FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_glue.c
1 /*-
2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * from: @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
35 *
36 *
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
53 * School of Computer Science
54 * Carnegie Mellon University
55 * Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61 #include <sys/cdefs.h>
62 __FBSDID("$FreeBSD$");
63
64 #include "opt_vm.h"
65 #include "opt_kstack_pages.h"
66 #include "opt_kstack_max_pages.h"
67 #include "opt_kstack_usage_prof.h"
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/domainset.h>
72 #include <sys/limits.h>
73 #include <sys/lock.h>
74 #include <sys/malloc.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/racct.h>
78 #include <sys/refcount.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/sched.h>
82 #include <sys/sf_buf.h>
83 #include <sys/shm.h>
84 #include <sys/smp.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vmem.h>
87 #include <sys/sx.h>
88 #include <sys/sysctl.h>
89 #include <sys/eventhandler.h>
90 #include <sys/kernel.h>
91 #include <sys/ktr.h>
92 #include <sys/unistd.h>
93
94 #include <vm/uma.h>
95 #include <vm/vm.h>
96 #include <vm/vm_param.h>
97 #include <vm/pmap.h>
98 #include <vm/vm_domainset.h>
99 #include <vm/vm_map.h>
100 #include <vm/vm_page.h>
101 #include <vm/vm_pageout.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_kern.h>
104 #include <vm/vm_extern.h>
105 #include <vm/vm_pager.h>
106 #include <vm/swap_pager.h>
107
108 #include <machine/cpu.h>
109
110 /*
111 * MPSAFE
112 *
113 * WARNING! This code calls vm_map_check_protection() which only checks
114 * the associated vm_map_entry range. It does not determine whether the
115 * contents of the memory is actually readable or writable. In most cases
116 * just checking the vm_map_entry is sufficient within the kernel's address
117 * space.
118 */
119 int
120 kernacc(void *addr, int len, int rw)
121 {
122 boolean_t rv;
123 vm_offset_t saddr, eaddr;
124 vm_prot_t prot;
125
126 KASSERT((rw & ~VM_PROT_ALL) == 0,
127 ("illegal ``rw'' argument to kernacc (%x)\n", rw));
128
129 if ((vm_offset_t)addr + len > vm_map_max(kernel_map) ||
130 (vm_offset_t)addr + len < (vm_offset_t)addr)
131 return (FALSE);
132
133 prot = rw;
134 saddr = trunc_page((vm_offset_t)addr);
135 eaddr = round_page((vm_offset_t)addr + len);
136 vm_map_lock_read(kernel_map);
137 rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
138 vm_map_unlock_read(kernel_map);
139 return (rv == TRUE);
140 }
141
142 /*
143 * MPSAFE
144 *
145 * WARNING! This code calls vm_map_check_protection() which only checks
146 * the associated vm_map_entry range. It does not determine whether the
147 * contents of the memory is actually readable or writable. vmapbuf(),
148 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
149 * used in conjunction with this call.
150 */
151 int
152 useracc(void *addr, int len, int rw)
153 {
154 boolean_t rv;
155 vm_prot_t prot;
156 vm_map_t map;
157
158 KASSERT((rw & ~VM_PROT_ALL) == 0,
159 ("illegal ``rw'' argument to useracc (%x)\n", rw));
160 prot = rw;
161 map = &curproc->p_vmspace->vm_map;
162 if ((vm_offset_t)addr + len > vm_map_max(map) ||
163 (vm_offset_t)addr + len < (vm_offset_t)addr) {
164 return (FALSE);
165 }
166 vm_map_lock_read(map);
167 rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
168 round_page((vm_offset_t)addr + len), prot);
169 vm_map_unlock_read(map);
170 return (rv == TRUE);
171 }
172
173 int
174 vslock(void *addr, size_t len)
175 {
176 vm_offset_t end, last, start;
177 vm_size_t npages;
178 int error;
179
180 last = (vm_offset_t)addr + len;
181 start = trunc_page((vm_offset_t)addr);
182 end = round_page(last);
183 if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
184 return (EINVAL);
185 npages = atop(end - start);
186 if (npages > vm_page_max_user_wired)
187 return (ENOMEM);
188 error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
189 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
190 if (error == KERN_SUCCESS) {
191 curthread->td_vslock_sz += len;
192 return (0);
193 }
194
195 /*
196 * Return EFAULT on error to match copy{in,out}() behaviour
197 * rather than returning ENOMEM like mlock() would.
198 */
199 return (EFAULT);
200 }
201
202 void
203 vsunlock(void *addr, size_t len)
204 {
205
206 /* Rely on the parameter sanity checks performed by vslock(). */
207 MPASS(curthread->td_vslock_sz >= len);
208 curthread->td_vslock_sz -= len;
209 (void)vm_map_unwire(&curproc->p_vmspace->vm_map,
210 trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
211 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
212 }
213
214 /*
215 * Pin the page contained within the given object at the given offset. If the
216 * page is not resident, allocate and load it using the given object's pager.
217 * Return the pinned page if successful; otherwise, return NULL.
218 */
219 static vm_page_t
220 vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
221 {
222 vm_page_t m;
223 vm_pindex_t pindex;
224
225 pindex = OFF_TO_IDX(offset);
226 (void)vm_page_grab_valid_unlocked(&m, object, pindex,
227 VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
228 return (m);
229 }
230
231 /*
232 * Return a CPU private mapping to the page at the given offset within the
233 * given object. The page is pinned before it is mapped.
234 */
235 struct sf_buf *
236 vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
237 {
238 vm_page_t m;
239
240 m = vm_imgact_hold_page(object, offset);
241 if (m == NULL)
242 return (NULL);
243 sched_pin();
244 return (sf_buf_alloc(m, SFB_CPUPRIVATE));
245 }
246
247 /*
248 * Destroy the given CPU private mapping and unpin the page that it mapped.
249 */
250 void
251 vm_imgact_unmap_page(struct sf_buf *sf)
252 {
253 vm_page_t m;
254
255 m = sf_buf_page(sf);
256 sf_buf_free(sf);
257 sched_unpin();
258 vm_page_unwire(m, PQ_ACTIVE);
259 }
260
261 void
262 vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz)
263 {
264
265 pmap_sync_icache(map->pmap, va, sz);
266 }
267
268 vm_object_t kstack_object;
269 static uma_zone_t kstack_cache;
270 static int kstack_cache_size;
271
272 static int
273 sysctl_kstack_cache_size(SYSCTL_HANDLER_ARGS)
274 {
275 int error, oldsize;
276
277 oldsize = kstack_cache_size;
278 error = sysctl_handle_int(oidp, arg1, arg2, req);
279 if (error == 0 && req->newptr && oldsize != kstack_cache_size)
280 uma_zone_set_maxcache(kstack_cache, kstack_cache_size);
281 return (error);
282 }
283 SYSCTL_PROC(_vm, OID_AUTO, kstack_cache_size,
284 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &kstack_cache_size, 0,
285 sysctl_kstack_cache_size, "IU", "Maximum number of cached kernel stacks");
286
287 /*
288 * Create the kernel stack (including pcb for i386) for a new thread.
289 */
290 static vm_offset_t
291 vm_thread_stack_create(struct domainset *ds, int pages)
292 {
293 vm_page_t ma[KSTACK_MAX_PAGES];
294 vm_offset_t ks;
295 int i;
296
297 /*
298 * Get a kernel virtual address for this thread's kstack.
299 */
300 #if defined(__mips__)
301 /*
302 * We need to align the kstack's mapped address to fit within
303 * a single TLB entry.
304 */
305 if (vmem_xalloc(kernel_arena, (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE,
306 PAGE_SIZE * 2, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
307 M_BESTFIT | M_NOWAIT, &ks)) {
308 ks = 0;
309 }
310 #else
311 ks = kva_alloc((pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
312 #endif
313 if (ks == 0) {
314 printf("%s: kstack allocation failed\n", __func__);
315 return (0);
316 }
317
318 if (KSTACK_GUARD_PAGES != 0) {
319 pmap_qremove(ks, KSTACK_GUARD_PAGES);
320 ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
321 }
322
323 /*
324 * Allocate physical pages to back the stack.
325 */
326 vm_thread_stack_back(ds, ks, ma, pages, VM_ALLOC_NORMAL);
327 for (i = 0; i < pages; i++)
328 vm_page_valid(ma[i]);
329 pmap_qenter(ks, ma, pages);
330
331 return (ks);
332 }
333
334 static void
335 vm_thread_stack_dispose(vm_offset_t ks, int pages)
336 {
337 vm_page_t m;
338 vm_pindex_t pindex;
339 int i;
340
341 pindex = atop(ks - VM_MIN_KERNEL_ADDRESS);
342
343 pmap_qremove(ks, pages);
344 VM_OBJECT_WLOCK(kstack_object);
345 for (i = 0; i < pages; i++) {
346 m = vm_page_lookup(kstack_object, pindex + i);
347 if (m == NULL)
348 panic("%s: kstack already missing?", __func__);
349 vm_page_xbusy_claim(m);
350 vm_page_unwire_noq(m);
351 vm_page_free(m);
352 }
353 VM_OBJECT_WUNLOCK(kstack_object);
354 kva_free(ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
355 (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
356 }
357
358 /*
359 * Allocate the kernel stack for a new thread.
360 */
361 int
362 vm_thread_new(struct thread *td, int pages)
363 {
364 vm_offset_t ks;
365
366 /* Bounds check */
367 if (pages <= 1)
368 pages = kstack_pages;
369 else if (pages > KSTACK_MAX_PAGES)
370 pages = KSTACK_MAX_PAGES;
371
372 ks = 0;
373 if (pages == kstack_pages && kstack_cache != NULL)
374 ks = (vm_offset_t)uma_zalloc(kstack_cache, M_NOWAIT);
375
376 /*
377 * Ensure that kstack objects can draw pages from any memory
378 * domain. Otherwise a local memory shortage can block a process
379 * swap-in.
380 */
381 if (ks == 0)
382 ks = vm_thread_stack_create(DOMAINSET_PREF(PCPU_GET(domain)),
383 pages);
384 if (ks == 0)
385 return (0);
386 td->td_kstack = ks;
387 td->td_kstack_pages = pages;
388 return (1);
389 }
390
391 /*
392 * Dispose of a thread's kernel stack.
393 */
394 void
395 vm_thread_dispose(struct thread *td)
396 {
397 vm_offset_t ks;
398 int pages;
399
400 pages = td->td_kstack_pages;
401 ks = td->td_kstack;
402 td->td_kstack = 0;
403 td->td_kstack_pages = 0;
404 if (pages == kstack_pages)
405 uma_zfree(kstack_cache, (void *)ks);
406 else
407 vm_thread_stack_dispose(ks, pages);
408 }
409
410 /*
411 * Allocate physical pages, following the specified NUMA policy, to back a
412 * kernel stack.
413 */
414 void
415 vm_thread_stack_back(struct domainset *ds, vm_offset_t ks, vm_page_t ma[],
416 int npages, int req_class)
417 {
418 vm_pindex_t pindex;
419 int n;
420
421 pindex = atop(ks - VM_MIN_KERNEL_ADDRESS);
422
423 VM_OBJECT_WLOCK(kstack_object);
424 for (n = 0; n < npages;) {
425 if (vm_ndomains > 1)
426 kstack_object->domain.dr_policy = ds;
427
428 /*
429 * Use WAITFAIL to force a reset of the domain selection policy
430 * if we had to sleep for pages.
431 */
432 n += vm_page_grab_pages(kstack_object, pindex + n,
433 req_class | VM_ALLOC_WIRED | VM_ALLOC_WAITFAIL,
434 &ma[n], npages - n);
435 }
436 VM_OBJECT_WUNLOCK(kstack_object);
437 }
438
439 static int
440 kstack_import(void *arg, void **store, int cnt, int domain, int flags)
441 {
442 struct domainset *ds;
443 int i;
444
445 if (domain == UMA_ANYDOMAIN)
446 ds = DOMAINSET_RR();
447 else
448 ds = DOMAINSET_PREF(domain);
449
450 for (i = 0; i < cnt; i++) {
451 store[i] = (void *)vm_thread_stack_create(ds, kstack_pages);
452 if (store[i] == NULL)
453 break;
454 }
455 return (i);
456 }
457
458 static void
459 kstack_release(void *arg, void **store, int cnt)
460 {
461 vm_offset_t ks;
462 int i;
463
464 for (i = 0; i < cnt; i++) {
465 ks = (vm_offset_t)store[i];
466 vm_thread_stack_dispose(ks, kstack_pages);
467 }
468 }
469
470 static void
471 kstack_cache_init(void *null)
472 {
473 kstack_object = vm_object_allocate(OBJT_SWAP,
474 atop(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS));
475 kstack_cache = uma_zcache_create("kstack_cache",
476 kstack_pages * PAGE_SIZE, NULL, NULL, NULL, NULL,
477 kstack_import, kstack_release, NULL,
478 UMA_ZONE_FIRSTTOUCH);
479 kstack_cache_size = imax(128, mp_ncpus * 4);
480 uma_zone_set_maxcache(kstack_cache, kstack_cache_size);
481 }
482 SYSINIT(vm_kstacks, SI_SUB_KMEM, SI_ORDER_ANY, kstack_cache_init, NULL);
483
484 #ifdef KSTACK_USAGE_PROF
485 /*
486 * Track maximum stack used by a thread in kernel.
487 */
488 static int max_kstack_used;
489
490 SYSCTL_INT(_debug, OID_AUTO, max_kstack_used, CTLFLAG_RD,
491 &max_kstack_used, 0,
492 "Maxiumum stack depth used by a thread in kernel");
493
494 void
495 intr_prof_stack_use(struct thread *td, struct trapframe *frame)
496 {
497 vm_offset_t stack_top;
498 vm_offset_t current;
499 int used, prev_used;
500
501 /*
502 * Testing for interrupted kernel mode isn't strictly
503 * needed. It optimizes the execution, since interrupts from
504 * usermode will have only the trap frame on the stack.
505 */
506 if (TRAPF_USERMODE(frame))
507 return;
508
509 stack_top = td->td_kstack + td->td_kstack_pages * PAGE_SIZE;
510 current = (vm_offset_t)(uintptr_t)&stack_top;
511
512 /*
513 * Try to detect if interrupt is using kernel thread stack.
514 * Hardware could use a dedicated stack for interrupt handling.
515 */
516 if (stack_top <= current || current < td->td_kstack)
517 return;
518
519 used = stack_top - current;
520 for (;;) {
521 prev_used = max_kstack_used;
522 if (prev_used >= used)
523 break;
524 if (atomic_cmpset_int(&max_kstack_used, prev_used, used))
525 break;
526 }
527 }
528 #endif /* KSTACK_USAGE_PROF */
529
530 /*
531 * Implement fork's actions on an address space.
532 * Here we arrange for the address space to be copied or referenced,
533 * allocate a user struct (pcb and kernel stack), then call the
534 * machine-dependent layer to fill those in and make the new process
535 * ready to run. The new process is set up so that it returns directly
536 * to user mode to avoid stack copying and relocation problems.
537 */
538 int
539 vm_forkproc(struct thread *td, struct proc *p2, struct thread *td2,
540 struct vmspace *vm2, int flags)
541 {
542 struct proc *p1 = td->td_proc;
543 struct domainset *dset;
544 int error;
545
546 if ((flags & RFPROC) == 0) {
547 /*
548 * Divorce the memory, if it is shared, essentially
549 * this changes shared memory amongst threads, into
550 * COW locally.
551 */
552 if ((flags & RFMEM) == 0) {
553 if (refcount_load(&p1->p_vmspace->vm_refcnt) > 1) {
554 error = vmspace_unshare(p1);
555 if (error)
556 return (error);
557 }
558 }
559 cpu_fork(td, p2, td2, flags);
560 return (0);
561 }
562
563 if (flags & RFMEM) {
564 p2->p_vmspace = p1->p_vmspace;
565 refcount_acquire(&p1->p_vmspace->vm_refcnt);
566 }
567 dset = td2->td_domain.dr_policy;
568 while (vm_page_count_severe_set(&dset->ds_mask)) {
569 vm_wait_doms(&dset->ds_mask, 0);
570 }
571
572 if ((flags & RFMEM) == 0) {
573 p2->p_vmspace = vm2;
574 if (p1->p_vmspace->vm_shm)
575 shmfork(p1, p2);
576 }
577
578 /*
579 * cpu_fork will copy and update the pcb, set up the kernel stack,
580 * and make the child ready to run.
581 */
582 cpu_fork(td, p2, td2, flags);
583 return (0);
584 }
585
586 /*
587 * Called after process has been wait(2)'ed upon and is being reaped.
588 * The idea is to reclaim resources that we could not reclaim while
589 * the process was still executing.
590 */
591 void
592 vm_waitproc(p)
593 struct proc *p;
594 {
595
596 vmspace_exitfree(p); /* and clean-out the vmspace */
597 }
598
599 void
600 kick_proc0(void)
601 {
602
603 wakeup(&proc0);
604 }
Cache object: ed782c08ed118cc31d0ddef6377af0cf
|