FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_glue.c
1 /*-
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * from: @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Permission to use, copy, modify and distribute this software and
39 * its documentation is hereby granted, provided that both the copyright
40 * notice and this permission notice appear in all copies of the
41 * software, derivative works or modified versions, and any portions
42 * thereof, and that both notices appear in supporting documentation.
43 *
44 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47 *
48 * Carnegie Mellon requests users of this software to return to
49 *
50 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
51 * School of Computer Science
52 * Carnegie Mellon University
53 * Pittsburgh PA 15213-3890
54 *
55 * any improvements or extensions that they make and grant Carnegie the
56 * rights to redistribute these changes.
57 */
58
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD: releng/8.0/sys/vm/vm_glue.c 196977 2009-09-08 15:31:23Z kib $");
61
62 #include "opt_vm.h"
63 #include "opt_kstack_pages.h"
64 #include "opt_kstack_max_pages.h"
65
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/limits.h>
69 #include <sys/lock.h>
70 #include <sys/mutex.h>
71 #include <sys/proc.h>
72 #include <sys/resourcevar.h>
73 #include <sys/sched.h>
74 #include <sys/sf_buf.h>
75 #include <sys/shm.h>
76 #include <sys/vmmeter.h>
77 #include <sys/sx.h>
78 #include <sys/sysctl.h>
79
80 #include <sys/eventhandler.h>
81 #include <sys/kernel.h>
82 #include <sys/ktr.h>
83 #include <sys/unistd.h>
84
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_extern.h>
94 #include <vm/vm_pager.h>
95 #include <vm/swap_pager.h>
96
97 extern int maxslp;
98
99 /*
100 * System initialization
101 *
102 * Note: proc0 from proc.h
103 */
104 static void vm_init_limits(void *);
105 SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0);
106
107 /*
108 * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
109 *
110 * Note: run scheduling should be divorced from the vm system.
111 */
112 static void scheduler(void *);
113 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL);
114
115 #ifndef NO_SWAPPING
116 static int swapout(struct proc *);
117 static void swapclear(struct proc *);
118 #endif
119
120 /*
121 * MPSAFE
122 *
123 * WARNING! This code calls vm_map_check_protection() which only checks
124 * the associated vm_map_entry range. It does not determine whether the
125 * contents of the memory is actually readable or writable. In most cases
126 * just checking the vm_map_entry is sufficient within the kernel's address
127 * space.
128 */
129 int
130 kernacc(addr, len, rw)
131 void *addr;
132 int len, rw;
133 {
134 boolean_t rv;
135 vm_offset_t saddr, eaddr;
136 vm_prot_t prot;
137
138 KASSERT((rw & ~VM_PROT_ALL) == 0,
139 ("illegal ``rw'' argument to kernacc (%x)\n", rw));
140
141 if ((vm_offset_t)addr + len > kernel_map->max_offset ||
142 (vm_offset_t)addr + len < (vm_offset_t)addr)
143 return (FALSE);
144
145 prot = rw;
146 saddr = trunc_page((vm_offset_t)addr);
147 eaddr = round_page((vm_offset_t)addr + len);
148 vm_map_lock_read(kernel_map);
149 rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
150 vm_map_unlock_read(kernel_map);
151 return (rv == TRUE);
152 }
153
154 /*
155 * MPSAFE
156 *
157 * WARNING! This code calls vm_map_check_protection() which only checks
158 * the associated vm_map_entry range. It does not determine whether the
159 * contents of the memory is actually readable or writable. vmapbuf(),
160 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
161 * used in conjuction with this call.
162 */
163 int
164 useracc(addr, len, rw)
165 void *addr;
166 int len, rw;
167 {
168 boolean_t rv;
169 vm_prot_t prot;
170 vm_map_t map;
171
172 KASSERT((rw & ~VM_PROT_ALL) == 0,
173 ("illegal ``rw'' argument to useracc (%x)\n", rw));
174 prot = rw;
175 map = &curproc->p_vmspace->vm_map;
176 if ((vm_offset_t)addr + len > vm_map_max(map) ||
177 (vm_offset_t)addr + len < (vm_offset_t)addr) {
178 return (FALSE);
179 }
180 vm_map_lock_read(map);
181 rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
182 round_page((vm_offset_t)addr + len), prot);
183 vm_map_unlock_read(map);
184 return (rv == TRUE);
185 }
186
187 int
188 vslock(void *addr, size_t len)
189 {
190 vm_offset_t end, last, start;
191 vm_size_t npages;
192 int error;
193
194 last = (vm_offset_t)addr + len;
195 start = trunc_page((vm_offset_t)addr);
196 end = round_page(last);
197 if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
198 return (EINVAL);
199 npages = atop(end - start);
200 if (npages > vm_page_max_wired)
201 return (ENOMEM);
202 PROC_LOCK(curproc);
203 if (ptoa(npages +
204 pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))) >
205 lim_cur(curproc, RLIMIT_MEMLOCK)) {
206 PROC_UNLOCK(curproc);
207 return (ENOMEM);
208 }
209 PROC_UNLOCK(curproc);
210 #if 0
211 /*
212 * XXX - not yet
213 *
214 * The limit for transient usage of wired pages should be
215 * larger than for "permanent" wired pages (mlock()).
216 *
217 * Also, the sysctl code, which is the only present user
218 * of vslock(), does a hard loop on EAGAIN.
219 */
220 if (npages + cnt.v_wire_count > vm_page_max_wired)
221 return (EAGAIN);
222 #endif
223 error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
224 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
225 /*
226 * Return EFAULT on error to match copy{in,out}() behaviour
227 * rather than returning ENOMEM like mlock() would.
228 */
229 return (error == KERN_SUCCESS ? 0 : EFAULT);
230 }
231
232 void
233 vsunlock(void *addr, size_t len)
234 {
235
236 /* Rely on the parameter sanity checks performed by vslock(). */
237 (void)vm_map_unwire(&curproc->p_vmspace->vm_map,
238 trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
239 VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
240 }
241
242 /*
243 * Pin the page contained within the given object at the given offset. If the
244 * page is not resident, allocate and load it using the given object's pager.
245 * Return the pinned page if successful; otherwise, return NULL.
246 */
247 static vm_page_t
248 vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
249 {
250 vm_page_t m, ma[1];
251 vm_pindex_t pindex;
252 int rv;
253
254 VM_OBJECT_LOCK(object);
255 pindex = OFF_TO_IDX(offset);
256 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
257 if (m->valid != VM_PAGE_BITS_ALL) {
258 ma[0] = m;
259 rv = vm_pager_get_pages(object, ma, 1, 0);
260 m = vm_page_lookup(object, pindex);
261 if (m == NULL)
262 goto out;
263 if (rv != VM_PAGER_OK) {
264 vm_page_lock_queues();
265 vm_page_free(m);
266 vm_page_unlock_queues();
267 m = NULL;
268 goto out;
269 }
270 }
271 vm_page_lock_queues();
272 vm_page_hold(m);
273 vm_page_unlock_queues();
274 vm_page_wakeup(m);
275 out:
276 VM_OBJECT_UNLOCK(object);
277 return (m);
278 }
279
280 /*
281 * Return a CPU private mapping to the page at the given offset within the
282 * given object. The page is pinned before it is mapped.
283 */
284 struct sf_buf *
285 vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
286 {
287 vm_page_t m;
288
289 m = vm_imgact_hold_page(object, offset);
290 if (m == NULL)
291 return (NULL);
292 sched_pin();
293 return (sf_buf_alloc(m, SFB_CPUPRIVATE));
294 }
295
296 /*
297 * Destroy the given CPU private mapping and unpin the page that it mapped.
298 */
299 void
300 vm_imgact_unmap_page(struct sf_buf *sf)
301 {
302 vm_page_t m;
303
304 m = sf_buf_page(sf);
305 sf_buf_free(sf);
306 sched_unpin();
307 vm_page_lock_queues();
308 vm_page_unhold(m);
309 vm_page_unlock_queues();
310 }
311
312 struct kstack_cache_entry {
313 vm_object_t ksobj;
314 struct kstack_cache_entry *next_ks_entry;
315 };
316
317 static struct kstack_cache_entry *kstack_cache;
318 static int kstack_cache_size = 128;
319 static int kstacks;
320 static struct mtx kstack_cache_mtx;
321 SYSCTL_INT(_vm, OID_AUTO, kstack_cache_size, CTLFLAG_RW, &kstack_cache_size, 0,
322 "");
323 SYSCTL_INT(_vm, OID_AUTO, kstacks, CTLFLAG_RD, &kstacks, 0,
324 "");
325
326 #ifndef KSTACK_MAX_PAGES
327 #define KSTACK_MAX_PAGES 32
328 #endif
329
330 /*
331 * Create the kernel stack (including pcb for i386) for a new thread.
332 * This routine directly affects the fork perf for a process and
333 * create performance for a thread.
334 */
335 int
336 vm_thread_new(struct thread *td, int pages)
337 {
338 vm_object_t ksobj;
339 vm_offset_t ks;
340 vm_page_t m, ma[KSTACK_MAX_PAGES];
341 struct kstack_cache_entry *ks_ce;
342 int i;
343
344 /* Bounds check */
345 if (pages <= 1)
346 pages = KSTACK_PAGES;
347 else if (pages > KSTACK_MAX_PAGES)
348 pages = KSTACK_MAX_PAGES;
349
350 if (pages == KSTACK_PAGES) {
351 mtx_lock(&kstack_cache_mtx);
352 if (kstack_cache != NULL) {
353 ks_ce = kstack_cache;
354 kstack_cache = ks_ce->next_ks_entry;
355 mtx_unlock(&kstack_cache_mtx);
356
357 td->td_kstack_obj = ks_ce->ksobj;
358 td->td_kstack = (vm_offset_t)ks_ce;
359 td->td_kstack_pages = KSTACK_PAGES;
360 return (1);
361 }
362 mtx_unlock(&kstack_cache_mtx);
363 }
364
365 /*
366 * Allocate an object for the kstack.
367 */
368 ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
369
370 /*
371 * Get a kernel virtual address for this thread's kstack.
372 */
373 ks = kmem_alloc_nofault(kernel_map,
374 (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
375 if (ks == 0) {
376 printf("vm_thread_new: kstack allocation failed\n");
377 vm_object_deallocate(ksobj);
378 return (0);
379 }
380
381 atomic_add_int(&kstacks, 1);
382 if (KSTACK_GUARD_PAGES != 0) {
383 pmap_qremove(ks, KSTACK_GUARD_PAGES);
384 ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
385 }
386 td->td_kstack_obj = ksobj;
387 td->td_kstack = ks;
388 /*
389 * Knowing the number of pages allocated is useful when you
390 * want to deallocate them.
391 */
392 td->td_kstack_pages = pages;
393 /*
394 * For the length of the stack, link in a real page of ram for each
395 * page of stack.
396 */
397 VM_OBJECT_LOCK(ksobj);
398 for (i = 0; i < pages; i++) {
399 /*
400 * Get a kernel stack page.
401 */
402 m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
403 VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
404 ma[i] = m;
405 m->valid = VM_PAGE_BITS_ALL;
406 }
407 VM_OBJECT_UNLOCK(ksobj);
408 pmap_qenter(ks, ma, pages);
409 return (1);
410 }
411
412 static void
413 vm_thread_stack_dispose(vm_object_t ksobj, vm_offset_t ks, int pages)
414 {
415 vm_page_t m;
416 int i;
417
418 atomic_add_int(&kstacks, -1);
419 pmap_qremove(ks, pages);
420 VM_OBJECT_LOCK(ksobj);
421 for (i = 0; i < pages; i++) {
422 m = vm_page_lookup(ksobj, i);
423 if (m == NULL)
424 panic("vm_thread_dispose: kstack already missing?");
425 vm_page_lock_queues();
426 vm_page_unwire(m, 0);
427 vm_page_free(m);
428 vm_page_unlock_queues();
429 }
430 VM_OBJECT_UNLOCK(ksobj);
431 vm_object_deallocate(ksobj);
432 kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
433 (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
434 }
435
436 /*
437 * Dispose of a thread's kernel stack.
438 */
439 void
440 vm_thread_dispose(struct thread *td)
441 {
442 vm_object_t ksobj;
443 vm_offset_t ks;
444 struct kstack_cache_entry *ks_ce;
445 int pages;
446
447 pages = td->td_kstack_pages;
448 ksobj = td->td_kstack_obj;
449 ks = td->td_kstack;
450 td->td_kstack = 0;
451 td->td_kstack_pages = 0;
452 if (pages == KSTACK_PAGES && kstacks <= kstack_cache_size) {
453 ks_ce = (struct kstack_cache_entry *)ks;
454 ks_ce->ksobj = ksobj;
455 mtx_lock(&kstack_cache_mtx);
456 ks_ce->next_ks_entry = kstack_cache;
457 kstack_cache = ks_ce;
458 mtx_unlock(&kstack_cache_mtx);
459 return;
460 }
461 vm_thread_stack_dispose(ksobj, ks, pages);
462 }
463
464 static void
465 vm_thread_stack_lowmem(void *nulll)
466 {
467 struct kstack_cache_entry *ks_ce, *ks_ce1;
468
469 mtx_lock(&kstack_cache_mtx);
470 ks_ce = kstack_cache;
471 kstack_cache = NULL;
472 mtx_unlock(&kstack_cache_mtx);
473
474 while (ks_ce != NULL) {
475 ks_ce1 = ks_ce;
476 ks_ce = ks_ce->next_ks_entry;
477
478 vm_thread_stack_dispose(ks_ce1->ksobj, (vm_offset_t)ks_ce1,
479 KSTACK_PAGES);
480 }
481 }
482
483 static void
484 kstack_cache_init(void *nulll)
485 {
486
487 EVENTHANDLER_REGISTER(vm_lowmem, vm_thread_stack_lowmem, NULL,
488 EVENTHANDLER_PRI_ANY);
489 }
490
491 MTX_SYSINIT(kstack_cache, &kstack_cache_mtx, "kstkch", MTX_DEF);
492 SYSINIT(vm_kstacks, SI_SUB_KTHREAD_INIT, SI_ORDER_ANY, kstack_cache_init, NULL);
493
494 /*
495 * Allow a thread's kernel stack to be paged out.
496 */
497 void
498 vm_thread_swapout(struct thread *td)
499 {
500 vm_object_t ksobj;
501 vm_page_t m;
502 int i, pages;
503
504 cpu_thread_swapout(td);
505 pages = td->td_kstack_pages;
506 ksobj = td->td_kstack_obj;
507 pmap_qremove(td->td_kstack, pages);
508 VM_OBJECT_LOCK(ksobj);
509 for (i = 0; i < pages; i++) {
510 m = vm_page_lookup(ksobj, i);
511 if (m == NULL)
512 panic("vm_thread_swapout: kstack already missing?");
513 vm_page_lock_queues();
514 vm_page_dirty(m);
515 vm_page_unwire(m, 0);
516 vm_page_unlock_queues();
517 }
518 VM_OBJECT_UNLOCK(ksobj);
519 }
520
521 /*
522 * Bring the kernel stack for a specified thread back in.
523 */
524 void
525 vm_thread_swapin(struct thread *td)
526 {
527 vm_object_t ksobj;
528 vm_page_t m, ma[KSTACK_MAX_PAGES];
529 int i, pages, rv;
530
531 pages = td->td_kstack_pages;
532 ksobj = td->td_kstack_obj;
533 VM_OBJECT_LOCK(ksobj);
534 for (i = 0; i < pages; i++) {
535 m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
536 if (m->valid != VM_PAGE_BITS_ALL) {
537 rv = vm_pager_get_pages(ksobj, &m, 1, 0);
538 if (rv != VM_PAGER_OK)
539 panic("vm_thread_swapin: cannot get kstack for proc: %d", td->td_proc->p_pid);
540 m = vm_page_lookup(ksobj, i);
541 }
542 ma[i] = m;
543 vm_page_lock_queues();
544 vm_page_wire(m);
545 vm_page_unlock_queues();
546 vm_page_wakeup(m);
547 }
548 VM_OBJECT_UNLOCK(ksobj);
549 pmap_qenter(td->td_kstack, ma, pages);
550 cpu_thread_swapin(td);
551 }
552
553 /*
554 * Implement fork's actions on an address space.
555 * Here we arrange for the address space to be copied or referenced,
556 * allocate a user struct (pcb and kernel stack), then call the
557 * machine-dependent layer to fill those in and make the new process
558 * ready to run. The new process is set up so that it returns directly
559 * to user mode to avoid stack copying and relocation problems.
560 */
561 int
562 vm_forkproc(td, p2, td2, vm2, flags)
563 struct thread *td;
564 struct proc *p2;
565 struct thread *td2;
566 struct vmspace *vm2;
567 int flags;
568 {
569 struct proc *p1 = td->td_proc;
570 int error;
571
572 if ((flags & RFPROC) == 0) {
573 /*
574 * Divorce the memory, if it is shared, essentially
575 * this changes shared memory amongst threads, into
576 * COW locally.
577 */
578 if ((flags & RFMEM) == 0) {
579 if (p1->p_vmspace->vm_refcnt > 1) {
580 error = vmspace_unshare(p1);
581 if (error)
582 return (error);
583 }
584 }
585 cpu_fork(td, p2, td2, flags);
586 return (0);
587 }
588
589 if (flags & RFMEM) {
590 p2->p_vmspace = p1->p_vmspace;
591 atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
592 }
593
594 while (vm_page_count_severe()) {
595 VM_WAIT;
596 }
597
598 if ((flags & RFMEM) == 0) {
599 p2->p_vmspace = vm2;
600 if (p1->p_vmspace->vm_shm)
601 shmfork(p1, p2);
602 }
603
604 /*
605 * cpu_fork will copy and update the pcb, set up the kernel stack,
606 * and make the child ready to run.
607 */
608 cpu_fork(td, p2, td2, flags);
609 return (0);
610 }
611
612 /*
613 * Called after process has been wait(2)'ed apon and is being reaped.
614 * The idea is to reclaim resources that we could not reclaim while
615 * the process was still executing.
616 */
617 void
618 vm_waitproc(p)
619 struct proc *p;
620 {
621
622 vmspace_exitfree(p); /* and clean-out the vmspace */
623 }
624
625 /*
626 * Set default limits for VM system.
627 * Called for proc 0, and then inherited by all others.
628 *
629 * XXX should probably act directly on proc0.
630 */
631 static void
632 vm_init_limits(udata)
633 void *udata;
634 {
635 struct proc *p = udata;
636 struct plimit *limp;
637 int rss_limit;
638
639 /*
640 * Set up the initial limits on process VM. Set the maximum resident
641 * set size to be half of (reasonably) available memory. Since this
642 * is a soft limit, it comes into effect only when the system is out
643 * of memory - half of main memory helps to favor smaller processes,
644 * and reduces thrashing of the object cache.
645 */
646 limp = p->p_limit;
647 limp->pl_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
648 limp->pl_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
649 limp->pl_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
650 limp->pl_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
651 /* limit the limit to no less than 2MB */
652 rss_limit = max(cnt.v_free_count, 512);
653 limp->pl_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
654 limp->pl_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
655 }
656
657 void
658 faultin(p)
659 struct proc *p;
660 {
661 #ifdef NO_SWAPPING
662
663 PROC_LOCK_ASSERT(p, MA_OWNED);
664 if ((p->p_flag & P_INMEM) == 0)
665 panic("faultin: proc swapped out with NO_SWAPPING!");
666 #else /* !NO_SWAPPING */
667 struct thread *td;
668
669 PROC_LOCK_ASSERT(p, MA_OWNED);
670 /*
671 * If another process is swapping in this process,
672 * just wait until it finishes.
673 */
674 if (p->p_flag & P_SWAPPINGIN) {
675 while (p->p_flag & P_SWAPPINGIN)
676 msleep(&p->p_flag, &p->p_mtx, PVM, "faultin", 0);
677 return;
678 }
679 if ((p->p_flag & P_INMEM) == 0) {
680 /*
681 * Don't let another thread swap process p out while we are
682 * busy swapping it in.
683 */
684 ++p->p_lock;
685 p->p_flag |= P_SWAPPINGIN;
686 PROC_UNLOCK(p);
687
688 /*
689 * We hold no lock here because the list of threads
690 * can not change while all threads in the process are
691 * swapped out.
692 */
693 FOREACH_THREAD_IN_PROC(p, td)
694 vm_thread_swapin(td);
695 PROC_LOCK(p);
696 swapclear(p);
697 p->p_swtick = ticks;
698
699 wakeup(&p->p_flag);
700
701 /* Allow other threads to swap p out now. */
702 --p->p_lock;
703 }
704 #endif /* NO_SWAPPING */
705 }
706
707 /*
708 * This swapin algorithm attempts to swap-in processes only if there
709 * is enough space for them. Of course, if a process waits for a long
710 * time, it will be swapped in anyway.
711 *
712 * Giant is held on entry.
713 */
714 /* ARGSUSED*/
715 static void
716 scheduler(dummy)
717 void *dummy;
718 {
719 struct proc *p;
720 struct thread *td;
721 struct proc *pp;
722 int slptime;
723 int swtime;
724 int ppri;
725 int pri;
726
727 mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
728 mtx_unlock(&Giant);
729
730 loop:
731 if (vm_page_count_min()) {
732 VM_WAIT;
733 goto loop;
734 }
735
736 pp = NULL;
737 ppri = INT_MIN;
738 sx_slock(&allproc_lock);
739 FOREACH_PROC_IN_SYSTEM(p) {
740 PROC_LOCK(p);
741 if (p->p_flag & (P_SWAPPINGOUT | P_SWAPPINGIN | P_INMEM)) {
742 PROC_UNLOCK(p);
743 continue;
744 }
745 swtime = (ticks - p->p_swtick) / hz;
746 FOREACH_THREAD_IN_PROC(p, td) {
747 /*
748 * An otherwise runnable thread of a process
749 * swapped out has only the TDI_SWAPPED bit set.
750 *
751 */
752 thread_lock(td);
753 if (td->td_inhibitors == TDI_SWAPPED) {
754 slptime = (ticks - td->td_slptick) / hz;
755 pri = swtime + slptime;
756 if ((td->td_flags & TDF_SWAPINREQ) == 0)
757 pri -= p->p_nice * 8;
758 /*
759 * if this thread is higher priority
760 * and there is enough space, then select
761 * this process instead of the previous
762 * selection.
763 */
764 if (pri > ppri) {
765 pp = p;
766 ppri = pri;
767 }
768 }
769 thread_unlock(td);
770 }
771 PROC_UNLOCK(p);
772 }
773 sx_sunlock(&allproc_lock);
774
775 /*
776 * Nothing to do, back to sleep.
777 */
778 if ((p = pp) == NULL) {
779 tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
780 goto loop;
781 }
782 PROC_LOCK(p);
783
784 /*
785 * Another process may be bringing or may have already
786 * brought this process in while we traverse all threads.
787 * Or, this process may even be being swapped out again.
788 */
789 if (p->p_flag & (P_INMEM | P_SWAPPINGOUT | P_SWAPPINGIN)) {
790 PROC_UNLOCK(p);
791 goto loop;
792 }
793
794 /*
795 * We would like to bring someone in. (only if there is space).
796 * [What checks the space? ]
797 */
798 faultin(p);
799 PROC_UNLOCK(p);
800 goto loop;
801 }
802
803 void
804 kick_proc0(void)
805 {
806
807 wakeup(&proc0);
808 }
809
810 #ifndef NO_SWAPPING
811
812 /*
813 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
814 */
815 static int swap_idle_threshold1 = 2;
816 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
817 &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
818
819 /*
820 * Swap_idle_threshold2 is the time that a process can be idle before
821 * it will be swapped out, if idle swapping is enabled.
822 */
823 static int swap_idle_threshold2 = 10;
824 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
825 &swap_idle_threshold2, 0, "Time before a process will be swapped out");
826
827 /*
828 * Swapout is driven by the pageout daemon. Very simple, we find eligible
829 * procs and swap out their stacks. We try to always "swap" at least one
830 * process in case we need the room for a swapin.
831 * If any procs have been sleeping/stopped for at least maxslp seconds,
832 * they are swapped. Else, we swap the longest-sleeping or stopped process,
833 * if any, otherwise the longest-resident process.
834 */
835 void
836 swapout_procs(action)
837 int action;
838 {
839 struct proc *p;
840 struct thread *td;
841 int didswap = 0;
842
843 retry:
844 sx_slock(&allproc_lock);
845 FOREACH_PROC_IN_SYSTEM(p) {
846 struct vmspace *vm;
847 int minslptime = 100000;
848 int slptime;
849
850 /*
851 * Watch out for a process in
852 * creation. It may have no
853 * address space or lock yet.
854 */
855 if (p->p_state == PRS_NEW)
856 continue;
857 /*
858 * An aio daemon switches its
859 * address space while running.
860 * Perform a quick check whether
861 * a process has P_SYSTEM.
862 */
863 if ((p->p_flag & P_SYSTEM) != 0)
864 continue;
865 /*
866 * Do not swapout a process that
867 * is waiting for VM data
868 * structures as there is a possible
869 * deadlock. Test this first as
870 * this may block.
871 *
872 * Lock the map until swapout
873 * finishes, or a thread of this
874 * process may attempt to alter
875 * the map.
876 */
877 vm = vmspace_acquire_ref(p);
878 if (vm == NULL)
879 continue;
880 if (!vm_map_trylock(&vm->vm_map))
881 goto nextproc1;
882
883 PROC_LOCK(p);
884 if (p->p_lock != 0 ||
885 (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
886 ) != 0) {
887 goto nextproc;
888 }
889 /*
890 * only aiod changes vmspace, however it will be
891 * skipped because of the if statement above checking
892 * for P_SYSTEM
893 */
894 if ((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) != P_INMEM)
895 goto nextproc;
896
897 switch (p->p_state) {
898 default:
899 /* Don't swap out processes in any sort
900 * of 'special' state. */
901 break;
902
903 case PRS_NORMAL:
904 /*
905 * do not swapout a realtime process
906 * Check all the thread groups..
907 */
908 FOREACH_THREAD_IN_PROC(p, td) {
909 thread_lock(td);
910 if (PRI_IS_REALTIME(td->td_pri_class)) {
911 thread_unlock(td);
912 goto nextproc;
913 }
914 slptime = (ticks - td->td_slptick) / hz;
915 /*
916 * Guarantee swap_idle_threshold1
917 * time in memory.
918 */
919 if (slptime < swap_idle_threshold1) {
920 thread_unlock(td);
921 goto nextproc;
922 }
923
924 /*
925 * Do not swapout a process if it is
926 * waiting on a critical event of some
927 * kind or there is a thread whose
928 * pageable memory may be accessed.
929 *
930 * This could be refined to support
931 * swapping out a thread.
932 */
933 if (!thread_safetoswapout(td)) {
934 thread_unlock(td);
935 goto nextproc;
936 }
937 /*
938 * If the system is under memory stress,
939 * or if we are swapping
940 * idle processes >= swap_idle_threshold2,
941 * then swap the process out.
942 */
943 if (((action & VM_SWAP_NORMAL) == 0) &&
944 (((action & VM_SWAP_IDLE) == 0) ||
945 (slptime < swap_idle_threshold2))) {
946 thread_unlock(td);
947 goto nextproc;
948 }
949
950 if (minslptime > slptime)
951 minslptime = slptime;
952 thread_unlock(td);
953 }
954
955 /*
956 * If the pageout daemon didn't free enough pages,
957 * or if this process is idle and the system is
958 * configured to swap proactively, swap it out.
959 */
960 if ((action & VM_SWAP_NORMAL) ||
961 ((action & VM_SWAP_IDLE) &&
962 (minslptime > swap_idle_threshold2))) {
963 if (swapout(p) == 0)
964 didswap++;
965 PROC_UNLOCK(p);
966 vm_map_unlock(&vm->vm_map);
967 vmspace_free(vm);
968 sx_sunlock(&allproc_lock);
969 goto retry;
970 }
971 }
972 nextproc:
973 PROC_UNLOCK(p);
974 vm_map_unlock(&vm->vm_map);
975 nextproc1:
976 vmspace_free(vm);
977 continue;
978 }
979 sx_sunlock(&allproc_lock);
980 /*
981 * If we swapped something out, and another process needed memory,
982 * then wakeup the sched process.
983 */
984 if (didswap)
985 wakeup(&proc0);
986 }
987
988 static void
989 swapclear(p)
990 struct proc *p;
991 {
992 struct thread *td;
993
994 PROC_LOCK_ASSERT(p, MA_OWNED);
995
996 FOREACH_THREAD_IN_PROC(p, td) {
997 thread_lock(td);
998 td->td_flags |= TDF_INMEM;
999 td->td_flags &= ~TDF_SWAPINREQ;
1000 TD_CLR_SWAPPED(td);
1001 if (TD_CAN_RUN(td))
1002 if (setrunnable(td)) {
1003 #ifdef INVARIANTS
1004 /*
1005 * XXX: We just cleared TDI_SWAPPED
1006 * above and set TDF_INMEM, so this
1007 * should never happen.
1008 */
1009 panic("not waking up swapper");
1010 #endif
1011 }
1012 thread_unlock(td);
1013 }
1014 p->p_flag &= ~(P_SWAPPINGIN|P_SWAPPINGOUT);
1015 p->p_flag |= P_INMEM;
1016 }
1017
1018 static int
1019 swapout(p)
1020 struct proc *p;
1021 {
1022 struct thread *td;
1023
1024 PROC_LOCK_ASSERT(p, MA_OWNED);
1025 #if defined(SWAP_DEBUG)
1026 printf("swapping out %d\n", p->p_pid);
1027 #endif
1028
1029 /*
1030 * The states of this process and its threads may have changed
1031 * by now. Assuming that there is only one pageout daemon thread,
1032 * this process should still be in memory.
1033 */
1034 KASSERT((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) == P_INMEM,
1035 ("swapout: lost a swapout race?"));
1036
1037 /*
1038 * remember the process resident count
1039 */
1040 p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1041 /*
1042 * Check and mark all threads before we proceed.
1043 */
1044 p->p_flag &= ~P_INMEM;
1045 p->p_flag |= P_SWAPPINGOUT;
1046 FOREACH_THREAD_IN_PROC(p, td) {
1047 thread_lock(td);
1048 if (!thread_safetoswapout(td)) {
1049 thread_unlock(td);
1050 swapclear(p);
1051 return (EBUSY);
1052 }
1053 td->td_flags &= ~TDF_INMEM;
1054 TD_SET_SWAPPED(td);
1055 thread_unlock(td);
1056 }
1057 td = FIRST_THREAD_IN_PROC(p);
1058 ++td->td_ru.ru_nswap;
1059 PROC_UNLOCK(p);
1060
1061 /*
1062 * This list is stable because all threads are now prevented from
1063 * running. The list is only modified in the context of a running
1064 * thread in this process.
1065 */
1066 FOREACH_THREAD_IN_PROC(p, td)
1067 vm_thread_swapout(td);
1068
1069 PROC_LOCK(p);
1070 p->p_flag &= ~P_SWAPPINGOUT;
1071 p->p_swtick = ticks;
1072 return (0);
1073 }
1074 #endif /* !NO_SWAPPING */
Cache object: 684fa7d2dc9c6cbdb30ccd023f7a1ee2
|