The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_glue.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)vm_glue.c     8.6 (Berkeley) 1/5/94
   33  *
   34  *
   35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   36  * All rights reserved.
   37  *
   38  * Permission to use, copy, modify and distribute this software and
   39  * its documentation is hereby granted, provided that both the copyright
   40  * notice and this permission notice appear in all copies of the
   41  * software, derivative works or modified versions, and any portions
   42  * thereof, and that both notices appear in supporting documentation.
   43  *
   44  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   45  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   46  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   47  *
   48  * Carnegie Mellon requests users of this software to return to
   49  *
   50  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   51  *  School of Computer Science
   52  *  Carnegie Mellon University
   53  *  Pittsburgh PA 15213-3890
   54  *
   55  * any improvements or extensions that they make and grant Carnegie the
   56  * rights to redistribute these changes.
   57  */
   58 
   59 #include <sys/cdefs.h>
   60 __FBSDID("$FreeBSD: releng/8.0/sys/vm/vm_glue.c 196977 2009-09-08 15:31:23Z kib $");
   61 
   62 #include "opt_vm.h"
   63 #include "opt_kstack_pages.h"
   64 #include "opt_kstack_max_pages.h"
   65 
   66 #include <sys/param.h>
   67 #include <sys/systm.h>
   68 #include <sys/limits.h>
   69 #include <sys/lock.h>
   70 #include <sys/mutex.h>
   71 #include <sys/proc.h>
   72 #include <sys/resourcevar.h>
   73 #include <sys/sched.h>
   74 #include <sys/sf_buf.h>
   75 #include <sys/shm.h>
   76 #include <sys/vmmeter.h>
   77 #include <sys/sx.h>
   78 #include <sys/sysctl.h>
   79 
   80 #include <sys/eventhandler.h>
   81 #include <sys/kernel.h>
   82 #include <sys/ktr.h>
   83 #include <sys/unistd.h>
   84 
   85 #include <vm/vm.h>
   86 #include <vm/vm_param.h>
   87 #include <vm/pmap.h>
   88 #include <vm/vm_map.h>
   89 #include <vm/vm_page.h>
   90 #include <vm/vm_pageout.h>
   91 #include <vm/vm_object.h>
   92 #include <vm/vm_kern.h>
   93 #include <vm/vm_extern.h>
   94 #include <vm/vm_pager.h>
   95 #include <vm/swap_pager.h>
   96 
   97 extern int maxslp;
   98 
   99 /*
  100  * System initialization
  101  *
  102  * Note: proc0 from proc.h
  103  */
  104 static void vm_init_limits(void *);
  105 SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0);
  106 
  107 /*
  108  * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
  109  *
  110  * Note: run scheduling should be divorced from the vm system.
  111  */
  112 static void scheduler(void *);
  113 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL);
  114 
  115 #ifndef NO_SWAPPING
  116 static int swapout(struct proc *);
  117 static void swapclear(struct proc *);
  118 #endif
  119 
  120 /*
  121  * MPSAFE
  122  *
  123  * WARNING!  This code calls vm_map_check_protection() which only checks
  124  * the associated vm_map_entry range.  It does not determine whether the
  125  * contents of the memory is actually readable or writable.  In most cases
  126  * just checking the vm_map_entry is sufficient within the kernel's address
  127  * space.
  128  */
  129 int
  130 kernacc(addr, len, rw)
  131         void *addr;
  132         int len, rw;
  133 {
  134         boolean_t rv;
  135         vm_offset_t saddr, eaddr;
  136         vm_prot_t prot;
  137 
  138         KASSERT((rw & ~VM_PROT_ALL) == 0,
  139             ("illegal ``rw'' argument to kernacc (%x)\n", rw));
  140 
  141         if ((vm_offset_t)addr + len > kernel_map->max_offset ||
  142             (vm_offset_t)addr + len < (vm_offset_t)addr)
  143                 return (FALSE);
  144 
  145         prot = rw;
  146         saddr = trunc_page((vm_offset_t)addr);
  147         eaddr = round_page((vm_offset_t)addr + len);
  148         vm_map_lock_read(kernel_map);
  149         rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
  150         vm_map_unlock_read(kernel_map);
  151         return (rv == TRUE);
  152 }
  153 
  154 /*
  155  * MPSAFE
  156  *
  157  * WARNING!  This code calls vm_map_check_protection() which only checks
  158  * the associated vm_map_entry range.  It does not determine whether the
  159  * contents of the memory is actually readable or writable.  vmapbuf(),
  160  * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
  161  * used in conjuction with this call.
  162  */
  163 int
  164 useracc(addr, len, rw)
  165         void *addr;
  166         int len, rw;
  167 {
  168         boolean_t rv;
  169         vm_prot_t prot;
  170         vm_map_t map;
  171 
  172         KASSERT((rw & ~VM_PROT_ALL) == 0,
  173             ("illegal ``rw'' argument to useracc (%x)\n", rw));
  174         prot = rw;
  175         map = &curproc->p_vmspace->vm_map;
  176         if ((vm_offset_t)addr + len > vm_map_max(map) ||
  177             (vm_offset_t)addr + len < (vm_offset_t)addr) {
  178                 return (FALSE);
  179         }
  180         vm_map_lock_read(map);
  181         rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
  182             round_page((vm_offset_t)addr + len), prot);
  183         vm_map_unlock_read(map);
  184         return (rv == TRUE);
  185 }
  186 
  187 int
  188 vslock(void *addr, size_t len)
  189 {
  190         vm_offset_t end, last, start;
  191         vm_size_t npages;
  192         int error;
  193 
  194         last = (vm_offset_t)addr + len;
  195         start = trunc_page((vm_offset_t)addr);
  196         end = round_page(last);
  197         if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
  198                 return (EINVAL);
  199         npages = atop(end - start);
  200         if (npages > vm_page_max_wired)
  201                 return (ENOMEM);
  202         PROC_LOCK(curproc);
  203         if (ptoa(npages +
  204             pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))) >
  205             lim_cur(curproc, RLIMIT_MEMLOCK)) {
  206                 PROC_UNLOCK(curproc);
  207                 return (ENOMEM);
  208         }
  209         PROC_UNLOCK(curproc);
  210 #if 0
  211         /*
  212          * XXX - not yet
  213          *
  214          * The limit for transient usage of wired pages should be
  215          * larger than for "permanent" wired pages (mlock()).
  216          *
  217          * Also, the sysctl code, which is the only present user
  218          * of vslock(), does a hard loop on EAGAIN.
  219          */
  220         if (npages + cnt.v_wire_count > vm_page_max_wired)
  221                 return (EAGAIN);
  222 #endif
  223         error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
  224             VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
  225         /*
  226          * Return EFAULT on error to match copy{in,out}() behaviour
  227          * rather than returning ENOMEM like mlock() would.
  228          */
  229         return (error == KERN_SUCCESS ? 0 : EFAULT);
  230 }
  231 
  232 void
  233 vsunlock(void *addr, size_t len)
  234 {
  235 
  236         /* Rely on the parameter sanity checks performed by vslock(). */
  237         (void)vm_map_unwire(&curproc->p_vmspace->vm_map,
  238             trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
  239             VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
  240 }
  241 
  242 /*
  243  * Pin the page contained within the given object at the given offset.  If the
  244  * page is not resident, allocate and load it using the given object's pager.
  245  * Return the pinned page if successful; otherwise, return NULL.
  246  */
  247 static vm_page_t
  248 vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
  249 {
  250         vm_page_t m, ma[1];
  251         vm_pindex_t pindex;
  252         int rv;
  253 
  254         VM_OBJECT_LOCK(object);
  255         pindex = OFF_TO_IDX(offset);
  256         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
  257         if (m->valid != VM_PAGE_BITS_ALL) {
  258                 ma[0] = m;
  259                 rv = vm_pager_get_pages(object, ma, 1, 0);
  260                 m = vm_page_lookup(object, pindex);
  261                 if (m == NULL)
  262                         goto out;
  263                 if (rv != VM_PAGER_OK) {
  264                         vm_page_lock_queues();
  265                         vm_page_free(m);
  266                         vm_page_unlock_queues();
  267                         m = NULL;
  268                         goto out;
  269                 }
  270         }
  271         vm_page_lock_queues();
  272         vm_page_hold(m);
  273         vm_page_unlock_queues();
  274         vm_page_wakeup(m);
  275 out:
  276         VM_OBJECT_UNLOCK(object);
  277         return (m);
  278 }
  279 
  280 /*
  281  * Return a CPU private mapping to the page at the given offset within the
  282  * given object.  The page is pinned before it is mapped.
  283  */
  284 struct sf_buf *
  285 vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
  286 {
  287         vm_page_t m;
  288 
  289         m = vm_imgact_hold_page(object, offset);
  290         if (m == NULL)
  291                 return (NULL);
  292         sched_pin();
  293         return (sf_buf_alloc(m, SFB_CPUPRIVATE));
  294 }
  295 
  296 /*
  297  * Destroy the given CPU private mapping and unpin the page that it mapped.
  298  */
  299 void
  300 vm_imgact_unmap_page(struct sf_buf *sf)
  301 {
  302         vm_page_t m;
  303 
  304         m = sf_buf_page(sf);
  305         sf_buf_free(sf);
  306         sched_unpin();
  307         vm_page_lock_queues();
  308         vm_page_unhold(m);
  309         vm_page_unlock_queues();
  310 }
  311 
  312 struct kstack_cache_entry {
  313         vm_object_t ksobj;
  314         struct kstack_cache_entry *next_ks_entry;
  315 };
  316 
  317 static struct kstack_cache_entry *kstack_cache;
  318 static int kstack_cache_size = 128;
  319 static int kstacks;
  320 static struct mtx kstack_cache_mtx;
  321 SYSCTL_INT(_vm, OID_AUTO, kstack_cache_size, CTLFLAG_RW, &kstack_cache_size, 0,
  322     "");
  323 SYSCTL_INT(_vm, OID_AUTO, kstacks, CTLFLAG_RD, &kstacks, 0,
  324     "");
  325 
  326 #ifndef KSTACK_MAX_PAGES
  327 #define KSTACK_MAX_PAGES 32
  328 #endif
  329 
  330 /*
  331  * Create the kernel stack (including pcb for i386) for a new thread.
  332  * This routine directly affects the fork perf for a process and
  333  * create performance for a thread.
  334  */
  335 int
  336 vm_thread_new(struct thread *td, int pages)
  337 {
  338         vm_object_t ksobj;
  339         vm_offset_t ks;
  340         vm_page_t m, ma[KSTACK_MAX_PAGES];
  341         struct kstack_cache_entry *ks_ce;
  342         int i;
  343 
  344         /* Bounds check */
  345         if (pages <= 1)
  346                 pages = KSTACK_PAGES;
  347         else if (pages > KSTACK_MAX_PAGES)
  348                 pages = KSTACK_MAX_PAGES;
  349 
  350         if (pages == KSTACK_PAGES) {
  351                 mtx_lock(&kstack_cache_mtx);
  352                 if (kstack_cache != NULL) {
  353                         ks_ce = kstack_cache;
  354                         kstack_cache = ks_ce->next_ks_entry;
  355                         mtx_unlock(&kstack_cache_mtx);
  356 
  357                         td->td_kstack_obj = ks_ce->ksobj;
  358                         td->td_kstack = (vm_offset_t)ks_ce;
  359                         td->td_kstack_pages = KSTACK_PAGES;
  360                         return (1);
  361                 }
  362                 mtx_unlock(&kstack_cache_mtx);
  363         }
  364 
  365         /*
  366          * Allocate an object for the kstack.
  367          */
  368         ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
  369         
  370         /*
  371          * Get a kernel virtual address for this thread's kstack.
  372          */
  373         ks = kmem_alloc_nofault(kernel_map,
  374            (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
  375         if (ks == 0) {
  376                 printf("vm_thread_new: kstack allocation failed\n");
  377                 vm_object_deallocate(ksobj);
  378                 return (0);
  379         }
  380 
  381         atomic_add_int(&kstacks, 1);
  382         if (KSTACK_GUARD_PAGES != 0) {
  383                 pmap_qremove(ks, KSTACK_GUARD_PAGES);
  384                 ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
  385         }
  386         td->td_kstack_obj = ksobj;
  387         td->td_kstack = ks;
  388         /*
  389          * Knowing the number of pages allocated is useful when you
  390          * want to deallocate them.
  391          */
  392         td->td_kstack_pages = pages;
  393         /* 
  394          * For the length of the stack, link in a real page of ram for each
  395          * page of stack.
  396          */
  397         VM_OBJECT_LOCK(ksobj);
  398         for (i = 0; i < pages; i++) {
  399                 /*
  400                  * Get a kernel stack page.
  401                  */
  402                 m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
  403                     VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
  404                 ma[i] = m;
  405                 m->valid = VM_PAGE_BITS_ALL;
  406         }
  407         VM_OBJECT_UNLOCK(ksobj);
  408         pmap_qenter(ks, ma, pages);
  409         return (1);
  410 }
  411 
  412 static void
  413 vm_thread_stack_dispose(vm_object_t ksobj, vm_offset_t ks, int pages)
  414 {
  415         vm_page_t m;
  416         int i;
  417 
  418         atomic_add_int(&kstacks, -1);
  419         pmap_qremove(ks, pages);
  420         VM_OBJECT_LOCK(ksobj);
  421         for (i = 0; i < pages; i++) {
  422                 m = vm_page_lookup(ksobj, i);
  423                 if (m == NULL)
  424                         panic("vm_thread_dispose: kstack already missing?");
  425                 vm_page_lock_queues();
  426                 vm_page_unwire(m, 0);
  427                 vm_page_free(m);
  428                 vm_page_unlock_queues();
  429         }
  430         VM_OBJECT_UNLOCK(ksobj);
  431         vm_object_deallocate(ksobj);
  432         kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
  433             (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
  434 }
  435 
  436 /*
  437  * Dispose of a thread's kernel stack.
  438  */
  439 void
  440 vm_thread_dispose(struct thread *td)
  441 {
  442         vm_object_t ksobj;
  443         vm_offset_t ks;
  444         struct kstack_cache_entry *ks_ce;
  445         int pages;
  446 
  447         pages = td->td_kstack_pages;
  448         ksobj = td->td_kstack_obj;
  449         ks = td->td_kstack;
  450         td->td_kstack = 0;
  451         td->td_kstack_pages = 0;
  452         if (pages == KSTACK_PAGES && kstacks <= kstack_cache_size) {
  453                 ks_ce = (struct kstack_cache_entry *)ks;
  454                 ks_ce->ksobj = ksobj;
  455                 mtx_lock(&kstack_cache_mtx);
  456                 ks_ce->next_ks_entry = kstack_cache;
  457                 kstack_cache = ks_ce;
  458                 mtx_unlock(&kstack_cache_mtx);
  459                 return;
  460         }
  461         vm_thread_stack_dispose(ksobj, ks, pages);
  462 }
  463 
  464 static void
  465 vm_thread_stack_lowmem(void *nulll)
  466 {
  467         struct kstack_cache_entry *ks_ce, *ks_ce1;
  468 
  469         mtx_lock(&kstack_cache_mtx);
  470         ks_ce = kstack_cache;
  471         kstack_cache = NULL;
  472         mtx_unlock(&kstack_cache_mtx);
  473 
  474         while (ks_ce != NULL) {
  475                 ks_ce1 = ks_ce;
  476                 ks_ce = ks_ce->next_ks_entry;
  477 
  478                 vm_thread_stack_dispose(ks_ce1->ksobj, (vm_offset_t)ks_ce1,
  479                     KSTACK_PAGES);
  480         }
  481 }
  482 
  483 static void
  484 kstack_cache_init(void *nulll)
  485 {
  486 
  487         EVENTHANDLER_REGISTER(vm_lowmem, vm_thread_stack_lowmem, NULL,
  488             EVENTHANDLER_PRI_ANY);
  489 }
  490 
  491 MTX_SYSINIT(kstack_cache, &kstack_cache_mtx, "kstkch", MTX_DEF);
  492 SYSINIT(vm_kstacks, SI_SUB_KTHREAD_INIT, SI_ORDER_ANY, kstack_cache_init, NULL);
  493 
  494 /*
  495  * Allow a thread's kernel stack to be paged out.
  496  */
  497 void
  498 vm_thread_swapout(struct thread *td)
  499 {
  500         vm_object_t ksobj;
  501         vm_page_t m;
  502         int i, pages;
  503 
  504         cpu_thread_swapout(td);
  505         pages = td->td_kstack_pages;
  506         ksobj = td->td_kstack_obj;
  507         pmap_qremove(td->td_kstack, pages);
  508         VM_OBJECT_LOCK(ksobj);
  509         for (i = 0; i < pages; i++) {
  510                 m = vm_page_lookup(ksobj, i);
  511                 if (m == NULL)
  512                         panic("vm_thread_swapout: kstack already missing?");
  513                 vm_page_lock_queues();
  514                 vm_page_dirty(m);
  515                 vm_page_unwire(m, 0);
  516                 vm_page_unlock_queues();
  517         }
  518         VM_OBJECT_UNLOCK(ksobj);
  519 }
  520 
  521 /*
  522  * Bring the kernel stack for a specified thread back in.
  523  */
  524 void
  525 vm_thread_swapin(struct thread *td)
  526 {
  527         vm_object_t ksobj;
  528         vm_page_t m, ma[KSTACK_MAX_PAGES];
  529         int i, pages, rv;
  530 
  531         pages = td->td_kstack_pages;
  532         ksobj = td->td_kstack_obj;
  533         VM_OBJECT_LOCK(ksobj);
  534         for (i = 0; i < pages; i++) {
  535                 m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
  536                 if (m->valid != VM_PAGE_BITS_ALL) {
  537                         rv = vm_pager_get_pages(ksobj, &m, 1, 0);
  538                         if (rv != VM_PAGER_OK)
  539                                 panic("vm_thread_swapin: cannot get kstack for proc: %d", td->td_proc->p_pid);
  540                         m = vm_page_lookup(ksobj, i);
  541                 }
  542                 ma[i] = m;
  543                 vm_page_lock_queues();
  544                 vm_page_wire(m);
  545                 vm_page_unlock_queues();
  546                 vm_page_wakeup(m);
  547         }
  548         VM_OBJECT_UNLOCK(ksobj);
  549         pmap_qenter(td->td_kstack, ma, pages);
  550         cpu_thread_swapin(td);
  551 }
  552 
  553 /*
  554  * Implement fork's actions on an address space.
  555  * Here we arrange for the address space to be copied or referenced,
  556  * allocate a user struct (pcb and kernel stack), then call the
  557  * machine-dependent layer to fill those in and make the new process
  558  * ready to run.  The new process is set up so that it returns directly
  559  * to user mode to avoid stack copying and relocation problems.
  560  */
  561 int
  562 vm_forkproc(td, p2, td2, vm2, flags)
  563         struct thread *td;
  564         struct proc *p2;
  565         struct thread *td2;
  566         struct vmspace *vm2;
  567         int flags;
  568 {
  569         struct proc *p1 = td->td_proc;
  570         int error;
  571 
  572         if ((flags & RFPROC) == 0) {
  573                 /*
  574                  * Divorce the memory, if it is shared, essentially
  575                  * this changes shared memory amongst threads, into
  576                  * COW locally.
  577                  */
  578                 if ((flags & RFMEM) == 0) {
  579                         if (p1->p_vmspace->vm_refcnt > 1) {
  580                                 error = vmspace_unshare(p1);
  581                                 if (error)
  582                                         return (error);
  583                         }
  584                 }
  585                 cpu_fork(td, p2, td2, flags);
  586                 return (0);
  587         }
  588 
  589         if (flags & RFMEM) {
  590                 p2->p_vmspace = p1->p_vmspace;
  591                 atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
  592         }
  593 
  594         while (vm_page_count_severe()) {
  595                 VM_WAIT;
  596         }
  597 
  598         if ((flags & RFMEM) == 0) {
  599                 p2->p_vmspace = vm2;
  600                 if (p1->p_vmspace->vm_shm)
  601                         shmfork(p1, p2);
  602         }
  603 
  604         /*
  605          * cpu_fork will copy and update the pcb, set up the kernel stack,
  606          * and make the child ready to run.
  607          */
  608         cpu_fork(td, p2, td2, flags);
  609         return (0);
  610 }
  611 
  612 /*
  613  * Called after process has been wait(2)'ed apon and is being reaped.
  614  * The idea is to reclaim resources that we could not reclaim while
  615  * the process was still executing.
  616  */
  617 void
  618 vm_waitproc(p)
  619         struct proc *p;
  620 {
  621 
  622         vmspace_exitfree(p);            /* and clean-out the vmspace */
  623 }
  624 
  625 /*
  626  * Set default limits for VM system.
  627  * Called for proc 0, and then inherited by all others.
  628  *
  629  * XXX should probably act directly on proc0.
  630  */
  631 static void
  632 vm_init_limits(udata)
  633         void *udata;
  634 {
  635         struct proc *p = udata;
  636         struct plimit *limp;
  637         int rss_limit;
  638 
  639         /*
  640          * Set up the initial limits on process VM. Set the maximum resident
  641          * set size to be half of (reasonably) available memory.  Since this
  642          * is a soft limit, it comes into effect only when the system is out
  643          * of memory - half of main memory helps to favor smaller processes,
  644          * and reduces thrashing of the object cache.
  645          */
  646         limp = p->p_limit;
  647         limp->pl_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
  648         limp->pl_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
  649         limp->pl_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
  650         limp->pl_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
  651         /* limit the limit to no less than 2MB */
  652         rss_limit = max(cnt.v_free_count, 512);
  653         limp->pl_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
  654         limp->pl_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
  655 }
  656 
  657 void
  658 faultin(p)
  659         struct proc *p;
  660 {
  661 #ifdef NO_SWAPPING
  662 
  663         PROC_LOCK_ASSERT(p, MA_OWNED);
  664         if ((p->p_flag & P_INMEM) == 0)
  665                 panic("faultin: proc swapped out with NO_SWAPPING!");
  666 #else /* !NO_SWAPPING */
  667         struct thread *td;
  668 
  669         PROC_LOCK_ASSERT(p, MA_OWNED);
  670         /*
  671          * If another process is swapping in this process,
  672          * just wait until it finishes.
  673          */
  674         if (p->p_flag & P_SWAPPINGIN) {
  675                 while (p->p_flag & P_SWAPPINGIN)
  676                         msleep(&p->p_flag, &p->p_mtx, PVM, "faultin", 0);
  677                 return;
  678         }
  679         if ((p->p_flag & P_INMEM) == 0) {
  680                 /*
  681                  * Don't let another thread swap process p out while we are
  682                  * busy swapping it in.
  683                  */
  684                 ++p->p_lock;
  685                 p->p_flag |= P_SWAPPINGIN;
  686                 PROC_UNLOCK(p);
  687 
  688                 /*
  689                  * We hold no lock here because the list of threads
  690                  * can not change while all threads in the process are
  691                  * swapped out.
  692                  */
  693                 FOREACH_THREAD_IN_PROC(p, td)
  694                         vm_thread_swapin(td);
  695                 PROC_LOCK(p);
  696                 swapclear(p);
  697                 p->p_swtick = ticks;
  698 
  699                 wakeup(&p->p_flag);
  700 
  701                 /* Allow other threads to swap p out now. */
  702                 --p->p_lock;
  703         }
  704 #endif /* NO_SWAPPING */
  705 }
  706 
  707 /*
  708  * This swapin algorithm attempts to swap-in processes only if there
  709  * is enough space for them.  Of course, if a process waits for a long
  710  * time, it will be swapped in anyway.
  711  *
  712  * Giant is held on entry.
  713  */
  714 /* ARGSUSED*/
  715 static void
  716 scheduler(dummy)
  717         void *dummy;
  718 {
  719         struct proc *p;
  720         struct thread *td;
  721         struct proc *pp;
  722         int slptime;
  723         int swtime;
  724         int ppri;
  725         int pri;
  726 
  727         mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
  728         mtx_unlock(&Giant);
  729 
  730 loop:
  731         if (vm_page_count_min()) {
  732                 VM_WAIT;
  733                 goto loop;
  734         }
  735 
  736         pp = NULL;
  737         ppri = INT_MIN;
  738         sx_slock(&allproc_lock);
  739         FOREACH_PROC_IN_SYSTEM(p) {
  740                 PROC_LOCK(p);
  741                 if (p->p_flag & (P_SWAPPINGOUT | P_SWAPPINGIN | P_INMEM)) {
  742                         PROC_UNLOCK(p);
  743                         continue;
  744                 }
  745                 swtime = (ticks - p->p_swtick) / hz;
  746                 FOREACH_THREAD_IN_PROC(p, td) {
  747                         /*
  748                          * An otherwise runnable thread of a process
  749                          * swapped out has only the TDI_SWAPPED bit set.
  750                          * 
  751                          */
  752                         thread_lock(td);
  753                         if (td->td_inhibitors == TDI_SWAPPED) {
  754                                 slptime = (ticks - td->td_slptick) / hz;
  755                                 pri = swtime + slptime;
  756                                 if ((td->td_flags & TDF_SWAPINREQ) == 0)
  757                                         pri -= p->p_nice * 8;
  758                                 /*
  759                                  * if this thread is higher priority
  760                                  * and there is enough space, then select
  761                                  * this process instead of the previous
  762                                  * selection.
  763                                  */
  764                                 if (pri > ppri) {
  765                                         pp = p;
  766                                         ppri = pri;
  767                                 }
  768                         }
  769                         thread_unlock(td);
  770                 }
  771                 PROC_UNLOCK(p);
  772         }
  773         sx_sunlock(&allproc_lock);
  774 
  775         /*
  776          * Nothing to do, back to sleep.
  777          */
  778         if ((p = pp) == NULL) {
  779                 tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
  780                 goto loop;
  781         }
  782         PROC_LOCK(p);
  783 
  784         /*
  785          * Another process may be bringing or may have already
  786          * brought this process in while we traverse all threads.
  787          * Or, this process may even be being swapped out again.
  788          */
  789         if (p->p_flag & (P_INMEM | P_SWAPPINGOUT | P_SWAPPINGIN)) {
  790                 PROC_UNLOCK(p);
  791                 goto loop;
  792         }
  793 
  794         /*
  795          * We would like to bring someone in. (only if there is space).
  796          * [What checks the space? ]
  797          */
  798         faultin(p);
  799         PROC_UNLOCK(p);
  800         goto loop;
  801 }
  802 
  803 void
  804 kick_proc0(void)
  805 {
  806 
  807         wakeup(&proc0);
  808 }
  809 
  810 #ifndef NO_SWAPPING
  811 
  812 /*
  813  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
  814  */
  815 static int swap_idle_threshold1 = 2;
  816 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
  817     &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
  818 
  819 /*
  820  * Swap_idle_threshold2 is the time that a process can be idle before
  821  * it will be swapped out, if idle swapping is enabled.
  822  */
  823 static int swap_idle_threshold2 = 10;
  824 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
  825     &swap_idle_threshold2, 0, "Time before a process will be swapped out");
  826 
  827 /*
  828  * Swapout is driven by the pageout daemon.  Very simple, we find eligible
  829  * procs and swap out their stacks.  We try to always "swap" at least one
  830  * process in case we need the room for a swapin.
  831  * If any procs have been sleeping/stopped for at least maxslp seconds,
  832  * they are swapped.  Else, we swap the longest-sleeping or stopped process,
  833  * if any, otherwise the longest-resident process.
  834  */
  835 void
  836 swapout_procs(action)
  837 int action;
  838 {
  839         struct proc *p;
  840         struct thread *td;
  841         int didswap = 0;
  842 
  843 retry:
  844         sx_slock(&allproc_lock);
  845         FOREACH_PROC_IN_SYSTEM(p) {
  846                 struct vmspace *vm;
  847                 int minslptime = 100000;
  848                 int slptime;
  849                 
  850                 /*
  851                  * Watch out for a process in
  852                  * creation.  It may have no
  853                  * address space or lock yet.
  854                  */
  855                 if (p->p_state == PRS_NEW)
  856                         continue;
  857                 /*
  858                  * An aio daemon switches its
  859                  * address space while running.
  860                  * Perform a quick check whether
  861                  * a process has P_SYSTEM.
  862                  */
  863                 if ((p->p_flag & P_SYSTEM) != 0)
  864                         continue;
  865                 /*
  866                  * Do not swapout a process that
  867                  * is waiting for VM data
  868                  * structures as there is a possible
  869                  * deadlock.  Test this first as
  870                  * this may block.
  871                  *
  872                  * Lock the map until swapout
  873                  * finishes, or a thread of this
  874                  * process may attempt to alter
  875                  * the map.
  876                  */
  877                 vm = vmspace_acquire_ref(p);
  878                 if (vm == NULL)
  879                         continue;
  880                 if (!vm_map_trylock(&vm->vm_map))
  881                         goto nextproc1;
  882 
  883                 PROC_LOCK(p);
  884                 if (p->p_lock != 0 ||
  885                     (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
  886                     ) != 0) {
  887                         goto nextproc;
  888                 }
  889                 /*
  890                  * only aiod changes vmspace, however it will be
  891                  * skipped because of the if statement above checking 
  892                  * for P_SYSTEM
  893                  */
  894                 if ((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) != P_INMEM)
  895                         goto nextproc;
  896 
  897                 switch (p->p_state) {
  898                 default:
  899                         /* Don't swap out processes in any sort
  900                          * of 'special' state. */
  901                         break;
  902 
  903                 case PRS_NORMAL:
  904                         /*
  905                          * do not swapout a realtime process
  906                          * Check all the thread groups..
  907                          */
  908                         FOREACH_THREAD_IN_PROC(p, td) {
  909                                 thread_lock(td);
  910                                 if (PRI_IS_REALTIME(td->td_pri_class)) {
  911                                         thread_unlock(td);
  912                                         goto nextproc;
  913                                 }
  914                                 slptime = (ticks - td->td_slptick) / hz;
  915                                 /*
  916                                  * Guarantee swap_idle_threshold1
  917                                  * time in memory.
  918                                  */
  919                                 if (slptime < swap_idle_threshold1) {
  920                                         thread_unlock(td);
  921                                         goto nextproc;
  922                                 }
  923 
  924                                 /*
  925                                  * Do not swapout a process if it is
  926                                  * waiting on a critical event of some
  927                                  * kind or there is a thread whose
  928                                  * pageable memory may be accessed.
  929                                  *
  930                                  * This could be refined to support
  931                                  * swapping out a thread.
  932                                  */
  933                                 if (!thread_safetoswapout(td)) {
  934                                         thread_unlock(td);
  935                                         goto nextproc;
  936                                 }
  937                                 /*
  938                                  * If the system is under memory stress,
  939                                  * or if we are swapping
  940                                  * idle processes >= swap_idle_threshold2,
  941                                  * then swap the process out.
  942                                  */
  943                                 if (((action & VM_SWAP_NORMAL) == 0) &&
  944                                     (((action & VM_SWAP_IDLE) == 0) ||
  945                                     (slptime < swap_idle_threshold2))) {
  946                                         thread_unlock(td);
  947                                         goto nextproc;
  948                                 }
  949 
  950                                 if (minslptime > slptime)
  951                                         minslptime = slptime;
  952                                 thread_unlock(td);
  953                         }
  954 
  955                         /*
  956                          * If the pageout daemon didn't free enough pages,
  957                          * or if this process is idle and the system is
  958                          * configured to swap proactively, swap it out.
  959                          */
  960                         if ((action & VM_SWAP_NORMAL) ||
  961                                 ((action & VM_SWAP_IDLE) &&
  962                                  (minslptime > swap_idle_threshold2))) {
  963                                 if (swapout(p) == 0)
  964                                         didswap++;
  965                                 PROC_UNLOCK(p);
  966                                 vm_map_unlock(&vm->vm_map);
  967                                 vmspace_free(vm);
  968                                 sx_sunlock(&allproc_lock);
  969                                 goto retry;
  970                         }
  971                 }
  972 nextproc:
  973                 PROC_UNLOCK(p);
  974                 vm_map_unlock(&vm->vm_map);
  975 nextproc1:
  976                 vmspace_free(vm);
  977                 continue;
  978         }
  979         sx_sunlock(&allproc_lock);
  980         /*
  981          * If we swapped something out, and another process needed memory,
  982          * then wakeup the sched process.
  983          */
  984         if (didswap)
  985                 wakeup(&proc0);
  986 }
  987 
  988 static void
  989 swapclear(p)
  990         struct proc *p;
  991 {
  992         struct thread *td;
  993 
  994         PROC_LOCK_ASSERT(p, MA_OWNED);
  995 
  996         FOREACH_THREAD_IN_PROC(p, td) {
  997                 thread_lock(td);
  998                 td->td_flags |= TDF_INMEM;
  999                 td->td_flags &= ~TDF_SWAPINREQ;
 1000                 TD_CLR_SWAPPED(td);
 1001                 if (TD_CAN_RUN(td))
 1002                         if (setrunnable(td)) {
 1003 #ifdef INVARIANTS
 1004                                 /*
 1005                                  * XXX: We just cleared TDI_SWAPPED
 1006                                  * above and set TDF_INMEM, so this
 1007                                  * should never happen.
 1008                                  */
 1009                                 panic("not waking up swapper");
 1010 #endif
 1011                         }
 1012                 thread_unlock(td);
 1013         }
 1014         p->p_flag &= ~(P_SWAPPINGIN|P_SWAPPINGOUT);
 1015         p->p_flag |= P_INMEM;
 1016 }
 1017 
 1018 static int
 1019 swapout(p)
 1020         struct proc *p;
 1021 {
 1022         struct thread *td;
 1023 
 1024         PROC_LOCK_ASSERT(p, MA_OWNED);
 1025 #if defined(SWAP_DEBUG)
 1026         printf("swapping out %d\n", p->p_pid);
 1027 #endif
 1028 
 1029         /*
 1030          * The states of this process and its threads may have changed
 1031          * by now.  Assuming that there is only one pageout daemon thread,
 1032          * this process should still be in memory.
 1033          */
 1034         KASSERT((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) == P_INMEM,
 1035                 ("swapout: lost a swapout race?"));
 1036 
 1037         /*
 1038          * remember the process resident count
 1039          */
 1040         p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
 1041         /*
 1042          * Check and mark all threads before we proceed.
 1043          */
 1044         p->p_flag &= ~P_INMEM;
 1045         p->p_flag |= P_SWAPPINGOUT;
 1046         FOREACH_THREAD_IN_PROC(p, td) {
 1047                 thread_lock(td);
 1048                 if (!thread_safetoswapout(td)) {
 1049                         thread_unlock(td);
 1050                         swapclear(p);
 1051                         return (EBUSY);
 1052                 }
 1053                 td->td_flags &= ~TDF_INMEM;
 1054                 TD_SET_SWAPPED(td);
 1055                 thread_unlock(td);
 1056         }
 1057         td = FIRST_THREAD_IN_PROC(p);
 1058         ++td->td_ru.ru_nswap;
 1059         PROC_UNLOCK(p);
 1060 
 1061         /*
 1062          * This list is stable because all threads are now prevented from
 1063          * running.  The list is only modified in the context of a running
 1064          * thread in this process.
 1065          */
 1066         FOREACH_THREAD_IN_PROC(p, td)
 1067                 vm_thread_swapout(td);
 1068 
 1069         PROC_LOCK(p);
 1070         p->p_flag &= ~P_SWAPPINGOUT;
 1071         p->p_swtick = ticks;
 1072         return (0);
 1073 }
 1074 #endif /* !NO_SWAPPING */

Cache object: 684fa7d2dc9c6cbdb30ccd023f7a1ee2


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.