FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_glue.c
1 /*-
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * from: @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Permission to use, copy, modify and distribute this software and
39 * its documentation is hereby granted, provided that both the copyright
40 * notice and this permission notice appear in all copies of the
41 * software, derivative works or modified versions, and any portions
42 * thereof, and that both notices appear in supporting documentation.
43 *
44 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47 *
48 * Carnegie Mellon requests users of this software to return to
49 *
50 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
51 * School of Computer Science
52 * Carnegie Mellon University
53 * Pittsburgh PA 15213-3890
54 *
55 * any improvements or extensions that they make and grant Carnegie the
56 * rights to redistribute these changes.
57 */
58
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61
62 #include "opt_vm.h"
63 #include "opt_kstack_pages.h"
64 #include "opt_kstack_max_pages.h"
65
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/limits.h>
69 #include <sys/lock.h>
70 #include <sys/mutex.h>
71 #include <sys/proc.h>
72 #include <sys/resourcevar.h>
73 #include <sys/sched.h>
74 #include <sys/sf_buf.h>
75 #include <sys/shm.h>
76 #include <sys/vmmeter.h>
77 #include <sys/sx.h>
78 #include <sys/sysctl.h>
79
80 #include <sys/kernel.h>
81 #include <sys/ktr.h>
82 #include <sys/unistd.h>
83
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_pager.h>
94 #include <vm/swap_pager.h>
95
96 extern int maxslp;
97
98 /*
99 * System initialization
100 *
101 * Note: proc0 from proc.h
102 */
103 static void vm_init_limits(void *);
104 SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
105
106 /*
107 * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
108 *
109 * Note: run scheduling should be divorced from the vm system.
110 */
111 static void scheduler(void *);
112 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL)
113
114 #ifndef NO_SWAPPING
115 static void swapout(struct proc *);
116 #endif
117
118
119 static volatile int proc0_rescan;
120
121
122 /*
123 * MPSAFE
124 *
125 * WARNING! This code calls vm_map_check_protection() which only checks
126 * the associated vm_map_entry range. It does not determine whether the
127 * contents of the memory is actually readable or writable. In most cases
128 * just checking the vm_map_entry is sufficient within the kernel's address
129 * space.
130 */
131 int
132 kernacc(addr, len, rw)
133 void *addr;
134 int len, rw;
135 {
136 boolean_t rv;
137 vm_offset_t saddr, eaddr;
138 vm_prot_t prot;
139
140 KASSERT((rw & ~VM_PROT_ALL) == 0,
141 ("illegal ``rw'' argument to kernacc (%x)\n", rw));
142
143 if ((vm_offset_t)addr + len > kernel_map->max_offset ||
144 (vm_offset_t)addr + len < (vm_offset_t)addr)
145 return (FALSE);
146
147 prot = rw;
148 saddr = trunc_page((vm_offset_t)addr);
149 eaddr = round_page((vm_offset_t)addr + len);
150 vm_map_lock_read(kernel_map);
151 rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
152 vm_map_unlock_read(kernel_map);
153 return (rv == TRUE);
154 }
155
156 /*
157 * MPSAFE
158 *
159 * WARNING! This code calls vm_map_check_protection() which only checks
160 * the associated vm_map_entry range. It does not determine whether the
161 * contents of the memory is actually readable or writable. vmapbuf(),
162 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
163 * used in conjuction with this call.
164 */
165 int
166 useracc(addr, len, rw)
167 void *addr;
168 int len, rw;
169 {
170 boolean_t rv;
171 vm_prot_t prot;
172 vm_map_t map;
173
174 KASSERT((rw & ~VM_PROT_ALL) == 0,
175 ("illegal ``rw'' argument to useracc (%x)\n", rw));
176 prot = rw;
177 map = &curproc->p_vmspace->vm_map;
178 if ((vm_offset_t)addr + len > vm_map_max(map) ||
179 (vm_offset_t)addr + len < (vm_offset_t)addr) {
180 return (FALSE);
181 }
182 vm_map_lock_read(map);
183 rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
184 round_page((vm_offset_t)addr + len), prot);
185 vm_map_unlock_read(map);
186 return (rv == TRUE);
187 }
188
189 int
190 vslock(void *addr, size_t len)
191 {
192 vm_offset_t end, last, start;
193 vm_size_t npages;
194 int error;
195
196 last = (vm_offset_t)addr + len;
197 start = trunc_page((vm_offset_t)addr);
198 end = round_page(last);
199 if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
200 return (EINVAL);
201 npages = atop(end - start);
202 if (npages > vm_page_max_wired)
203 return (ENOMEM);
204 PROC_LOCK(curproc);
205 if (ptoa(npages +
206 pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))) >
207 lim_cur(curproc, RLIMIT_MEMLOCK)) {
208 PROC_UNLOCK(curproc);
209 return (ENOMEM);
210 }
211 PROC_UNLOCK(curproc);
212 #if 0
213 /*
214 * XXX - not yet
215 *
216 * The limit for transient usage of wired pages should be
217 * larger than for "permanent" wired pages (mlock()).
218 *
219 * Also, the sysctl code, which is the only present user
220 * of vslock(), does a hard loop on EAGAIN.
221 */
222 if (npages + cnt.v_wire_count > vm_page_max_wired)
223 return (EAGAIN);
224 #endif
225 error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
226 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
227 /*
228 * Return EFAULT on error to match copy{in,out}() behaviour
229 * rather than returning ENOMEM like mlock() would.
230 */
231 return (error == KERN_SUCCESS ? 0 : EFAULT);
232 }
233
234 void
235 vsunlock(void *addr, size_t len)
236 {
237
238 /* Rely on the parameter sanity checks performed by vslock(). */
239 (void)vm_map_unwire(&curproc->p_vmspace->vm_map,
240 trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
241 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
242 }
243
244 /*
245 * Pin the page contained within the given object at the given offset. If the
246 * page is not resident, allocate and load it using the given object's pager.
247 * Return the pinned page if successful; otherwise, return NULL.
248 */
249 static vm_page_t
250 vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
251 {
252 vm_page_t m, ma[1];
253 vm_pindex_t pindex;
254 int rv;
255
256 VM_OBJECT_LOCK(object);
257 pindex = OFF_TO_IDX(offset);
258 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
259 if ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
260 ma[0] = m;
261 rv = vm_pager_get_pages(object, ma, 1, 0);
262 m = vm_page_lookup(object, pindex);
263 if (m == NULL)
264 goto out;
265 if (m->valid == 0 || rv != VM_PAGER_OK) {
266 vm_page_lock_queues();
267 vm_page_free(m);
268 vm_page_unlock_queues();
269 m = NULL;
270 goto out;
271 }
272 }
273 vm_page_lock_queues();
274 vm_page_hold(m);
275 vm_page_wakeup(m);
276 vm_page_unlock_queues();
277 out:
278 VM_OBJECT_UNLOCK(object);
279 return (m);
280 }
281
282 /*
283 * Return a CPU private mapping to the page at the given offset within the
284 * given object. The page is pinned before it is mapped.
285 */
286 struct sf_buf *
287 vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
288 {
289 vm_page_t m;
290
291 m = vm_imgact_hold_page(object, offset);
292 if (m == NULL)
293 return (NULL);
294 sched_pin();
295 return (sf_buf_alloc(m, SFB_CPUPRIVATE));
296 }
297
298 /*
299 * Destroy the given CPU private mapping and unpin the page that it mapped.
300 */
301 void
302 vm_imgact_unmap_page(struct sf_buf *sf)
303 {
304 vm_page_t m;
305
306 m = sf_buf_page(sf);
307 sf_buf_free(sf);
308 sched_unpin();
309 vm_page_lock_queues();
310 vm_page_unhold(m);
311 vm_page_unlock_queues();
312 }
313
314 #ifndef KSTACK_MAX_PAGES
315 #define KSTACK_MAX_PAGES 32
316 #endif
317
318 /*
319 * Create the kernel stack (including pcb for i386) for a new thread.
320 * This routine directly affects the fork perf for a process and
321 * create performance for a thread.
322 */
323 void
324 vm_thread_new(struct thread *td, int pages)
325 {
326 vm_object_t ksobj;
327 vm_offset_t ks;
328 vm_page_t m, ma[KSTACK_MAX_PAGES];
329 int i;
330
331 /* Bounds check */
332 if (pages <= 1)
333 pages = KSTACK_PAGES;
334 else if (pages > KSTACK_MAX_PAGES)
335 pages = KSTACK_MAX_PAGES;
336 /*
337 * Allocate an object for the kstack.
338 */
339 ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
340 td->td_kstack_obj = ksobj;
341 /*
342 * Get a kernel virtual address for this thread's kstack.
343 */
344 ks = kmem_alloc_nofault(kernel_map,
345 (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
346 if (ks == 0)
347 panic("vm_thread_new: kstack allocation failed");
348 if (KSTACK_GUARD_PAGES != 0) {
349 pmap_qremove(ks, KSTACK_GUARD_PAGES);
350 ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
351 }
352 td->td_kstack = ks;
353 /*
354 * Knowing the number of pages allocated is useful when you
355 * want to deallocate them.
356 */
357 td->td_kstack_pages = pages;
358 /*
359 * For the length of the stack, link in a real page of ram for each
360 * page of stack.
361 */
362 VM_OBJECT_LOCK(ksobj);
363 for (i = 0; i < pages; i++) {
364 /*
365 * Get a kernel stack page.
366 */
367 m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
368 VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
369 ma[i] = m;
370 m->valid = VM_PAGE_BITS_ALL;
371 }
372 VM_OBJECT_UNLOCK(ksobj);
373 pmap_qenter(ks, ma, pages);
374 }
375
376 /*
377 * Dispose of a thread's kernel stack.
378 */
379 void
380 vm_thread_dispose(struct thread *td)
381 {
382 vm_object_t ksobj;
383 vm_offset_t ks;
384 vm_page_t m;
385 int i, pages;
386
387 pages = td->td_kstack_pages;
388 ksobj = td->td_kstack_obj;
389 ks = td->td_kstack;
390 pmap_qremove(ks, pages);
391 VM_OBJECT_LOCK(ksobj);
392 for (i = 0; i < pages; i++) {
393 m = vm_page_lookup(ksobj, i);
394 if (m == NULL)
395 panic("vm_thread_dispose: kstack already missing?");
396 vm_page_lock_queues();
397 vm_page_unwire(m, 0);
398 vm_page_free(m);
399 vm_page_unlock_queues();
400 }
401 VM_OBJECT_UNLOCK(ksobj);
402 vm_object_deallocate(ksobj);
403 kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
404 (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
405 }
406
407 /*
408 * Allow a thread's kernel stack to be paged out.
409 */
410 void
411 vm_thread_swapout(struct thread *td)
412 {
413 vm_object_t ksobj;
414 vm_page_t m;
415 int i, pages;
416
417 cpu_thread_swapout(td);
418 pages = td->td_kstack_pages;
419 ksobj = td->td_kstack_obj;
420 pmap_qremove(td->td_kstack, pages);
421 VM_OBJECT_LOCK(ksobj);
422 for (i = 0; i < pages; i++) {
423 m = vm_page_lookup(ksobj, i);
424 if (m == NULL)
425 panic("vm_thread_swapout: kstack already missing?");
426 vm_page_lock_queues();
427 vm_page_dirty(m);
428 vm_page_unwire(m, 0);
429 vm_page_unlock_queues();
430 }
431 VM_OBJECT_UNLOCK(ksobj);
432 }
433
434 /*
435 * Bring the kernel stack for a specified thread back in.
436 */
437 void
438 vm_thread_swapin(struct thread *td)
439 {
440 vm_object_t ksobj;
441 vm_page_t m, ma[KSTACK_MAX_PAGES];
442 int i, pages, rv;
443
444 pages = td->td_kstack_pages;
445 ksobj = td->td_kstack_obj;
446 VM_OBJECT_LOCK(ksobj);
447 for (i = 0; i < pages; i++) {
448 m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
449 if (m->valid != VM_PAGE_BITS_ALL) {
450 rv = vm_pager_get_pages(ksobj, &m, 1, 0);
451 if (rv != VM_PAGER_OK)
452 panic("vm_thread_swapin: cannot get kstack for proc: %d", td->td_proc->p_pid);
453 m = vm_page_lookup(ksobj, i);
454 m->valid = VM_PAGE_BITS_ALL;
455 }
456 ma[i] = m;
457 vm_page_lock_queues();
458 vm_page_wire(m);
459 vm_page_wakeup(m);
460 vm_page_unlock_queues();
461 }
462 VM_OBJECT_UNLOCK(ksobj);
463 pmap_qenter(td->td_kstack, ma, pages);
464 cpu_thread_swapin(td);
465 }
466
467 /*
468 * Set up a variable-sized alternate kstack.
469 */
470 void
471 vm_thread_new_altkstack(struct thread *td, int pages)
472 {
473
474 td->td_altkstack = td->td_kstack;
475 td->td_altkstack_obj = td->td_kstack_obj;
476 td->td_altkstack_pages = td->td_kstack_pages;
477
478 vm_thread_new(td, pages);
479 }
480
481 /*
482 * Restore the original kstack.
483 */
484 void
485 vm_thread_dispose_altkstack(struct thread *td)
486 {
487
488 vm_thread_dispose(td);
489
490 td->td_kstack = td->td_altkstack;
491 td->td_kstack_obj = td->td_altkstack_obj;
492 td->td_kstack_pages = td->td_altkstack_pages;
493 td->td_altkstack = 0;
494 td->td_altkstack_obj = NULL;
495 td->td_altkstack_pages = 0;
496 }
497
498 /*
499 * Implement fork's actions on an address space.
500 * Here we arrange for the address space to be copied or referenced,
501 * allocate a user struct (pcb and kernel stack), then call the
502 * machine-dependent layer to fill those in and make the new process
503 * ready to run. The new process is set up so that it returns directly
504 * to user mode to avoid stack copying and relocation problems.
505 */
506 void
507 vm_forkproc(td, p2, td2, flags)
508 struct thread *td;
509 struct proc *p2;
510 struct thread *td2;
511 int flags;
512 {
513 struct proc *p1 = td->td_proc;
514
515 if ((flags & RFPROC) == 0) {
516 /*
517 * Divorce the memory, if it is shared, essentially
518 * this changes shared memory amongst threads, into
519 * COW locally.
520 */
521 if ((flags & RFMEM) == 0) {
522 if (p1->p_vmspace->vm_refcnt > 1) {
523 vmspace_unshare(p1);
524 }
525 }
526 cpu_fork(td, p2, td2, flags);
527 return;
528 }
529
530 if (flags & RFMEM) {
531 p2->p_vmspace = p1->p_vmspace;
532 atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
533 }
534
535 while (vm_page_count_severe()) {
536 VM_WAIT;
537 }
538
539 if ((flags & RFMEM) == 0) {
540 p2->p_vmspace = vmspace_fork(p1->p_vmspace);
541 if (p1->p_vmspace->vm_shm)
542 shmfork(p1, p2);
543 }
544
545 /*
546 * cpu_fork will copy and update the pcb, set up the kernel stack,
547 * and make the child ready to run.
548 */
549 cpu_fork(td, p2, td2, flags);
550 }
551
552 /*
553 * Called after process has been wait(2)'ed apon and is being reaped.
554 * The idea is to reclaim resources that we could not reclaim while
555 * the process was still executing.
556 */
557 void
558 vm_waitproc(p)
559 struct proc *p;
560 {
561
562 vmspace_exitfree(p); /* and clean-out the vmspace */
563 }
564
565 /*
566 * Set default limits for VM system.
567 * Called for proc 0, and then inherited by all others.
568 *
569 * XXX should probably act directly on proc0.
570 */
571 static void
572 vm_init_limits(udata)
573 void *udata;
574 {
575 struct proc *p = udata;
576 struct plimit *limp;
577 int rss_limit;
578
579 /*
580 * Set up the initial limits on process VM. Set the maximum resident
581 * set size to be half of (reasonably) available memory. Since this
582 * is a soft limit, it comes into effect only when the system is out
583 * of memory - half of main memory helps to favor smaller processes,
584 * and reduces thrashing of the object cache.
585 */
586 limp = p->p_limit;
587 limp->pl_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
588 limp->pl_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
589 limp->pl_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
590 limp->pl_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
591 /* limit the limit to no less than 2MB */
592 rss_limit = max(cnt.v_free_count, 512);
593 limp->pl_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
594 limp->pl_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
595 }
596
597 void
598 faultin(p)
599 struct proc *p;
600 {
601 #ifdef NO_SWAPPING
602
603 PROC_LOCK_ASSERT(p, MA_OWNED);
604 if ((p->p_sflag & PS_INMEM) == 0)
605 panic("faultin: proc swapped out with NO_SWAPPING!");
606 #else /* !NO_SWAPPING */
607 struct thread *td;
608
609 PROC_LOCK_ASSERT(p, MA_OWNED);
610 /*
611 * If another process is swapping in this process,
612 * just wait until it finishes.
613 */
614 if (p->p_sflag & PS_SWAPPINGIN)
615 msleep(&p->p_sflag, &p->p_mtx, PVM, "faultin", 0);
616 else if ((p->p_sflag & PS_INMEM) == 0) {
617 /*
618 * Don't let another thread swap process p out while we are
619 * busy swapping it in.
620 */
621 ++p->p_lock;
622 mtx_lock_spin(&sched_lock);
623 p->p_sflag |= PS_SWAPPINGIN;
624 mtx_unlock_spin(&sched_lock);
625 PROC_UNLOCK(p);
626
627 FOREACH_THREAD_IN_PROC(p, td)
628 vm_thread_swapin(td);
629
630 PROC_LOCK(p);
631 mtx_lock_spin(&sched_lock);
632 p->p_sflag &= ~PS_SWAPPINGIN;
633 p->p_sflag |= PS_INMEM;
634 FOREACH_THREAD_IN_PROC(p, td) {
635 TD_CLR_SWAPPED(td);
636 if (TD_CAN_RUN(td))
637 setrunnable(td);
638 }
639 mtx_unlock_spin(&sched_lock);
640
641 wakeup(&p->p_sflag);
642
643 /* Allow other threads to swap p out now. */
644 --p->p_lock;
645 }
646 #endif /* NO_SWAPPING */
647 }
648
649 /*
650 * This swapin algorithm attempts to swap-in processes only if there
651 * is enough space for them. Of course, if a process waits for a long
652 * time, it will be swapped in anyway.
653 *
654 * XXXKSE - process with the thread with highest priority counts..
655 *
656 * Giant is held on entry.
657 */
658 /* ARGSUSED*/
659 static void
660 scheduler(dummy)
661 void *dummy;
662 {
663 struct proc *p;
664 struct thread *td;
665 int pri;
666 struct proc *pp;
667 int ppri;
668
669 mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
670 mtx_unlock(&Giant);
671
672 loop:
673 if (vm_page_count_min()) {
674 VM_WAIT;
675 mtx_lock_spin(&sched_lock);
676 proc0_rescan = 0;
677 mtx_unlock_spin(&sched_lock);
678 goto loop;
679 }
680
681 pp = NULL;
682 ppri = INT_MIN;
683 sx_slock(&allproc_lock);
684 FOREACH_PROC_IN_SYSTEM(p) {
685 struct ksegrp *kg;
686 if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
687 continue;
688 }
689 mtx_lock_spin(&sched_lock);
690 FOREACH_THREAD_IN_PROC(p, td) {
691 /*
692 * An otherwise runnable thread of a process
693 * swapped out has only the TDI_SWAPPED bit set.
694 *
695 */
696 if (td->td_inhibitors == TDI_SWAPPED) {
697 kg = td->td_ksegrp;
698 pri = p->p_swtime + kg->kg_slptime;
699 if ((p->p_sflag & PS_SWAPINREQ) == 0) {
700 pri -= p->p_nice * 8;
701 }
702
703 /*
704 * if this ksegrp is higher priority
705 * and there is enough space, then select
706 * this process instead of the previous
707 * selection.
708 */
709 if (pri > ppri) {
710 pp = p;
711 ppri = pri;
712 }
713 }
714 }
715 mtx_unlock_spin(&sched_lock);
716 }
717 sx_sunlock(&allproc_lock);
718
719 /*
720 * Nothing to do, back to sleep.
721 */
722 if ((p = pp) == NULL) {
723 mtx_lock_spin(&sched_lock);
724 if (!proc0_rescan) {
725 TD_SET_IWAIT(&thread0);
726 mi_switch(SW_VOL, NULL);
727 }
728 proc0_rescan = 0;
729 mtx_unlock_spin(&sched_lock);
730 goto loop;
731 }
732 PROC_LOCK(p);
733
734 /*
735 * Another process may be bringing or may have already
736 * brought this process in while we traverse all threads.
737 * Or, this process may even be being swapped out again.
738 */
739 if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
740 PROC_UNLOCK(p);
741 mtx_lock_spin(&sched_lock);
742 proc0_rescan = 0;
743 mtx_unlock_spin(&sched_lock);
744 goto loop;
745 }
746
747 mtx_lock_spin(&sched_lock);
748 p->p_sflag &= ~PS_SWAPINREQ;
749 mtx_unlock_spin(&sched_lock);
750
751 /*
752 * We would like to bring someone in. (only if there is space).
753 * [What checks the space? ]
754 */
755 faultin(p);
756 PROC_UNLOCK(p);
757 mtx_lock_spin(&sched_lock);
758 p->p_swtime = 0;
759 proc0_rescan = 0;
760 mtx_unlock_spin(&sched_lock);
761 goto loop;
762 }
763
764 void kick_proc0(void)
765 {
766 struct thread *td = &thread0;
767
768
769 if (TD_AWAITING_INTR(td)) {
770 CTR2(KTR_INTR, "%s: setrunqueue %d", __func__, 0);
771 TD_CLR_IWAIT(td);
772 setrunqueue(td, SRQ_INTR);
773 } else {
774 proc0_rescan = 1;
775 CTR2(KTR_INTR, "%s: state %d",
776 __func__, td->td_state);
777 }
778
779 }
780
781
782 #ifndef NO_SWAPPING
783
784 /*
785 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
786 */
787 static int swap_idle_threshold1 = 2;
788 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
789 &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
790
791 /*
792 * Swap_idle_threshold2 is the time that a process can be idle before
793 * it will be swapped out, if idle swapping is enabled.
794 */
795 static int swap_idle_threshold2 = 10;
796 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
797 &swap_idle_threshold2, 0, "Time before a process will be swapped out");
798
799 /*
800 * Swapout is driven by the pageout daemon. Very simple, we find eligible
801 * procs and unwire their u-areas. We try to always "swap" at least one
802 * process in case we need the room for a swapin.
803 * If any procs have been sleeping/stopped for at least maxslp seconds,
804 * they are swapped. Else, we swap the longest-sleeping or stopped process,
805 * if any, otherwise the longest-resident process.
806 */
807 void
808 swapout_procs(action)
809 int action;
810 {
811 struct proc *p;
812 struct thread *td;
813 struct ksegrp *kg;
814 int didswap = 0;
815
816 retry:
817 sx_slock(&allproc_lock);
818 FOREACH_PROC_IN_SYSTEM(p) {
819 struct vmspace *vm;
820 int minslptime = 100000;
821
822 /*
823 * Watch out for a process in
824 * creation. It may have no
825 * address space or lock yet.
826 */
827 mtx_lock_spin(&sched_lock);
828 if (p->p_state == PRS_NEW) {
829 mtx_unlock_spin(&sched_lock);
830 continue;
831 }
832 mtx_unlock_spin(&sched_lock);
833
834 /*
835 * An aio daemon switches its
836 * address space while running.
837 * Perform a quick check whether
838 * a process has P_SYSTEM.
839 */
840 if ((p->p_flag & P_SYSTEM) != 0)
841 continue;
842
843 /*
844 * Do not swapout a process that
845 * is waiting for VM data
846 * structures as there is a possible
847 * deadlock. Test this first as
848 * this may block.
849 *
850 * Lock the map until swapout
851 * finishes, or a thread of this
852 * process may attempt to alter
853 * the map.
854 */
855 vm = vmspace_acquire_ref(p);
856 if (vm == NULL)
857 continue;
858 if (!vm_map_trylock(&vm->vm_map))
859 goto nextproc1;
860
861 PROC_LOCK(p);
862 if (p->p_lock != 0 ||
863 (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
864 ) != 0) {
865 goto nextproc2;
866 }
867 /*
868 * only aiod changes vmspace, however it will be
869 * skipped because of the if statement above checking
870 * for P_SYSTEM
871 */
872 if ((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) != PS_INMEM)
873 goto nextproc2;
874
875 switch (p->p_state) {
876 default:
877 /* Don't swap out processes in any sort
878 * of 'special' state. */
879 break;
880
881 case PRS_NORMAL:
882 mtx_lock_spin(&sched_lock);
883 /*
884 * do not swapout a realtime process
885 * Check all the thread groups..
886 */
887 FOREACH_KSEGRP_IN_PROC(p, kg) {
888 if (PRI_IS_REALTIME(kg->kg_pri_class))
889 goto nextproc;
890
891 /*
892 * Guarantee swap_idle_threshold1
893 * time in memory.
894 */
895 if (kg->kg_slptime < swap_idle_threshold1)
896 goto nextproc;
897
898 /*
899 * Do not swapout a process if it is
900 * waiting on a critical event of some
901 * kind or there is a thread whose
902 * pageable memory may be accessed.
903 *
904 * This could be refined to support
905 * swapping out a thread.
906 */
907 FOREACH_THREAD_IN_GROUP(kg, td) {
908 if ((td->td_priority) < PSOCK ||
909 !thread_safetoswapout(td))
910 goto nextproc;
911 }
912 /*
913 * If the system is under memory stress,
914 * or if we are swapping
915 * idle processes >= swap_idle_threshold2,
916 * then swap the process out.
917 */
918 if (((action & VM_SWAP_NORMAL) == 0) &&
919 (((action & VM_SWAP_IDLE) == 0) ||
920 (kg->kg_slptime < swap_idle_threshold2)))
921 goto nextproc;
922
923 if (minslptime > kg->kg_slptime)
924 minslptime = kg->kg_slptime;
925 }
926
927 /*
928 * If the pageout daemon didn't free enough pages,
929 * or if this process is idle and the system is
930 * configured to swap proactively, swap it out.
931 */
932 if ((action & VM_SWAP_NORMAL) ||
933 ((action & VM_SWAP_IDLE) &&
934 (minslptime > swap_idle_threshold2))) {
935 swapout(p);
936 didswap++;
937 mtx_unlock_spin(&sched_lock);
938 PROC_UNLOCK(p);
939 vm_map_unlock(&vm->vm_map);
940 vmspace_free(vm);
941 sx_sunlock(&allproc_lock);
942 goto retry;
943 }
944 nextproc:
945 mtx_unlock_spin(&sched_lock);
946 }
947 nextproc2:
948 PROC_UNLOCK(p);
949 vm_map_unlock(&vm->vm_map);
950 nextproc1:
951 vmspace_free(vm);
952 continue;
953 }
954 sx_sunlock(&allproc_lock);
955 /*
956 * If we swapped something out, and another process needed memory,
957 * then wakeup the sched process.
958 */
959 if (didswap)
960 wakeup(&proc0);
961 }
962
963 static void
964 swapout(p)
965 struct proc *p;
966 {
967 struct thread *td;
968
969 PROC_LOCK_ASSERT(p, MA_OWNED);
970 mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
971 #if defined(SWAP_DEBUG)
972 printf("swapping out %d\n", p->p_pid);
973 #endif
974
975 /*
976 * The states of this process and its threads may have changed
977 * by now. Assuming that there is only one pageout daemon thread,
978 * this process should still be in memory.
979 */
980 KASSERT((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) == PS_INMEM,
981 ("swapout: lost a swapout race?"));
982
983 #if defined(INVARIANTS)
984 /*
985 * Make sure that all threads are safe to be swapped out.
986 *
987 * Alternatively, we could swap out only safe threads.
988 */
989 FOREACH_THREAD_IN_PROC(p, td) {
990 KASSERT(thread_safetoswapout(td),
991 ("swapout: there is a thread not safe for swapout"));
992 }
993 #endif /* INVARIANTS */
994
995 ++p->p_stats->p_ru.ru_nswap;
996 /*
997 * remember the process resident count
998 */
999 p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1000
1001 p->p_sflag &= ~PS_INMEM;
1002 p->p_sflag |= PS_SWAPPINGOUT;
1003 PROC_UNLOCK(p);
1004 FOREACH_THREAD_IN_PROC(p, td)
1005 TD_SET_SWAPPED(td);
1006 mtx_unlock_spin(&sched_lock);
1007
1008 FOREACH_THREAD_IN_PROC(p, td)
1009 vm_thread_swapout(td);
1010
1011 PROC_LOCK(p);
1012 mtx_lock_spin(&sched_lock);
1013 p->p_sflag &= ~PS_SWAPPINGOUT;
1014 p->p_swtime = 0;
1015 }
1016 #endif /* !NO_SWAPPING */
Cache object: 28518ccef34c9fc75ab5898b2ad34839
|