The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_glue.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)vm_glue.c     8.6 (Berkeley) 1/5/94
   33  *
   34  *
   35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   36  * All rights reserved.
   37  *
   38  * Permission to use, copy, modify and distribute this software and
   39  * its documentation is hereby granted, provided that both the copyright
   40  * notice and this permission notice appear in all copies of the
   41  * software, derivative works or modified versions, and any portions
   42  * thereof, and that both notices appear in supporting documentation.
   43  *
   44  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   45  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   46  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   47  *
   48  * Carnegie Mellon requests users of this software to return to
   49  *
   50  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   51  *  School of Computer Science
   52  *  Carnegie Mellon University
   53  *  Pittsburgh PA 15213-3890
   54  *
   55  * any improvements or extensions that they make and grant Carnegie the
   56  * rights to redistribute these changes.
   57  */
   58 
   59 #include <sys/cdefs.h>
   60 __FBSDID("$FreeBSD: releng/8.3/sys/vm/vm_glue.c 222868 2011-06-08 19:58:20Z jhb $");
   61 
   62 #include "opt_vm.h"
   63 #include "opt_kstack_pages.h"
   64 #include "opt_kstack_max_pages.h"
   65 
   66 #include <sys/param.h>
   67 #include <sys/systm.h>
   68 #include <sys/limits.h>
   69 #include <sys/lock.h>
   70 #include <sys/mutex.h>
   71 #include <sys/proc.h>
   72 #include <sys/resourcevar.h>
   73 #include <sys/sched.h>
   74 #include <sys/sf_buf.h>
   75 #include <sys/shm.h>
   76 #include <sys/vmmeter.h>
   77 #include <sys/sx.h>
   78 #include <sys/sysctl.h>
   79 
   80 #include <sys/eventhandler.h>
   81 #include <sys/kernel.h>
   82 #include <sys/ktr.h>
   83 #include <sys/unistd.h>
   84 
   85 #include <vm/vm.h>
   86 #include <vm/vm_param.h>
   87 #include <vm/pmap.h>
   88 #include <vm/vm_map.h>
   89 #include <vm/vm_page.h>
   90 #include <vm/vm_pageout.h>
   91 #include <vm/vm_object.h>
   92 #include <vm/vm_kern.h>
   93 #include <vm/vm_extern.h>
   94 #include <vm/vm_pager.h>
   95 #include <vm/swap_pager.h>
   96 
   97 extern int maxslp;
   98 
   99 /*
  100  * System initialization
  101  *
  102  * Note: proc0 from proc.h
  103  */
  104 static void vm_init_limits(void *);
  105 SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0);
  106 
  107 /*
  108  * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
  109  *
  110  * Note: run scheduling should be divorced from the vm system.
  111  */
  112 static void scheduler(void *);
  113 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL);
  114 
  115 #ifndef NO_SWAPPING
  116 static int swapout(struct proc *);
  117 static void swapclear(struct proc *);
  118 #endif
  119 
  120 /*
  121  * MPSAFE
  122  *
  123  * WARNING!  This code calls vm_map_check_protection() which only checks
  124  * the associated vm_map_entry range.  It does not determine whether the
  125  * contents of the memory is actually readable or writable.  In most cases
  126  * just checking the vm_map_entry is sufficient within the kernel's address
  127  * space.
  128  */
  129 int
  130 kernacc(addr, len, rw)
  131         void *addr;
  132         int len, rw;
  133 {
  134         boolean_t rv;
  135         vm_offset_t saddr, eaddr;
  136         vm_prot_t prot;
  137 
  138         KASSERT((rw & ~VM_PROT_ALL) == 0,
  139             ("illegal ``rw'' argument to kernacc (%x)\n", rw));
  140 
  141         if ((vm_offset_t)addr + len > kernel_map->max_offset ||
  142             (vm_offset_t)addr + len < (vm_offset_t)addr)
  143                 return (FALSE);
  144 
  145         prot = rw;
  146         saddr = trunc_page((vm_offset_t)addr);
  147         eaddr = round_page((vm_offset_t)addr + len);
  148         vm_map_lock_read(kernel_map);
  149         rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
  150         vm_map_unlock_read(kernel_map);
  151         return (rv == TRUE);
  152 }
  153 
  154 /*
  155  * MPSAFE
  156  *
  157  * WARNING!  This code calls vm_map_check_protection() which only checks
  158  * the associated vm_map_entry range.  It does not determine whether the
  159  * contents of the memory is actually readable or writable.  vmapbuf(),
  160  * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
  161  * used in conjuction with this call.
  162  */
  163 int
  164 useracc(addr, len, rw)
  165         void *addr;
  166         int len, rw;
  167 {
  168         boolean_t rv;
  169         vm_prot_t prot;
  170         vm_map_t map;
  171 
  172         KASSERT((rw & ~VM_PROT_ALL) == 0,
  173             ("illegal ``rw'' argument to useracc (%x)\n", rw));
  174         prot = rw;
  175         map = &curproc->p_vmspace->vm_map;
  176         if ((vm_offset_t)addr + len > vm_map_max(map) ||
  177             (vm_offset_t)addr + len < (vm_offset_t)addr) {
  178                 return (FALSE);
  179         }
  180         vm_map_lock_read(map);
  181         rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
  182             round_page((vm_offset_t)addr + len), prot);
  183         vm_map_unlock_read(map);
  184         return (rv == TRUE);
  185 }
  186 
  187 int
  188 vslock(void *addr, size_t len)
  189 {
  190         vm_offset_t end, last, start;
  191         vm_size_t npages;
  192         int error;
  193 
  194         last = (vm_offset_t)addr + len;
  195         start = trunc_page((vm_offset_t)addr);
  196         end = round_page(last);
  197         if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
  198                 return (EINVAL);
  199         npages = atop(end - start);
  200         if (npages > vm_page_max_wired)
  201                 return (ENOMEM);
  202         PROC_LOCK(curproc);
  203         if (ptoa(npages +
  204             pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))) >
  205             lim_cur(curproc, RLIMIT_MEMLOCK)) {
  206                 PROC_UNLOCK(curproc);
  207                 return (ENOMEM);
  208         }
  209         PROC_UNLOCK(curproc);
  210 #if 0
  211         /*
  212          * XXX - not yet
  213          *
  214          * The limit for transient usage of wired pages should be
  215          * larger than for "permanent" wired pages (mlock()).
  216          *
  217          * Also, the sysctl code, which is the only present user
  218          * of vslock(), does a hard loop on EAGAIN.
  219          */
  220         if (npages + cnt.v_wire_count > vm_page_max_wired)
  221                 return (EAGAIN);
  222 #endif
  223         error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
  224             VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
  225         /*
  226          * Return EFAULT on error to match copy{in,out}() behaviour
  227          * rather than returning ENOMEM like mlock() would.
  228          */
  229         return (error == KERN_SUCCESS ? 0 : EFAULT);
  230 }
  231 
  232 void
  233 vsunlock(void *addr, size_t len)
  234 {
  235 
  236         /* Rely on the parameter sanity checks performed by vslock(). */
  237         (void)vm_map_unwire(&curproc->p_vmspace->vm_map,
  238             trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
  239             VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
  240 }
  241 
  242 /*
  243  * Pin the page contained within the given object at the given offset.  If the
  244  * page is not resident, allocate and load it using the given object's pager.
  245  * Return the pinned page if successful; otherwise, return NULL.
  246  */
  247 static vm_page_t
  248 vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
  249 {
  250         vm_page_t m, ma[1];
  251         vm_pindex_t pindex;
  252         int rv;
  253 
  254         VM_OBJECT_LOCK(object);
  255         pindex = OFF_TO_IDX(offset);
  256         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
  257         if (m->valid != VM_PAGE_BITS_ALL) {
  258                 ma[0] = m;
  259                 rv = vm_pager_get_pages(object, ma, 1, 0);
  260                 m = vm_page_lookup(object, pindex);
  261                 if (m == NULL)
  262                         goto out;
  263                 if (rv != VM_PAGER_OK) {
  264                         vm_page_lock_queues();
  265                         vm_page_free(m);
  266                         vm_page_unlock_queues();
  267                         m = NULL;
  268                         goto out;
  269                 }
  270         }
  271         vm_page_lock_queues();
  272         vm_page_hold(m);
  273         vm_page_unlock_queues();
  274         vm_page_wakeup(m);
  275 out:
  276         VM_OBJECT_UNLOCK(object);
  277         return (m);
  278 }
  279 
  280 /*
  281  * Return a CPU private mapping to the page at the given offset within the
  282  * given object.  The page is pinned before it is mapped.
  283  */
  284 struct sf_buf *
  285 vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
  286 {
  287         vm_page_t m;
  288 
  289         m = vm_imgact_hold_page(object, offset);
  290         if (m == NULL)
  291                 return (NULL);
  292         sched_pin();
  293         return (sf_buf_alloc(m, SFB_CPUPRIVATE));
  294 }
  295 
  296 /*
  297  * Destroy the given CPU private mapping and unpin the page that it mapped.
  298  */
  299 void
  300 vm_imgact_unmap_page(struct sf_buf *sf)
  301 {
  302         vm_page_t m;
  303 
  304         m = sf_buf_page(sf);
  305         sf_buf_free(sf);
  306         sched_unpin();
  307         vm_page_lock_queues();
  308         vm_page_unhold(m);
  309         vm_page_unlock_queues();
  310 }
  311 
  312 void
  313 vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz)
  314 {
  315 
  316         pmap_sync_icache(map->pmap, va, sz);
  317 }
  318 
  319 struct kstack_cache_entry {
  320         vm_object_t ksobj;
  321         struct kstack_cache_entry *next_ks_entry;
  322 };
  323 
  324 static struct kstack_cache_entry *kstack_cache;
  325 static int kstack_cache_size = 128;
  326 static int kstacks;
  327 static struct mtx kstack_cache_mtx;
  328 SYSCTL_INT(_vm, OID_AUTO, kstack_cache_size, CTLFLAG_RW, &kstack_cache_size, 0,
  329     "");
  330 SYSCTL_INT(_vm, OID_AUTO, kstacks, CTLFLAG_RD, &kstacks, 0,
  331     "");
  332 
  333 #ifndef KSTACK_MAX_PAGES
  334 #define KSTACK_MAX_PAGES 32
  335 #endif
  336 
  337 /*
  338  * Create the kernel stack (including pcb for i386) for a new thread.
  339  * This routine directly affects the fork perf for a process and
  340  * create performance for a thread.
  341  */
  342 int
  343 vm_thread_new(struct thread *td, int pages)
  344 {
  345         vm_object_t ksobj;
  346         vm_offset_t ks;
  347         vm_page_t m, ma[KSTACK_MAX_PAGES];
  348         struct kstack_cache_entry *ks_ce;
  349         int i;
  350 
  351         /* Bounds check */
  352         if (pages <= 1)
  353                 pages = KSTACK_PAGES;
  354         else if (pages > KSTACK_MAX_PAGES)
  355                 pages = KSTACK_MAX_PAGES;
  356 
  357         if (pages == KSTACK_PAGES) {
  358                 mtx_lock(&kstack_cache_mtx);
  359                 if (kstack_cache != NULL) {
  360                         ks_ce = kstack_cache;
  361                         kstack_cache = ks_ce->next_ks_entry;
  362                         mtx_unlock(&kstack_cache_mtx);
  363 
  364                         td->td_kstack_obj = ks_ce->ksobj;
  365                         td->td_kstack = (vm_offset_t)ks_ce;
  366                         td->td_kstack_pages = KSTACK_PAGES;
  367                         return (1);
  368                 }
  369                 mtx_unlock(&kstack_cache_mtx);
  370         }
  371 
  372         /*
  373          * Allocate an object for the kstack.
  374          */
  375         ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
  376         
  377         /*
  378          * Get a kernel virtual address for this thread's kstack.
  379          */
  380 #if defined(__mips__)
  381         /*
  382          * We need to align the kstack's mapped address to fit within
  383          * a single TLB entry.
  384          */
  385         ks = kmem_alloc_nofault_space(kernel_map,
  386             (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE, VMFS_TLB_ALIGNED_SPACE);
  387 #else
  388         ks = kmem_alloc_nofault(kernel_map,
  389            (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
  390 #endif
  391         if (ks == 0) {
  392                 printf("vm_thread_new: kstack allocation failed\n");
  393                 vm_object_deallocate(ksobj);
  394                 return (0);
  395         }
  396 
  397         atomic_add_int(&kstacks, 1);
  398         if (KSTACK_GUARD_PAGES != 0) {
  399                 pmap_qremove(ks, KSTACK_GUARD_PAGES);
  400                 ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
  401         }
  402         td->td_kstack_obj = ksobj;
  403         td->td_kstack = ks;
  404         /*
  405          * Knowing the number of pages allocated is useful when you
  406          * want to deallocate them.
  407          */
  408         td->td_kstack_pages = pages;
  409         /* 
  410          * For the length of the stack, link in a real page of ram for each
  411          * page of stack.
  412          */
  413         VM_OBJECT_LOCK(ksobj);
  414         for (i = 0; i < pages; i++) {
  415                 /*
  416                  * Get a kernel stack page.
  417                  */
  418                 m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
  419                     VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
  420                 ma[i] = m;
  421                 m->valid = VM_PAGE_BITS_ALL;
  422         }
  423         VM_OBJECT_UNLOCK(ksobj);
  424         pmap_qenter(ks, ma, pages);
  425         return (1);
  426 }
  427 
  428 static void
  429 vm_thread_stack_dispose(vm_object_t ksobj, vm_offset_t ks, int pages)
  430 {
  431         vm_page_t m;
  432         int i;
  433 
  434         atomic_add_int(&kstacks, -1);
  435         pmap_qremove(ks, pages);
  436         VM_OBJECT_LOCK(ksobj);
  437         for (i = 0; i < pages; i++) {
  438                 m = vm_page_lookup(ksobj, i);
  439                 if (m == NULL)
  440                         panic("vm_thread_dispose: kstack already missing?");
  441                 vm_page_lock_queues();
  442                 vm_page_unwire(m, 0);
  443                 vm_page_free(m);
  444                 vm_page_unlock_queues();
  445         }
  446         VM_OBJECT_UNLOCK(ksobj);
  447         vm_object_deallocate(ksobj);
  448         kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
  449             (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
  450 }
  451 
  452 /*
  453  * Dispose of a thread's kernel stack.
  454  */
  455 void
  456 vm_thread_dispose(struct thread *td)
  457 {
  458         vm_object_t ksobj;
  459         vm_offset_t ks;
  460         struct kstack_cache_entry *ks_ce;
  461         int pages;
  462 
  463         pages = td->td_kstack_pages;
  464         ksobj = td->td_kstack_obj;
  465         ks = td->td_kstack;
  466         td->td_kstack = 0;
  467         td->td_kstack_pages = 0;
  468         if (pages == KSTACK_PAGES && kstacks <= kstack_cache_size) {
  469                 ks_ce = (struct kstack_cache_entry *)ks;
  470                 ks_ce->ksobj = ksobj;
  471                 mtx_lock(&kstack_cache_mtx);
  472                 ks_ce->next_ks_entry = kstack_cache;
  473                 kstack_cache = ks_ce;
  474                 mtx_unlock(&kstack_cache_mtx);
  475                 return;
  476         }
  477         vm_thread_stack_dispose(ksobj, ks, pages);
  478 }
  479 
  480 static void
  481 vm_thread_stack_lowmem(void *nulll)
  482 {
  483         struct kstack_cache_entry *ks_ce, *ks_ce1;
  484 
  485         mtx_lock(&kstack_cache_mtx);
  486         ks_ce = kstack_cache;
  487         kstack_cache = NULL;
  488         mtx_unlock(&kstack_cache_mtx);
  489 
  490         while (ks_ce != NULL) {
  491                 ks_ce1 = ks_ce;
  492                 ks_ce = ks_ce->next_ks_entry;
  493 
  494                 vm_thread_stack_dispose(ks_ce1->ksobj, (vm_offset_t)ks_ce1,
  495                     KSTACK_PAGES);
  496         }
  497 }
  498 
  499 static void
  500 kstack_cache_init(void *nulll)
  501 {
  502 
  503         EVENTHANDLER_REGISTER(vm_lowmem, vm_thread_stack_lowmem, NULL,
  504             EVENTHANDLER_PRI_ANY);
  505 }
  506 
  507 MTX_SYSINIT(kstack_cache, &kstack_cache_mtx, "kstkch", MTX_DEF);
  508 SYSINIT(vm_kstacks, SI_SUB_KTHREAD_INIT, SI_ORDER_ANY, kstack_cache_init, NULL);
  509 
  510 /*
  511  * Allow a thread's kernel stack to be paged out.
  512  */
  513 void
  514 vm_thread_swapout(struct thread *td)
  515 {
  516         vm_object_t ksobj;
  517         vm_page_t m;
  518         int i, pages;
  519 
  520         cpu_thread_swapout(td);
  521         pages = td->td_kstack_pages;
  522         ksobj = td->td_kstack_obj;
  523         pmap_qremove(td->td_kstack, pages);
  524         VM_OBJECT_LOCK(ksobj);
  525         for (i = 0; i < pages; i++) {
  526                 m = vm_page_lookup(ksobj, i);
  527                 if (m == NULL)
  528                         panic("vm_thread_swapout: kstack already missing?");
  529                 vm_page_lock_queues();
  530                 vm_page_dirty(m);
  531                 vm_page_unwire(m, 0);
  532                 vm_page_unlock_queues();
  533         }
  534         VM_OBJECT_UNLOCK(ksobj);
  535 }
  536 
  537 /*
  538  * Bring the kernel stack for a specified thread back in.
  539  */
  540 void
  541 vm_thread_swapin(struct thread *td)
  542 {
  543         vm_object_t ksobj;
  544         vm_page_t ma[KSTACK_MAX_PAGES];
  545         int i, j, k, pages, rv;
  546 
  547         pages = td->td_kstack_pages;
  548         ksobj = td->td_kstack_obj;
  549         VM_OBJECT_LOCK(ksobj);
  550         for (i = 0; i < pages; i++)
  551                 ma[i] = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY |
  552                     VM_ALLOC_WIRED);
  553         for (i = 0; i < pages; i++) {
  554                 if (ma[i]->valid != VM_PAGE_BITS_ALL) {
  555                         KASSERT(ma[i]->oflags & VPO_BUSY,
  556                             ("lost busy 1"));
  557                         vm_object_pip_add(ksobj, 1);
  558                         for (j = i + 1; j < pages; j++) {
  559                                 KASSERT(ma[j]->valid == VM_PAGE_BITS_ALL ||
  560                                     (ma[j]->oflags & VPO_BUSY),
  561                                     ("lost busy 2"));
  562                                 if (ma[j]->valid == VM_PAGE_BITS_ALL)
  563                                         break;
  564                         }
  565                         rv = vm_pager_get_pages(ksobj, ma + i, j - i, 0);
  566                         if (rv != VM_PAGER_OK)
  567         panic("vm_thread_swapin: cannot get kstack for proc: %d",
  568                                     td->td_proc->p_pid);
  569                         vm_object_pip_wakeup(ksobj);
  570                         for (k = i; k < j; k++)
  571                                 ma[k] = vm_page_lookup(ksobj, k);
  572                         vm_page_wakeup(ma[i]);
  573                 } else if (ma[i]->oflags & VPO_BUSY)
  574                         vm_page_wakeup(ma[i]);
  575         }
  576         VM_OBJECT_UNLOCK(ksobj);
  577         pmap_qenter(td->td_kstack, ma, pages);
  578         cpu_thread_swapin(td);
  579 }
  580 
  581 /*
  582  * Implement fork's actions on an address space.
  583  * Here we arrange for the address space to be copied or referenced,
  584  * allocate a user struct (pcb and kernel stack), then call the
  585  * machine-dependent layer to fill those in and make the new process
  586  * ready to run.  The new process is set up so that it returns directly
  587  * to user mode to avoid stack copying and relocation problems.
  588  */
  589 int
  590 vm_forkproc(td, p2, td2, vm2, flags)
  591         struct thread *td;
  592         struct proc *p2;
  593         struct thread *td2;
  594         struct vmspace *vm2;
  595         int flags;
  596 {
  597         struct proc *p1 = td->td_proc;
  598         int error;
  599 
  600         if ((flags & RFPROC) == 0) {
  601                 /*
  602                  * Divorce the memory, if it is shared, essentially
  603                  * this changes shared memory amongst threads, into
  604                  * COW locally.
  605                  */
  606                 if ((flags & RFMEM) == 0) {
  607                         if (p1->p_vmspace->vm_refcnt > 1) {
  608                                 error = vmspace_unshare(p1);
  609                                 if (error)
  610                                         return (error);
  611                         }
  612                 }
  613                 cpu_fork(td, p2, td2, flags);
  614                 return (0);
  615         }
  616 
  617         if (flags & RFMEM) {
  618                 p2->p_vmspace = p1->p_vmspace;
  619                 atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
  620         }
  621 
  622         while (vm_page_count_severe()) {
  623                 VM_WAIT;
  624         }
  625 
  626         if ((flags & RFMEM) == 0) {
  627                 p2->p_vmspace = vm2;
  628                 if (p1->p_vmspace->vm_shm)
  629                         shmfork(p1, p2);
  630         }
  631 
  632         /*
  633          * cpu_fork will copy and update the pcb, set up the kernel stack,
  634          * and make the child ready to run.
  635          */
  636         cpu_fork(td, p2, td2, flags);
  637         return (0);
  638 }
  639 
  640 /*
  641  * Called after process has been wait(2)'ed apon and is being reaped.
  642  * The idea is to reclaim resources that we could not reclaim while
  643  * the process was still executing.
  644  */
  645 void
  646 vm_waitproc(p)
  647         struct proc *p;
  648 {
  649 
  650         vmspace_exitfree(p);            /* and clean-out the vmspace */
  651 }
  652 
  653 /*
  654  * Set default limits for VM system.
  655  * Called for proc 0, and then inherited by all others.
  656  *
  657  * XXX should probably act directly on proc0.
  658  */
  659 static void
  660 vm_init_limits(udata)
  661         void *udata;
  662 {
  663         struct proc *p = udata;
  664         struct plimit *limp;
  665         int rss_limit;
  666 
  667         /*
  668          * Set up the initial limits on process VM. Set the maximum resident
  669          * set size to be half of (reasonably) available memory.  Since this
  670          * is a soft limit, it comes into effect only when the system is out
  671          * of memory - half of main memory helps to favor smaller processes,
  672          * and reduces thrashing of the object cache.
  673          */
  674         limp = p->p_limit;
  675         limp->pl_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
  676         limp->pl_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
  677         limp->pl_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
  678         limp->pl_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
  679         /* limit the limit to no less than 2MB */
  680         rss_limit = max(cnt.v_free_count, 512);
  681         limp->pl_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
  682         limp->pl_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
  683 }
  684 
  685 void
  686 faultin(p)
  687         struct proc *p;
  688 {
  689 #ifdef NO_SWAPPING
  690 
  691         PROC_LOCK_ASSERT(p, MA_OWNED);
  692         if ((p->p_flag & P_INMEM) == 0)
  693                 panic("faultin: proc swapped out with NO_SWAPPING!");
  694 #else /* !NO_SWAPPING */
  695         struct thread *td;
  696 
  697         PROC_LOCK_ASSERT(p, MA_OWNED);
  698         /*
  699          * If another process is swapping in this process,
  700          * just wait until it finishes.
  701          */
  702         if (p->p_flag & P_SWAPPINGIN) {
  703                 while (p->p_flag & P_SWAPPINGIN)
  704                         msleep(&p->p_flag, &p->p_mtx, PVM, "faultin", 0);
  705                 return;
  706         }
  707         if ((p->p_flag & P_INMEM) == 0) {
  708                 /*
  709                  * Don't let another thread swap process p out while we are
  710                  * busy swapping it in.
  711                  */
  712                 ++p->p_lock;
  713                 p->p_flag |= P_SWAPPINGIN;
  714                 PROC_UNLOCK(p);
  715 
  716                 /*
  717                  * We hold no lock here because the list of threads
  718                  * can not change while all threads in the process are
  719                  * swapped out.
  720                  */
  721                 FOREACH_THREAD_IN_PROC(p, td)
  722                         vm_thread_swapin(td);
  723                 PROC_LOCK(p);
  724                 swapclear(p);
  725                 p->p_swtick = ticks;
  726 
  727                 wakeup(&p->p_flag);
  728 
  729                 /* Allow other threads to swap p out now. */
  730                 --p->p_lock;
  731         }
  732 #endif /* NO_SWAPPING */
  733 }
  734 
  735 /*
  736  * This swapin algorithm attempts to swap-in processes only if there
  737  * is enough space for them.  Of course, if a process waits for a long
  738  * time, it will be swapped in anyway.
  739  *
  740  * Giant is held on entry.
  741  */
  742 /* ARGSUSED*/
  743 static void
  744 scheduler(dummy)
  745         void *dummy;
  746 {
  747         struct proc *p;
  748         struct thread *td;
  749         struct proc *pp;
  750         int slptime;
  751         int swtime;
  752         int ppri;
  753         int pri;
  754 
  755         mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
  756         mtx_unlock(&Giant);
  757 
  758 loop:
  759         if (vm_page_count_min()) {
  760                 VM_WAIT;
  761                 goto loop;
  762         }
  763 
  764         pp = NULL;
  765         ppri = INT_MIN;
  766         sx_slock(&allproc_lock);
  767         FOREACH_PROC_IN_SYSTEM(p) {
  768                 PROC_LOCK(p);
  769                 if (p->p_state == PRS_NEW ||
  770                     p->p_flag & (P_SWAPPINGOUT | P_SWAPPINGIN | P_INMEM)) {
  771                         PROC_UNLOCK(p);
  772                         continue;
  773                 }
  774                 swtime = (ticks - p->p_swtick) / hz;
  775                 FOREACH_THREAD_IN_PROC(p, td) {
  776                         /*
  777                          * An otherwise runnable thread of a process
  778                          * swapped out has only the TDI_SWAPPED bit set.
  779                          * 
  780                          */
  781                         thread_lock(td);
  782                         if (td->td_inhibitors == TDI_SWAPPED) {
  783                                 slptime = (ticks - td->td_slptick) / hz;
  784                                 pri = swtime + slptime;
  785                                 if ((td->td_flags & TDF_SWAPINREQ) == 0)
  786                                         pri -= p->p_nice * 8;
  787                                 /*
  788                                  * if this thread is higher priority
  789                                  * and there is enough space, then select
  790                                  * this process instead of the previous
  791                                  * selection.
  792                                  */
  793                                 if (pri > ppri) {
  794                                         pp = p;
  795                                         ppri = pri;
  796                                 }
  797                         }
  798                         thread_unlock(td);
  799                 }
  800                 PROC_UNLOCK(p);
  801         }
  802         sx_sunlock(&allproc_lock);
  803 
  804         /*
  805          * Nothing to do, back to sleep.
  806          */
  807         if ((p = pp) == NULL) {
  808                 tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
  809                 goto loop;
  810         }
  811         PROC_LOCK(p);
  812 
  813         /*
  814          * Another process may be bringing or may have already
  815          * brought this process in while we traverse all threads.
  816          * Or, this process may even be being swapped out again.
  817          */
  818         if (p->p_flag & (P_INMEM | P_SWAPPINGOUT | P_SWAPPINGIN)) {
  819                 PROC_UNLOCK(p);
  820                 goto loop;
  821         }
  822 
  823         /*
  824          * We would like to bring someone in. (only if there is space).
  825          * [What checks the space? ]
  826          */
  827         faultin(p);
  828         PROC_UNLOCK(p);
  829         goto loop;
  830 }
  831 
  832 void
  833 kick_proc0(void)
  834 {
  835 
  836         wakeup(&proc0);
  837 }
  838 
  839 #ifndef NO_SWAPPING
  840 
  841 /*
  842  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
  843  */
  844 static int swap_idle_threshold1 = 2;
  845 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
  846     &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
  847 
  848 /*
  849  * Swap_idle_threshold2 is the time that a process can be idle before
  850  * it will be swapped out, if idle swapping is enabled.
  851  */
  852 static int swap_idle_threshold2 = 10;
  853 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
  854     &swap_idle_threshold2, 0, "Time before a process will be swapped out");
  855 
  856 /*
  857  * Swapout is driven by the pageout daemon.  Very simple, we find eligible
  858  * procs and swap out their stacks.  We try to always "swap" at least one
  859  * process in case we need the room for a swapin.
  860  * If any procs have been sleeping/stopped for at least maxslp seconds,
  861  * they are swapped.  Else, we swap the longest-sleeping or stopped process,
  862  * if any, otherwise the longest-resident process.
  863  */
  864 void
  865 swapout_procs(action)
  866 int action;
  867 {
  868         struct proc *p;
  869         struct thread *td;
  870         int didswap = 0;
  871 
  872 retry:
  873         sx_slock(&allproc_lock);
  874         FOREACH_PROC_IN_SYSTEM(p) {
  875                 struct vmspace *vm;
  876                 int minslptime = 100000;
  877                 int slptime;
  878                 
  879                 /*
  880                  * Watch out for a process in
  881                  * creation.  It may have no
  882                  * address space or lock yet.
  883                  */
  884                 if (p->p_state == PRS_NEW)
  885                         continue;
  886                 /*
  887                  * An aio daemon switches its
  888                  * address space while running.
  889                  * Perform a quick check whether
  890                  * a process has P_SYSTEM.
  891                  */
  892                 if ((p->p_flag & P_SYSTEM) != 0)
  893                         continue;
  894                 /*
  895                  * Do not swapout a process that
  896                  * is waiting for VM data
  897                  * structures as there is a possible
  898                  * deadlock.  Test this first as
  899                  * this may block.
  900                  *
  901                  * Lock the map until swapout
  902                  * finishes, or a thread of this
  903                  * process may attempt to alter
  904                  * the map.
  905                  */
  906                 vm = vmspace_acquire_ref(p);
  907                 if (vm == NULL)
  908                         continue;
  909                 if (!vm_map_trylock(&vm->vm_map))
  910                         goto nextproc1;
  911 
  912                 PROC_LOCK(p);
  913                 if (p->p_lock != 0 ||
  914                     (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
  915                     ) != 0) {
  916                         goto nextproc;
  917                 }
  918                 /*
  919                  * only aiod changes vmspace, however it will be
  920                  * skipped because of the if statement above checking 
  921                  * for P_SYSTEM
  922                  */
  923                 if ((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) != P_INMEM)
  924                         goto nextproc;
  925 
  926                 switch (p->p_state) {
  927                 default:
  928                         /* Don't swap out processes in any sort
  929                          * of 'special' state. */
  930                         break;
  931 
  932                 case PRS_NORMAL:
  933                         /*
  934                          * do not swapout a realtime process
  935                          * Check all the thread groups..
  936                          */
  937                         FOREACH_THREAD_IN_PROC(p, td) {
  938                                 thread_lock(td);
  939                                 if (PRI_IS_REALTIME(td->td_pri_class)) {
  940                                         thread_unlock(td);
  941                                         goto nextproc;
  942                                 }
  943                                 slptime = (ticks - td->td_slptick) / hz;
  944                                 /*
  945                                  * Guarantee swap_idle_threshold1
  946                                  * time in memory.
  947                                  */
  948                                 if (slptime < swap_idle_threshold1) {
  949                                         thread_unlock(td);
  950                                         goto nextproc;
  951                                 }
  952 
  953                                 /*
  954                                  * Do not swapout a process if it is
  955                                  * waiting on a critical event of some
  956                                  * kind or there is a thread whose
  957                                  * pageable memory may be accessed.
  958                                  *
  959                                  * This could be refined to support
  960                                  * swapping out a thread.
  961                                  */
  962                                 if (!thread_safetoswapout(td)) {
  963                                         thread_unlock(td);
  964                                         goto nextproc;
  965                                 }
  966                                 /*
  967                                  * If the system is under memory stress,
  968                                  * or if we are swapping
  969                                  * idle processes >= swap_idle_threshold2,
  970                                  * then swap the process out.
  971                                  */
  972                                 if (((action & VM_SWAP_NORMAL) == 0) &&
  973                                     (((action & VM_SWAP_IDLE) == 0) ||
  974                                     (slptime < swap_idle_threshold2))) {
  975                                         thread_unlock(td);
  976                                         goto nextproc;
  977                                 }
  978 
  979                                 if (minslptime > slptime)
  980                                         minslptime = slptime;
  981                                 thread_unlock(td);
  982                         }
  983 
  984                         /*
  985                          * If the pageout daemon didn't free enough pages,
  986                          * or if this process is idle and the system is
  987                          * configured to swap proactively, swap it out.
  988                          */
  989                         if ((action & VM_SWAP_NORMAL) ||
  990                                 ((action & VM_SWAP_IDLE) &&
  991                                  (minslptime > swap_idle_threshold2))) {
  992                                 if (swapout(p) == 0)
  993                                         didswap++;
  994                                 PROC_UNLOCK(p);
  995                                 vm_map_unlock(&vm->vm_map);
  996                                 vmspace_free(vm);
  997                                 sx_sunlock(&allproc_lock);
  998                                 goto retry;
  999                         }
 1000                 }
 1001 nextproc:
 1002                 PROC_UNLOCK(p);
 1003                 vm_map_unlock(&vm->vm_map);
 1004 nextproc1:
 1005                 vmspace_free(vm);
 1006                 continue;
 1007         }
 1008         sx_sunlock(&allproc_lock);
 1009         /*
 1010          * If we swapped something out, and another process needed memory,
 1011          * then wakeup the sched process.
 1012          */
 1013         if (didswap)
 1014                 wakeup(&proc0);
 1015 }
 1016 
 1017 static void
 1018 swapclear(p)
 1019         struct proc *p;
 1020 {
 1021         struct thread *td;
 1022 
 1023         PROC_LOCK_ASSERT(p, MA_OWNED);
 1024 
 1025         FOREACH_THREAD_IN_PROC(p, td) {
 1026                 thread_lock(td);
 1027                 td->td_flags |= TDF_INMEM;
 1028                 td->td_flags &= ~TDF_SWAPINREQ;
 1029                 TD_CLR_SWAPPED(td);
 1030                 if (TD_CAN_RUN(td))
 1031                         if (setrunnable(td)) {
 1032 #ifdef INVARIANTS
 1033                                 /*
 1034                                  * XXX: We just cleared TDI_SWAPPED
 1035                                  * above and set TDF_INMEM, so this
 1036                                  * should never happen.
 1037                                  */
 1038                                 panic("not waking up swapper");
 1039 #endif
 1040                         }
 1041                 thread_unlock(td);
 1042         }
 1043         p->p_flag &= ~(P_SWAPPINGIN|P_SWAPPINGOUT);
 1044         p->p_flag |= P_INMEM;
 1045 }
 1046 
 1047 static int
 1048 swapout(p)
 1049         struct proc *p;
 1050 {
 1051         struct thread *td;
 1052 
 1053         PROC_LOCK_ASSERT(p, MA_OWNED);
 1054 #if defined(SWAP_DEBUG)
 1055         printf("swapping out %d\n", p->p_pid);
 1056 #endif
 1057 
 1058         /*
 1059          * The states of this process and its threads may have changed
 1060          * by now.  Assuming that there is only one pageout daemon thread,
 1061          * this process should still be in memory.
 1062          */
 1063         KASSERT((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) == P_INMEM,
 1064                 ("swapout: lost a swapout race?"));
 1065 
 1066         /*
 1067          * remember the process resident count
 1068          */
 1069         p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
 1070         /*
 1071          * Check and mark all threads before we proceed.
 1072          */
 1073         p->p_flag &= ~P_INMEM;
 1074         p->p_flag |= P_SWAPPINGOUT;
 1075         FOREACH_THREAD_IN_PROC(p, td) {
 1076                 thread_lock(td);
 1077                 if (!thread_safetoswapout(td)) {
 1078                         thread_unlock(td);
 1079                         swapclear(p);
 1080                         return (EBUSY);
 1081                 }
 1082                 td->td_flags &= ~TDF_INMEM;
 1083                 TD_SET_SWAPPED(td);
 1084                 thread_unlock(td);
 1085         }
 1086         td = FIRST_THREAD_IN_PROC(p);
 1087         ++td->td_ru.ru_nswap;
 1088         PROC_UNLOCK(p);
 1089 
 1090         /*
 1091          * This list is stable because all threads are now prevented from
 1092          * running.  The list is only modified in the context of a running
 1093          * thread in this process.
 1094          */
 1095         FOREACH_THREAD_IN_PROC(p, td)
 1096                 vm_thread_swapout(td);
 1097 
 1098         PROC_LOCK(p);
 1099         p->p_flag &= ~P_SWAPPINGOUT;
 1100         p->p_swtick = ticks;
 1101         return (0);
 1102 }
 1103 #endif /* !NO_SWAPPING */

Cache object: 556249f74f05520afc4a29c178e94afe


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.