The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_glue.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)vm_glue.c     8.6 (Berkeley) 1/5/94
   33  *
   34  *
   35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   36  * All rights reserved.
   37  *
   38  * Permission to use, copy, modify and distribute this software and
   39  * its documentation is hereby granted, provided that both the copyright
   40  * notice and this permission notice appear in all copies of the
   41  * software, derivative works or modified versions, and any portions
   42  * thereof, and that both notices appear in supporting documentation.
   43  *
   44  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   45  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   46  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   47  *
   48  * Carnegie Mellon requests users of this software to return to
   49  *
   50  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   51  *  School of Computer Science
   52  *  Carnegie Mellon University
   53  *  Pittsburgh PA 15213-3890
   54  *
   55  * any improvements or extensions that they make and grant Carnegie the
   56  * rights to redistribute these changes.
   57  */
   58 
   59 #include <sys/cdefs.h>
   60 __FBSDID("$FreeBSD: releng/5.3/sys/vm/vm_glue.c 132898 2004-07-30 20:31:02Z alc $");
   61 
   62 #include "opt_vm.h"
   63 #include "opt_kstack_pages.h"
   64 #include "opt_kstack_max_pages.h"
   65 
   66 #include <sys/param.h>
   67 #include <sys/systm.h>
   68 #include <sys/limits.h>
   69 #include <sys/lock.h>
   70 #include <sys/mutex.h>
   71 #include <sys/proc.h>
   72 #include <sys/resourcevar.h>
   73 #include <sys/shm.h>
   74 #include <sys/vmmeter.h>
   75 #include <sys/sx.h>
   76 #include <sys/sysctl.h>
   77 
   78 #include <sys/kernel.h>
   79 #include <sys/ktr.h>
   80 #include <sys/unistd.h>
   81 
   82 #include <vm/vm.h>
   83 #include <vm/vm_param.h>
   84 #include <vm/pmap.h>
   85 #include <vm/vm_map.h>
   86 #include <vm/vm_page.h>
   87 #include <vm/vm_pageout.h>
   88 #include <vm/vm_object.h>
   89 #include <vm/vm_kern.h>
   90 #include <vm/vm_extern.h>
   91 #include <vm/vm_pager.h>
   92 #include <vm/swap_pager.h>
   93 
   94 #include <sys/user.h>
   95 
   96 extern int maxslp;
   97 
   98 /*
   99  * System initialization
  100  *
  101  * Note: proc0 from proc.h
  102  */
  103 static void vm_init_limits(void *);
  104 SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
  105 
  106 /*
  107  * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
  108  *
  109  * Note: run scheduling should be divorced from the vm system.
  110  */
  111 static void scheduler(void *);
  112 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL)
  113 
  114 #ifndef NO_SWAPPING
  115 static void swapout(struct proc *);
  116 static void vm_proc_swapin(struct proc *p);
  117 static void vm_proc_swapout(struct proc *p);
  118 #endif
  119 
  120 /*
  121  * MPSAFE
  122  *
  123  * WARNING!  This code calls vm_map_check_protection() which only checks
  124  * the associated vm_map_entry range.  It does not determine whether the
  125  * contents of the memory is actually readable or writable.  In most cases
  126  * just checking the vm_map_entry is sufficient within the kernel's address
  127  * space.
  128  */
  129 int
  130 kernacc(addr, len, rw)
  131         void *addr;
  132         int len, rw;
  133 {
  134         boolean_t rv;
  135         vm_offset_t saddr, eaddr;
  136         vm_prot_t prot;
  137 
  138         KASSERT((rw & ~VM_PROT_ALL) == 0,
  139             ("illegal ``rw'' argument to kernacc (%x)\n", rw));
  140         prot = rw;
  141         saddr = trunc_page((vm_offset_t)addr);
  142         eaddr = round_page((vm_offset_t)addr + len);
  143         vm_map_lock_read(kernel_map);
  144         rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
  145         vm_map_unlock_read(kernel_map);
  146         return (rv == TRUE);
  147 }
  148 
  149 /*
  150  * MPSAFE
  151  *
  152  * WARNING!  This code calls vm_map_check_protection() which only checks
  153  * the associated vm_map_entry range.  It does not determine whether the
  154  * contents of the memory is actually readable or writable.  vmapbuf(),
  155  * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
  156  * used in conjuction with this call.
  157  */
  158 int
  159 useracc(addr, len, rw)
  160         void *addr;
  161         int len, rw;
  162 {
  163         boolean_t rv;
  164         vm_prot_t prot;
  165         vm_map_t map;
  166 
  167         KASSERT((rw & ~VM_PROT_ALL) == 0,
  168             ("illegal ``rw'' argument to useracc (%x)\n", rw));
  169         prot = rw;
  170         map = &curproc->p_vmspace->vm_map;
  171         if ((vm_offset_t)addr + len > vm_map_max(map) ||
  172             (vm_offset_t)addr + len < (vm_offset_t)addr) {
  173                 return (FALSE);
  174         }
  175         vm_map_lock_read(map);
  176         rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
  177             round_page((vm_offset_t)addr + len), prot);
  178         vm_map_unlock_read(map);
  179         return (rv == TRUE);
  180 }
  181 
  182 int
  183 vslock(void *addr, size_t len)
  184 {
  185         vm_offset_t end, last, start;
  186         vm_size_t npages;
  187         int error;
  188 
  189         last = (vm_offset_t)addr + len;
  190         start = trunc_page((vm_offset_t)addr);
  191         end = round_page(last);
  192         if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
  193                 return (EINVAL);
  194         npages = atop(end - start);
  195         if (npages > vm_page_max_wired)
  196                 return (ENOMEM);
  197         PROC_LOCK(curproc);
  198         if (ptoa(npages +
  199             pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))) >
  200             lim_cur(curproc, RLIMIT_MEMLOCK)) {
  201                 PROC_UNLOCK(curproc);
  202                 return (ENOMEM);
  203         }
  204         PROC_UNLOCK(curproc);
  205 #if 0
  206         /*
  207          * XXX - not yet
  208          *
  209          * The limit for transient usage of wired pages should be
  210          * larger than for "permanent" wired pages (mlock()).
  211          *
  212          * Also, the sysctl code, which is the only present user
  213          * of vslock(), does a hard loop on EAGAIN.
  214          */
  215         if (npages + cnt.v_wire_count > vm_page_max_wired)
  216                 return (EAGAIN);
  217 #endif
  218         error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
  219             VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
  220         /*
  221          * Return EFAULT on error to match copy{in,out}() behaviour
  222          * rather than returning ENOMEM like mlock() would.
  223          */
  224         return (error == KERN_SUCCESS ? 0 : EFAULT);
  225 }
  226 
  227 void
  228 vsunlock(void *addr, size_t len)
  229 {
  230 
  231         /* Rely on the parameter sanity checks performed by vslock(). */
  232         (void)vm_map_unwire(&curproc->p_vmspace->vm_map,
  233             trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
  234             VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
  235 }
  236 
  237 /*
  238  * Create the U area for a new process.
  239  * This routine directly affects the fork perf for a process.
  240  */
  241 void
  242 vm_proc_new(struct proc *p)
  243 {
  244         vm_page_t ma[UAREA_PAGES];
  245         vm_object_t upobj;
  246         vm_offset_t up;
  247         vm_page_t m;
  248         u_int i;
  249 
  250         /*
  251          * Get a kernel virtual address for the U area for this process.
  252          */
  253         up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
  254         if (up == 0)
  255                 panic("vm_proc_new: upage allocation failed");
  256         p->p_uarea = (struct user *)up;
  257 
  258         /*
  259          * Allocate object and page(s) for the U area.
  260          */
  261         upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
  262         p->p_upages_obj = upobj;
  263         VM_OBJECT_LOCK(upobj);
  264         for (i = 0; i < UAREA_PAGES; i++) {
  265                 m = vm_page_grab(upobj, i,
  266                     VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
  267                 ma[i] = m;
  268 
  269                 vm_page_lock_queues();
  270                 vm_page_wakeup(m);
  271                 m->valid = VM_PAGE_BITS_ALL;
  272                 vm_page_unlock_queues();
  273         }
  274         VM_OBJECT_UNLOCK(upobj);
  275 
  276         /*
  277          * Enter the pages into the kernel address space.
  278          */
  279         pmap_qenter(up, ma, UAREA_PAGES);
  280 }
  281 
  282 /*
  283  * Dispose the U area for a process that has exited.
  284  * This routine directly impacts the exit perf of a process.
  285  * XXX proc_zone is marked UMA_ZONE_NOFREE, so this should never be called.
  286  */
  287 void
  288 vm_proc_dispose(struct proc *p)
  289 {
  290         vm_object_t upobj;
  291         vm_offset_t up;
  292         vm_page_t m;
  293 
  294         upobj = p->p_upages_obj;
  295         VM_OBJECT_LOCK(upobj);
  296         if (upobj->resident_page_count != UAREA_PAGES)
  297                 panic("vm_proc_dispose: incorrect number of pages in upobj");
  298         vm_page_lock_queues();
  299         while ((m = TAILQ_FIRST(&upobj->memq)) != NULL) {
  300                 vm_page_busy(m);
  301                 vm_page_unwire(m, 0);
  302                 vm_page_free(m);
  303         }
  304         vm_page_unlock_queues();
  305         VM_OBJECT_UNLOCK(upobj);
  306         up = (vm_offset_t)p->p_uarea;
  307         pmap_qremove(up, UAREA_PAGES);
  308         kmem_free(kernel_map, up, UAREA_PAGES * PAGE_SIZE);
  309         vm_object_deallocate(upobj);
  310 }
  311 
  312 #ifndef NO_SWAPPING
  313 /*
  314  * Allow the U area for a process to be prejudicially paged out.
  315  */
  316 static void
  317 vm_proc_swapout(struct proc *p)
  318 {
  319         vm_object_t upobj;
  320         vm_offset_t up;
  321         vm_page_t m;
  322 
  323         upobj = p->p_upages_obj;
  324         VM_OBJECT_LOCK(upobj);
  325         if (upobj->resident_page_count != UAREA_PAGES)
  326                 panic("vm_proc_dispose: incorrect number of pages in upobj");
  327         vm_page_lock_queues();
  328         TAILQ_FOREACH(m, &upobj->memq, listq) {
  329                 vm_page_dirty(m);
  330                 vm_page_unwire(m, 0);
  331         }
  332         vm_page_unlock_queues();
  333         VM_OBJECT_UNLOCK(upobj);
  334         up = (vm_offset_t)p->p_uarea;
  335         pmap_qremove(up, UAREA_PAGES);
  336 }
  337 
  338 /*
  339  * Bring the U area for a specified process back in.
  340  */
  341 static void
  342 vm_proc_swapin(struct proc *p)
  343 {
  344         vm_page_t ma[UAREA_PAGES];
  345         vm_object_t upobj;
  346         vm_offset_t up;
  347         vm_page_t m;
  348         int rv;
  349         int i;
  350 
  351         upobj = p->p_upages_obj;
  352         VM_OBJECT_LOCK(upobj);
  353         for (i = 0; i < UAREA_PAGES; i++) {
  354                 m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
  355                 if (m->valid != VM_PAGE_BITS_ALL) {
  356                         rv = vm_pager_get_pages(upobj, &m, 1, 0);
  357                         if (rv != VM_PAGER_OK)
  358                                 panic("vm_proc_swapin: cannot get upage");
  359                 }
  360                 ma[i] = m;
  361         }
  362         if (upobj->resident_page_count != UAREA_PAGES)
  363                 panic("vm_proc_swapin: lost pages from upobj");
  364         vm_page_lock_queues();
  365         TAILQ_FOREACH(m, &upobj->memq, listq) {
  366                 m->valid = VM_PAGE_BITS_ALL;
  367                 vm_page_wire(m);
  368                 vm_page_wakeup(m);
  369         }
  370         vm_page_unlock_queues();
  371         VM_OBJECT_UNLOCK(upobj);
  372         up = (vm_offset_t)p->p_uarea;
  373         pmap_qenter(up, ma, UAREA_PAGES);
  374 }
  375 
  376 /*
  377  * Swap in the UAREAs of all processes swapped out to the given device.
  378  * The pages in the UAREA are marked dirty and their swap metadata is freed.
  379  */
  380 void
  381 vm_proc_swapin_all(struct swdevt *devidx)
  382 {
  383         struct proc *p;
  384         vm_object_t object;
  385         vm_page_t m;
  386 
  387 retry:
  388         sx_slock(&allproc_lock);
  389         FOREACH_PROC_IN_SYSTEM(p) {
  390                 PROC_LOCK(p);
  391                 object = p->p_upages_obj;
  392                 if (object != NULL) {
  393                         VM_OBJECT_LOCK(object);
  394                         if (swap_pager_isswapped(object, devidx)) {
  395                                 VM_OBJECT_UNLOCK(object);
  396                                 sx_sunlock(&allproc_lock);
  397                                 faultin(p);
  398                                 PROC_UNLOCK(p);
  399                                 VM_OBJECT_LOCK(object);
  400                                 vm_page_lock_queues();
  401                                 TAILQ_FOREACH(m, &object->memq, listq)
  402                                         vm_page_dirty(m);
  403                                 vm_page_unlock_queues();
  404                                 swap_pager_freespace(object, 0,
  405                                     object->un_pager.swp.swp_bcount);
  406                                 VM_OBJECT_UNLOCK(object);
  407                                 goto retry;
  408                         }
  409                         VM_OBJECT_UNLOCK(object);
  410                 }
  411                 PROC_UNLOCK(p);
  412         }
  413         sx_sunlock(&allproc_lock);
  414 }
  415 #endif
  416 
  417 #ifndef KSTACK_MAX_PAGES
  418 #define KSTACK_MAX_PAGES 32
  419 #endif
  420 
  421 /*
  422  * Create the kernel stack (including pcb for i386) for a new thread.
  423  * This routine directly affects the fork perf for a process and
  424  * create performance for a thread.
  425  */
  426 void
  427 vm_thread_new(struct thread *td, int pages)
  428 {
  429         vm_object_t ksobj;
  430         vm_offset_t ks;
  431         vm_page_t m, ma[KSTACK_MAX_PAGES];
  432         int i;
  433 
  434         /* Bounds check */
  435         if (pages <= 1)
  436                 pages = KSTACK_PAGES;
  437         else if (pages > KSTACK_MAX_PAGES)
  438                 pages = KSTACK_MAX_PAGES;
  439         /*
  440          * Allocate an object for the kstack.
  441          */
  442         ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
  443         td->td_kstack_obj = ksobj;
  444         /*
  445          * Get a kernel virtual address for this thread's kstack.
  446          */
  447         ks = kmem_alloc_nofault(kernel_map,
  448            (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
  449         if (ks == 0)
  450                 panic("vm_thread_new: kstack allocation failed");
  451         if (KSTACK_GUARD_PAGES != 0) {
  452                 pmap_qremove(ks, KSTACK_GUARD_PAGES);
  453                 ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
  454         }
  455         td->td_kstack = ks;
  456         /*
  457          * Knowing the number of pages allocated is useful when you
  458          * want to deallocate them.
  459          */
  460         td->td_kstack_pages = pages;
  461         /* 
  462          * For the length of the stack, link in a real page of ram for each
  463          * page of stack.
  464          */
  465         VM_OBJECT_LOCK(ksobj);
  466         for (i = 0; i < pages; i++) {
  467                 /*
  468                  * Get a kernel stack page.
  469                  */
  470                 m = vm_page_grab(ksobj, i,
  471                     VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
  472                 ma[i] = m;
  473                 vm_page_lock_queues();
  474                 vm_page_wakeup(m);
  475                 m->valid = VM_PAGE_BITS_ALL;
  476                 vm_page_unlock_queues();
  477         }
  478         VM_OBJECT_UNLOCK(ksobj);
  479         pmap_qenter(ks, ma, pages);
  480 }
  481 
  482 /*
  483  * Dispose of a thread's kernel stack.
  484  */
  485 void
  486 vm_thread_dispose(struct thread *td)
  487 {
  488         vm_object_t ksobj;
  489         vm_offset_t ks;
  490         vm_page_t m;
  491         int i, pages;
  492 
  493         pages = td->td_kstack_pages;
  494         ksobj = td->td_kstack_obj;
  495         ks = td->td_kstack;
  496         pmap_qremove(ks, pages);
  497         VM_OBJECT_LOCK(ksobj);
  498         for (i = 0; i < pages; i++) {
  499                 m = vm_page_lookup(ksobj, i);
  500                 if (m == NULL)
  501                         panic("vm_thread_dispose: kstack already missing?");
  502                 vm_page_lock_queues();
  503                 vm_page_busy(m);
  504                 vm_page_unwire(m, 0);
  505                 vm_page_free(m);
  506                 vm_page_unlock_queues();
  507         }
  508         VM_OBJECT_UNLOCK(ksobj);
  509         vm_object_deallocate(ksobj);
  510         kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
  511             (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
  512 }
  513 
  514 /*
  515  * Allow a thread's kernel stack to be paged out.
  516  */
  517 void
  518 vm_thread_swapout(struct thread *td)
  519 {
  520         vm_object_t ksobj;
  521         vm_page_t m;
  522         int i, pages;
  523 
  524         cpu_thread_swapout(td);
  525         pages = td->td_kstack_pages;
  526         ksobj = td->td_kstack_obj;
  527         pmap_qremove(td->td_kstack, pages);
  528         VM_OBJECT_LOCK(ksobj);
  529         for (i = 0; i < pages; i++) {
  530                 m = vm_page_lookup(ksobj, i);
  531                 if (m == NULL)
  532                         panic("vm_thread_swapout: kstack already missing?");
  533                 vm_page_lock_queues();
  534                 vm_page_dirty(m);
  535                 vm_page_unwire(m, 0);
  536                 vm_page_unlock_queues();
  537         }
  538         VM_OBJECT_UNLOCK(ksobj);
  539 }
  540 
  541 /*
  542  * Bring the kernel stack for a specified thread back in.
  543  */
  544 void
  545 vm_thread_swapin(struct thread *td)
  546 {
  547         vm_object_t ksobj;
  548         vm_page_t m, ma[KSTACK_MAX_PAGES];
  549         int i, pages, rv;
  550 
  551         pages = td->td_kstack_pages;
  552         ksobj = td->td_kstack_obj;
  553         VM_OBJECT_LOCK(ksobj);
  554         for (i = 0; i < pages; i++) {
  555                 m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
  556                 if (m->valid != VM_PAGE_BITS_ALL) {
  557                         rv = vm_pager_get_pages(ksobj, &m, 1, 0);
  558                         if (rv != VM_PAGER_OK)
  559                                 panic("vm_thread_swapin: cannot get kstack for proc: %d", td->td_proc->p_pid);
  560                         m = vm_page_lookup(ksobj, i);
  561                         m->valid = VM_PAGE_BITS_ALL;
  562                 }
  563                 ma[i] = m;
  564                 vm_page_lock_queues();
  565                 vm_page_wire(m);
  566                 vm_page_wakeup(m);
  567                 vm_page_unlock_queues();
  568         }
  569         VM_OBJECT_UNLOCK(ksobj);
  570         pmap_qenter(td->td_kstack, ma, pages);
  571         cpu_thread_swapin(td);
  572 }
  573 
  574 /*
  575  * Set up a variable-sized alternate kstack.
  576  */
  577 void
  578 vm_thread_new_altkstack(struct thread *td, int pages)
  579 {
  580 
  581         td->td_altkstack = td->td_kstack;
  582         td->td_altkstack_obj = td->td_kstack_obj;
  583         td->td_altkstack_pages = td->td_kstack_pages;
  584 
  585         vm_thread_new(td, pages);
  586 }
  587 
  588 /*
  589  * Restore the original kstack.
  590  */
  591 void
  592 vm_thread_dispose_altkstack(struct thread *td)
  593 {
  594 
  595         vm_thread_dispose(td);
  596 
  597         td->td_kstack = td->td_altkstack;
  598         td->td_kstack_obj = td->td_altkstack_obj;
  599         td->td_kstack_pages = td->td_altkstack_pages;
  600         td->td_altkstack = 0;
  601         td->td_altkstack_obj = NULL;
  602         td->td_altkstack_pages = 0;
  603 }
  604 
  605 /*
  606  * Implement fork's actions on an address space.
  607  * Here we arrange for the address space to be copied or referenced,
  608  * allocate a user struct (pcb and kernel stack), then call the
  609  * machine-dependent layer to fill those in and make the new process
  610  * ready to run.  The new process is set up so that it returns directly
  611  * to user mode to avoid stack copying and relocation problems.
  612  */
  613 void
  614 vm_forkproc(td, p2, td2, flags)
  615         struct thread *td;
  616         struct proc *p2;
  617         struct thread *td2;
  618         int flags;
  619 {
  620         struct proc *p1 = td->td_proc;
  621 
  622         GIANT_REQUIRED;
  623 
  624         if ((flags & RFPROC) == 0) {
  625                 /*
  626                  * Divorce the memory, if it is shared, essentially
  627                  * this changes shared memory amongst threads, into
  628                  * COW locally.
  629                  */
  630                 if ((flags & RFMEM) == 0) {
  631                         if (p1->p_vmspace->vm_refcnt > 1) {
  632                                 vmspace_unshare(p1);
  633                         }
  634                 }
  635                 cpu_fork(td, p2, td2, flags);
  636                 return;
  637         }
  638 
  639         if (flags & RFMEM) {
  640                 p2->p_vmspace = p1->p_vmspace;
  641                 atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
  642         }
  643 
  644         while (vm_page_count_severe()) {
  645                 VM_WAIT;
  646         }
  647 
  648         if ((flags & RFMEM) == 0) {
  649                 p2->p_vmspace = vmspace_fork(p1->p_vmspace);
  650                 if (p1->p_vmspace->vm_shm)
  651                         shmfork(p1, p2);
  652         }
  653 
  654         /*
  655          * p_stats currently points at fields in the user struct.
  656          * Copy parts of p_stats; zero the rest of p_stats (statistics).
  657          */
  658 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
  659 
  660         p2->p_stats = &p2->p_uarea->u_stats;
  661         bzero(&p2->p_stats->pstat_startzero,
  662             (unsigned) RANGEOF(struct pstats, pstat_startzero, pstat_endzero));
  663         bcopy(&p1->p_stats->pstat_startcopy, &p2->p_stats->pstat_startcopy,
  664             (unsigned) RANGEOF(struct pstats, pstat_startcopy, pstat_endcopy));
  665 #undef RANGEOF
  666 
  667         /*
  668          * cpu_fork will copy and update the pcb, set up the kernel stack,
  669          * and make the child ready to run.
  670          */
  671         cpu_fork(td, p2, td2, flags);
  672 }
  673 
  674 /*
  675  * Called after process has been wait(2)'ed apon and is being reaped.
  676  * The idea is to reclaim resources that we could not reclaim while
  677  * the process was still executing.
  678  */
  679 void
  680 vm_waitproc(p)
  681         struct proc *p;
  682 {
  683 
  684         vmspace_exitfree(p);            /* and clean-out the vmspace */
  685 }
  686 
  687 /*
  688  * Set default limits for VM system.
  689  * Called for proc 0, and then inherited by all others.
  690  *
  691  * XXX should probably act directly on proc0.
  692  */
  693 static void
  694 vm_init_limits(udata)
  695         void *udata;
  696 {
  697         struct proc *p = udata;
  698         struct plimit *limp;
  699         int rss_limit;
  700 
  701         /*
  702          * Set up the initial limits on process VM. Set the maximum resident
  703          * set size to be half of (reasonably) available memory.  Since this
  704          * is a soft limit, it comes into effect only when the system is out
  705          * of memory - half of main memory helps to favor smaller processes,
  706          * and reduces thrashing of the object cache.
  707          */
  708         limp = p->p_limit;
  709         limp->pl_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
  710         limp->pl_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
  711         limp->pl_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
  712         limp->pl_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
  713         /* limit the limit to no less than 2MB */
  714         rss_limit = max(cnt.v_free_count, 512);
  715         limp->pl_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
  716         limp->pl_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
  717 }
  718 
  719 void
  720 faultin(p)
  721         struct proc *p;
  722 {
  723 #ifdef NO_SWAPPING
  724 
  725         PROC_LOCK_ASSERT(p, MA_OWNED);
  726         if ((p->p_sflag & PS_INMEM) == 0)
  727                 panic("faultin: proc swapped out with NO_SWAPPING!");
  728 #else /* !NO_SWAPPING */
  729         struct thread *td;
  730 
  731         GIANT_REQUIRED;
  732         PROC_LOCK_ASSERT(p, MA_OWNED);
  733         /*
  734          * If another process is swapping in this process,
  735          * just wait until it finishes.
  736          */
  737         if (p->p_sflag & PS_SWAPPINGIN)
  738                 msleep(&p->p_sflag, &p->p_mtx, PVM, "faultin", 0);
  739         else if ((p->p_sflag & PS_INMEM) == 0) {
  740                 /*
  741                  * Don't let another thread swap process p out while we are
  742                  * busy swapping it in.
  743                  */
  744                 ++p->p_lock;
  745                 mtx_lock_spin(&sched_lock);
  746                 p->p_sflag |= PS_SWAPPINGIN;
  747                 mtx_unlock_spin(&sched_lock);
  748                 PROC_UNLOCK(p);
  749 
  750                 vm_proc_swapin(p);
  751                 FOREACH_THREAD_IN_PROC(p, td)
  752                         vm_thread_swapin(td);
  753 
  754                 PROC_LOCK(p);
  755                 mtx_lock_spin(&sched_lock);
  756                 p->p_sflag &= ~PS_SWAPPINGIN;
  757                 p->p_sflag |= PS_INMEM;
  758                 FOREACH_THREAD_IN_PROC(p, td) {
  759                         TD_CLR_SWAPPED(td);
  760                         if (TD_CAN_RUN(td))
  761                                 setrunnable(td);
  762                 }
  763                 mtx_unlock_spin(&sched_lock);
  764 
  765                 wakeup(&p->p_sflag);
  766 
  767                 /* Allow other threads to swap p out now. */
  768                 --p->p_lock;
  769         }
  770 #endif /* NO_SWAPPING */
  771 }
  772 
  773 /*
  774  * This swapin algorithm attempts to swap-in processes only if there
  775  * is enough space for them.  Of course, if a process waits for a long
  776  * time, it will be swapped in anyway.
  777  *
  778  *  XXXKSE - process with the thread with highest priority counts..
  779  *
  780  * Giant is still held at this point, to be released in tsleep.
  781  */
  782 /* ARGSUSED*/
  783 static void
  784 scheduler(dummy)
  785         void *dummy;
  786 {
  787         struct proc *p;
  788         struct thread *td;
  789         int pri;
  790         struct proc *pp;
  791         int ppri;
  792 
  793         mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
  794         /* GIANT_REQUIRED */
  795 
  796 loop:
  797         if (vm_page_count_min()) {
  798                 VM_WAIT;
  799                 goto loop;
  800         }
  801 
  802         pp = NULL;
  803         ppri = INT_MIN;
  804         sx_slock(&allproc_lock);
  805         FOREACH_PROC_IN_SYSTEM(p) {
  806                 struct ksegrp *kg;
  807                 if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
  808                         continue;
  809                 }
  810                 mtx_lock_spin(&sched_lock);
  811                 FOREACH_THREAD_IN_PROC(p, td) {
  812                         /*
  813                          * An otherwise runnable thread of a process
  814                          * swapped out has only the TDI_SWAPPED bit set.
  815                          * 
  816                          */
  817                         if (td->td_inhibitors == TDI_SWAPPED) {
  818                                 kg = td->td_ksegrp;
  819                                 pri = p->p_swtime + kg->kg_slptime;
  820                                 if ((p->p_sflag & PS_SWAPINREQ) == 0) {
  821                                         pri -= p->p_nice * 8;
  822                                 }
  823 
  824                                 /*
  825                                  * if this ksegrp is higher priority
  826                                  * and there is enough space, then select
  827                                  * this process instead of the previous
  828                                  * selection.
  829                                  */
  830                                 if (pri > ppri) {
  831                                         pp = p;
  832                                         ppri = pri;
  833                                 }
  834                         }
  835                 }
  836                 mtx_unlock_spin(&sched_lock);
  837         }
  838         sx_sunlock(&allproc_lock);
  839 
  840         /*
  841          * Nothing to do, back to sleep.
  842          */
  843         if ((p = pp) == NULL) {
  844                 tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
  845                 goto loop;
  846         }
  847         PROC_LOCK(p);
  848 
  849         /*
  850          * Another process may be bringing or may have already
  851          * brought this process in while we traverse all threads.
  852          * Or, this process may even be being swapped out again.
  853          */
  854         if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
  855                 PROC_UNLOCK(p);
  856                 goto loop;
  857         }
  858 
  859         mtx_lock_spin(&sched_lock);
  860         p->p_sflag &= ~PS_SWAPINREQ;
  861         mtx_unlock_spin(&sched_lock);
  862 
  863         /*
  864          * We would like to bring someone in. (only if there is space).
  865          * [What checks the space? ]
  866          */
  867         faultin(p);
  868         PROC_UNLOCK(p);
  869         mtx_lock_spin(&sched_lock);
  870         p->p_swtime = 0;
  871         mtx_unlock_spin(&sched_lock);
  872         goto loop;
  873 }
  874 
  875 #ifndef NO_SWAPPING
  876 
  877 /*
  878  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
  879  */
  880 static int swap_idle_threshold1 = 2;
  881 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
  882     &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
  883 
  884 /*
  885  * Swap_idle_threshold2 is the time that a process can be idle before
  886  * it will be swapped out, if idle swapping is enabled.
  887  */
  888 static int swap_idle_threshold2 = 10;
  889 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
  890     &swap_idle_threshold2, 0, "Time before a process will be swapped out");
  891 
  892 /*
  893  * Swapout is driven by the pageout daemon.  Very simple, we find eligible
  894  * procs and unwire their u-areas.  We try to always "swap" at least one
  895  * process in case we need the room for a swapin.
  896  * If any procs have been sleeping/stopped for at least maxslp seconds,
  897  * they are swapped.  Else, we swap the longest-sleeping or stopped process,
  898  * if any, otherwise the longest-resident process.
  899  */
  900 void
  901 swapout_procs(action)
  902 int action;
  903 {
  904         struct proc *p;
  905         struct thread *td;
  906         struct ksegrp *kg;
  907         int didswap = 0;
  908 
  909         GIANT_REQUIRED;
  910 
  911 retry:
  912         sx_slock(&allproc_lock);
  913         FOREACH_PROC_IN_SYSTEM(p) {
  914                 struct vmspace *vm;
  915                 int minslptime = 100000;
  916                 
  917                 /*
  918                  * Watch out for a process in
  919                  * creation.  It may have no
  920                  * address space or lock yet.
  921                  */
  922                 mtx_lock_spin(&sched_lock);
  923                 if (p->p_state == PRS_NEW) {
  924                         mtx_unlock_spin(&sched_lock);
  925                         continue;
  926                 }
  927                 mtx_unlock_spin(&sched_lock);
  928 
  929                 /*
  930                  * An aio daemon switches its
  931                  * address space while running.
  932                  * Perform a quick check whether
  933                  * a process has P_SYSTEM.
  934                  */
  935                 if ((p->p_flag & P_SYSTEM) != 0)
  936                         continue;
  937 
  938                 /*
  939                  * Do not swapout a process that
  940                  * is waiting for VM data
  941                  * structures as there is a possible
  942                  * deadlock.  Test this first as
  943                  * this may block.
  944                  *
  945                  * Lock the map until swapout
  946                  * finishes, or a thread of this
  947                  * process may attempt to alter
  948                  * the map.
  949                  */
  950                 PROC_LOCK(p);
  951                 vm = p->p_vmspace;
  952                 KASSERT(vm != NULL,
  953                         ("swapout_procs: a process has no address space"));
  954                 atomic_add_int(&vm->vm_refcnt, 1);
  955                 PROC_UNLOCK(p);
  956                 if (!vm_map_trylock(&vm->vm_map))
  957                         goto nextproc1;
  958 
  959                 PROC_LOCK(p);
  960                 if (p->p_lock != 0 ||
  961                     (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
  962                     ) != 0) {
  963                         goto nextproc2;
  964                 }
  965                 /*
  966                  * only aiod changes vmspace, however it will be
  967                  * skipped because of the if statement above checking 
  968                  * for P_SYSTEM
  969                  */
  970                 if ((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) != PS_INMEM)
  971                         goto nextproc2;
  972 
  973                 switch (p->p_state) {
  974                 default:
  975                         /* Don't swap out processes in any sort
  976                          * of 'special' state. */
  977                         break;
  978 
  979                 case PRS_NORMAL:
  980                         mtx_lock_spin(&sched_lock);
  981                         /*
  982                          * do not swapout a realtime process
  983                          * Check all the thread groups..
  984                          */
  985                         FOREACH_KSEGRP_IN_PROC(p, kg) {
  986                                 if (PRI_IS_REALTIME(kg->kg_pri_class))
  987                                         goto nextproc;
  988 
  989                                 /*
  990                                  * Guarantee swap_idle_threshold1
  991                                  * time in memory.
  992                                  */
  993                                 if (kg->kg_slptime < swap_idle_threshold1)
  994                                         goto nextproc;
  995 
  996                                 /*
  997                                  * Do not swapout a process if it is
  998                                  * waiting on a critical event of some
  999                                  * kind or there is a thread whose
 1000                                  * pageable memory may be accessed.
 1001                                  *
 1002                                  * This could be refined to support
 1003                                  * swapping out a thread.
 1004                                  */
 1005                                 FOREACH_THREAD_IN_GROUP(kg, td) {
 1006                                         if ((td->td_priority) < PSOCK ||
 1007                                             !thread_safetoswapout(td))
 1008                                                 goto nextproc;
 1009                                 }
 1010                                 /*
 1011                                  * If the system is under memory stress,
 1012                                  * or if we are swapping
 1013                                  * idle processes >= swap_idle_threshold2,
 1014                                  * then swap the process out.
 1015                                  */
 1016                                 if (((action & VM_SWAP_NORMAL) == 0) &&
 1017                                     (((action & VM_SWAP_IDLE) == 0) ||
 1018                                     (kg->kg_slptime < swap_idle_threshold2)))
 1019                                         goto nextproc;
 1020 
 1021                                 if (minslptime > kg->kg_slptime)
 1022                                         minslptime = kg->kg_slptime;
 1023                         }
 1024 
 1025                         /*
 1026                          * If the pageout daemon didn't free enough pages,
 1027                          * or if this process is idle and the system is
 1028                          * configured to swap proactively, swap it out.
 1029                          */
 1030                         if ((action & VM_SWAP_NORMAL) ||
 1031                                 ((action & VM_SWAP_IDLE) &&
 1032                                  (minslptime > swap_idle_threshold2))) {
 1033                                 swapout(p);
 1034                                 didswap++;
 1035                                 mtx_unlock_spin(&sched_lock);
 1036                                 PROC_UNLOCK(p);
 1037                                 vm_map_unlock(&vm->vm_map);
 1038                                 vmspace_free(vm);
 1039                                 sx_sunlock(&allproc_lock);
 1040                                 goto retry;
 1041                         }
 1042 nextproc:                       
 1043                         mtx_unlock_spin(&sched_lock);
 1044                 }
 1045 nextproc2:
 1046                 PROC_UNLOCK(p);
 1047                 vm_map_unlock(&vm->vm_map);
 1048 nextproc1:
 1049                 vmspace_free(vm);
 1050                 continue;
 1051         }
 1052         sx_sunlock(&allproc_lock);
 1053         /*
 1054          * If we swapped something out, and another process needed memory,
 1055          * then wakeup the sched process.
 1056          */
 1057         if (didswap)
 1058                 wakeup(&proc0);
 1059 }
 1060 
 1061 static void
 1062 swapout(p)
 1063         struct proc *p;
 1064 {
 1065         struct thread *td;
 1066 
 1067         PROC_LOCK_ASSERT(p, MA_OWNED);
 1068         mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
 1069 #if defined(SWAP_DEBUG)
 1070         printf("swapping out %d\n", p->p_pid);
 1071 #endif
 1072 
 1073         /*
 1074          * The states of this process and its threads may have changed
 1075          * by now.  Assuming that there is only one pageout daemon thread,
 1076          * this process should still be in memory.
 1077          */
 1078         KASSERT((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) == PS_INMEM,
 1079                 ("swapout: lost a swapout race?"));
 1080 
 1081 #if defined(INVARIANTS)
 1082         /*
 1083          * Make sure that all threads are safe to be swapped out.
 1084          *
 1085          * Alternatively, we could swap out only safe threads.
 1086          */
 1087         FOREACH_THREAD_IN_PROC(p, td) {
 1088                 KASSERT(thread_safetoswapout(td),
 1089                         ("swapout: there is a thread not safe for swapout"));
 1090         }
 1091 #endif /* INVARIANTS */
 1092 
 1093         ++p->p_stats->p_ru.ru_nswap;
 1094         /*
 1095          * remember the process resident count
 1096          */
 1097         p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
 1098 
 1099         p->p_sflag &= ~PS_INMEM;
 1100         p->p_sflag |= PS_SWAPPINGOUT;
 1101         PROC_UNLOCK(p);
 1102         FOREACH_THREAD_IN_PROC(p, td)
 1103                 TD_SET_SWAPPED(td);
 1104         mtx_unlock_spin(&sched_lock);
 1105 
 1106         vm_proc_swapout(p);
 1107         FOREACH_THREAD_IN_PROC(p, td)
 1108                 vm_thread_swapout(td);
 1109 
 1110         PROC_LOCK(p);
 1111         mtx_lock_spin(&sched_lock);
 1112         p->p_sflag &= ~PS_SWAPPINGOUT;
 1113         p->p_swtime = 0;
 1114 }
 1115 #endif /* !NO_SWAPPING */

Cache object: d9f8216e5ee12dc59e50c69a15ef98f9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.