The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_glue.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)vm_glue.c     8.6 (Berkeley) 1/5/94
   33  *
   34  *
   35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   36  * All rights reserved.
   37  *
   38  * Permission to use, copy, modify and distribute this software and
   39  * its documentation is hereby granted, provided that both the copyright
   40  * notice and this permission notice appear in all copies of the
   41  * software, derivative works or modified versions, and any portions
   42  * thereof, and that both notices appear in supporting documentation.
   43  *
   44  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   45  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   46  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   47  *
   48  * Carnegie Mellon requests users of this software to return to
   49  *
   50  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   51  *  School of Computer Science
   52  *  Carnegie Mellon University
   53  *  Pittsburgh PA 15213-3890
   54  *
   55  * any improvements or extensions that they make and grant Carnegie the
   56  * rights to redistribute these changes.
   57  */
   58 
   59 #include <sys/cdefs.h>
   60 __FBSDID("$FreeBSD: releng/8.1/sys/vm/vm_glue.c 208041 2010-05-13 18:17:01Z kib $");
   61 
   62 #include "opt_vm.h"
   63 #include "opt_kstack_pages.h"
   64 #include "opt_kstack_max_pages.h"
   65 
   66 #include <sys/param.h>
   67 #include <sys/systm.h>
   68 #include <sys/limits.h>
   69 #include <sys/lock.h>
   70 #include <sys/mutex.h>
   71 #include <sys/proc.h>
   72 #include <sys/resourcevar.h>
   73 #include <sys/sched.h>
   74 #include <sys/sf_buf.h>
   75 #include <sys/shm.h>
   76 #include <sys/vmmeter.h>
   77 #include <sys/sx.h>
   78 #include <sys/sysctl.h>
   79 
   80 #include <sys/eventhandler.h>
   81 #include <sys/kernel.h>
   82 #include <sys/ktr.h>
   83 #include <sys/unistd.h>
   84 
   85 #include <vm/vm.h>
   86 #include <vm/vm_param.h>
   87 #include <vm/pmap.h>
   88 #include <vm/vm_map.h>
   89 #include <vm/vm_page.h>
   90 #include <vm/vm_pageout.h>
   91 #include <vm/vm_object.h>
   92 #include <vm/vm_kern.h>
   93 #include <vm/vm_extern.h>
   94 #include <vm/vm_pager.h>
   95 #include <vm/swap_pager.h>
   96 
   97 extern int maxslp;
   98 
   99 /*
  100  * System initialization
  101  *
  102  * Note: proc0 from proc.h
  103  */
  104 static void vm_init_limits(void *);
  105 SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0);
  106 
  107 /*
  108  * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
  109  *
  110  * Note: run scheduling should be divorced from the vm system.
  111  */
  112 static void scheduler(void *);
  113 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL);
  114 
  115 #ifndef NO_SWAPPING
  116 static int swapout(struct proc *);
  117 static void swapclear(struct proc *);
  118 #endif
  119 
  120 /*
  121  * MPSAFE
  122  *
  123  * WARNING!  This code calls vm_map_check_protection() which only checks
  124  * the associated vm_map_entry range.  It does not determine whether the
  125  * contents of the memory is actually readable or writable.  In most cases
  126  * just checking the vm_map_entry is sufficient within the kernel's address
  127  * space.
  128  */
  129 int
  130 kernacc(addr, len, rw)
  131         void *addr;
  132         int len, rw;
  133 {
  134         boolean_t rv;
  135         vm_offset_t saddr, eaddr;
  136         vm_prot_t prot;
  137 
  138         KASSERT((rw & ~VM_PROT_ALL) == 0,
  139             ("illegal ``rw'' argument to kernacc (%x)\n", rw));
  140 
  141         if ((vm_offset_t)addr + len > kernel_map->max_offset ||
  142             (vm_offset_t)addr + len < (vm_offset_t)addr)
  143                 return (FALSE);
  144 
  145         prot = rw;
  146         saddr = trunc_page((vm_offset_t)addr);
  147         eaddr = round_page((vm_offset_t)addr + len);
  148         vm_map_lock_read(kernel_map);
  149         rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
  150         vm_map_unlock_read(kernel_map);
  151         return (rv == TRUE);
  152 }
  153 
  154 /*
  155  * MPSAFE
  156  *
  157  * WARNING!  This code calls vm_map_check_protection() which only checks
  158  * the associated vm_map_entry range.  It does not determine whether the
  159  * contents of the memory is actually readable or writable.  vmapbuf(),
  160  * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
  161  * used in conjuction with this call.
  162  */
  163 int
  164 useracc(addr, len, rw)
  165         void *addr;
  166         int len, rw;
  167 {
  168         boolean_t rv;
  169         vm_prot_t prot;
  170         vm_map_t map;
  171 
  172         KASSERT((rw & ~VM_PROT_ALL) == 0,
  173             ("illegal ``rw'' argument to useracc (%x)\n", rw));
  174         prot = rw;
  175         map = &curproc->p_vmspace->vm_map;
  176         if ((vm_offset_t)addr + len > vm_map_max(map) ||
  177             (vm_offset_t)addr + len < (vm_offset_t)addr) {
  178                 return (FALSE);
  179         }
  180         vm_map_lock_read(map);
  181         rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
  182             round_page((vm_offset_t)addr + len), prot);
  183         vm_map_unlock_read(map);
  184         return (rv == TRUE);
  185 }
  186 
  187 int
  188 vslock(void *addr, size_t len)
  189 {
  190         vm_offset_t end, last, start;
  191         vm_size_t npages;
  192         int error;
  193 
  194         last = (vm_offset_t)addr + len;
  195         start = trunc_page((vm_offset_t)addr);
  196         end = round_page(last);
  197         if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
  198                 return (EINVAL);
  199         npages = atop(end - start);
  200         if (npages > vm_page_max_wired)
  201                 return (ENOMEM);
  202         PROC_LOCK(curproc);
  203         if (ptoa(npages +
  204             pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))) >
  205             lim_cur(curproc, RLIMIT_MEMLOCK)) {
  206                 PROC_UNLOCK(curproc);
  207                 return (ENOMEM);
  208         }
  209         PROC_UNLOCK(curproc);
  210 #if 0
  211         /*
  212          * XXX - not yet
  213          *
  214          * The limit for transient usage of wired pages should be
  215          * larger than for "permanent" wired pages (mlock()).
  216          *
  217          * Also, the sysctl code, which is the only present user
  218          * of vslock(), does a hard loop on EAGAIN.
  219          */
  220         if (npages + cnt.v_wire_count > vm_page_max_wired)
  221                 return (EAGAIN);
  222 #endif
  223         error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
  224             VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
  225         /*
  226          * Return EFAULT on error to match copy{in,out}() behaviour
  227          * rather than returning ENOMEM like mlock() would.
  228          */
  229         return (error == KERN_SUCCESS ? 0 : EFAULT);
  230 }
  231 
  232 void
  233 vsunlock(void *addr, size_t len)
  234 {
  235 
  236         /* Rely on the parameter sanity checks performed by vslock(). */
  237         (void)vm_map_unwire(&curproc->p_vmspace->vm_map,
  238             trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
  239             VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
  240 }
  241 
  242 /*
  243  * Pin the page contained within the given object at the given offset.  If the
  244  * page is not resident, allocate and load it using the given object's pager.
  245  * Return the pinned page if successful; otherwise, return NULL.
  246  */
  247 static vm_page_t
  248 vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
  249 {
  250         vm_page_t m, ma[1];
  251         vm_pindex_t pindex;
  252         int rv;
  253 
  254         VM_OBJECT_LOCK(object);
  255         pindex = OFF_TO_IDX(offset);
  256         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
  257         if (m->valid != VM_PAGE_BITS_ALL) {
  258                 ma[0] = m;
  259                 rv = vm_pager_get_pages(object, ma, 1, 0);
  260                 m = vm_page_lookup(object, pindex);
  261                 if (m == NULL)
  262                         goto out;
  263                 if (rv != VM_PAGER_OK) {
  264                         vm_page_lock_queues();
  265                         vm_page_free(m);
  266                         vm_page_unlock_queues();
  267                         m = NULL;
  268                         goto out;
  269                 }
  270         }
  271         vm_page_lock_queues();
  272         vm_page_hold(m);
  273         vm_page_unlock_queues();
  274         vm_page_wakeup(m);
  275 out:
  276         VM_OBJECT_UNLOCK(object);
  277         return (m);
  278 }
  279 
  280 /*
  281  * Return a CPU private mapping to the page at the given offset within the
  282  * given object.  The page is pinned before it is mapped.
  283  */
  284 struct sf_buf *
  285 vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
  286 {
  287         vm_page_t m;
  288 
  289         m = vm_imgact_hold_page(object, offset);
  290         if (m == NULL)
  291                 return (NULL);
  292         sched_pin();
  293         return (sf_buf_alloc(m, SFB_CPUPRIVATE));
  294 }
  295 
  296 /*
  297  * Destroy the given CPU private mapping and unpin the page that it mapped.
  298  */
  299 void
  300 vm_imgact_unmap_page(struct sf_buf *sf)
  301 {
  302         vm_page_t m;
  303 
  304         m = sf_buf_page(sf);
  305         sf_buf_free(sf);
  306         sched_unpin();
  307         vm_page_lock_queues();
  308         vm_page_unhold(m);
  309         vm_page_unlock_queues();
  310 }
  311 
  312 void
  313 vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz)
  314 {
  315 
  316         pmap_sync_icache(map->pmap, va, sz);
  317 }
  318 
  319 struct kstack_cache_entry {
  320         vm_object_t ksobj;
  321         struct kstack_cache_entry *next_ks_entry;
  322 };
  323 
  324 static struct kstack_cache_entry *kstack_cache;
  325 static int kstack_cache_size = 128;
  326 static int kstacks;
  327 static struct mtx kstack_cache_mtx;
  328 SYSCTL_INT(_vm, OID_AUTO, kstack_cache_size, CTLFLAG_RW, &kstack_cache_size, 0,
  329     "");
  330 SYSCTL_INT(_vm, OID_AUTO, kstacks, CTLFLAG_RD, &kstacks, 0,
  331     "");
  332 
  333 #ifndef KSTACK_MAX_PAGES
  334 #define KSTACK_MAX_PAGES 32
  335 #endif
  336 
  337 /*
  338  * Create the kernel stack (including pcb for i386) for a new thread.
  339  * This routine directly affects the fork perf for a process and
  340  * create performance for a thread.
  341  */
  342 int
  343 vm_thread_new(struct thread *td, int pages)
  344 {
  345         vm_object_t ksobj;
  346         vm_offset_t ks;
  347         vm_page_t m, ma[KSTACK_MAX_PAGES];
  348         struct kstack_cache_entry *ks_ce;
  349         int i;
  350 
  351         /* Bounds check */
  352         if (pages <= 1)
  353                 pages = KSTACK_PAGES;
  354         else if (pages > KSTACK_MAX_PAGES)
  355                 pages = KSTACK_MAX_PAGES;
  356 
  357         if (pages == KSTACK_PAGES) {
  358                 mtx_lock(&kstack_cache_mtx);
  359                 if (kstack_cache != NULL) {
  360                         ks_ce = kstack_cache;
  361                         kstack_cache = ks_ce->next_ks_entry;
  362                         mtx_unlock(&kstack_cache_mtx);
  363 
  364                         td->td_kstack_obj = ks_ce->ksobj;
  365                         td->td_kstack = (vm_offset_t)ks_ce;
  366                         td->td_kstack_pages = KSTACK_PAGES;
  367                         return (1);
  368                 }
  369                 mtx_unlock(&kstack_cache_mtx);
  370         }
  371 
  372         /*
  373          * Allocate an object for the kstack.
  374          */
  375         ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
  376         
  377         /*
  378          * Get a kernel virtual address for this thread's kstack.
  379          */
  380         ks = kmem_alloc_nofault(kernel_map,
  381            (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
  382         if (ks == 0) {
  383                 printf("vm_thread_new: kstack allocation failed\n");
  384                 vm_object_deallocate(ksobj);
  385                 return (0);
  386         }
  387 
  388         atomic_add_int(&kstacks, 1);
  389         if (KSTACK_GUARD_PAGES != 0) {
  390                 pmap_qremove(ks, KSTACK_GUARD_PAGES);
  391                 ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
  392         }
  393         td->td_kstack_obj = ksobj;
  394         td->td_kstack = ks;
  395         /*
  396          * Knowing the number of pages allocated is useful when you
  397          * want to deallocate them.
  398          */
  399         td->td_kstack_pages = pages;
  400         /* 
  401          * For the length of the stack, link in a real page of ram for each
  402          * page of stack.
  403          */
  404         VM_OBJECT_LOCK(ksobj);
  405         for (i = 0; i < pages; i++) {
  406                 /*
  407                  * Get a kernel stack page.
  408                  */
  409                 m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
  410                     VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
  411                 ma[i] = m;
  412                 m->valid = VM_PAGE_BITS_ALL;
  413         }
  414         VM_OBJECT_UNLOCK(ksobj);
  415         pmap_qenter(ks, ma, pages);
  416         return (1);
  417 }
  418 
  419 static void
  420 vm_thread_stack_dispose(vm_object_t ksobj, vm_offset_t ks, int pages)
  421 {
  422         vm_page_t m;
  423         int i;
  424 
  425         atomic_add_int(&kstacks, -1);
  426         pmap_qremove(ks, pages);
  427         VM_OBJECT_LOCK(ksobj);
  428         for (i = 0; i < pages; i++) {
  429                 m = vm_page_lookup(ksobj, i);
  430                 if (m == NULL)
  431                         panic("vm_thread_dispose: kstack already missing?");
  432                 vm_page_lock_queues();
  433                 vm_page_unwire(m, 0);
  434                 vm_page_free(m);
  435                 vm_page_unlock_queues();
  436         }
  437         VM_OBJECT_UNLOCK(ksobj);
  438         vm_object_deallocate(ksobj);
  439         kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
  440             (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
  441 }
  442 
  443 /*
  444  * Dispose of a thread's kernel stack.
  445  */
  446 void
  447 vm_thread_dispose(struct thread *td)
  448 {
  449         vm_object_t ksobj;
  450         vm_offset_t ks;
  451         struct kstack_cache_entry *ks_ce;
  452         int pages;
  453 
  454         pages = td->td_kstack_pages;
  455         ksobj = td->td_kstack_obj;
  456         ks = td->td_kstack;
  457         td->td_kstack = 0;
  458         td->td_kstack_pages = 0;
  459         if (pages == KSTACK_PAGES && kstacks <= kstack_cache_size) {
  460                 ks_ce = (struct kstack_cache_entry *)ks;
  461                 ks_ce->ksobj = ksobj;
  462                 mtx_lock(&kstack_cache_mtx);
  463                 ks_ce->next_ks_entry = kstack_cache;
  464                 kstack_cache = ks_ce;
  465                 mtx_unlock(&kstack_cache_mtx);
  466                 return;
  467         }
  468         vm_thread_stack_dispose(ksobj, ks, pages);
  469 }
  470 
  471 static void
  472 vm_thread_stack_lowmem(void *nulll)
  473 {
  474         struct kstack_cache_entry *ks_ce, *ks_ce1;
  475 
  476         mtx_lock(&kstack_cache_mtx);
  477         ks_ce = kstack_cache;
  478         kstack_cache = NULL;
  479         mtx_unlock(&kstack_cache_mtx);
  480 
  481         while (ks_ce != NULL) {
  482                 ks_ce1 = ks_ce;
  483                 ks_ce = ks_ce->next_ks_entry;
  484 
  485                 vm_thread_stack_dispose(ks_ce1->ksobj, (vm_offset_t)ks_ce1,
  486                     KSTACK_PAGES);
  487         }
  488 }
  489 
  490 static void
  491 kstack_cache_init(void *nulll)
  492 {
  493 
  494         EVENTHANDLER_REGISTER(vm_lowmem, vm_thread_stack_lowmem, NULL,
  495             EVENTHANDLER_PRI_ANY);
  496 }
  497 
  498 MTX_SYSINIT(kstack_cache, &kstack_cache_mtx, "kstkch", MTX_DEF);
  499 SYSINIT(vm_kstacks, SI_SUB_KTHREAD_INIT, SI_ORDER_ANY, kstack_cache_init, NULL);
  500 
  501 /*
  502  * Allow a thread's kernel stack to be paged out.
  503  */
  504 void
  505 vm_thread_swapout(struct thread *td)
  506 {
  507         vm_object_t ksobj;
  508         vm_page_t m;
  509         int i, pages;
  510 
  511         cpu_thread_swapout(td);
  512         pages = td->td_kstack_pages;
  513         ksobj = td->td_kstack_obj;
  514         pmap_qremove(td->td_kstack, pages);
  515         VM_OBJECT_LOCK(ksobj);
  516         for (i = 0; i < pages; i++) {
  517                 m = vm_page_lookup(ksobj, i);
  518                 if (m == NULL)
  519                         panic("vm_thread_swapout: kstack already missing?");
  520                 vm_page_lock_queues();
  521                 vm_page_dirty(m);
  522                 vm_page_unwire(m, 0);
  523                 vm_page_unlock_queues();
  524         }
  525         VM_OBJECT_UNLOCK(ksobj);
  526 }
  527 
  528 /*
  529  * Bring the kernel stack for a specified thread back in.
  530  */
  531 void
  532 vm_thread_swapin(struct thread *td)
  533 {
  534         vm_object_t ksobj;
  535         vm_page_t ma[KSTACK_MAX_PAGES];
  536         int i, j, k, pages, rv;
  537 
  538         pages = td->td_kstack_pages;
  539         ksobj = td->td_kstack_obj;
  540         VM_OBJECT_LOCK(ksobj);
  541         for (i = 0; i < pages; i++)
  542                 ma[i] = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY |
  543                     VM_ALLOC_WIRED);
  544         for (i = 0; i < pages; i++) {
  545                 if (ma[i]->valid != VM_PAGE_BITS_ALL) {
  546                         KASSERT(ma[i]->oflags & VPO_BUSY,
  547                             ("lost busy 1"));
  548                         vm_object_pip_add(ksobj, 1);
  549                         for (j = i + 1; j < pages; j++) {
  550                                 KASSERT(ma[j]->valid == VM_PAGE_BITS_ALL ||
  551                                     (ma[j]->oflags & VPO_BUSY),
  552                                     ("lost busy 2"));
  553                                 if (ma[j]->valid == VM_PAGE_BITS_ALL)
  554                                         break;
  555                         }
  556                         rv = vm_pager_get_pages(ksobj, ma + i, j - i, 0);
  557                         if (rv != VM_PAGER_OK)
  558         panic("vm_thread_swapin: cannot get kstack for proc: %d",
  559                                     td->td_proc->p_pid);
  560                         vm_object_pip_wakeup(ksobj);
  561                         for (k = i; k < j; k++)
  562                                 ma[k] = vm_page_lookup(ksobj, k);
  563                         vm_page_wakeup(ma[i]);
  564                 } else if (ma[i]->oflags & VPO_BUSY)
  565                         vm_page_wakeup(ma[i]);
  566         }
  567         VM_OBJECT_UNLOCK(ksobj);
  568         pmap_qenter(td->td_kstack, ma, pages);
  569         cpu_thread_swapin(td);
  570 }
  571 
  572 /*
  573  * Implement fork's actions on an address space.
  574  * Here we arrange for the address space to be copied or referenced,
  575  * allocate a user struct (pcb and kernel stack), then call the
  576  * machine-dependent layer to fill those in and make the new process
  577  * ready to run.  The new process is set up so that it returns directly
  578  * to user mode to avoid stack copying and relocation problems.
  579  */
  580 int
  581 vm_forkproc(td, p2, td2, vm2, flags)
  582         struct thread *td;
  583         struct proc *p2;
  584         struct thread *td2;
  585         struct vmspace *vm2;
  586         int flags;
  587 {
  588         struct proc *p1 = td->td_proc;
  589         int error;
  590 
  591         if ((flags & RFPROC) == 0) {
  592                 /*
  593                  * Divorce the memory, if it is shared, essentially
  594                  * this changes shared memory amongst threads, into
  595                  * COW locally.
  596                  */
  597                 if ((flags & RFMEM) == 0) {
  598                         if (p1->p_vmspace->vm_refcnt > 1) {
  599                                 error = vmspace_unshare(p1);
  600                                 if (error)
  601                                         return (error);
  602                         }
  603                 }
  604                 cpu_fork(td, p2, td2, flags);
  605                 return (0);
  606         }
  607 
  608         if (flags & RFMEM) {
  609                 p2->p_vmspace = p1->p_vmspace;
  610                 atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
  611         }
  612 
  613         while (vm_page_count_severe()) {
  614                 VM_WAIT;
  615         }
  616 
  617         if ((flags & RFMEM) == 0) {
  618                 p2->p_vmspace = vm2;
  619                 if (p1->p_vmspace->vm_shm)
  620                         shmfork(p1, p2);
  621         }
  622 
  623         /*
  624          * cpu_fork will copy and update the pcb, set up the kernel stack,
  625          * and make the child ready to run.
  626          */
  627         cpu_fork(td, p2, td2, flags);
  628         return (0);
  629 }
  630 
  631 /*
  632  * Called after process has been wait(2)'ed apon and is being reaped.
  633  * The idea is to reclaim resources that we could not reclaim while
  634  * the process was still executing.
  635  */
  636 void
  637 vm_waitproc(p)
  638         struct proc *p;
  639 {
  640 
  641         vmspace_exitfree(p);            /* and clean-out the vmspace */
  642 }
  643 
  644 /*
  645  * Set default limits for VM system.
  646  * Called for proc 0, and then inherited by all others.
  647  *
  648  * XXX should probably act directly on proc0.
  649  */
  650 static void
  651 vm_init_limits(udata)
  652         void *udata;
  653 {
  654         struct proc *p = udata;
  655         struct plimit *limp;
  656         int rss_limit;
  657 
  658         /*
  659          * Set up the initial limits on process VM. Set the maximum resident
  660          * set size to be half of (reasonably) available memory.  Since this
  661          * is a soft limit, it comes into effect only when the system is out
  662          * of memory - half of main memory helps to favor smaller processes,
  663          * and reduces thrashing of the object cache.
  664          */
  665         limp = p->p_limit;
  666         limp->pl_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
  667         limp->pl_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
  668         limp->pl_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
  669         limp->pl_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
  670         /* limit the limit to no less than 2MB */
  671         rss_limit = max(cnt.v_free_count, 512);
  672         limp->pl_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
  673         limp->pl_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
  674 }
  675 
  676 void
  677 faultin(p)
  678         struct proc *p;
  679 {
  680 #ifdef NO_SWAPPING
  681 
  682         PROC_LOCK_ASSERT(p, MA_OWNED);
  683         if ((p->p_flag & P_INMEM) == 0)
  684                 panic("faultin: proc swapped out with NO_SWAPPING!");
  685 #else /* !NO_SWAPPING */
  686         struct thread *td;
  687 
  688         PROC_LOCK_ASSERT(p, MA_OWNED);
  689         /*
  690          * If another process is swapping in this process,
  691          * just wait until it finishes.
  692          */
  693         if (p->p_flag & P_SWAPPINGIN) {
  694                 while (p->p_flag & P_SWAPPINGIN)
  695                         msleep(&p->p_flag, &p->p_mtx, PVM, "faultin", 0);
  696                 return;
  697         }
  698         if ((p->p_flag & P_INMEM) == 0) {
  699                 /*
  700                  * Don't let another thread swap process p out while we are
  701                  * busy swapping it in.
  702                  */
  703                 ++p->p_lock;
  704                 p->p_flag |= P_SWAPPINGIN;
  705                 PROC_UNLOCK(p);
  706 
  707                 /*
  708                  * We hold no lock here because the list of threads
  709                  * can not change while all threads in the process are
  710                  * swapped out.
  711                  */
  712                 FOREACH_THREAD_IN_PROC(p, td)
  713                         vm_thread_swapin(td);
  714                 PROC_LOCK(p);
  715                 swapclear(p);
  716                 p->p_swtick = ticks;
  717 
  718                 wakeup(&p->p_flag);
  719 
  720                 /* Allow other threads to swap p out now. */
  721                 --p->p_lock;
  722         }
  723 #endif /* NO_SWAPPING */
  724 }
  725 
  726 /*
  727  * This swapin algorithm attempts to swap-in processes only if there
  728  * is enough space for them.  Of course, if a process waits for a long
  729  * time, it will be swapped in anyway.
  730  *
  731  * Giant is held on entry.
  732  */
  733 /* ARGSUSED*/
  734 static void
  735 scheduler(dummy)
  736         void *dummy;
  737 {
  738         struct proc *p;
  739         struct thread *td;
  740         struct proc *pp;
  741         int slptime;
  742         int swtime;
  743         int ppri;
  744         int pri;
  745 
  746         mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
  747         mtx_unlock(&Giant);
  748 
  749 loop:
  750         if (vm_page_count_min()) {
  751                 VM_WAIT;
  752                 goto loop;
  753         }
  754 
  755         pp = NULL;
  756         ppri = INT_MIN;
  757         sx_slock(&allproc_lock);
  758         FOREACH_PROC_IN_SYSTEM(p) {
  759                 PROC_LOCK(p);
  760                 if (p->p_flag & (P_SWAPPINGOUT | P_SWAPPINGIN | P_INMEM)) {
  761                         PROC_UNLOCK(p);
  762                         continue;
  763                 }
  764                 swtime = (ticks - p->p_swtick) / hz;
  765                 FOREACH_THREAD_IN_PROC(p, td) {
  766                         /*
  767                          * An otherwise runnable thread of a process
  768                          * swapped out has only the TDI_SWAPPED bit set.
  769                          * 
  770                          */
  771                         thread_lock(td);
  772                         if (td->td_inhibitors == TDI_SWAPPED) {
  773                                 slptime = (ticks - td->td_slptick) / hz;
  774                                 pri = swtime + slptime;
  775                                 if ((td->td_flags & TDF_SWAPINREQ) == 0)
  776                                         pri -= p->p_nice * 8;
  777                                 /*
  778                                  * if this thread is higher priority
  779                                  * and there is enough space, then select
  780                                  * this process instead of the previous
  781                                  * selection.
  782                                  */
  783                                 if (pri > ppri) {
  784                                         pp = p;
  785                                         ppri = pri;
  786                                 }
  787                         }
  788                         thread_unlock(td);
  789                 }
  790                 PROC_UNLOCK(p);
  791         }
  792         sx_sunlock(&allproc_lock);
  793 
  794         /*
  795          * Nothing to do, back to sleep.
  796          */
  797         if ((p = pp) == NULL) {
  798                 tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
  799                 goto loop;
  800         }
  801         PROC_LOCK(p);
  802 
  803         /*
  804          * Another process may be bringing or may have already
  805          * brought this process in while we traverse all threads.
  806          * Or, this process may even be being swapped out again.
  807          */
  808         if (p->p_flag & (P_INMEM | P_SWAPPINGOUT | P_SWAPPINGIN)) {
  809                 PROC_UNLOCK(p);
  810                 goto loop;
  811         }
  812 
  813         /*
  814          * We would like to bring someone in. (only if there is space).
  815          * [What checks the space? ]
  816          */
  817         faultin(p);
  818         PROC_UNLOCK(p);
  819         goto loop;
  820 }
  821 
  822 void
  823 kick_proc0(void)
  824 {
  825 
  826         wakeup(&proc0);
  827 }
  828 
  829 #ifndef NO_SWAPPING
  830 
  831 /*
  832  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
  833  */
  834 static int swap_idle_threshold1 = 2;
  835 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
  836     &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
  837 
  838 /*
  839  * Swap_idle_threshold2 is the time that a process can be idle before
  840  * it will be swapped out, if idle swapping is enabled.
  841  */
  842 static int swap_idle_threshold2 = 10;
  843 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
  844     &swap_idle_threshold2, 0, "Time before a process will be swapped out");
  845 
  846 /*
  847  * Swapout is driven by the pageout daemon.  Very simple, we find eligible
  848  * procs and swap out their stacks.  We try to always "swap" at least one
  849  * process in case we need the room for a swapin.
  850  * If any procs have been sleeping/stopped for at least maxslp seconds,
  851  * they are swapped.  Else, we swap the longest-sleeping or stopped process,
  852  * if any, otherwise the longest-resident process.
  853  */
  854 void
  855 swapout_procs(action)
  856 int action;
  857 {
  858         struct proc *p;
  859         struct thread *td;
  860         int didswap = 0;
  861 
  862 retry:
  863         sx_slock(&allproc_lock);
  864         FOREACH_PROC_IN_SYSTEM(p) {
  865                 struct vmspace *vm;
  866                 int minslptime = 100000;
  867                 int slptime;
  868                 
  869                 /*
  870                  * Watch out for a process in
  871                  * creation.  It may have no
  872                  * address space or lock yet.
  873                  */
  874                 if (p->p_state == PRS_NEW)
  875                         continue;
  876                 /*
  877                  * An aio daemon switches its
  878                  * address space while running.
  879                  * Perform a quick check whether
  880                  * a process has P_SYSTEM.
  881                  */
  882                 if ((p->p_flag & P_SYSTEM) != 0)
  883                         continue;
  884                 /*
  885                  * Do not swapout a process that
  886                  * is waiting for VM data
  887                  * structures as there is a possible
  888                  * deadlock.  Test this first as
  889                  * this may block.
  890                  *
  891                  * Lock the map until swapout
  892                  * finishes, or a thread of this
  893                  * process may attempt to alter
  894                  * the map.
  895                  */
  896                 vm = vmspace_acquire_ref(p);
  897                 if (vm == NULL)
  898                         continue;
  899                 if (!vm_map_trylock(&vm->vm_map))
  900                         goto nextproc1;
  901 
  902                 PROC_LOCK(p);
  903                 if (p->p_lock != 0 ||
  904                     (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
  905                     ) != 0) {
  906                         goto nextproc;
  907                 }
  908                 /*
  909                  * only aiod changes vmspace, however it will be
  910                  * skipped because of the if statement above checking 
  911                  * for P_SYSTEM
  912                  */
  913                 if ((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) != P_INMEM)
  914                         goto nextproc;
  915 
  916                 switch (p->p_state) {
  917                 default:
  918                         /* Don't swap out processes in any sort
  919                          * of 'special' state. */
  920                         break;
  921 
  922                 case PRS_NORMAL:
  923                         /*
  924                          * do not swapout a realtime process
  925                          * Check all the thread groups..
  926                          */
  927                         FOREACH_THREAD_IN_PROC(p, td) {
  928                                 thread_lock(td);
  929                                 if (PRI_IS_REALTIME(td->td_pri_class)) {
  930                                         thread_unlock(td);
  931                                         goto nextproc;
  932                                 }
  933                                 slptime = (ticks - td->td_slptick) / hz;
  934                                 /*
  935                                  * Guarantee swap_idle_threshold1
  936                                  * time in memory.
  937                                  */
  938                                 if (slptime < swap_idle_threshold1) {
  939                                         thread_unlock(td);
  940                                         goto nextproc;
  941                                 }
  942 
  943                                 /*
  944                                  * Do not swapout a process if it is
  945                                  * waiting on a critical event of some
  946                                  * kind or there is a thread whose
  947                                  * pageable memory may be accessed.
  948                                  *
  949                                  * This could be refined to support
  950                                  * swapping out a thread.
  951                                  */
  952                                 if (!thread_safetoswapout(td)) {
  953                                         thread_unlock(td);
  954                                         goto nextproc;
  955                                 }
  956                                 /*
  957                                  * If the system is under memory stress,
  958                                  * or if we are swapping
  959                                  * idle processes >= swap_idle_threshold2,
  960                                  * then swap the process out.
  961                                  */
  962                                 if (((action & VM_SWAP_NORMAL) == 0) &&
  963                                     (((action & VM_SWAP_IDLE) == 0) ||
  964                                     (slptime < swap_idle_threshold2))) {
  965                                         thread_unlock(td);
  966                                         goto nextproc;
  967                                 }
  968 
  969                                 if (minslptime > slptime)
  970                                         minslptime = slptime;
  971                                 thread_unlock(td);
  972                         }
  973 
  974                         /*
  975                          * If the pageout daemon didn't free enough pages,
  976                          * or if this process is idle and the system is
  977                          * configured to swap proactively, swap it out.
  978                          */
  979                         if ((action & VM_SWAP_NORMAL) ||
  980                                 ((action & VM_SWAP_IDLE) &&
  981                                  (minslptime > swap_idle_threshold2))) {
  982                                 if (swapout(p) == 0)
  983                                         didswap++;
  984                                 PROC_UNLOCK(p);
  985                                 vm_map_unlock(&vm->vm_map);
  986                                 vmspace_free(vm);
  987                                 sx_sunlock(&allproc_lock);
  988                                 goto retry;
  989                         }
  990                 }
  991 nextproc:
  992                 PROC_UNLOCK(p);
  993                 vm_map_unlock(&vm->vm_map);
  994 nextproc1:
  995                 vmspace_free(vm);
  996                 continue;
  997         }
  998         sx_sunlock(&allproc_lock);
  999         /*
 1000          * If we swapped something out, and another process needed memory,
 1001          * then wakeup the sched process.
 1002          */
 1003         if (didswap)
 1004                 wakeup(&proc0);
 1005 }
 1006 
 1007 static void
 1008 swapclear(p)
 1009         struct proc *p;
 1010 {
 1011         struct thread *td;
 1012 
 1013         PROC_LOCK_ASSERT(p, MA_OWNED);
 1014 
 1015         FOREACH_THREAD_IN_PROC(p, td) {
 1016                 thread_lock(td);
 1017                 td->td_flags |= TDF_INMEM;
 1018                 td->td_flags &= ~TDF_SWAPINREQ;
 1019                 TD_CLR_SWAPPED(td);
 1020                 if (TD_CAN_RUN(td))
 1021                         if (setrunnable(td)) {
 1022 #ifdef INVARIANTS
 1023                                 /*
 1024                                  * XXX: We just cleared TDI_SWAPPED
 1025                                  * above and set TDF_INMEM, so this
 1026                                  * should never happen.
 1027                                  */
 1028                                 panic("not waking up swapper");
 1029 #endif
 1030                         }
 1031                 thread_unlock(td);
 1032         }
 1033         p->p_flag &= ~(P_SWAPPINGIN|P_SWAPPINGOUT);
 1034         p->p_flag |= P_INMEM;
 1035 }
 1036 
 1037 static int
 1038 swapout(p)
 1039         struct proc *p;
 1040 {
 1041         struct thread *td;
 1042 
 1043         PROC_LOCK_ASSERT(p, MA_OWNED);
 1044 #if defined(SWAP_DEBUG)
 1045         printf("swapping out %d\n", p->p_pid);
 1046 #endif
 1047 
 1048         /*
 1049          * The states of this process and its threads may have changed
 1050          * by now.  Assuming that there is only one pageout daemon thread,
 1051          * this process should still be in memory.
 1052          */
 1053         KASSERT((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) == P_INMEM,
 1054                 ("swapout: lost a swapout race?"));
 1055 
 1056         /*
 1057          * remember the process resident count
 1058          */
 1059         p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
 1060         /*
 1061          * Check and mark all threads before we proceed.
 1062          */
 1063         p->p_flag &= ~P_INMEM;
 1064         p->p_flag |= P_SWAPPINGOUT;
 1065         FOREACH_THREAD_IN_PROC(p, td) {
 1066                 thread_lock(td);
 1067                 if (!thread_safetoswapout(td)) {
 1068                         thread_unlock(td);
 1069                         swapclear(p);
 1070                         return (EBUSY);
 1071                 }
 1072                 td->td_flags &= ~TDF_INMEM;
 1073                 TD_SET_SWAPPED(td);
 1074                 thread_unlock(td);
 1075         }
 1076         td = FIRST_THREAD_IN_PROC(p);
 1077         ++td->td_ru.ru_nswap;
 1078         PROC_UNLOCK(p);
 1079 
 1080         /*
 1081          * This list is stable because all threads are now prevented from
 1082          * running.  The list is only modified in the context of a running
 1083          * thread in this process.
 1084          */
 1085         FOREACH_THREAD_IN_PROC(p, td)
 1086                 vm_thread_swapout(td);
 1087 
 1088         PROC_LOCK(p);
 1089         p->p_flag &= ~P_SWAPPINGOUT;
 1090         p->p_swtick = ticks;
 1091         return (0);
 1092 }
 1093 #endif /* !NO_SWAPPING */

Cache object: 9ba29355ff68f757b848fcbab59082f1


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.