE;
 1329 
 1330         /*
 1331          * Loop through all of the virtual pages within the entry's
 1332          * range, copying each page from the source object to the
 1333          * destination object.  Since the source is wired, those pages
 1334          * must exist.  In contrast, the destination is pageable.
 1335          * Since the destination object does share any backing storage
 1336          * with the source object, all of its pages must be dirtied,
 1337          * regardless of whether they can be written.
 1338          */
 1339         for (vaddr = dst_entry->start, dst_pindex = 0;
 1340             vaddr < dst_entry->end;
 1341             vaddr += PAGE_SIZE, dst_pindex++) {
 1342 
 1343                 /*
 1344                  * Allocate a page in the destination object.
 1345                  */
 1346                 do {
 1347                         dst_m = vm_page_alloc(dst_object, dst_pindex,
 1348                             VM_ALLOC_NORMAL);
 1349                         if (dst_m == NULL) {
 1350                                 VM_OBJECT_UNLOCK(dst_object);
 1351                                 VM_WAIT;
 1352                                 VM_OBJECT_LOCK(dst_object);
 1353                         }
 1354                 } while (dst_m == NULL);
 1355 
 1356                 /*
 1357                  * Find the page in the source object, and copy it in.
 1358                  * Because the source is wired down, the page will be
 1359                  * in memory.
 1360                  */
 1361                 VM_OBJECT_LOCK(src_object);
 1362                 object = src_object;
 1363                 pindex = src_pindex + dst_pindex;
 1364                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
 1365                     (backing_object = object->backing_object) != NULL) {
 1366                         /*
 1367                          * Unless the source mapping is read-only or
 1368                          * it is presently being upgraded from
 1369                          * read-only, the first object in the shadow
 1370                          * chain should provide all of the pages.  In
 1371                          * other words, this loop body should never be
 1372                          * executed when the source mapping is already
 1373                          * read/write.
 1374                          */
 1375                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
 1376                             upgrade,
 1377                             ("vm_fault_copy_entry: main object missing page"));
 1378 
 1379                         VM_OBJECT_LOCK(backing_object);
 1380                         pindex += OFF_TO_IDX(object->backing_object_offset);
 1381                         VM_OBJECT_UNLOCK(object);
 1382                         object = backing_object;
 1383                 }
 1384                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
 1385                 pmap_copy_page(src_m, dst_m);
 1386                 VM_OBJECT_UNLOCK(object);
 1387                 dst_m->valid = VM_PAGE_BITS_ALL;
 1388                 dst_m->dirty = VM_PAGE_BITS_ALL;
 1389                 VM_OBJECT_UNLOCK(dst_object);
 1390 
 1391                 /*
 1392                  * Enter it in the pmap. If a wired, copy-on-write
 1393                  * mapping is being replaced by a write-enabled
 1394                  * mapping, then wire that new mapping.
 1395                  */
 1396                 pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade);
 1397 
 1398                 /*
 1399                  * Mark it no longer busy, and put it on the active list.
 1400                  */
 1401                 VM_OBJECT_LOCK(dst_object);
 1402                 
 1403                 if (upgrade) {
 1404                         vm_page_lock(src_m);
 1405                         vm_page_unwire(src_m, 0);
 1406                         vm_page_unlock(src_m);
 1407 
 1408                         vm_page_lock(dst_m);
 1409                         vm_page_wire(dst_m);
 1410                         vm_page_unlock(dst_m);
 1411                 } else {
 1412                         vm_page_lock(dst_m);
 1413                         vm_page_activate(dst_m);
 1414                         vm_page_unlock(dst_m);
 1415                 }
 1416                 vm_page_wakeup(dst_m);
 1417         }
 1418         VM_OBJECT_UNLOCK(dst_object);
 1419         if (upgrade) {
 1420                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
 1421                 vm_object_deallocate(src_object);
 1422         }
 1423 }
 1424 
 1425 
 1426 /*
 1427  * This routine checks around the requested page for other pages that
 1428  * might be able to be faulted in.  This routine brackets the viable
 1429  * pages for the pages to be paged in.
 1430  *
 1431  * Inputs:
 1432  *      m, rbehind, rahead
 1433  *
 1434  * Outputs:
 1435  *  marray (array of vm_page_t), reqpage (index of requested page)
 1436  *
 1437  * Return value:
 1438  *  number of pages in marray
 1439  */
 1440 static int
 1441 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
 1442         vm_page_t m;
 1443         int rbehind;
 1444         int rahead;
 1445         vm_page_t *marray;
 1446         int *reqpage;
 1447 {
 1448         int i,j;
 1449         vm_object_t object;
 1450         vm_pindex_t pindex, startpindex, endpindex, tpindex;
 1451         vm_page_t rtm;
 1452         int cbehind, cahead;
 1453 
 1454         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
 1455 
 1456         object = m->object;
 1457         pindex = m->pindex;
 1458         cbehind = cahead = 0;
 1459 
 1460         /*
 1461          * if the requested page is not available, then give up now
 1462          */
 1463         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
 1464                 return 0;
 1465         }
 1466 
 1467         if ((cbehind == 0) && (cahead == 0)) {
 1468                 *reqpage = 0;
 1469                 marray[0] = m;
 1470                 return 1;
 1471         }
 1472 
 1473         if (rahead > cahead) {
 1474                 rahead = cahead;
 1475         }
 1476 
 1477         if (rbehind > cbehind) {
 1478                 rbehind = cbehind;
 1479         }
 1480 
 1481         /*
 1482          * scan backward for the read behind pages -- in memory 
 1483          */
 1484         if (pindex > 0) {
 1485                 if (rbehind > pindex) {
 1486                         rbehind = pindex;
 1487                         startpindex = 0;
 1488                 } else {
 1489                         startpindex = pindex - rbehind;
 1490                 }
 1491 
 1492                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
 1493                     rtm->pindex >= startpindex)
 1494                         startpindex = rtm->pindex + 1;
 1495 
 1496                 /* tpindex is unsigned; beware of numeric underflow. */
 1497                 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
 1498                     tpindex < pindex; i++, tpindex--) {
 1499 
 1500                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
 1501                             VM_ALLOC_IFNOTCACHED);
 1502                         if (rtm == NULL) {
 1503                                 /*
 1504                                  * Shift the allocated pages to the
 1505                                  * beginning of the array.
 1506                                  */
 1507                                 for (j = 0; j < i; j++) {
 1508                                         marray[j] = marray[j + tpindex + 1 -
 1509                                             startpindex];
 1510                                 }
 1511                                 break;
 1512                         }
 1513 
 1514                         marray[tpindex - startpindex] = rtm;
 1515                 }
 1516         } else {
 1517                 startpindex = 0;
 1518                 i = 0;
 1519         }
 1520 
 1521         marray[i] = m;
 1522         /* page offset of the required page */
 1523         *reqpage = i;
 1524 
 1525         tpindex = pindex + 1;
 1526         i++;
 1527 
 1528         /*
 1529          * scan forward for the read ahead pages
 1530          */
 1531         endpindex = tpindex + rahead;
 1532         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
 1533                 endpindex = rtm->pindex;
 1534         if (endpindex > object->size)
 1535                 endpindex = object->size;
 1536 
 1537         for (; tpindex < endpindex; i++, tpindex++) {
 1538 
 1539                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
 1540                     VM_ALLOC_IFNOTCACHED);
 1541                 if (rtm == NULL) {
 1542                         break;
 1543                 }
 1544 
 1545                 marray[i] = rtm;
 1546         }
 1547 
 1548         /* return number of pages */
 1549         return i;
 1550 }
 1551 
 1552 /*
 1553  * Block entry into the machine-independent layer's page fault handler by
 1554  * the calling thread.  Subsequent calls to vm_fault() by that thread will
 1555  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
 1556  * spurious page faults. 
 1557  */
 1558 int
 1559 vm_fault_disable_pagefaults(void)
 1560 {
 1561 
 1562         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
 1563 }
 1564 
 1565 void
 1566 vm_fault_enable_pagefaults(int save)
 1567 {
 1568 
 1569         curthread_pflags_restore(save);
 1570 }

Cache object: 1ac1e88193253fd958a99dda4c1ecb04


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.