The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_glue.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)vm_glue.c     8.6 (Berkeley) 1/5/94
   33  *
   34  *
   35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   36  * All rights reserved.
   37  *
   38  * Permission to use, copy, modify and distribute this software and
   39  * its documentation is hereby granted, provided that both the copyright
   40  * notice and this permission notice appear in all copies of the
   41  * software, derivative works or modified versions, and any portions
   42  * thereof, and that both notices appear in supporting documentation.
   43  *
   44  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   45  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   46  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   47  *
   48  * Carnegie Mellon requests users of this software to return to
   49  *
   50  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   51  *  School of Computer Science
   52  *  Carnegie Mellon University
   53  *  Pittsburgh PA 15213-3890
   54  *
   55  * any improvements or extensions that they make and grant Carnegie the
   56  * rights to redistribute these changes.
   57  */
   58 
   59 #include <sys/cdefs.h>
   60 __FBSDID("$FreeBSD: releng/7.4/sys/vm/vm_glue.c 182976 2008-09-12 21:00:11Z jhb $");
   61 
   62 #include "opt_vm.h"
   63 #include "opt_kstack_pages.h"
   64 #include "opt_kstack_max_pages.h"
   65 
   66 #include <sys/param.h>
   67 #include <sys/systm.h>
   68 #include <sys/limits.h>
   69 #include <sys/lock.h>
   70 #include <sys/mutex.h>
   71 #include <sys/proc.h>
   72 #include <sys/resourcevar.h>
   73 #include <sys/sched.h>
   74 #include <sys/sf_buf.h>
   75 #include <sys/shm.h>
   76 #include <sys/vmmeter.h>
   77 #include <sys/sx.h>
   78 #include <sys/sysctl.h>
   79 
   80 #include <sys/kernel.h>
   81 #include <sys/ktr.h>
   82 #include <sys/unistd.h>
   83 
   84 #include <vm/vm.h>
   85 #include <vm/vm_param.h>
   86 #include <vm/pmap.h>
   87 #include <vm/vm_map.h>
   88 #include <vm/vm_page.h>
   89 #include <vm/vm_pageout.h>
   90 #include <vm/vm_object.h>
   91 #include <vm/vm_kern.h>
   92 #include <vm/vm_extern.h>
   93 #include <vm/vm_pager.h>
   94 #include <vm/swap_pager.h>
   95 
   96 extern int maxslp;
   97 
   98 /*
   99  * System initialization
  100  *
  101  * Note: proc0 from proc.h
  102  */
  103 static void vm_init_limits(void *);
  104 SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0);
  105 
  106 /*
  107  * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
  108  *
  109  * Note: run scheduling should be divorced from the vm system.
  110  */
  111 static void scheduler(void *);
  112 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL);
  113 
  114 #ifndef NO_SWAPPING
  115 static int swapout(struct proc *);
  116 static void swapclear(struct proc *);
  117 #endif
  118 
  119 /*
  120  * MPSAFE
  121  *
  122  * WARNING!  This code calls vm_map_check_protection() which only checks
  123  * the associated vm_map_entry range.  It does not determine whether the
  124  * contents of the memory is actually readable or writable.  In most cases
  125  * just checking the vm_map_entry is sufficient within the kernel's address
  126  * space.
  127  */
  128 int
  129 kernacc(addr, len, rw)
  130         void *addr;
  131         int len, rw;
  132 {
  133         boolean_t rv;
  134         vm_offset_t saddr, eaddr;
  135         vm_prot_t prot;
  136 
  137         KASSERT((rw & ~VM_PROT_ALL) == 0,
  138             ("illegal ``rw'' argument to kernacc (%x)\n", rw));
  139 
  140         if ((vm_offset_t)addr + len > kernel_map->max_offset ||
  141             (vm_offset_t)addr + len < (vm_offset_t)addr)
  142                 return (FALSE);
  143 
  144         prot = rw;
  145         saddr = trunc_page((vm_offset_t)addr);
  146         eaddr = round_page((vm_offset_t)addr + len);
  147         vm_map_lock_read(kernel_map);
  148         rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
  149         vm_map_unlock_read(kernel_map);
  150         return (rv == TRUE);
  151 }
  152 
  153 /*
  154  * MPSAFE
  155  *
  156  * WARNING!  This code calls vm_map_check_protection() which only checks
  157  * the associated vm_map_entry range.  It does not determine whether the
  158  * contents of the memory is actually readable or writable.  vmapbuf(),
  159  * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
  160  * used in conjuction with this call.
  161  */
  162 int
  163 useracc(addr, len, rw)
  164         void *addr;
  165         int len, rw;
  166 {
  167         boolean_t rv;
  168         vm_prot_t prot;
  169         vm_map_t map;
  170 
  171         KASSERT((rw & ~VM_PROT_ALL) == 0,
  172             ("illegal ``rw'' argument to useracc (%x)\n", rw));
  173         prot = rw;
  174         map = &curproc->p_vmspace->vm_map;
  175         if ((vm_offset_t)addr + len > vm_map_max(map) ||
  176             (vm_offset_t)addr + len < (vm_offset_t)addr) {
  177                 return (FALSE);
  178         }
  179         vm_map_lock_read(map);
  180         rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
  181             round_page((vm_offset_t)addr + len), prot);
  182         vm_map_unlock_read(map);
  183         return (rv == TRUE);
  184 }
  185 
  186 int
  187 vslock(void *addr, size_t len)
  188 {
  189         vm_offset_t end, last, start;
  190         vm_size_t npages;
  191         int error;
  192 
  193         last = (vm_offset_t)addr + len;
  194         start = trunc_page((vm_offset_t)addr);
  195         end = round_page(last);
  196         if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
  197                 return (EINVAL);
  198         npages = atop(end - start);
  199         if (npages > vm_page_max_wired)
  200                 return (ENOMEM);
  201         PROC_LOCK(curproc);
  202         if (ptoa(npages +
  203             pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))) >
  204             lim_cur(curproc, RLIMIT_MEMLOCK)) {
  205                 PROC_UNLOCK(curproc);
  206                 return (ENOMEM);
  207         }
  208         PROC_UNLOCK(curproc);
  209 #if 0
  210         /*
  211          * XXX - not yet
  212          *
  213          * The limit for transient usage of wired pages should be
  214          * larger than for "permanent" wired pages (mlock()).
  215          *
  216          * Also, the sysctl code, which is the only present user
  217          * of vslock(), does a hard loop on EAGAIN.
  218          */
  219         if (npages + cnt.v_wire_count > vm_page_max_wired)
  220                 return (EAGAIN);
  221 #endif
  222         error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
  223             VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
  224         /*
  225          * Return EFAULT on error to match copy{in,out}() behaviour
  226          * rather than returning ENOMEM like mlock() would.
  227          */
  228         return (error == KERN_SUCCESS ? 0 : EFAULT);
  229 }
  230 
  231 void
  232 vsunlock(void *addr, size_t len)
  233 {
  234 
  235         /* Rely on the parameter sanity checks performed by vslock(). */
  236         (void)vm_map_unwire(&curproc->p_vmspace->vm_map,
  237             trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
  238             VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
  239 }
  240 
  241 /*
  242  * Pin the page contained within the given object at the given offset.  If the
  243  * page is not resident, allocate and load it using the given object's pager.
  244  * Return the pinned page if successful; otherwise, return NULL.
  245  */
  246 static vm_page_t
  247 vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
  248 {
  249         vm_page_t m, ma[1];
  250         vm_pindex_t pindex;
  251         int rv;
  252 
  253         VM_OBJECT_LOCK(object);
  254         pindex = OFF_TO_IDX(offset);
  255         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
  256         if ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
  257                 ma[0] = m;
  258                 rv = vm_pager_get_pages(object, ma, 1, 0);
  259                 m = vm_page_lookup(object, pindex);
  260                 if (m == NULL)
  261                         goto out;
  262                 if (m->valid == 0 || rv != VM_PAGER_OK) {
  263                         vm_page_lock_queues();
  264                         vm_page_free(m);
  265                         vm_page_unlock_queues();
  266                         m = NULL;
  267                         goto out;
  268                 }
  269         }
  270         vm_page_lock_queues();
  271         vm_page_hold(m);
  272         vm_page_unlock_queues();
  273         vm_page_wakeup(m);
  274 out:
  275         VM_OBJECT_UNLOCK(object);
  276         return (m);
  277 }
  278 
  279 /*
  280  * Return a CPU private mapping to the page at the given offset within the
  281  * given object.  The page is pinned before it is mapped.
  282  */
  283 struct sf_buf *
  284 vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
  285 {
  286         vm_page_t m;
  287 
  288         m = vm_imgact_hold_page(object, offset);
  289         if (m == NULL)
  290                 return (NULL);
  291         sched_pin();
  292         return (sf_buf_alloc(m, SFB_CPUPRIVATE));
  293 }
  294 
  295 /*
  296  * Destroy the given CPU private mapping and unpin the page that it mapped.
  297  */
  298 void
  299 vm_imgact_unmap_page(struct sf_buf *sf)
  300 {
  301         vm_page_t m;
  302 
  303         m = sf_buf_page(sf);
  304         sf_buf_free(sf);
  305         sched_unpin();
  306         vm_page_lock_queues();
  307         vm_page_unhold(m);
  308         vm_page_unlock_queues();
  309 }
  310 
  311 #ifndef KSTACK_MAX_PAGES
  312 #define KSTACK_MAX_PAGES 32
  313 #endif
  314 
  315 /*
  316  * Create the kernel stack (including pcb for i386) for a new thread.
  317  * This routine directly affects the fork perf for a process and
  318  * create performance for a thread.
  319  */
  320 int
  321 vm_thread_new(struct thread *td, int pages)
  322 {
  323         vm_object_t ksobj;
  324         vm_offset_t ks;
  325         vm_page_t m, ma[KSTACK_MAX_PAGES];
  326         int i;
  327 
  328         /* Bounds check */
  329         if (pages <= 1)
  330                 pages = KSTACK_PAGES;
  331         else if (pages > KSTACK_MAX_PAGES)
  332                 pages = KSTACK_MAX_PAGES;
  333         /*
  334          * Allocate an object for the kstack.
  335          */
  336         ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
  337         /*
  338          * Get a kernel virtual address for this thread's kstack.
  339          */
  340         ks = kmem_alloc_nofault(kernel_map,
  341            (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
  342         if (ks == 0) {
  343                 printf("vm_thread_new: kstack allocation failed\n");
  344                 vm_object_deallocate(ksobj);
  345                 return (0);
  346         }
  347         
  348         if (KSTACK_GUARD_PAGES != 0) {
  349                 pmap_qremove(ks, KSTACK_GUARD_PAGES);
  350                 ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
  351         }
  352         td->td_kstack_obj = ksobj;
  353         td->td_kstack = ks;
  354         /*
  355          * Knowing the number of pages allocated is useful when you
  356          * want to deallocate them.
  357          */
  358         td->td_kstack_pages = pages;
  359         /* 
  360          * For the length of the stack, link in a real page of ram for each
  361          * page of stack.
  362          */
  363         VM_OBJECT_LOCK(ksobj);
  364         for (i = 0; i < pages; i++) {
  365                 /*
  366                  * Get a kernel stack page.
  367                  */
  368                 m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
  369                     VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
  370                 ma[i] = m;
  371                 m->valid = VM_PAGE_BITS_ALL;
  372         }
  373         VM_OBJECT_UNLOCK(ksobj);
  374         pmap_qenter(ks, ma, pages);
  375         return (1);
  376 }
  377 
  378 /*
  379  * Dispose of a thread's kernel stack.
  380  */
  381 void
  382 vm_thread_dispose(struct thread *td)
  383 {
  384         vm_object_t ksobj;
  385         vm_offset_t ks;
  386         vm_page_t m;
  387         int i, pages;
  388 
  389         pages = td->td_kstack_pages;
  390         ksobj = td->td_kstack_obj;
  391         ks = td->td_kstack;
  392         pmap_qremove(ks, pages);
  393         VM_OBJECT_LOCK(ksobj);
  394         for (i = 0; i < pages; i++) {
  395                 m = vm_page_lookup(ksobj, i);
  396                 if (m == NULL)
  397                         panic("vm_thread_dispose: kstack already missing?");
  398                 vm_page_lock_queues();
  399                 vm_page_unwire(m, 0);
  400                 vm_page_free(m);
  401                 vm_page_unlock_queues();
  402         }
  403         VM_OBJECT_UNLOCK(ksobj);
  404         vm_object_deallocate(ksobj);
  405         kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
  406             (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
  407         td->td_kstack = 0;
  408 }
  409 
  410 /*
  411  * Allow a thread's kernel stack to be paged out.
  412  */
  413 void
  414 vm_thread_swapout(struct thread *td)
  415 {
  416         vm_object_t ksobj;
  417         vm_page_t m;
  418         int i, pages;
  419 
  420         cpu_thread_swapout(td);
  421         pages = td->td_kstack_pages;
  422         ksobj = td->td_kstack_obj;
  423         pmap_qremove(td->td_kstack, pages);
  424         VM_OBJECT_LOCK(ksobj);
  425         for (i = 0; i < pages; i++) {
  426                 m = vm_page_lookup(ksobj, i);
  427                 if (m == NULL)
  428                         panic("vm_thread_swapout: kstack already missing?");
  429                 vm_page_lock_queues();
  430                 vm_page_dirty(m);
  431                 vm_page_unwire(m, 0);
  432                 vm_page_unlock_queues();
  433         }
  434         VM_OBJECT_UNLOCK(ksobj);
  435 }
  436 
  437 /*
  438  * Bring the kernel stack for a specified thread back in.
  439  */
  440 void
  441 vm_thread_swapin(struct thread *td)
  442 {
  443         vm_object_t ksobj;
  444         vm_page_t m, ma[KSTACK_MAX_PAGES];
  445         int i, pages, rv;
  446 
  447         pages = td->td_kstack_pages;
  448         ksobj = td->td_kstack_obj;
  449         VM_OBJECT_LOCK(ksobj);
  450         for (i = 0; i < pages; i++) {
  451                 m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
  452                 if (m->valid != VM_PAGE_BITS_ALL) {
  453                         rv = vm_pager_get_pages(ksobj, &m, 1, 0);
  454                         if (rv != VM_PAGER_OK)
  455                                 panic("vm_thread_swapin: cannot get kstack for proc: %d", td->td_proc->p_pid);
  456                         m = vm_page_lookup(ksobj, i);
  457                         m->valid = VM_PAGE_BITS_ALL;
  458                 }
  459                 ma[i] = m;
  460                 vm_page_lock_queues();
  461                 vm_page_wire(m);
  462                 vm_page_unlock_queues();
  463                 vm_page_wakeup(m);
  464         }
  465         VM_OBJECT_UNLOCK(ksobj);
  466         pmap_qenter(td->td_kstack, ma, pages);
  467         cpu_thread_swapin(td);
  468 }
  469 
  470 /*
  471  * Set up a variable-sized alternate kstack.
  472  */
  473 int
  474 vm_thread_new_altkstack(struct thread *td, int pages)
  475 {
  476 
  477         td->td_altkstack = td->td_kstack;
  478         td->td_altkstack_obj = td->td_kstack_obj;
  479         td->td_altkstack_pages = td->td_kstack_pages;
  480 
  481         return (vm_thread_new(td, pages));
  482 }
  483 
  484 /*
  485  * Restore the original kstack.
  486  */
  487 void
  488 vm_thread_dispose_altkstack(struct thread *td)
  489 {
  490 
  491         vm_thread_dispose(td);
  492 
  493         td->td_kstack = td->td_altkstack;
  494         td->td_kstack_obj = td->td_altkstack_obj;
  495         td->td_kstack_pages = td->td_altkstack_pages;
  496         td->td_altkstack = 0;
  497         td->td_altkstack_obj = NULL;
  498         td->td_altkstack_pages = 0;
  499 }
  500 
  501 /*
  502  * Implement fork's actions on an address space.
  503  * Here we arrange for the address space to be copied or referenced,
  504  * allocate a user struct (pcb and kernel stack), then call the
  505  * machine-dependent layer to fill those in and make the new process
  506  * ready to run.  The new process is set up so that it returns directly
  507  * to user mode to avoid stack copying and relocation problems.
  508  */
  509 int
  510 vm_forkproc(td, p2, td2, vm2, flags)
  511         struct thread *td;
  512         struct proc *p2;
  513         struct thread *td2;
  514         struct vmspace *vm2;
  515         int flags;
  516 {
  517         struct proc *p1 = td->td_proc;
  518         int error;
  519 
  520         if ((flags & RFPROC) == 0) {
  521                 /*
  522                  * Divorce the memory, if it is shared, essentially
  523                  * this changes shared memory amongst threads, into
  524                  * COW locally.
  525                  */
  526                 if ((flags & RFMEM) == 0) {
  527                         if (p1->p_vmspace->vm_refcnt > 1) {
  528                                 error = vmspace_unshare(p1);
  529                                 if (error)
  530                                         return (error);
  531                         }
  532                 }
  533                 cpu_fork(td, p2, td2, flags);
  534                 return (0);
  535         }
  536 
  537         if (flags & RFMEM) {
  538                 p2->p_vmspace = p1->p_vmspace;
  539                 atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
  540         }
  541 
  542         while (vm_page_count_severe()) {
  543                 VM_WAIT;
  544         }
  545 
  546         if ((flags & RFMEM) == 0) {
  547                 p2->p_vmspace = vm2;
  548                 if (p1->p_vmspace->vm_shm)
  549                         shmfork(p1, p2);
  550         }
  551 
  552         /*
  553          * cpu_fork will copy and update the pcb, set up the kernel stack,
  554          * and make the child ready to run.
  555          */
  556         cpu_fork(td, p2, td2, flags);
  557         return (0);
  558 }
  559 
  560 /*
  561  * Called after process has been wait(2)'ed apon and is being reaped.
  562  * The idea is to reclaim resources that we could not reclaim while
  563  * the process was still executing.
  564  */
  565 void
  566 vm_waitproc(p)
  567         struct proc *p;
  568 {
  569 
  570         vmspace_exitfree(p);            /* and clean-out the vmspace */
  571 }
  572 
  573 /*
  574  * Set default limits for VM system.
  575  * Called for proc 0, and then inherited by all others.
  576  *
  577  * XXX should probably act directly on proc0.
  578  */
  579 static void
  580 vm_init_limits(udata)
  581         void *udata;
  582 {
  583         struct proc *p = udata;
  584         struct plimit *limp;
  585         int rss_limit;
  586 
  587         /*
  588          * Set up the initial limits on process VM. Set the maximum resident
  589          * set size to be half of (reasonably) available memory.  Since this
  590          * is a soft limit, it comes into effect only when the system is out
  591          * of memory - half of main memory helps to favor smaller processes,
  592          * and reduces thrashing of the object cache.
  593          */
  594         limp = p->p_limit;
  595         limp->pl_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
  596         limp->pl_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
  597         limp->pl_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
  598         limp->pl_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
  599         /* limit the limit to no less than 2MB */
  600         rss_limit = max(cnt.v_free_count, 512);
  601         limp->pl_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
  602         limp->pl_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
  603 }
  604 
  605 void
  606 faultin(p)
  607         struct proc *p;
  608 {
  609 #ifdef NO_SWAPPING
  610 
  611         PROC_LOCK_ASSERT(p, MA_OWNED);
  612         if ((p->p_flag & P_INMEM) == 0)
  613                 panic("faultin: proc swapped out with NO_SWAPPING!");
  614 #else /* !NO_SWAPPING */
  615         struct thread *td;
  616 
  617         PROC_LOCK_ASSERT(p, MA_OWNED);
  618         /*
  619          * If another process is swapping in this process,
  620          * just wait until it finishes.
  621          */
  622         if (p->p_flag & P_SWAPPINGIN) {
  623                 while (p->p_flag & P_SWAPPINGIN)
  624                         msleep(&p->p_flag, &p->p_mtx, PVM, "faultin", 0);
  625                 return;
  626         }
  627         if ((p->p_flag & P_INMEM) == 0) {
  628                 /*
  629                  * Don't let another thread swap process p out while we are
  630                  * busy swapping it in.
  631                  */
  632                 ++p->p_lock;
  633                 p->p_flag |= P_SWAPPINGIN;
  634                 PROC_UNLOCK(p);
  635 
  636                 /*
  637                  * We hold no lock here because the list of threads
  638                  * can not change while all threads in the process are
  639                  * swapped out.
  640                  */
  641                 FOREACH_THREAD_IN_PROC(p, td)
  642                         vm_thread_swapin(td);
  643                 PROC_LOCK(p);
  644                 PROC_SLOCK(p);
  645                 swapclear(p);
  646                 p->p_swtick = ticks;
  647                 PROC_SUNLOCK(p);
  648 
  649                 wakeup(&p->p_flag);
  650 
  651                 /* Allow other threads to swap p out now. */
  652                 --p->p_lock;
  653         }
  654 #endif /* NO_SWAPPING */
  655 }
  656 
  657 /*
  658  * This swapin algorithm attempts to swap-in processes only if there
  659  * is enough space for them.  Of course, if a process waits for a long
  660  * time, it will be swapped in anyway.
  661  *
  662  *  XXXKSE - process with the thread with highest priority counts..
  663  *
  664  * Giant is held on entry.
  665  */
  666 /* ARGSUSED*/
  667 static void
  668 scheduler(dummy)
  669         void *dummy;
  670 {
  671         struct proc *p;
  672         struct thread *td;
  673         struct proc *pp;
  674         int slptime;
  675         int swtime;
  676         int ppri;
  677         int pri;
  678 
  679         mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
  680         mtx_unlock(&Giant);
  681 
  682 loop:
  683         if (vm_page_count_min()) {
  684                 VM_WAIT;
  685                 goto loop;
  686         }
  687 
  688         pp = NULL;
  689         ppri = INT_MIN;
  690         sx_slock(&allproc_lock);
  691         FOREACH_PROC_IN_SYSTEM(p) {
  692                 PROC_LOCK(p);
  693                 if (p->p_flag & (P_SWAPPINGOUT | P_SWAPPINGIN | P_INMEM)) {
  694                         PROC_UNLOCK(p);
  695                         continue;
  696                 }
  697                 swtime = (ticks - p->p_swtick) / hz;
  698                 PROC_SLOCK(p);
  699                 FOREACH_THREAD_IN_PROC(p, td) {
  700                         /*
  701                          * An otherwise runnable thread of a process
  702                          * swapped out has only the TDI_SWAPPED bit set.
  703                          * 
  704                          */
  705                         thread_lock(td);
  706                         if (td->td_inhibitors == TDI_SWAPPED) {
  707                                 slptime = (ticks - td->td_slptick) / hz;
  708                                 pri = swtime + slptime;
  709                                 if ((td->td_flags & TDF_SWAPINREQ) == 0)
  710                                         pri -= p->p_nice * 8;
  711                                 /*
  712                                  * if this thread is higher priority
  713                                  * and there is enough space, then select
  714                                  * this process instead of the previous
  715                                  * selection.
  716                                  */
  717                                 if (pri > ppri) {
  718                                         pp = p;
  719                                         ppri = pri;
  720                                 }
  721                         }
  722                         thread_unlock(td);
  723                 }
  724                 PROC_SUNLOCK(p);
  725                 PROC_UNLOCK(p);
  726         }
  727         sx_sunlock(&allproc_lock);
  728 
  729         /*
  730          * Nothing to do, back to sleep.
  731          */
  732         if ((p = pp) == NULL) {
  733                 tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
  734                 goto loop;
  735         }
  736         PROC_LOCK(p);
  737 
  738         /*
  739          * Another process may be bringing or may have already
  740          * brought this process in while we traverse all threads.
  741          * Or, this process may even be being swapped out again.
  742          */
  743         if (p->p_flag & (P_INMEM | P_SWAPPINGOUT | P_SWAPPINGIN)) {
  744                 PROC_UNLOCK(p);
  745                 goto loop;
  746         }
  747 
  748         /*
  749          * We would like to bring someone in. (only if there is space).
  750          * [What checks the space? ]
  751          */
  752         faultin(p);
  753         PROC_UNLOCK(p);
  754         goto loop;
  755 }
  756 
  757 void
  758 kick_proc0(void)
  759 {
  760 
  761         wakeup(&proc0);
  762 }
  763 
  764 #ifndef NO_SWAPPING
  765 
  766 /*
  767  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
  768  */
  769 static int swap_idle_threshold1 = 2;
  770 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
  771     &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
  772 
  773 /*
  774  * Swap_idle_threshold2 is the time that a process can be idle before
  775  * it will be swapped out, if idle swapping is enabled.
  776  */
  777 static int swap_idle_threshold2 = 10;
  778 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
  779     &swap_idle_threshold2, 0, "Time before a process will be swapped out");
  780 
  781 /*
  782  * Swapout is driven by the pageout daemon.  Very simple, we find eligible
  783  * procs and swap out their stacks.  We try to always "swap" at least one
  784  * process in case we need the room for a swapin.
  785  * If any procs have been sleeping/stopped for at least maxslp seconds,
  786  * they are swapped.  Else, we swap the longest-sleeping or stopped process,
  787  * if any, otherwise the longest-resident process.
  788  */
  789 void
  790 swapout_procs(action)
  791 int action;
  792 {
  793         struct proc *p;
  794         struct thread *td;
  795         int didswap = 0;
  796 
  797 retry:
  798         sx_slock(&allproc_lock);
  799         FOREACH_PROC_IN_SYSTEM(p) {
  800                 struct vmspace *vm;
  801                 int minslptime = 100000;
  802                 int slptime;
  803                 
  804                 /*
  805                  * Watch out for a process in
  806                  * creation.  It may have no
  807                  * address space or lock yet.
  808                  */
  809                 if (p->p_state == PRS_NEW)
  810                         continue;
  811                 /*
  812                  * An aio daemon switches its
  813                  * address space while running.
  814                  * Perform a quick check whether
  815                  * a process has P_SYSTEM.
  816                  */
  817                 if ((p->p_flag & P_SYSTEM) != 0)
  818                         continue;
  819                 /*
  820                  * Do not swapout a process that
  821                  * is waiting for VM data
  822                  * structures as there is a possible
  823                  * deadlock.  Test this first as
  824                  * this may block.
  825                  *
  826                  * Lock the map until swapout
  827                  * finishes, or a thread of this
  828                  * process may attempt to alter
  829                  * the map.
  830                  */
  831                 vm = vmspace_acquire_ref(p);
  832                 if (vm == NULL)
  833                         continue;
  834                 if (!vm_map_trylock(&vm->vm_map))
  835                         goto nextproc1;
  836 
  837                 PROC_LOCK(p);
  838                 if (p->p_lock != 0 ||
  839                     (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
  840                     ) != 0) {
  841                         goto nextproc2;
  842                 }
  843                 /*
  844                  * only aiod changes vmspace, however it will be
  845                  * skipped because of the if statement above checking 
  846                  * for P_SYSTEM
  847                  */
  848                 if ((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) != P_INMEM)
  849                         goto nextproc2;
  850 
  851                 switch (p->p_state) {
  852                 default:
  853                         /* Don't swap out processes in any sort
  854                          * of 'special' state. */
  855                         break;
  856 
  857                 case PRS_NORMAL:
  858                         PROC_SLOCK(p);
  859                         /*
  860                          * do not swapout a realtime process
  861                          * Check all the thread groups..
  862                          */
  863                         FOREACH_THREAD_IN_PROC(p, td) {
  864                                 thread_lock(td);
  865                                 if (PRI_IS_REALTIME(td->td_pri_class)) {
  866                                         thread_unlock(td);
  867                                         goto nextproc;
  868                                 }
  869                                 slptime = (ticks - td->td_slptick) / hz;
  870                                 /*
  871                                  * Guarantee swap_idle_threshold1
  872                                  * time in memory.
  873                                  */
  874                                 if (slptime < swap_idle_threshold1) {
  875                                         thread_unlock(td);
  876                                         goto nextproc;
  877                                 }
  878 
  879                                 /*
  880                                  * Do not swapout a process if it is
  881                                  * waiting on a critical event of some
  882                                  * kind or there is a thread whose
  883                                  * pageable memory may be accessed.
  884                                  *
  885                                  * This could be refined to support
  886                                  * swapping out a thread.
  887                                  */
  888                                 if ((td->td_priority) < PSOCK ||
  889                                     !thread_safetoswapout(td)) {
  890                                         thread_unlock(td);
  891                                         goto nextproc;
  892                                 }
  893                                 /*
  894                                  * If the system is under memory stress,
  895                                  * or if we are swapping
  896                                  * idle processes >= swap_idle_threshold2,
  897                                  * then swap the process out.
  898                                  */
  899                                 if (((action & VM_SWAP_NORMAL) == 0) &&
  900                                     (((action & VM_SWAP_IDLE) == 0) ||
  901                                     (slptime < swap_idle_threshold2))) {
  902                                         thread_unlock(td);
  903                                         goto nextproc;
  904                                 }
  905 
  906                                 if (minslptime > slptime)
  907                                         minslptime = slptime;
  908                                 thread_unlock(td);
  909                         }
  910 
  911                         /*
  912                          * If the pageout daemon didn't free enough pages,
  913                          * or if this process is idle and the system is
  914                          * configured to swap proactively, swap it out.
  915                          */
  916                         if ((action & VM_SWAP_NORMAL) ||
  917                                 ((action & VM_SWAP_IDLE) &&
  918                                  (minslptime > swap_idle_threshold2))) {
  919                                 if (swapout(p) == 0)
  920                                         didswap++;
  921                                 PROC_SUNLOCK(p);
  922                                 PROC_UNLOCK(p);
  923                                 vm_map_unlock(&vm->vm_map);
  924                                 vmspace_free(vm);
  925                                 sx_sunlock(&allproc_lock);
  926                                 goto retry;
  927                         }
  928 nextproc:                       
  929                         PROC_SUNLOCK(p);
  930                 }
  931 nextproc2:
  932                 PROC_UNLOCK(p);
  933                 vm_map_unlock(&vm->vm_map);
  934 nextproc1:
  935                 vmspace_free(vm);
  936                 continue;
  937         }
  938         sx_sunlock(&allproc_lock);
  939         /*
  940          * If we swapped something out, and another process needed memory,
  941          * then wakeup the sched process.
  942          */
  943         if (didswap)
  944                 wakeup(&proc0);
  945 }
  946 
  947 static void
  948 swapclear(p)
  949         struct proc *p;
  950 {
  951         struct thread *td;
  952 
  953         PROC_LOCK_ASSERT(p, MA_OWNED);
  954         PROC_SLOCK_ASSERT(p, MA_OWNED);
  955 
  956         FOREACH_THREAD_IN_PROC(p, td) {
  957                 thread_lock(td);
  958                 td->td_flags |= TDF_INMEM;
  959                 td->td_flags &= ~TDF_SWAPINREQ;
  960                 TD_CLR_SWAPPED(td);
  961                 if (TD_CAN_RUN(td))
  962                         if (setrunnable(td)) {
  963 #ifdef INVARIANTS
  964                                 /*
  965                                  * XXX: We just cleared TDI_SWAPPED
  966                                  * above and set TDF_INMEM, so this
  967                                  * should never happen.
  968                                  */
  969                                 panic("not waking up swapper");
  970 #endif
  971                         }
  972                 thread_unlock(td);
  973         }
  974         p->p_flag &= ~(P_SWAPPINGIN|P_SWAPPINGOUT);
  975         p->p_flag |= P_INMEM;
  976 }
  977 
  978 static int
  979 swapout(p)
  980         struct proc *p;
  981 {
  982         struct thread *td;
  983 
  984         PROC_LOCK_ASSERT(p, MA_OWNED);
  985         PROC_SLOCK_ASSERT(p, MA_OWNED | MA_NOTRECURSED);
  986 #if defined(SWAP_DEBUG)
  987         printf("swapping out %d\n", p->p_pid);
  988 #endif
  989 
  990         /*
  991          * The states of this process and its threads may have changed
  992          * by now.  Assuming that there is only one pageout daemon thread,
  993          * this process should still be in memory.
  994          */
  995         KASSERT((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) == P_INMEM,
  996                 ("swapout: lost a swapout race?"));
  997 
  998         /*
  999          * remember the process resident count
 1000          */
 1001         p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
 1002         /*
 1003          * Check and mark all threads before we proceed.
 1004          */
 1005         p->p_flag &= ~P_INMEM;
 1006         p->p_flag |= P_SWAPPINGOUT;
 1007         FOREACH_THREAD_IN_PROC(p, td) {
 1008                 thread_lock(td);
 1009                 if (!thread_safetoswapout(td)) {
 1010                         thread_unlock(td);
 1011                         swapclear(p);
 1012                         return (EBUSY);
 1013                 }
 1014                 td->td_flags &= ~TDF_INMEM;
 1015                 TD_SET_SWAPPED(td);
 1016                 thread_unlock(td);
 1017         }
 1018         td = FIRST_THREAD_IN_PROC(p);
 1019         ++td->td_ru.ru_nswap;
 1020         PROC_SUNLOCK(p);
 1021         PROC_UNLOCK(p);
 1022 
 1023         /*
 1024          * This list is stable because all threads are now prevented from
 1025          * running.  The list is only modified in the context of a running
 1026          * thread in this process.
 1027          */
 1028         FOREACH_THREAD_IN_PROC(p, td)
 1029                 vm_thread_swapout(td);
 1030 
 1031         PROC_LOCK(p);
 1032         p->p_flag &= ~P_SWAPPINGOUT;
 1033         PROC_SLOCK(p);
 1034         p->p_swtick = ticks;
 1035         return (0);
 1036 }
 1037 #endif /* !NO_SWAPPING */

Cache object: 9fad1e33a69ad135983a25e3025e7262


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.