The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_glue.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
    3  *
    4  * Copyright (c) 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * The Mach Operating System project at Carnegie-Mellon University.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      from: @(#)vm_glue.c     8.6 (Berkeley) 1/5/94
   35  *
   36  *
   37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   38  * All rights reserved.
   39  *
   40  * Permission to use, copy, modify and distribute this software and
   41  * its documentation is hereby granted, provided that both the copyright
   42  * notice and this permission notice appear in all copies of the
   43  * software, derivative works or modified versions, and any portions
   44  * thereof, and that both notices appear in supporting documentation.
   45  *
   46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   49  *
   50  * Carnegie Mellon requests users of this software to return to
   51  *
   52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   53  *  School of Computer Science
   54  *  Carnegie Mellon University
   55  *  Pittsburgh PA 15213-3890
   56  *
   57  * any improvements or extensions that they make and grant Carnegie the
   58  * rights to redistribute these changes.
   59  */
   60 
   61 #include <sys/cdefs.h>
   62 __FBSDID("$FreeBSD: releng/12.0/sys/vm/vm_glue.c 339998 2018-11-01 15:19:36Z markj $");
   63 
   64 #include "opt_vm.h"
   65 #include "opt_kstack_pages.h"
   66 #include "opt_kstack_max_pages.h"
   67 #include "opt_kstack_usage_prof.h"
   68 
   69 #include <sys/param.h>
   70 #include <sys/systm.h>
   71 #include <sys/domainset.h>
   72 #include <sys/limits.h>
   73 #include <sys/lock.h>
   74 #include <sys/malloc.h>
   75 #include <sys/mutex.h>
   76 #include <sys/proc.h>
   77 #include <sys/racct.h>
   78 #include <sys/resourcevar.h>
   79 #include <sys/rwlock.h>
   80 #include <sys/sched.h>
   81 #include <sys/sf_buf.h>
   82 #include <sys/shm.h>
   83 #include <sys/vmmeter.h>
   84 #include <sys/vmem.h>
   85 #include <sys/sx.h>
   86 #include <sys/sysctl.h>
   87 #include <sys/_kstack_cache.h>
   88 #include <sys/eventhandler.h>
   89 #include <sys/kernel.h>
   90 #include <sys/ktr.h>
   91 #include <sys/unistd.h>
   92 
   93 #include <vm/vm.h>
   94 #include <vm/vm_param.h>
   95 #include <vm/pmap.h>
   96 #include <vm/vm_domainset.h>
   97 #include <vm/vm_map.h>
   98 #include <vm/vm_page.h>
   99 #include <vm/vm_pageout.h>
  100 #include <vm/vm_object.h>
  101 #include <vm/vm_kern.h>
  102 #include <vm/vm_extern.h>
  103 #include <vm/vm_pager.h>
  104 #include <vm/swap_pager.h>
  105 
  106 #include <machine/cpu.h>
  107 
  108 /*
  109  * MPSAFE
  110  *
  111  * WARNING!  This code calls vm_map_check_protection() which only checks
  112  * the associated vm_map_entry range.  It does not determine whether the
  113  * contents of the memory is actually readable or writable.  In most cases
  114  * just checking the vm_map_entry is sufficient within the kernel's address
  115  * space.
  116  */
  117 int
  118 kernacc(void *addr, int len, int rw)
  119 {
  120         boolean_t rv;
  121         vm_offset_t saddr, eaddr;
  122         vm_prot_t prot;
  123 
  124         KASSERT((rw & ~VM_PROT_ALL) == 0,
  125             ("illegal ``rw'' argument to kernacc (%x)\n", rw));
  126 
  127         if ((vm_offset_t)addr + len > vm_map_max(kernel_map) ||
  128             (vm_offset_t)addr + len < (vm_offset_t)addr)
  129                 return (FALSE);
  130 
  131         prot = rw;
  132         saddr = trunc_page((vm_offset_t)addr);
  133         eaddr = round_page((vm_offset_t)addr + len);
  134         vm_map_lock_read(kernel_map);
  135         rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
  136         vm_map_unlock_read(kernel_map);
  137         return (rv == TRUE);
  138 }
  139 
  140 /*
  141  * MPSAFE
  142  *
  143  * WARNING!  This code calls vm_map_check_protection() which only checks
  144  * the associated vm_map_entry range.  It does not determine whether the
  145  * contents of the memory is actually readable or writable.  vmapbuf(),
  146  * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
  147  * used in conjunction with this call.
  148  */
  149 int
  150 useracc(void *addr, int len, int rw)
  151 {
  152         boolean_t rv;
  153         vm_prot_t prot;
  154         vm_map_t map;
  155 
  156         KASSERT((rw & ~VM_PROT_ALL) == 0,
  157             ("illegal ``rw'' argument to useracc (%x)\n", rw));
  158         prot = rw;
  159         map = &curproc->p_vmspace->vm_map;
  160         if ((vm_offset_t)addr + len > vm_map_max(map) ||
  161             (vm_offset_t)addr + len < (vm_offset_t)addr) {
  162                 return (FALSE);
  163         }
  164         vm_map_lock_read(map);
  165         rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
  166             round_page((vm_offset_t)addr + len), prot);
  167         vm_map_unlock_read(map);
  168         return (rv == TRUE);
  169 }
  170 
  171 int
  172 vslock(void *addr, size_t len)
  173 {
  174         vm_offset_t end, last, start;
  175         vm_size_t npages;
  176         int error;
  177 
  178         last = (vm_offset_t)addr + len;
  179         start = trunc_page((vm_offset_t)addr);
  180         end = round_page(last);
  181         if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
  182                 return (EINVAL);
  183         npages = atop(end - start);
  184         if (npages > vm_page_max_wired)
  185                 return (ENOMEM);
  186 #if 0
  187         /*
  188          * XXX - not yet
  189          *
  190          * The limit for transient usage of wired pages should be
  191          * larger than for "permanent" wired pages (mlock()).
  192          *
  193          * Also, the sysctl code, which is the only present user
  194          * of vslock(), does a hard loop on EAGAIN.
  195          */
  196         if (npages + vm_wire_count() > vm_page_max_wired)
  197                 return (EAGAIN);
  198 #endif
  199         error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
  200             VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
  201         if (error == KERN_SUCCESS) {
  202                 curthread->td_vslock_sz += len;
  203                 return (0);
  204         }
  205 
  206         /*
  207          * Return EFAULT on error to match copy{in,out}() behaviour
  208          * rather than returning ENOMEM like mlock() would.
  209          */
  210         return (EFAULT);
  211 }
  212 
  213 void
  214 vsunlock(void *addr, size_t len)
  215 {
  216 
  217         /* Rely on the parameter sanity checks performed by vslock(). */
  218         MPASS(curthread->td_vslock_sz >= len);
  219         curthread->td_vslock_sz -= len;
  220         (void)vm_map_unwire(&curproc->p_vmspace->vm_map,
  221             trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
  222             VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
  223 }
  224 
  225 /*
  226  * Pin the page contained within the given object at the given offset.  If the
  227  * page is not resident, allocate and load it using the given object's pager.
  228  * Return the pinned page if successful; otherwise, return NULL.
  229  */
  230 static vm_page_t
  231 vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
  232 {
  233         vm_page_t m;
  234         vm_pindex_t pindex;
  235         int rv;
  236 
  237         VM_OBJECT_WLOCK(object);
  238         pindex = OFF_TO_IDX(offset);
  239         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY);
  240         if (m->valid != VM_PAGE_BITS_ALL) {
  241                 vm_page_xbusy(m);
  242                 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
  243                 if (rv != VM_PAGER_OK) {
  244                         vm_page_lock(m);
  245                         vm_page_free(m);
  246                         vm_page_unlock(m);
  247                         m = NULL;
  248                         goto out;
  249                 }
  250                 vm_page_xunbusy(m);
  251         }
  252         vm_page_lock(m);
  253         vm_page_hold(m);
  254         vm_page_activate(m);
  255         vm_page_unlock(m);
  256 out:
  257         VM_OBJECT_WUNLOCK(object);
  258         return (m);
  259 }
  260 
  261 /*
  262  * Return a CPU private mapping to the page at the given offset within the
  263  * given object.  The page is pinned before it is mapped.
  264  */
  265 struct sf_buf *
  266 vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
  267 {
  268         vm_page_t m;
  269 
  270         m = vm_imgact_hold_page(object, offset);
  271         if (m == NULL)
  272                 return (NULL);
  273         sched_pin();
  274         return (sf_buf_alloc(m, SFB_CPUPRIVATE));
  275 }
  276 
  277 /*
  278  * Destroy the given CPU private mapping and unpin the page that it mapped.
  279  */
  280 void
  281 vm_imgact_unmap_page(struct sf_buf *sf)
  282 {
  283         vm_page_t m;
  284 
  285         m = sf_buf_page(sf);
  286         sf_buf_free(sf);
  287         sched_unpin();
  288         vm_page_lock(m);
  289         vm_page_unhold(m);
  290         vm_page_unlock(m);
  291 }
  292 
  293 void
  294 vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz)
  295 {
  296 
  297         pmap_sync_icache(map->pmap, va, sz);
  298 }
  299 
  300 struct kstack_cache_entry *kstack_cache;
  301 static int kstack_cache_size = 128;
  302 static int kstacks, kstack_domain_iter;
  303 static struct mtx kstack_cache_mtx;
  304 MTX_SYSINIT(kstack_cache, &kstack_cache_mtx, "kstkch", MTX_DEF);
  305 
  306 SYSCTL_INT(_vm, OID_AUTO, kstack_cache_size, CTLFLAG_RW, &kstack_cache_size, 0,
  307     "");
  308 SYSCTL_INT(_vm, OID_AUTO, kstacks, CTLFLAG_RD, &kstacks, 0,
  309     "");
  310 
  311 /*
  312  * Create the kernel stack (including pcb for i386) for a new thread.
  313  * This routine directly affects the fork perf for a process and
  314  * create performance for a thread.
  315  */
  316 int
  317 vm_thread_new(struct thread *td, int pages)
  318 {
  319         vm_object_t ksobj;
  320         vm_offset_t ks;
  321         vm_page_t ma[KSTACK_MAX_PAGES];
  322         struct kstack_cache_entry *ks_ce;
  323         int i;
  324 
  325         /* Bounds check */
  326         if (pages <= 1)
  327                 pages = kstack_pages;
  328         else if (pages > KSTACK_MAX_PAGES)
  329                 pages = KSTACK_MAX_PAGES;
  330 
  331         if (pages == kstack_pages && kstack_cache != NULL) {
  332                 mtx_lock(&kstack_cache_mtx);
  333                 if (kstack_cache != NULL) {
  334                         ks_ce = kstack_cache;
  335                         kstack_cache = ks_ce->next_ks_entry;
  336                         mtx_unlock(&kstack_cache_mtx);
  337 
  338                         td->td_kstack_obj = ks_ce->ksobj;
  339                         td->td_kstack = (vm_offset_t)ks_ce;
  340                         td->td_kstack_pages = kstack_pages;
  341                         return (1);
  342                 }
  343                 mtx_unlock(&kstack_cache_mtx);
  344         }
  345 
  346         /*
  347          * Allocate an object for the kstack.
  348          */
  349         ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
  350         
  351         /*
  352          * Get a kernel virtual address for this thread's kstack.
  353          */
  354 #if defined(__mips__)
  355         /*
  356          * We need to align the kstack's mapped address to fit within
  357          * a single TLB entry.
  358          */
  359         if (vmem_xalloc(kernel_arena, (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE,
  360             PAGE_SIZE * 2, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
  361             M_BESTFIT | M_NOWAIT, &ks)) {
  362                 ks = 0;
  363         }
  364 #else
  365         ks = kva_alloc((pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
  366 #endif
  367         if (ks == 0) {
  368                 printf("vm_thread_new: kstack allocation failed\n");
  369                 vm_object_deallocate(ksobj);
  370                 return (0);
  371         }
  372 
  373         /*
  374          * Ensure that kstack objects can draw pages from any memory
  375          * domain.  Otherwise a local memory shortage can block a process
  376          * swap-in.
  377          */
  378         if (vm_ndomains > 1) {
  379                 ksobj->domain.dr_policy = DOMAINSET_RR();
  380                 ksobj->domain.dr_iter =
  381                     atomic_fetchadd_int(&kstack_domain_iter, 1);
  382         }
  383 
  384         atomic_add_int(&kstacks, 1);
  385         if (KSTACK_GUARD_PAGES != 0) {
  386                 pmap_qremove(ks, KSTACK_GUARD_PAGES);
  387                 ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
  388         }
  389         td->td_kstack_obj = ksobj;
  390         td->td_kstack = ks;
  391         /*
  392          * Knowing the number of pages allocated is useful when you
  393          * want to deallocate them.
  394          */
  395         td->td_kstack_pages = pages;
  396         /* 
  397          * For the length of the stack, link in a real page of ram for each
  398          * page of stack.
  399          */
  400         VM_OBJECT_WLOCK(ksobj);
  401         (void)vm_page_grab_pages(ksobj, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY |
  402             VM_ALLOC_WIRED, ma, pages);
  403         for (i = 0; i < pages; i++)
  404                 ma[i]->valid = VM_PAGE_BITS_ALL;
  405         VM_OBJECT_WUNLOCK(ksobj);
  406         pmap_qenter(ks, ma, pages);
  407         return (1);
  408 }
  409 
  410 static void
  411 vm_thread_stack_dispose(vm_object_t ksobj, vm_offset_t ks, int pages)
  412 {
  413         vm_page_t m;
  414         int i;
  415 
  416         atomic_add_int(&kstacks, -1);
  417         pmap_qremove(ks, pages);
  418         VM_OBJECT_WLOCK(ksobj);
  419         for (i = 0; i < pages; i++) {
  420                 m = vm_page_lookup(ksobj, i);
  421                 if (m == NULL)
  422                         panic("vm_thread_dispose: kstack already missing?");
  423                 vm_page_lock(m);
  424                 vm_page_unwire(m, PQ_NONE);
  425                 vm_page_free(m);
  426                 vm_page_unlock(m);
  427         }
  428         VM_OBJECT_WUNLOCK(ksobj);
  429         vm_object_deallocate(ksobj);
  430         kva_free(ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
  431             (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
  432 }
  433 
  434 /*
  435  * Dispose of a thread's kernel stack.
  436  */
  437 void
  438 vm_thread_dispose(struct thread *td)
  439 {
  440         vm_object_t ksobj;
  441         vm_offset_t ks;
  442         struct kstack_cache_entry *ks_ce;
  443         int pages;
  444 
  445         pages = td->td_kstack_pages;
  446         ksobj = td->td_kstack_obj;
  447         ks = td->td_kstack;
  448         td->td_kstack = 0;
  449         td->td_kstack_pages = 0;
  450         if (pages == kstack_pages && kstacks <= kstack_cache_size) {
  451                 ks_ce = (struct kstack_cache_entry *)ks;
  452                 ks_ce->ksobj = ksobj;
  453                 mtx_lock(&kstack_cache_mtx);
  454                 ks_ce->next_ks_entry = kstack_cache;
  455                 kstack_cache = ks_ce;
  456                 mtx_unlock(&kstack_cache_mtx);
  457                 return;
  458         }
  459         vm_thread_stack_dispose(ksobj, ks, pages);
  460 }
  461 
  462 static void
  463 vm_thread_stack_lowmem(void *nulll)
  464 {
  465         struct kstack_cache_entry *ks_ce, *ks_ce1;
  466 
  467         mtx_lock(&kstack_cache_mtx);
  468         ks_ce = kstack_cache;
  469         kstack_cache = NULL;
  470         mtx_unlock(&kstack_cache_mtx);
  471 
  472         while (ks_ce != NULL) {
  473                 ks_ce1 = ks_ce;
  474                 ks_ce = ks_ce->next_ks_entry;
  475 
  476                 vm_thread_stack_dispose(ks_ce1->ksobj, (vm_offset_t)ks_ce1,
  477                     kstack_pages);
  478         }
  479 }
  480 
  481 static void
  482 kstack_cache_init(void *nulll)
  483 {
  484 
  485         EVENTHANDLER_REGISTER(vm_lowmem, vm_thread_stack_lowmem, NULL,
  486             EVENTHANDLER_PRI_ANY);
  487 }
  488 
  489 SYSINIT(vm_kstacks, SI_SUB_KTHREAD_INIT, SI_ORDER_ANY, kstack_cache_init, NULL);
  490 
  491 #ifdef KSTACK_USAGE_PROF
  492 /*
  493  * Track maximum stack used by a thread in kernel.
  494  */
  495 static int max_kstack_used;
  496 
  497 SYSCTL_INT(_debug, OID_AUTO, max_kstack_used, CTLFLAG_RD,
  498     &max_kstack_used, 0,
  499     "Maxiumum stack depth used by a thread in kernel");
  500 
  501 void
  502 intr_prof_stack_use(struct thread *td, struct trapframe *frame)
  503 {
  504         vm_offset_t stack_top;
  505         vm_offset_t current;
  506         int used, prev_used;
  507 
  508         /*
  509          * Testing for interrupted kernel mode isn't strictly
  510          * needed. It optimizes the execution, since interrupts from
  511          * usermode will have only the trap frame on the stack.
  512          */
  513         if (TRAPF_USERMODE(frame))
  514                 return;
  515 
  516         stack_top = td->td_kstack + td->td_kstack_pages * PAGE_SIZE;
  517         current = (vm_offset_t)(uintptr_t)&stack_top;
  518 
  519         /*
  520          * Try to detect if interrupt is using kernel thread stack.
  521          * Hardware could use a dedicated stack for interrupt handling.
  522          */
  523         if (stack_top <= current || current < td->td_kstack)
  524                 return;
  525 
  526         used = stack_top - current;
  527         for (;;) {
  528                 prev_used = max_kstack_used;
  529                 if (prev_used >= used)
  530                         break;
  531                 if (atomic_cmpset_int(&max_kstack_used, prev_used, used))
  532                         break;
  533         }
  534 }
  535 #endif /* KSTACK_USAGE_PROF */
  536 
  537 /*
  538  * Implement fork's actions on an address space.
  539  * Here we arrange for the address space to be copied or referenced,
  540  * allocate a user struct (pcb and kernel stack), then call the
  541  * machine-dependent layer to fill those in and make the new process
  542  * ready to run.  The new process is set up so that it returns directly
  543  * to user mode to avoid stack copying and relocation problems.
  544  */
  545 int
  546 vm_forkproc(struct thread *td, struct proc *p2, struct thread *td2,
  547     struct vmspace *vm2, int flags)
  548 {
  549         struct proc *p1 = td->td_proc;
  550         struct domainset *dset;
  551         int error;
  552 
  553         if ((flags & RFPROC) == 0) {
  554                 /*
  555                  * Divorce the memory, if it is shared, essentially
  556                  * this changes shared memory amongst threads, into
  557                  * COW locally.
  558                  */
  559                 if ((flags & RFMEM) == 0) {
  560                         if (p1->p_vmspace->vm_refcnt > 1) {
  561                                 error = vmspace_unshare(p1);
  562                                 if (error)
  563                                         return (error);
  564                         }
  565                 }
  566                 cpu_fork(td, p2, td2, flags);
  567                 return (0);
  568         }
  569 
  570         if (flags & RFMEM) {
  571                 p2->p_vmspace = p1->p_vmspace;
  572                 atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
  573         }
  574         dset = td2->td_domain.dr_policy;
  575         while (vm_page_count_severe_set(&dset->ds_mask)) {
  576                 vm_wait_doms(&dset->ds_mask);
  577         }
  578 
  579         if ((flags & RFMEM) == 0) {
  580                 p2->p_vmspace = vm2;
  581                 if (p1->p_vmspace->vm_shm)
  582                         shmfork(p1, p2);
  583         }
  584 
  585         /*
  586          * cpu_fork will copy and update the pcb, set up the kernel stack,
  587          * and make the child ready to run.
  588          */
  589         cpu_fork(td, p2, td2, flags);
  590         return (0);
  591 }
  592 
  593 /*
  594  * Called after process has been wait(2)'ed upon and is being reaped.
  595  * The idea is to reclaim resources that we could not reclaim while
  596  * the process was still executing.
  597  */
  598 void
  599 vm_waitproc(p)
  600         struct proc *p;
  601 {
  602 
  603         vmspace_exitfree(p);            /* and clean-out the vmspace */
  604 }
  605 
  606 void
  607 kick_proc0(void)
  608 {
  609 
  610         wakeup(&proc0);
  611 }

Cache object: 5216f2c22c285ffec1babcd60bd7d010


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.