FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_glue.c
1 /*-
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * from: @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Permission to use, copy, modify and distribute this software and
39 * its documentation is hereby granted, provided that both the copyright
40 * notice and this permission notice appear in all copies of the
41 * software, derivative works or modified versions, and any portions
42 * thereof, and that both notices appear in supporting documentation.
43 *
44 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47 *
48 * Carnegie Mellon requests users of this software to return to
49 *
50 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
51 * School of Computer Science
52 * Carnegie Mellon University
53 * Pittsburgh PA 15213-3890
54 *
55 * any improvements or extensions that they make and grant Carnegie the
56 * rights to redistribute these changes.
57 */
58
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61
62 #include "opt_vm.h"
63 #include "opt_kstack_pages.h"
64 #include "opt_kstack_max_pages.h"
65
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/limits.h>
69 #include <sys/lock.h>
70 #include <sys/mutex.h>
71 #include <sys/proc.h>
72 #include <sys/resourcevar.h>
73 #include <sys/sched.h>
74 #include <sys/sf_buf.h>
75 #include <sys/shm.h>
76 #include <sys/vmmeter.h>
77 #include <sys/sx.h>
78 #include <sys/sysctl.h>
79
80 #include <sys/kernel.h>
81 #include <sys/ktr.h>
82 #include <sys/unistd.h>
83
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_pager.h>
94 #include <vm/swap_pager.h>
95
96 extern int maxslp;
97
98 /*
99 * System initialization
100 *
101 * Note: proc0 from proc.h
102 */
103 static void vm_init_limits(void *);
104 SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
105
106 /*
107 * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
108 *
109 * Note: run scheduling should be divorced from the vm system.
110 */
111 static void scheduler(void *);
112 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL)
113
114 #ifndef NO_SWAPPING
115 static int swapout(struct proc *);
116 static void swapclear(struct proc *);
117 #endif
118
119
120 static volatile int proc0_rescan;
121
122
123 /*
124 * MPSAFE
125 *
126 * WARNING! This code calls vm_map_check_protection() which only checks
127 * the associated vm_map_entry range. It does not determine whether the
128 * contents of the memory is actually readable or writable. In most cases
129 * just checking the vm_map_entry is sufficient within the kernel's address
130 * space.
131 */
132 int
133 kernacc(addr, len, rw)
134 void *addr;
135 int len, rw;
136 {
137 boolean_t rv;
138 vm_offset_t saddr, eaddr;
139 vm_prot_t prot;
140
141 KASSERT((rw & ~VM_PROT_ALL) == 0,
142 ("illegal ``rw'' argument to kernacc (%x)\n", rw));
143
144 if ((vm_offset_t)addr + len > kernel_map->max_offset ||
145 (vm_offset_t)addr + len < (vm_offset_t)addr)
146 return (FALSE);
147
148 prot = rw;
149 saddr = trunc_page((vm_offset_t)addr);
150 eaddr = round_page((vm_offset_t)addr + len);
151 vm_map_lock_read(kernel_map);
152 rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
153 vm_map_unlock_read(kernel_map);
154 return (rv == TRUE);
155 }
156
157 /*
158 * MPSAFE
159 *
160 * WARNING! This code calls vm_map_check_protection() which only checks
161 * the associated vm_map_entry range. It does not determine whether the
162 * contents of the memory is actually readable or writable. vmapbuf(),
163 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
164 * used in conjuction with this call.
165 */
166 int
167 useracc(addr, len, rw)
168 void *addr;
169 int len, rw;
170 {
171 boolean_t rv;
172 vm_prot_t prot;
173 vm_map_t map;
174
175 KASSERT((rw & ~VM_PROT_ALL) == 0,
176 ("illegal ``rw'' argument to useracc (%x)\n", rw));
177 prot = rw;
178 map = &curproc->p_vmspace->vm_map;
179 if ((vm_offset_t)addr + len > vm_map_max(map) ||
180 (vm_offset_t)addr + len < (vm_offset_t)addr) {
181 return (FALSE);
182 }
183 vm_map_lock_read(map);
184 rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
185 round_page((vm_offset_t)addr + len), prot);
186 vm_map_unlock_read(map);
187 return (rv == TRUE);
188 }
189
190 int
191 vslock(void *addr, size_t len)
192 {
193 vm_offset_t end, last, start;
194 vm_size_t npages;
195 int error;
196
197 last = (vm_offset_t)addr + len;
198 start = trunc_page((vm_offset_t)addr);
199 end = round_page(last);
200 if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
201 return (EINVAL);
202 npages = atop(end - start);
203 if (npages > vm_page_max_wired)
204 return (ENOMEM);
205 PROC_LOCK(curproc);
206 if (ptoa(npages +
207 pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))) >
208 lim_cur(curproc, RLIMIT_MEMLOCK)) {
209 PROC_UNLOCK(curproc);
210 return (ENOMEM);
211 }
212 PROC_UNLOCK(curproc);
213 #if 0
214 /*
215 * XXX - not yet
216 *
217 * The limit for transient usage of wired pages should be
218 * larger than for "permanent" wired pages (mlock()).
219 *
220 * Also, the sysctl code, which is the only present user
221 * of vslock(), does a hard loop on EAGAIN.
222 */
223 if (npages + cnt.v_wire_count > vm_page_max_wired)
224 return (EAGAIN);
225 #endif
226 error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
227 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
228 /*
229 * Return EFAULT on error to match copy{in,out}() behaviour
230 * rather than returning ENOMEM like mlock() would.
231 */
232 return (error == KERN_SUCCESS ? 0 : EFAULT);
233 }
234
235 void
236 vsunlock(void *addr, size_t len)
237 {
238
239 /* Rely on the parameter sanity checks performed by vslock(). */
240 (void)vm_map_unwire(&curproc->p_vmspace->vm_map,
241 trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
242 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
243 }
244
245 /*
246 * Pin the page contained within the given object at the given offset. If the
247 * page is not resident, allocate and load it using the given object's pager.
248 * Return the pinned page if successful; otherwise, return NULL.
249 */
250 static vm_page_t
251 vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
252 {
253 vm_page_t m, ma[1];
254 vm_pindex_t pindex;
255 int rv;
256
257 VM_OBJECT_LOCK(object);
258 pindex = OFF_TO_IDX(offset);
259 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
260 if ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
261 ma[0] = m;
262 rv = vm_pager_get_pages(object, ma, 1, 0);
263 m = vm_page_lookup(object, pindex);
264 if (m == NULL)
265 goto out;
266 if (m->valid == 0 || rv != VM_PAGER_OK) {
267 vm_page_lock_queues();
268 vm_page_free(m);
269 vm_page_unlock_queues();
270 m = NULL;
271 goto out;
272 }
273 }
274 vm_page_lock_queues();
275 vm_page_hold(m);
276 vm_page_unlock_queues();
277 vm_page_wakeup(m);
278 out:
279 VM_OBJECT_UNLOCK(object);
280 return (m);
281 }
282
283 /*
284 * Return a CPU private mapping to the page at the given offset within the
285 * given object. The page is pinned before it is mapped.
286 */
287 struct sf_buf *
288 vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
289 {
290 vm_page_t m;
291
292 m = vm_imgact_hold_page(object, offset);
293 if (m == NULL)
294 return (NULL);
295 sched_pin();
296 return (sf_buf_alloc(m, SFB_CPUPRIVATE));
297 }
298
299 /*
300 * Destroy the given CPU private mapping and unpin the page that it mapped.
301 */
302 void
303 vm_imgact_unmap_page(struct sf_buf *sf)
304 {
305 vm_page_t m;
306
307 m = sf_buf_page(sf);
308 sf_buf_free(sf);
309 sched_unpin();
310 vm_page_lock_queues();
311 vm_page_unhold(m);
312 vm_page_unlock_queues();
313 }
314
315 #ifndef KSTACK_MAX_PAGES
316 #define KSTACK_MAX_PAGES 32
317 #endif
318
319 /*
320 * Create the kernel stack (including pcb for i386) for a new thread.
321 * This routine directly affects the fork perf for a process and
322 * create performance for a thread.
323 */
324 int
325 vm_thread_new(struct thread *td, int pages)
326 {
327 vm_object_t ksobj;
328 vm_offset_t ks;
329 vm_page_t m, ma[KSTACK_MAX_PAGES];
330 int i;
331
332 /* Bounds check */
333 if (pages <= 1)
334 pages = KSTACK_PAGES;
335 else if (pages > KSTACK_MAX_PAGES)
336 pages = KSTACK_MAX_PAGES;
337 /*
338 * Allocate an object for the kstack.
339 */
340 ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
341 /*
342 * Get a kernel virtual address for this thread's kstack.
343 */
344 ks = kmem_alloc_nofault(kernel_map,
345 (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
346 if (ks == 0) {
347 printf("vm_thread_new: kstack allocation failed\n");
348 vm_object_deallocate(ksobj);
349 return (0);
350 }
351
352 if (KSTACK_GUARD_PAGES != 0) {
353 pmap_qremove(ks, KSTACK_GUARD_PAGES);
354 ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
355 }
356 td->td_kstack_obj = ksobj;
357 td->td_kstack = ks;
358 /*
359 * Knowing the number of pages allocated is useful when you
360 * want to deallocate them.
361 */
362 td->td_kstack_pages = pages;
363 /*
364 * For the length of the stack, link in a real page of ram for each
365 * page of stack.
366 */
367 VM_OBJECT_LOCK(ksobj);
368 for (i = 0; i < pages; i++) {
369 /*
370 * Get a kernel stack page.
371 */
372 m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
373 VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
374 ma[i] = m;
375 m->valid = VM_PAGE_BITS_ALL;
376 }
377 VM_OBJECT_UNLOCK(ksobj);
378 pmap_qenter(ks, ma, pages);
379 return (1);
380 }
381
382 /*
383 * Dispose of a thread's kernel stack.
384 */
385 void
386 vm_thread_dispose(struct thread *td)
387 {
388 vm_object_t ksobj;
389 vm_offset_t ks;
390 vm_page_t m;
391 int i, pages;
392
393 pages = td->td_kstack_pages;
394 ksobj = td->td_kstack_obj;
395 ks = td->td_kstack;
396 pmap_qremove(ks, pages);
397 VM_OBJECT_LOCK(ksobj);
398 for (i = 0; i < pages; i++) {
399 m = vm_page_lookup(ksobj, i);
400 if (m == NULL)
401 panic("vm_thread_dispose: kstack already missing?");
402 vm_page_lock_queues();
403 vm_page_unwire(m, 0);
404 vm_page_free(m);
405 vm_page_unlock_queues();
406 }
407 VM_OBJECT_UNLOCK(ksobj);
408 vm_object_deallocate(ksobj);
409 kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
410 (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
411 td->td_kstack = 0;
412 }
413
414 /*
415 * Allow a thread's kernel stack to be paged out.
416 */
417 void
418 vm_thread_swapout(struct thread *td)
419 {
420 vm_object_t ksobj;
421 vm_page_t m;
422 int i, pages;
423
424 cpu_thread_swapout(td);
425 pages = td->td_kstack_pages;
426 ksobj = td->td_kstack_obj;
427 pmap_qremove(td->td_kstack, pages);
428 VM_OBJECT_LOCK(ksobj);
429 for (i = 0; i < pages; i++) {
430 m = vm_page_lookup(ksobj, i);
431 if (m == NULL)
432 panic("vm_thread_swapout: kstack already missing?");
433 vm_page_lock_queues();
434 vm_page_dirty(m);
435 vm_page_unwire(m, 0);
436 vm_page_unlock_queues();
437 }
438 VM_OBJECT_UNLOCK(ksobj);
439 }
440
441 /*
442 * Bring the kernel stack for a specified thread back in.
443 */
444 void
445 vm_thread_swapin(struct thread *td)
446 {
447 vm_object_t ksobj;
448 vm_page_t m, ma[KSTACK_MAX_PAGES];
449 int i, pages, rv;
450
451 pages = td->td_kstack_pages;
452 ksobj = td->td_kstack_obj;
453 VM_OBJECT_LOCK(ksobj);
454 for (i = 0; i < pages; i++) {
455 m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
456 if (m->valid != VM_PAGE_BITS_ALL) {
457 rv = vm_pager_get_pages(ksobj, &m, 1, 0);
458 if (rv != VM_PAGER_OK)
459 panic("vm_thread_swapin: cannot get kstack for proc: %d", td->td_proc->p_pid);
460 m = vm_page_lookup(ksobj, i);
461 m->valid = VM_PAGE_BITS_ALL;
462 }
463 ma[i] = m;
464 vm_page_lock_queues();
465 vm_page_wire(m);
466 vm_page_unlock_queues();
467 vm_page_wakeup(m);
468 }
469 VM_OBJECT_UNLOCK(ksobj);
470 pmap_qenter(td->td_kstack, ma, pages);
471 cpu_thread_swapin(td);
472 }
473
474 /*
475 * Set up a variable-sized alternate kstack.
476 */
477 int
478 vm_thread_new_altkstack(struct thread *td, int pages)
479 {
480
481 td->td_altkstack = td->td_kstack;
482 td->td_altkstack_obj = td->td_kstack_obj;
483 td->td_altkstack_pages = td->td_kstack_pages;
484
485 return (vm_thread_new(td, pages));
486 }
487
488 /*
489 * Restore the original kstack.
490 */
491 void
492 vm_thread_dispose_altkstack(struct thread *td)
493 {
494
495 vm_thread_dispose(td);
496
497 td->td_kstack = td->td_altkstack;
498 td->td_kstack_obj = td->td_altkstack_obj;
499 td->td_kstack_pages = td->td_altkstack_pages;
500 td->td_altkstack = 0;
501 td->td_altkstack_obj = NULL;
502 td->td_altkstack_pages = 0;
503 }
504
505 /*
506 * Implement fork's actions on an address space.
507 * Here we arrange for the address space to be copied or referenced,
508 * allocate a user struct (pcb and kernel stack), then call the
509 * machine-dependent layer to fill those in and make the new process
510 * ready to run. The new process is set up so that it returns directly
511 * to user mode to avoid stack copying and relocation problems.
512 */
513 int
514 vm_forkproc(td, p2, td2, vm2, flags)
515 struct thread *td;
516 struct proc *p2;
517 struct thread *td2;
518 struct vmspace *vm2;
519 int flags;
520 {
521 struct proc *p1 = td->td_proc;
522 int error;
523
524 if ((flags & RFPROC) == 0) {
525 /*
526 * Divorce the memory, if it is shared, essentially
527 * this changes shared memory amongst threads, into
528 * COW locally.
529 */
530 if ((flags & RFMEM) == 0) {
531 if (p1->p_vmspace->vm_refcnt > 1) {
532 error = vmspace_unshare(p1);
533 if (error)
534 return (error);
535 }
536 }
537 cpu_fork(td, p2, td2, flags);
538 return (0);
539 }
540
541 if (flags & RFMEM) {
542 p2->p_vmspace = p1->p_vmspace;
543 atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
544 }
545
546 while (vm_page_count_severe()) {
547 VM_WAIT;
548 }
549
550 if ((flags & RFMEM) == 0) {
551 p2->p_vmspace = vm2;
552 if (p1->p_vmspace->vm_shm)
553 shmfork(p1, p2);
554 }
555
556 /*
557 * cpu_fork will copy and update the pcb, set up the kernel stack,
558 * and make the child ready to run.
559 */
560 cpu_fork(td, p2, td2, flags);
561 return (0);
562 }
563
564 /*
565 * Called after process has been wait(2)'ed apon and is being reaped.
566 * The idea is to reclaim resources that we could not reclaim while
567 * the process was still executing.
568 */
569 void
570 vm_waitproc(p)
571 struct proc *p;
572 {
573
574 vmspace_exitfree(p); /* and clean-out the vmspace */
575 }
576
577 /*
578 * Set default limits for VM system.
579 * Called for proc 0, and then inherited by all others.
580 *
581 * XXX should probably act directly on proc0.
582 */
583 static void
584 vm_init_limits(udata)
585 void *udata;
586 {
587 struct proc *p = udata;
588 struct plimit *limp;
589 int rss_limit;
590
591 /*
592 * Set up the initial limits on process VM. Set the maximum resident
593 * set size to be half of (reasonably) available memory. Since this
594 * is a soft limit, it comes into effect only when the system is out
595 * of memory - half of main memory helps to favor smaller processes,
596 * and reduces thrashing of the object cache.
597 */
598 limp = p->p_limit;
599 limp->pl_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
600 limp->pl_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
601 limp->pl_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
602 limp->pl_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
603 /* limit the limit to no less than 2MB */
604 rss_limit = max(cnt.v_free_count, 512);
605 limp->pl_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
606 limp->pl_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
607 }
608
609 void
610 faultin(p)
611 struct proc *p;
612 {
613 #ifdef NO_SWAPPING
614
615 PROC_LOCK_ASSERT(p, MA_OWNED);
616 if ((p->p_flag & P_INMEM) == 0)
617 panic("faultin: proc swapped out with NO_SWAPPING!");
618 #else /* !NO_SWAPPING */
619 struct thread *td;
620
621 PROC_LOCK_ASSERT(p, MA_OWNED);
622 /*
623 * If another process is swapping in this process,
624 * just wait until it finishes.
625 */
626 if (p->p_flag & P_SWAPPINGIN) {
627 while (p->p_flag & P_SWAPPINGIN)
628 msleep(&p->p_flag, &p->p_mtx, PVM, "faultin", 0);
629 return;
630 }
631 if ((p->p_flag & P_INMEM) == 0) {
632 /*
633 * Don't let another thread swap process p out while we are
634 * busy swapping it in.
635 */
636 ++p->p_lock;
637 p->p_flag |= P_SWAPPINGIN;
638 PROC_UNLOCK(p);
639
640 /*
641 * We hold no lock here because the list of threads
642 * can not change while all threads in the process are
643 * swapped out.
644 */
645 FOREACH_THREAD_IN_PROC(p, td)
646 vm_thread_swapin(td);
647 PROC_LOCK(p);
648 PROC_SLOCK(p);
649 swapclear(p);
650 p->p_swtick = ticks;
651 PROC_SUNLOCK(p);
652
653 wakeup(&p->p_flag);
654
655 /* Allow other threads to swap p out now. */
656 --p->p_lock;
657 }
658 #endif /* NO_SWAPPING */
659 }
660
661 /*
662 * This swapin algorithm attempts to swap-in processes only if there
663 * is enough space for them. Of course, if a process waits for a long
664 * time, it will be swapped in anyway.
665 *
666 * XXXKSE - process with the thread with highest priority counts..
667 *
668 * Giant is held on entry.
669 */
670 /* ARGSUSED*/
671 static void
672 scheduler(dummy)
673 void *dummy;
674 {
675 struct proc *p;
676 struct thread *td;
677 struct proc *pp;
678 int slptime;
679 int swtime;
680 int ppri;
681 int pri;
682
683 mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
684 mtx_unlock(&Giant);
685
686 loop:
687 if (vm_page_count_min()) {
688 VM_WAIT;
689 thread_lock(&thread0);
690 proc0_rescan = 0;
691 thread_unlock(&thread0);
692 goto loop;
693 }
694
695 pp = NULL;
696 ppri = INT_MIN;
697 sx_slock(&allproc_lock);
698 FOREACH_PROC_IN_SYSTEM(p) {
699 PROC_LOCK(p);
700 if (p->p_flag & (P_SWAPPINGOUT | P_SWAPPINGIN | P_INMEM)) {
701 PROC_UNLOCK(p);
702 continue;
703 }
704 swtime = (ticks - p->p_swtick) / hz;
705 PROC_SLOCK(p);
706 FOREACH_THREAD_IN_PROC(p, td) {
707 /*
708 * An otherwise runnable thread of a process
709 * swapped out has only the TDI_SWAPPED bit set.
710 *
711 */
712 thread_lock(td);
713 if (td->td_inhibitors == TDI_SWAPPED) {
714 slptime = (ticks - td->td_slptick) / hz;
715 pri = swtime + slptime;
716 if ((td->td_flags & TDF_SWAPINREQ) == 0)
717 pri -= p->p_nice * 8;
718 /*
719 * if this thread is higher priority
720 * and there is enough space, then select
721 * this process instead of the previous
722 * selection.
723 */
724 if (pri > ppri) {
725 pp = p;
726 ppri = pri;
727 }
728 }
729 thread_unlock(td);
730 }
731 PROC_SUNLOCK(p);
732 PROC_UNLOCK(p);
733 }
734 sx_sunlock(&allproc_lock);
735
736 /*
737 * Nothing to do, back to sleep.
738 */
739 if ((p = pp) == NULL) {
740 thread_lock(&thread0);
741 if (!proc0_rescan) {
742 TD_SET_IWAIT(&thread0);
743 mi_switch(SW_VOL, NULL);
744 }
745 proc0_rescan = 0;
746 thread_unlock(&thread0);
747 goto loop;
748 }
749 PROC_LOCK(p);
750
751 /*
752 * Another process may be bringing or may have already
753 * brought this process in while we traverse all threads.
754 * Or, this process may even be being swapped out again.
755 */
756 if (p->p_flag & (P_INMEM | P_SWAPPINGOUT | P_SWAPPINGIN)) {
757 PROC_UNLOCK(p);
758 thread_lock(&thread0);
759 proc0_rescan = 0;
760 thread_unlock(&thread0);
761 goto loop;
762 }
763
764 /*
765 * We would like to bring someone in. (only if there is space).
766 * [What checks the space? ]
767 */
768 faultin(p);
769 PROC_UNLOCK(p);
770 thread_lock(&thread0);
771 proc0_rescan = 0;
772 thread_unlock(&thread0);
773 goto loop;
774 }
775
776 void kick_proc0(void)
777 {
778 struct thread *td = &thread0;
779
780 /* XXX This will probably cause a LOR in some cases */
781 thread_lock(td);
782 if (TD_AWAITING_INTR(td)) {
783 CTR2(KTR_INTR, "%s: sched_add %d", __func__, 0);
784 TD_CLR_IWAIT(td);
785 sched_add(td, SRQ_INTR);
786 } else {
787 proc0_rescan = 1;
788 CTR2(KTR_INTR, "%s: state %d",
789 __func__, td->td_state);
790 }
791 thread_unlock(td);
792
793 }
794
795
796 #ifndef NO_SWAPPING
797
798 /*
799 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
800 */
801 static int swap_idle_threshold1 = 2;
802 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
803 &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
804
805 /*
806 * Swap_idle_threshold2 is the time that a process can be idle before
807 * it will be swapped out, if idle swapping is enabled.
808 */
809 static int swap_idle_threshold2 = 10;
810 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
811 &swap_idle_threshold2, 0, "Time before a process will be swapped out");
812
813 /*
814 * Swapout is driven by the pageout daemon. Very simple, we find eligible
815 * procs and swap out their stacks. We try to always "swap" at least one
816 * process in case we need the room for a swapin.
817 * If any procs have been sleeping/stopped for at least maxslp seconds,
818 * they are swapped. Else, we swap the longest-sleeping or stopped process,
819 * if any, otherwise the longest-resident process.
820 */
821 void
822 swapout_procs(action)
823 int action;
824 {
825 struct proc *p;
826 struct thread *td;
827 int didswap = 0;
828
829 retry:
830 sx_slock(&allproc_lock);
831 FOREACH_PROC_IN_SYSTEM(p) {
832 struct vmspace *vm;
833 int minslptime = 100000;
834 int slptime;
835
836 /*
837 * Watch out for a process in
838 * creation. It may have no
839 * address space or lock yet.
840 */
841 if (p->p_state == PRS_NEW)
842 continue;
843 /*
844 * An aio daemon switches its
845 * address space while running.
846 * Perform a quick check whether
847 * a process has P_SYSTEM.
848 */
849 if ((p->p_flag & P_SYSTEM) != 0)
850 continue;
851 /*
852 * Do not swapout a process that
853 * is waiting for VM data
854 * structures as there is a possible
855 * deadlock. Test this first as
856 * this may block.
857 *
858 * Lock the map until swapout
859 * finishes, or a thread of this
860 * process may attempt to alter
861 * the map.
862 */
863 vm = vmspace_acquire_ref(p);
864 if (vm == NULL)
865 continue;
866 if (!vm_map_trylock(&vm->vm_map))
867 goto nextproc1;
868
869 PROC_LOCK(p);
870 if (p->p_lock != 0 ||
871 (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
872 ) != 0) {
873 goto nextproc2;
874 }
875 /*
876 * only aiod changes vmspace, however it will be
877 * skipped because of the if statement above checking
878 * for P_SYSTEM
879 */
880 if ((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) != P_INMEM)
881 goto nextproc2;
882
883 switch (p->p_state) {
884 default:
885 /* Don't swap out processes in any sort
886 * of 'special' state. */
887 break;
888
889 case PRS_NORMAL:
890 PROC_SLOCK(p);
891 /*
892 * do not swapout a realtime process
893 * Check all the thread groups..
894 */
895 FOREACH_THREAD_IN_PROC(p, td) {
896 thread_lock(td);
897 if (PRI_IS_REALTIME(td->td_pri_class)) {
898 thread_unlock(td);
899 goto nextproc;
900 }
901 slptime = (ticks - td->td_slptick) / hz;
902 /*
903 * Guarantee swap_idle_threshold1
904 * time in memory.
905 */
906 if (slptime < swap_idle_threshold1) {
907 thread_unlock(td);
908 goto nextproc;
909 }
910
911 /*
912 * Do not swapout a process if it is
913 * waiting on a critical event of some
914 * kind or there is a thread whose
915 * pageable memory may be accessed.
916 *
917 * This could be refined to support
918 * swapping out a thread.
919 */
920 if ((td->td_priority) < PSOCK ||
921 !thread_safetoswapout(td)) {
922 thread_unlock(td);
923 goto nextproc;
924 }
925 /*
926 * If the system is under memory stress,
927 * or if we are swapping
928 * idle processes >= swap_idle_threshold2,
929 * then swap the process out.
930 */
931 if (((action & VM_SWAP_NORMAL) == 0) &&
932 (((action & VM_SWAP_IDLE) == 0) ||
933 (slptime < swap_idle_threshold2))) {
934 thread_unlock(td);
935 goto nextproc;
936 }
937
938 if (minslptime > slptime)
939 minslptime = slptime;
940 thread_unlock(td);
941 }
942
943 /*
944 * If the pageout daemon didn't free enough pages,
945 * or if this process is idle and the system is
946 * configured to swap proactively, swap it out.
947 */
948 if ((action & VM_SWAP_NORMAL) ||
949 ((action & VM_SWAP_IDLE) &&
950 (minslptime > swap_idle_threshold2))) {
951 if (swapout(p) == 0)
952 didswap++;
953 PROC_SUNLOCK(p);
954 PROC_UNLOCK(p);
955 vm_map_unlock(&vm->vm_map);
956 vmspace_free(vm);
957 sx_sunlock(&allproc_lock);
958 goto retry;
959 }
960 nextproc:
961 PROC_SUNLOCK(p);
962 }
963 nextproc2:
964 PROC_UNLOCK(p);
965 vm_map_unlock(&vm->vm_map);
966 nextproc1:
967 vmspace_free(vm);
968 continue;
969 }
970 sx_sunlock(&allproc_lock);
971 /*
972 * If we swapped something out, and another process needed memory,
973 * then wakeup the sched process.
974 */
975 if (didswap)
976 wakeup(&proc0);
977 }
978
979 static void
980 swapclear(p)
981 struct proc *p;
982 {
983 struct thread *td;
984
985 PROC_LOCK_ASSERT(p, MA_OWNED);
986 PROC_SLOCK_ASSERT(p, MA_OWNED);
987
988 FOREACH_THREAD_IN_PROC(p, td) {
989 thread_lock(td);
990 td->td_flags |= TDF_INMEM;
991 td->td_flags &= ~TDF_SWAPINREQ;
992 TD_CLR_SWAPPED(td);
993 if (TD_CAN_RUN(td))
994 setrunnable(td);
995 thread_unlock(td);
996 }
997 p->p_flag &= ~(P_SWAPPINGIN|P_SWAPPINGOUT);
998 p->p_flag |= P_INMEM;
999 }
1000
1001 static int
1002 swapout(p)
1003 struct proc *p;
1004 {
1005 struct thread *td;
1006
1007 PROC_LOCK_ASSERT(p, MA_OWNED);
1008 PROC_SLOCK_ASSERT(p, MA_OWNED | MA_NOTRECURSED);
1009 #if defined(SWAP_DEBUG)
1010 printf("swapping out %d\n", p->p_pid);
1011 #endif
1012
1013 /*
1014 * The states of this process and its threads may have changed
1015 * by now. Assuming that there is only one pageout daemon thread,
1016 * this process should still be in memory.
1017 */
1018 KASSERT((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) == P_INMEM,
1019 ("swapout: lost a swapout race?"));
1020
1021 /*
1022 * remember the process resident count
1023 */
1024 p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1025 /*
1026 * Check and mark all threads before we proceed.
1027 */
1028 p->p_flag &= ~P_INMEM;
1029 p->p_flag |= P_SWAPPINGOUT;
1030 FOREACH_THREAD_IN_PROC(p, td) {
1031 thread_lock(td);
1032 if (!thread_safetoswapout(td)) {
1033 thread_unlock(td);
1034 swapclear(p);
1035 return (EBUSY);
1036 }
1037 td->td_flags &= ~TDF_INMEM;
1038 TD_SET_SWAPPED(td);
1039 thread_unlock(td);
1040 }
1041 td = FIRST_THREAD_IN_PROC(p);
1042 ++td->td_ru.ru_nswap;
1043 PROC_SUNLOCK(p);
1044 PROC_UNLOCK(p);
1045
1046 /*
1047 * This list is stable because all threads are now prevented from
1048 * running. The list is only modified in the context of a running
1049 * thread in this process.
1050 */
1051 FOREACH_THREAD_IN_PROC(p, td)
1052 vm_thread_swapout(td);
1053
1054 PROC_LOCK(p);
1055 p->p_flag &= ~P_SWAPPINGOUT;
1056 PROC_SLOCK(p);
1057 p->p_swtick = ticks;
1058 return (0);
1059 }
1060 #endif /* !NO_SWAPPING */
Cache object: 28187e24378bc527456519cbafb1bea5
|