The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_glue.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)vm_glue.c     8.6 (Berkeley) 1/5/94
   33  *
   34  *
   35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   36  * All rights reserved.
   37  *
   38  * Permission to use, copy, modify and distribute this software and
   39  * its documentation is hereby granted, provided that both the copyright
   40  * notice and this permission notice appear in all copies of the
   41  * software, derivative works or modified versions, and any portions
   42  * thereof, and that both notices appear in supporting documentation.
   43  *
   44  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   45  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   46  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   47  *
   48  * Carnegie Mellon requests users of this software to return to
   49  *
   50  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   51  *  School of Computer Science
   52  *  Carnegie Mellon University
   53  *  Pittsburgh PA 15213-3890
   54  *
   55  * any improvements or extensions that they make and grant Carnegie the
   56  * rights to redistribute these changes.
   57  */
   58 
   59 #include <sys/cdefs.h>
   60 __FBSDID("$FreeBSD$");
   61 
   62 #include "opt_vm.h"
   63 #include "opt_kstack_pages.h"
   64 #include "opt_kstack_max_pages.h"
   65 #include "opt_kstack_usage_prof.h"
   66 
   67 #include <sys/param.h>
   68 #include <sys/systm.h>
   69 #include <sys/limits.h>
   70 #include <sys/lock.h>
   71 #include <sys/malloc.h>
   72 #include <sys/mutex.h>
   73 #include <sys/proc.h>
   74 #include <sys/racct.h>
   75 #include <sys/resourcevar.h>
   76 #include <sys/rwlock.h>
   77 #include <sys/sched.h>
   78 #include <sys/sf_buf.h>
   79 #include <sys/shm.h>
   80 #include <sys/vmmeter.h>
   81 #include <sys/vmem.h>
   82 #include <sys/sx.h>
   83 #include <sys/sysctl.h>
   84 #include <sys/_kstack_cache.h>
   85 #include <sys/eventhandler.h>
   86 #include <sys/kernel.h>
   87 #include <sys/ktr.h>
   88 #include <sys/unistd.h>
   89 
   90 #include <vm/vm.h>
   91 #include <vm/vm_param.h>
   92 #include <vm/pmap.h>
   93 #include <vm/vm_map.h>
   94 #include <vm/vm_page.h>
   95 #include <vm/vm_pageout.h>
   96 #include <vm/vm_object.h>
   97 #include <vm/vm_kern.h>
   98 #include <vm/vm_extern.h>
   99 #include <vm/vm_pager.h>
  100 #include <vm/swap_pager.h>
  101 
  102 #include <machine/cpu.h>
  103 
  104 /*
  105  * MPSAFE
  106  *
  107  * WARNING!  This code calls vm_map_check_protection() which only checks
  108  * the associated vm_map_entry range.  It does not determine whether the
  109  * contents of the memory is actually readable or writable.  In most cases
  110  * just checking the vm_map_entry is sufficient within the kernel's address
  111  * space.
  112  */
  113 int
  114 kernacc(void *addr, int len, int rw)
  115 {
  116         boolean_t rv;
  117         vm_offset_t saddr, eaddr;
  118         vm_prot_t prot;
  119 
  120         KASSERT((rw & ~VM_PROT_ALL) == 0,
  121             ("illegal ``rw'' argument to kernacc (%x)\n", rw));
  122 
  123         if ((vm_offset_t)addr + len > vm_map_max(kernel_map) ||
  124             (vm_offset_t)addr + len < (vm_offset_t)addr)
  125                 return (FALSE);
  126 
  127         prot = rw;
  128         saddr = trunc_page((vm_offset_t)addr);
  129         eaddr = round_page((vm_offset_t)addr + len);
  130         vm_map_lock_read(kernel_map);
  131         rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
  132         vm_map_unlock_read(kernel_map);
  133         return (rv == TRUE);
  134 }
  135 
  136 /*
  137  * MPSAFE
  138  *
  139  * WARNING!  This code calls vm_map_check_protection() which only checks
  140  * the associated vm_map_entry range.  It does not determine whether the
  141  * contents of the memory is actually readable or writable.  vmapbuf(),
  142  * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
  143  * used in conjunction with this call.
  144  */
  145 int
  146 useracc(void *addr, int len, int rw)
  147 {
  148         boolean_t rv;
  149         vm_prot_t prot;
  150         vm_map_t map;
  151 
  152         KASSERT((rw & ~VM_PROT_ALL) == 0,
  153             ("illegal ``rw'' argument to useracc (%x)\n", rw));
  154         prot = rw;
  155         map = &curproc->p_vmspace->vm_map;
  156         if ((vm_offset_t)addr + len > vm_map_max(map) ||
  157             (vm_offset_t)addr + len < (vm_offset_t)addr) {
  158                 return (FALSE);
  159         }
  160         vm_map_lock_read(map);
  161         rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
  162             round_page((vm_offset_t)addr + len), prot);
  163         vm_map_unlock_read(map);
  164         return (rv == TRUE);
  165 }
  166 
  167 int
  168 vslock(void *addr, size_t len)
  169 {
  170         vm_offset_t end, last, start;
  171         vm_size_t npages;
  172         int error;
  173 
  174         last = (vm_offset_t)addr + len;
  175         start = trunc_page((vm_offset_t)addr);
  176         end = round_page(last);
  177         if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
  178                 return (EINVAL);
  179         npages = atop(end - start);
  180         if (npages > vm_page_max_wired)
  181                 return (ENOMEM);
  182 #if 0
  183         /*
  184          * XXX - not yet
  185          *
  186          * The limit for transient usage of wired pages should be
  187          * larger than for "permanent" wired pages (mlock()).
  188          *
  189          * Also, the sysctl code, which is the only present user
  190          * of vslock(), does a hard loop on EAGAIN.
  191          */
  192         if (npages + vm_cnt.v_wire_count > vm_page_max_wired)
  193                 return (EAGAIN);
  194 #endif
  195         error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
  196             VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
  197         if (error == KERN_SUCCESS) {
  198                 curthread->td_vslock_sz += len;
  199                 return (0);
  200         }
  201 
  202         /*
  203          * Return EFAULT on error to match copy{in,out}() behaviour
  204          * rather than returning ENOMEM like mlock() would.
  205          */
  206         return (EFAULT);
  207 }
  208 
  209 void
  210 vsunlock(void *addr, size_t len)
  211 {
  212 
  213         /* Rely on the parameter sanity checks performed by vslock(). */
  214         MPASS(curthread->td_vslock_sz >= len);
  215         curthread->td_vslock_sz -= len;
  216         (void)vm_map_unwire(&curproc->p_vmspace->vm_map,
  217             trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
  218             VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
  219 }
  220 
  221 /*
  222  * Pin the page contained within the given object at the given offset.  If the
  223  * page is not resident, allocate and load it using the given object's pager.
  224  * Return the pinned page if successful; otherwise, return NULL.
  225  */
  226 static vm_page_t
  227 vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
  228 {
  229         vm_page_t m;
  230         vm_pindex_t pindex;
  231         int rv;
  232 
  233         VM_OBJECT_WLOCK(object);
  234         pindex = OFF_TO_IDX(offset);
  235         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
  236         if (m->valid != VM_PAGE_BITS_ALL) {
  237                 vm_page_xbusy(m);
  238                 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
  239                 if (rv != VM_PAGER_OK) {
  240                         vm_page_lock(m);
  241                         vm_page_free(m);
  242                         vm_page_unlock(m);
  243                         m = NULL;
  244                         goto out;
  245                 }
  246                 vm_page_xunbusy(m);
  247         }
  248         vm_page_lock(m);
  249         vm_page_hold(m);
  250         vm_page_activate(m);
  251         vm_page_unlock(m);
  252 out:
  253         VM_OBJECT_WUNLOCK(object);
  254         return (m);
  255 }
  256 
  257 /*
  258  * Return a CPU private mapping to the page at the given offset within the
  259  * given object.  The page is pinned before it is mapped.
  260  */
  261 struct sf_buf *
  262 vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
  263 {
  264         vm_page_t m;
  265 
  266         m = vm_imgact_hold_page(object, offset);
  267         if (m == NULL)
  268                 return (NULL);
  269         sched_pin();
  270         return (sf_buf_alloc(m, SFB_CPUPRIVATE));
  271 }
  272 
  273 /*
  274  * Destroy the given CPU private mapping and unpin the page that it mapped.
  275  */
  276 void
  277 vm_imgact_unmap_page(struct sf_buf *sf)
  278 {
  279         vm_page_t m;
  280 
  281         m = sf_buf_page(sf);
  282         sf_buf_free(sf);
  283         sched_unpin();
  284         vm_page_lock(m);
  285         vm_page_unhold(m);
  286         vm_page_unlock(m);
  287 }
  288 
  289 void
  290 vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz)
  291 {
  292 
  293         pmap_sync_icache(map->pmap, va, sz);
  294 }
  295 
  296 struct kstack_cache_entry *kstack_cache;
  297 static int kstack_cache_size = 128;
  298 static int kstacks;
  299 static struct mtx kstack_cache_mtx;
  300 MTX_SYSINIT(kstack_cache, &kstack_cache_mtx, "kstkch", MTX_DEF);
  301 
  302 SYSCTL_INT(_vm, OID_AUTO, kstack_cache_size, CTLFLAG_RW, &kstack_cache_size, 0,
  303     "");
  304 SYSCTL_INT(_vm, OID_AUTO, kstacks, CTLFLAG_RD, &kstacks, 0,
  305     "");
  306 
  307 /*
  308  * Create the kernel stack (including pcb for i386) for a new thread.
  309  * This routine directly affects the fork perf for a process and
  310  * create performance for a thread.
  311  */
  312 int
  313 vm_thread_new(struct thread *td, int pages)
  314 {
  315         vm_object_t ksobj;
  316         vm_offset_t ks;
  317         vm_page_t ma[KSTACK_MAX_PAGES];
  318         struct kstack_cache_entry *ks_ce;
  319         int i;
  320 
  321         /* Bounds check */
  322         if (pages <= 1)
  323                 pages = kstack_pages;
  324         else if (pages > KSTACK_MAX_PAGES)
  325                 pages = KSTACK_MAX_PAGES;
  326 
  327         if (pages == kstack_pages) {
  328                 mtx_lock(&kstack_cache_mtx);
  329                 if (kstack_cache != NULL) {
  330                         ks_ce = kstack_cache;
  331                         kstack_cache = ks_ce->next_ks_entry;
  332                         mtx_unlock(&kstack_cache_mtx);
  333 
  334                         td->td_kstack_obj = ks_ce->ksobj;
  335                         td->td_kstack = (vm_offset_t)ks_ce;
  336                         td->td_kstack_pages = kstack_pages;
  337                         return (1);
  338                 }
  339                 mtx_unlock(&kstack_cache_mtx);
  340         }
  341 
  342         /*
  343          * Allocate an object for the kstack.
  344          */
  345         ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
  346         
  347         /*
  348          * Get a kernel virtual address for this thread's kstack.
  349          */
  350 #if defined(__mips__)
  351         /*
  352          * We need to align the kstack's mapped address to fit within
  353          * a single TLB entry.
  354          */
  355         if (vmem_xalloc(kernel_arena, (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE,
  356             PAGE_SIZE * 2, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
  357             M_BESTFIT | M_NOWAIT, &ks)) {
  358                 ks = 0;
  359         }
  360 #else
  361         ks = kva_alloc((pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
  362 #endif
  363         if (ks == 0) {
  364                 printf("vm_thread_new: kstack allocation failed\n");
  365                 vm_object_deallocate(ksobj);
  366                 return (0);
  367         }
  368 
  369         atomic_add_int(&kstacks, 1);
  370         if (KSTACK_GUARD_PAGES != 0) {
  371                 pmap_qremove(ks, KSTACK_GUARD_PAGES);
  372                 ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
  373         }
  374         td->td_kstack_obj = ksobj;
  375         td->td_kstack = ks;
  376         /*
  377          * Knowing the number of pages allocated is useful when you
  378          * want to deallocate them.
  379          */
  380         td->td_kstack_pages = pages;
  381         /* 
  382          * For the length of the stack, link in a real page of ram for each
  383          * page of stack.
  384          */
  385         VM_OBJECT_WLOCK(ksobj);
  386         (void)vm_page_grab_pages(ksobj, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY |
  387             VM_ALLOC_WIRED, ma, pages);
  388         for (i = 0; i < pages; i++)
  389                 ma[i]->valid = VM_PAGE_BITS_ALL;
  390         VM_OBJECT_WUNLOCK(ksobj);
  391         pmap_qenter(ks, ma, pages);
  392         return (1);
  393 }
  394 
  395 static void
  396 vm_thread_stack_dispose(vm_object_t ksobj, vm_offset_t ks, int pages)
  397 {
  398         vm_page_t m;
  399         int i;
  400 
  401         atomic_add_int(&kstacks, -1);
  402         pmap_qremove(ks, pages);
  403         VM_OBJECT_WLOCK(ksobj);
  404         for (i = 0; i < pages; i++) {
  405                 m = vm_page_lookup(ksobj, i);
  406                 if (m == NULL)
  407                         panic("vm_thread_dispose: kstack already missing?");
  408                 vm_page_lock(m);
  409                 vm_page_unwire(m, PQ_NONE);
  410                 vm_page_free(m);
  411                 vm_page_unlock(m);
  412         }
  413         VM_OBJECT_WUNLOCK(ksobj);
  414         vm_object_deallocate(ksobj);
  415         kva_free(ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
  416             (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
  417 }
  418 
  419 /*
  420  * Dispose of a thread's kernel stack.
  421  */
  422 void
  423 vm_thread_dispose(struct thread *td)
  424 {
  425         vm_object_t ksobj;
  426         vm_offset_t ks;
  427         struct kstack_cache_entry *ks_ce;
  428         int pages;
  429 
  430         pages = td->td_kstack_pages;
  431         ksobj = td->td_kstack_obj;
  432         ks = td->td_kstack;
  433         td->td_kstack = 0;
  434         td->td_kstack_pages = 0;
  435         if (pages == kstack_pages && kstacks <= kstack_cache_size) {
  436                 ks_ce = (struct kstack_cache_entry *)ks;
  437                 ks_ce->ksobj = ksobj;
  438                 mtx_lock(&kstack_cache_mtx);
  439                 ks_ce->next_ks_entry = kstack_cache;
  440                 kstack_cache = ks_ce;
  441                 mtx_unlock(&kstack_cache_mtx);
  442                 return;
  443         }
  444         vm_thread_stack_dispose(ksobj, ks, pages);
  445 }
  446 
  447 static void
  448 vm_thread_stack_lowmem(void *nulll)
  449 {
  450         struct kstack_cache_entry *ks_ce, *ks_ce1;
  451 
  452         mtx_lock(&kstack_cache_mtx);
  453         ks_ce = kstack_cache;
  454         kstack_cache = NULL;
  455         mtx_unlock(&kstack_cache_mtx);
  456 
  457         while (ks_ce != NULL) {
  458                 ks_ce1 = ks_ce;
  459                 ks_ce = ks_ce->next_ks_entry;
  460 
  461                 vm_thread_stack_dispose(ks_ce1->ksobj, (vm_offset_t)ks_ce1,
  462                     kstack_pages);
  463         }
  464 }
  465 
  466 static void
  467 kstack_cache_init(void *nulll)
  468 {
  469 
  470         EVENTHANDLER_REGISTER(vm_lowmem, vm_thread_stack_lowmem, NULL,
  471             EVENTHANDLER_PRI_ANY);
  472 }
  473 
  474 SYSINIT(vm_kstacks, SI_SUB_KTHREAD_INIT, SI_ORDER_ANY, kstack_cache_init, NULL);
  475 
  476 #ifdef KSTACK_USAGE_PROF
  477 /*
  478  * Track maximum stack used by a thread in kernel.
  479  */
  480 static int max_kstack_used;
  481 
  482 SYSCTL_INT(_debug, OID_AUTO, max_kstack_used, CTLFLAG_RD,
  483     &max_kstack_used, 0,
  484     "Maxiumum stack depth used by a thread in kernel");
  485 
  486 void
  487 intr_prof_stack_use(struct thread *td, struct trapframe *frame)
  488 {
  489         vm_offset_t stack_top;
  490         vm_offset_t current;
  491         int used, prev_used;
  492 
  493         /*
  494          * Testing for interrupted kernel mode isn't strictly
  495          * needed. It optimizes the execution, since interrupts from
  496          * usermode will have only the trap frame on the stack.
  497          */
  498         if (TRAPF_USERMODE(frame))
  499                 return;
  500 
  501         stack_top = td->td_kstack + td->td_kstack_pages * PAGE_SIZE;
  502         current = (vm_offset_t)(uintptr_t)&stack_top;
  503 
  504         /*
  505          * Try to detect if interrupt is using kernel thread stack.
  506          * Hardware could use a dedicated stack for interrupt handling.
  507          */
  508         if (stack_top <= current || current < td->td_kstack)
  509                 return;
  510 
  511         used = stack_top - current;
  512         for (;;) {
  513                 prev_used = max_kstack_used;
  514                 if (prev_used >= used)
  515                         break;
  516                 if (atomic_cmpset_int(&max_kstack_used, prev_used, used))
  517                         break;
  518         }
  519 }
  520 #endif /* KSTACK_USAGE_PROF */
  521 
  522 /*
  523  * Implement fork's actions on an address space.
  524  * Here we arrange for the address space to be copied or referenced,
  525  * allocate a user struct (pcb and kernel stack), then call the
  526  * machine-dependent layer to fill those in and make the new process
  527  * ready to run.  The new process is set up so that it returns directly
  528  * to user mode to avoid stack copying and relocation problems.
  529  */
  530 int
  531 vm_forkproc(struct thread *td, struct proc *p2, struct thread *td2,
  532     struct vmspace *vm2, int flags)
  533 {
  534         struct proc *p1 = td->td_proc;
  535         int error;
  536 
  537         if ((flags & RFPROC) == 0) {
  538                 /*
  539                  * Divorce the memory, if it is shared, essentially
  540                  * this changes shared memory amongst threads, into
  541                  * COW locally.
  542                  */
  543                 if ((flags & RFMEM) == 0) {
  544                         if (p1->p_vmspace->vm_refcnt > 1) {
  545                                 error = vmspace_unshare(p1);
  546                                 if (error)
  547                                         return (error);
  548                         }
  549                 }
  550                 cpu_fork(td, p2, td2, flags);
  551                 return (0);
  552         }
  553 
  554         if (flags & RFMEM) {
  555                 p2->p_vmspace = p1->p_vmspace;
  556                 atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
  557         }
  558 
  559         while (vm_page_count_severe()) {
  560                 VM_WAIT;
  561         }
  562 
  563         if ((flags & RFMEM) == 0) {
  564                 p2->p_vmspace = vm2;
  565                 if (p1->p_vmspace->vm_shm)
  566                         shmfork(p1, p2);
  567         }
  568 
  569         /*
  570          * cpu_fork will copy and update the pcb, set up the kernel stack,
  571          * and make the child ready to run.
  572          */
  573         cpu_fork(td, p2, td2, flags);
  574         return (0);
  575 }
  576 
  577 /*
  578  * Called after process has been wait(2)'ed upon and is being reaped.
  579  * The idea is to reclaim resources that we could not reclaim while
  580  * the process was still executing.
  581  */
  582 void
  583 vm_waitproc(p)
  584         struct proc *p;
  585 {
  586 
  587         vmspace_exitfree(p);            /* and clean-out the vmspace */
  588 }
  589 
  590 void
  591 kick_proc0(void)
  592 {
  593 
  594         wakeup(&proc0);
  595 }

Cache object: 9de021ba7356df07718bc6ae3b94d6d9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.