The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_glue.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)vm_glue.c     8.6 (Berkeley) 1/5/94
   33  *
   34  *
   35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   36  * All rights reserved.
   37  *
   38  * Permission to use, copy, modify and distribute this software and
   39  * its documentation is hereby granted, provided that both the copyright
   40  * notice and this permission notice appear in all copies of the
   41  * software, derivative works or modified versions, and any portions
   42  * thereof, and that both notices appear in supporting documentation.
   43  *
   44  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   45  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   46  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   47  *
   48  * Carnegie Mellon requests users of this software to return to
   49  *
   50  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   51  *  School of Computer Science
   52  *  Carnegie Mellon University
   53  *  Pittsburgh PA 15213-3890
   54  *
   55  * any improvements or extensions that they make and grant Carnegie the
   56  * rights to redistribute these changes.
   57  */
   58 
   59 #include <sys/cdefs.h>
   60 __FBSDID("$FreeBSD$");
   61 
   62 #include "opt_vm.h"
   63 #include "opt_kstack_pages.h"
   64 #include "opt_kstack_max_pages.h"
   65 
   66 #include <sys/param.h>
   67 #include <sys/systm.h>
   68 #include <sys/limits.h>
   69 #include <sys/lock.h>
   70 #include <sys/mutex.h>
   71 #include <sys/proc.h>
   72 #include <sys/resourcevar.h>
   73 #include <sys/sched.h>
   74 #include <sys/sf_buf.h>
   75 #include <sys/shm.h>
   76 #include <sys/vmmeter.h>
   77 #include <sys/sx.h>
   78 #include <sys/sysctl.h>
   79 
   80 #include <sys/eventhandler.h>
   81 #include <sys/kernel.h>
   82 #include <sys/ktr.h>
   83 #include <sys/unistd.h>
   84 
   85 #include <vm/vm.h>
   86 #include <vm/vm_param.h>
   87 #include <vm/pmap.h>
   88 #include <vm/vm_map.h>
   89 #include <vm/vm_page.h>
   90 #include <vm/vm_pageout.h>
   91 #include <vm/vm_object.h>
   92 #include <vm/vm_kern.h>
   93 #include <vm/vm_extern.h>
   94 #include <vm/vm_pager.h>
   95 #include <vm/swap_pager.h>
   96 
   97 extern int maxslp;
   98 
   99 /*
  100  * System initialization
  101  *
  102  * Note: proc0 from proc.h
  103  */
  104 static void vm_init_limits(void *);
  105 SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0);
  106 
  107 #ifndef NO_SWAPPING
  108 static int swapout(struct proc *);
  109 static void swapclear(struct proc *);
  110 #endif
  111 
  112 /*
  113  * MPSAFE
  114  *
  115  * WARNING!  This code calls vm_map_check_protection() which only checks
  116  * the associated vm_map_entry range.  It does not determine whether the
  117  * contents of the memory is actually readable or writable.  In most cases
  118  * just checking the vm_map_entry is sufficient within the kernel's address
  119  * space.
  120  */
  121 int
  122 kernacc(addr, len, rw)
  123         void *addr;
  124         int len, rw;
  125 {
  126         boolean_t rv;
  127         vm_offset_t saddr, eaddr;
  128         vm_prot_t prot;
  129 
  130         KASSERT((rw & ~VM_PROT_ALL) == 0,
  131             ("illegal ``rw'' argument to kernacc (%x)\n", rw));
  132 
  133         if ((vm_offset_t)addr + len > kernel_map->max_offset ||
  134             (vm_offset_t)addr + len < (vm_offset_t)addr)
  135                 return (FALSE);
  136 
  137         prot = rw;
  138         saddr = trunc_page((vm_offset_t)addr);
  139         eaddr = round_page((vm_offset_t)addr + len);
  140         vm_map_lock_read(kernel_map);
  141         rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
  142         vm_map_unlock_read(kernel_map);
  143         return (rv == TRUE);
  144 }
  145 
  146 /*
  147  * MPSAFE
  148  *
  149  * WARNING!  This code calls vm_map_check_protection() which only checks
  150  * the associated vm_map_entry range.  It does not determine whether the
  151  * contents of the memory is actually readable or writable.  vmapbuf(),
  152  * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
  153  * used in conjuction with this call.
  154  */
  155 int
  156 useracc(addr, len, rw)
  157         void *addr;
  158         int len, rw;
  159 {
  160         boolean_t rv;
  161         vm_prot_t prot;
  162         vm_map_t map;
  163 
  164         KASSERT((rw & ~VM_PROT_ALL) == 0,
  165             ("illegal ``rw'' argument to useracc (%x)\n", rw));
  166         prot = rw;
  167         map = &curproc->p_vmspace->vm_map;
  168         if ((vm_offset_t)addr + len > vm_map_max(map) ||
  169             (vm_offset_t)addr + len < (vm_offset_t)addr) {
  170                 return (FALSE);
  171         }
  172         vm_map_lock_read(map);
  173         rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
  174             round_page((vm_offset_t)addr + len), prot);
  175         vm_map_unlock_read(map);
  176         return (rv == TRUE);
  177 }
  178 
  179 int
  180 vslock(void *addr, size_t len)
  181 {
  182         vm_offset_t end, last, start;
  183         vm_size_t npages;
  184         int error;
  185 
  186         last = (vm_offset_t)addr + len;
  187         start = trunc_page((vm_offset_t)addr);
  188         end = round_page(last);
  189         if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
  190                 return (EINVAL);
  191         npages = atop(end - start);
  192         if (npages > vm_page_max_wired)
  193                 return (ENOMEM);
  194 #if 0
  195         /*
  196          * XXX - not yet
  197          *
  198          * The limit for transient usage of wired pages should be
  199          * larger than for "permanent" wired pages (mlock()).
  200          *
  201          * Also, the sysctl code, which is the only present user
  202          * of vslock(), does a hard loop on EAGAIN.
  203          */
  204         if (npages + cnt.v_wire_count > vm_page_max_wired)
  205                 return (EAGAIN);
  206 #endif
  207         error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
  208             VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
  209         /*
  210          * Return EFAULT on error to match copy{in,out}() behaviour
  211          * rather than returning ENOMEM like mlock() would.
  212          */
  213         return (error == KERN_SUCCESS ? 0 : EFAULT);
  214 }
  215 
  216 void
  217 vsunlock(void *addr, size_t len)
  218 {
  219 
  220         /* Rely on the parameter sanity checks performed by vslock(). */
  221         (void)vm_map_unwire(&curproc->p_vmspace->vm_map,
  222             trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
  223             VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
  224 }
  225 
  226 /*
  227  * Pin the page contained within the given object at the given offset.  If the
  228  * page is not resident, allocate and load it using the given object's pager.
  229  * Return the pinned page if successful; otherwise, return NULL.
  230  */
  231 static vm_page_t
  232 vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
  233 {
  234         vm_page_t m, ma[1];
  235         vm_pindex_t pindex;
  236         int rv;
  237 
  238         VM_OBJECT_LOCK(object);
  239         pindex = OFF_TO_IDX(offset);
  240         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
  241         if (m->valid != VM_PAGE_BITS_ALL) {
  242                 ma[0] = m;
  243                 rv = vm_pager_get_pages(object, ma, 1, 0);
  244                 m = vm_page_lookup(object, pindex);
  245                 if (m == NULL)
  246                         goto out;
  247                 if (rv != VM_PAGER_OK) {
  248                         vm_page_lock_queues();
  249                         vm_page_free(m);
  250                         vm_page_unlock_queues();
  251                         m = NULL;
  252                         goto out;
  253                 }
  254         }
  255         vm_page_lock_queues();
  256         vm_page_hold(m);
  257         vm_page_unlock_queues();
  258         vm_page_wakeup(m);
  259 out:
  260         VM_OBJECT_UNLOCK(object);
  261         return (m);
  262 }
  263 
  264 /*
  265  * Return a CPU private mapping to the page at the given offset within the
  266  * given object.  The page is pinned before it is mapped.
  267  */
  268 struct sf_buf *
  269 vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
  270 {
  271         vm_page_t m;
  272 
  273         m = vm_imgact_hold_page(object, offset);
  274         if (m == NULL)
  275                 return (NULL);
  276         sched_pin();
  277         return (sf_buf_alloc(m, SFB_CPUPRIVATE));
  278 }
  279 
  280 /*
  281  * Destroy the given CPU private mapping and unpin the page that it mapped.
  282  */
  283 void
  284 vm_imgact_unmap_page(struct sf_buf *sf)
  285 {
  286         vm_page_t m;
  287 
  288         m = sf_buf_page(sf);
  289         sf_buf_free(sf);
  290         sched_unpin();
  291         vm_page_lock_queues();
  292         vm_page_unhold(m);
  293         vm_page_unlock_queues();
  294 }
  295 
  296 void
  297 vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz)
  298 {
  299 
  300         pmap_sync_icache(map->pmap, va, sz);
  301 }
  302 
  303 struct kstack_cache_entry {
  304         vm_object_t ksobj;
  305         struct kstack_cache_entry *next_ks_entry;
  306 };
  307 
  308 static struct kstack_cache_entry *kstack_cache;
  309 static int kstack_cache_size = 128;
  310 static int kstacks;
  311 static struct mtx kstack_cache_mtx;
  312 SYSCTL_INT(_vm, OID_AUTO, kstack_cache_size, CTLFLAG_RW, &kstack_cache_size, 0,
  313     "");
  314 SYSCTL_INT(_vm, OID_AUTO, kstacks, CTLFLAG_RD, &kstacks, 0,
  315     "");
  316 
  317 #ifndef KSTACK_MAX_PAGES
  318 #define KSTACK_MAX_PAGES 32
  319 #endif
  320 
  321 /*
  322  * Create the kernel stack (including pcb for i386) for a new thread.
  323  * This routine directly affects the fork perf for a process and
  324  * create performance for a thread.
  325  */
  326 int
  327 vm_thread_new(struct thread *td, int pages)
  328 {
  329         vm_object_t ksobj;
  330         vm_offset_t ks;
  331         vm_page_t m, ma[KSTACK_MAX_PAGES];
  332         struct kstack_cache_entry *ks_ce;
  333         int i;
  334 
  335         /* Bounds check */
  336         if (pages <= 1)
  337                 pages = KSTACK_PAGES;
  338         else if (pages > KSTACK_MAX_PAGES)
  339                 pages = KSTACK_MAX_PAGES;
  340 
  341         if (pages == KSTACK_PAGES) {
  342                 mtx_lock(&kstack_cache_mtx);
  343                 if (kstack_cache != NULL) {
  344                         ks_ce = kstack_cache;
  345                         kstack_cache = ks_ce->next_ks_entry;
  346                         mtx_unlock(&kstack_cache_mtx);
  347 
  348                         td->td_kstack_obj = ks_ce->ksobj;
  349                         td->td_kstack = (vm_offset_t)ks_ce;
  350                         td->td_kstack_pages = KSTACK_PAGES;
  351                         return (1);
  352                 }
  353                 mtx_unlock(&kstack_cache_mtx);
  354         }
  355 
  356         /*
  357          * Allocate an object for the kstack.
  358          */
  359         ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
  360         
  361         /*
  362          * Get a kernel virtual address for this thread's kstack.
  363          */
  364 #if defined(__mips__)
  365         /*
  366          * We need to align the kstack's mapped address to fit within
  367          * a single TLB entry.
  368          */
  369         ks = kmem_alloc_nofault_space(kernel_map,
  370             (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE, VMFS_TLB_ALIGNED_SPACE);
  371 #else
  372         ks = kmem_alloc_nofault(kernel_map,
  373            (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
  374 #endif
  375         if (ks == 0) {
  376                 printf("vm_thread_new: kstack allocation failed\n");
  377                 vm_object_deallocate(ksobj);
  378                 return (0);
  379         }
  380 
  381         atomic_add_int(&kstacks, 1);
  382         if (KSTACK_GUARD_PAGES != 0) {
  383                 pmap_qremove(ks, KSTACK_GUARD_PAGES);
  384                 ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
  385         }
  386         td->td_kstack_obj = ksobj;
  387         td->td_kstack = ks;
  388         /*
  389          * Knowing the number of pages allocated is useful when you
  390          * want to deallocate them.
  391          */
  392         td->td_kstack_pages = pages;
  393         /* 
  394          * For the length of the stack, link in a real page of ram for each
  395          * page of stack.
  396          */
  397         VM_OBJECT_LOCK(ksobj);
  398         for (i = 0; i < pages; i++) {
  399                 /*
  400                  * Get a kernel stack page.
  401                  */
  402                 m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
  403                     VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
  404                 ma[i] = m;
  405                 m->valid = VM_PAGE_BITS_ALL;
  406         }
  407         VM_OBJECT_UNLOCK(ksobj);
  408         pmap_qenter(ks, ma, pages);
  409         return (1);
  410 }
  411 
  412 static void
  413 vm_thread_stack_dispose(vm_object_t ksobj, vm_offset_t ks, int pages)
  414 {
  415         vm_page_t m;
  416         int i;
  417 
  418         atomic_add_int(&kstacks, -1);
  419         pmap_qremove(ks, pages);
  420         VM_OBJECT_LOCK(ksobj);
  421         for (i = 0; i < pages; i++) {
  422                 m = vm_page_lookup(ksobj, i);
  423                 if (m == NULL)
  424                         panic("vm_thread_dispose: kstack already missing?");
  425                 vm_page_lock_queues();
  426                 vm_page_unwire(m, 0);
  427                 vm_page_free(m);
  428                 vm_page_unlock_queues();
  429         }
  430         VM_OBJECT_UNLOCK(ksobj);
  431         vm_object_deallocate(ksobj);
  432         kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
  433             (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
  434 }
  435 
  436 /*
  437  * Dispose of a thread's kernel stack.
  438  */
  439 void
  440 vm_thread_dispose(struct thread *td)
  441 {
  442         vm_object_t ksobj;
  443         vm_offset_t ks;
  444         struct kstack_cache_entry *ks_ce;
  445         int pages;
  446 
  447         pages = td->td_kstack_pages;
  448         ksobj = td->td_kstack_obj;
  449         ks = td->td_kstack;
  450         td->td_kstack = 0;
  451         td->td_kstack_pages = 0;
  452         if (pages == KSTACK_PAGES && kstacks <= kstack_cache_size) {
  453                 ks_ce = (struct kstack_cache_entry *)ks;
  454                 ks_ce->ksobj = ksobj;
  455                 mtx_lock(&kstack_cache_mtx);
  456                 ks_ce->next_ks_entry = kstack_cache;
  457                 kstack_cache = ks_ce;
  458                 mtx_unlock(&kstack_cache_mtx);
  459                 return;
  460         }
  461         vm_thread_stack_dispose(ksobj, ks, pages);
  462 }
  463 
  464 static void
  465 vm_thread_stack_lowmem(void *nulll)
  466 {
  467         struct kstack_cache_entry *ks_ce, *ks_ce1;
  468 
  469         mtx_lock(&kstack_cache_mtx);
  470         ks_ce = kstack_cache;
  471         kstack_cache = NULL;
  472         mtx_unlock(&kstack_cache_mtx);
  473 
  474         while (ks_ce != NULL) {
  475                 ks_ce1 = ks_ce;
  476                 ks_ce = ks_ce->next_ks_entry;
  477 
  478                 vm_thread_stack_dispose(ks_ce1->ksobj, (vm_offset_t)ks_ce1,
  479                     KSTACK_PAGES);
  480         }
  481 }
  482 
  483 static void
  484 kstack_cache_init(void *nulll)
  485 {
  486 
  487         EVENTHANDLER_REGISTER(vm_lowmem, vm_thread_stack_lowmem, NULL,
  488             EVENTHANDLER_PRI_ANY);
  489 }
  490 
  491 MTX_SYSINIT(kstack_cache, &kstack_cache_mtx, "kstkch", MTX_DEF);
  492 SYSINIT(vm_kstacks, SI_SUB_KTHREAD_INIT, SI_ORDER_ANY, kstack_cache_init, NULL);
  493 
  494 /*
  495  * Allow a thread's kernel stack to be paged out.
  496  */
  497 void
  498 vm_thread_swapout(struct thread *td)
  499 {
  500         vm_object_t ksobj;
  501         vm_page_t m;
  502         int i, pages;
  503 
  504         cpu_thread_swapout(td);
  505         pages = td->td_kstack_pages;
  506         ksobj = td->td_kstack_obj;
  507         pmap_qremove(td->td_kstack, pages);
  508         VM_OBJECT_LOCK(ksobj);
  509         for (i = 0; i < pages; i++) {
  510                 m = vm_page_lookup(ksobj, i);
  511                 if (m == NULL)
  512                         panic("vm_thread_swapout: kstack already missing?");
  513                 vm_page_lock_queues();
  514                 vm_page_dirty(m);
  515                 vm_page_unwire(m, 0);
  516                 vm_page_unlock_queues();
  517         }
  518         VM_OBJECT_UNLOCK(ksobj);
  519 }
  520 
  521 /*
  522  * Bring the kernel stack for a specified thread back in.
  523  */
  524 void
  525 vm_thread_swapin(struct thread *td)
  526 {
  527         vm_object_t ksobj;
  528         vm_page_t ma[KSTACK_MAX_PAGES];
  529         int i, j, k, pages, rv;
  530 
  531         pages = td->td_kstack_pages;
  532         ksobj = td->td_kstack_obj;
  533         VM_OBJECT_LOCK(ksobj);
  534         for (i = 0; i < pages; i++)
  535                 ma[i] = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY |
  536                     VM_ALLOC_WIRED);
  537         for (i = 0; i < pages; i++) {
  538                 if (ma[i]->valid != VM_PAGE_BITS_ALL) {
  539                         KASSERT(ma[i]->oflags & VPO_BUSY,
  540                             ("lost busy 1"));
  541                         vm_object_pip_add(ksobj, 1);
  542                         for (j = i + 1; j < pages; j++) {
  543                                 KASSERT(ma[j]->valid == VM_PAGE_BITS_ALL ||
  544                                     (ma[j]->oflags & VPO_BUSY),
  545                                     ("lost busy 2"));
  546                                 if (ma[j]->valid == VM_PAGE_BITS_ALL)
  547                                         break;
  548                         }
  549                         rv = vm_pager_get_pages(ksobj, ma + i, j - i, 0);
  550                         if (rv != VM_PAGER_OK)
  551         panic("vm_thread_swapin: cannot get kstack for proc: %d",
  552                                     td->td_proc->p_pid);
  553                         vm_object_pip_wakeup(ksobj);
  554                         for (k = i; k < j; k++)
  555                                 ma[k] = vm_page_lookup(ksobj, k);
  556                         vm_page_wakeup(ma[i]);
  557                 } else if (ma[i]->oflags & VPO_BUSY)
  558                         vm_page_wakeup(ma[i]);
  559         }
  560         VM_OBJECT_UNLOCK(ksobj);
  561         pmap_qenter(td->td_kstack, ma, pages);
  562         cpu_thread_swapin(td);
  563 }
  564 
  565 /*
  566  * Implement fork's actions on an address space.
  567  * Here we arrange for the address space to be copied or referenced,
  568  * allocate a user struct (pcb and kernel stack), then call the
  569  * machine-dependent layer to fill those in and make the new process
  570  * ready to run.  The new process is set up so that it returns directly
  571  * to user mode to avoid stack copying and relocation problems.
  572  */
  573 int
  574 vm_forkproc(td, p2, td2, vm2, flags)
  575         struct thread *td;
  576         struct proc *p2;
  577         struct thread *td2;
  578         struct vmspace *vm2;
  579         int flags;
  580 {
  581         struct proc *p1 = td->td_proc;
  582         int error;
  583 
  584         if ((flags & RFPROC) == 0) {
  585                 /*
  586                  * Divorce the memory, if it is shared, essentially
  587                  * this changes shared memory amongst threads, into
  588                  * COW locally.
  589                  */
  590                 if ((flags & RFMEM) == 0) {
  591                         if (p1->p_vmspace->vm_refcnt > 1) {
  592                                 error = vmspace_unshare(p1);
  593                                 if (error)
  594                                         return (error);
  595                         }
  596                 }
  597                 cpu_fork(td, p2, td2, flags);
  598                 return (0);
  599         }
  600 
  601         if (flags & RFMEM) {
  602                 p2->p_vmspace = p1->p_vmspace;
  603                 atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
  604         }
  605 
  606         while (vm_page_count_severe()) {
  607                 VM_WAIT;
  608         }
  609 
  610         if ((flags & RFMEM) == 0) {
  611                 p2->p_vmspace = vm2;
  612                 if (p1->p_vmspace->vm_shm)
  613                         shmfork(p1, p2);
  614         }
  615 
  616         /*
  617          * cpu_fork will copy and update the pcb, set up the kernel stack,
  618          * and make the child ready to run.
  619          */
  620         cpu_fork(td, p2, td2, flags);
  621         return (0);
  622 }
  623 
  624 /*
  625  * Called after process has been wait(2)'ed apon and is being reaped.
  626  * The idea is to reclaim resources that we could not reclaim while
  627  * the process was still executing.
  628  */
  629 void
  630 vm_waitproc(p)
  631         struct proc *p;
  632 {
  633 
  634         vmspace_exitfree(p);            /* and clean-out the vmspace */
  635 }
  636 
  637 /*
  638  * Set default limits for VM system.
  639  * Called for proc 0, and then inherited by all others.
  640  *
  641  * XXX should probably act directly on proc0.
  642  */
  643 static void
  644 vm_init_limits(udata)
  645         void *udata;
  646 {
  647         struct proc *p = udata;
  648         struct plimit *limp;
  649         int rss_limit;
  650 
  651         /*
  652          * Set up the initial limits on process VM. Set the maximum resident
  653          * set size to be half of (reasonably) available memory.  Since this
  654          * is a soft limit, it comes into effect only when the system is out
  655          * of memory - half of main memory helps to favor smaller processes,
  656          * and reduces thrashing of the object cache.
  657          */
  658         limp = p->p_limit;
  659         limp->pl_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
  660         limp->pl_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
  661         limp->pl_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
  662         limp->pl_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
  663         /* limit the limit to no less than 2MB */
  664         rss_limit = max(cnt.v_free_count, 512);
  665         limp->pl_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
  666         limp->pl_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
  667 }
  668 
  669 void
  670 faultin(p)
  671         struct proc *p;
  672 {
  673 #ifdef NO_SWAPPING
  674 
  675         PROC_LOCK_ASSERT(p, MA_OWNED);
  676         if ((p->p_flag & P_INMEM) == 0)
  677                 panic("faultin: proc swapped out with NO_SWAPPING!");
  678 #else /* !NO_SWAPPING */
  679         struct thread *td;
  680 
  681         PROC_LOCK_ASSERT(p, MA_OWNED);
  682         /*
  683          * If another process is swapping in this process,
  684          * just wait until it finishes.
  685          */
  686         if (p->p_flag & P_SWAPPINGIN) {
  687                 while (p->p_flag & P_SWAPPINGIN)
  688                         msleep(&p->p_flag, &p->p_mtx, PVM, "faultin", 0);
  689                 return;
  690         }
  691         if ((p->p_flag & P_INMEM) == 0) {
  692                 /*
  693                  * Don't let another thread swap process p out while we are
  694                  * busy swapping it in.
  695                  */
  696                 ++p->p_lock;
  697                 p->p_flag |= P_SWAPPINGIN;
  698                 PROC_UNLOCK(p);
  699 
  700                 /*
  701                  * We hold no lock here because the list of threads
  702                  * can not change while all threads in the process are
  703                  * swapped out.
  704                  */
  705                 FOREACH_THREAD_IN_PROC(p, td)
  706                         vm_thread_swapin(td);
  707                 PROC_LOCK(p);
  708                 swapclear(p);
  709                 p->p_swtick = ticks;
  710 
  711                 wakeup(&p->p_flag);
  712 
  713                 /* Allow other threads to swap p out now. */
  714                 --p->p_lock;
  715         }
  716 #endif /* NO_SWAPPING */
  717 }
  718 
  719 /*
  720  * This swapin algorithm attempts to swap-in processes only if there
  721  * is enough space for them.  Of course, if a process waits for a long
  722  * time, it will be swapped in anyway.
  723  *
  724  * Giant is held on entry.
  725  */
  726 void
  727 swapper(void)
  728 {
  729         struct proc *p;
  730         struct thread *td;
  731         struct proc *pp;
  732         int slptime;
  733         int swtime;
  734         int ppri;
  735         int pri;
  736 
  737 loop:
  738         if (vm_page_count_min()) {
  739                 VM_WAIT;
  740                 goto loop;
  741         }
  742 
  743         pp = NULL;
  744         ppri = INT_MIN;
  745         sx_slock(&allproc_lock);
  746         FOREACH_PROC_IN_SYSTEM(p) {
  747                 PROC_LOCK(p);
  748                 if (p->p_state == PRS_NEW ||
  749                     p->p_flag & (P_SWAPPINGOUT | P_SWAPPINGIN | P_INMEM)) {
  750                         PROC_UNLOCK(p);
  751                         continue;
  752                 }
  753                 swtime = (ticks - p->p_swtick) / hz;
  754                 FOREACH_THREAD_IN_PROC(p, td) {
  755                         /*
  756                          * An otherwise runnable thread of a process
  757                          * swapped out has only the TDI_SWAPPED bit set.
  758                          * 
  759                          */
  760                         thread_lock(td);
  761                         if (td->td_inhibitors == TDI_SWAPPED) {
  762                                 slptime = (ticks - td->td_slptick) / hz;
  763                                 pri = swtime + slptime;
  764                                 if ((td->td_flags & TDF_SWAPINREQ) == 0)
  765                                         pri -= p->p_nice * 8;
  766                                 /*
  767                                  * if this thread is higher priority
  768                                  * and there is enough space, then select
  769                                  * this process instead of the previous
  770                                  * selection.
  771                                  */
  772                                 if (pri > ppri) {
  773                                         pp = p;
  774                                         ppri = pri;
  775                                 }
  776                         }
  777                         thread_unlock(td);
  778                 }
  779                 PROC_UNLOCK(p);
  780         }
  781         sx_sunlock(&allproc_lock);
  782 
  783         /*
  784          * Nothing to do, back to sleep.
  785          */
  786         if ((p = pp) == NULL) {
  787                 tsleep(&proc0, PVM, "swapin", maxslp * hz / 2);
  788                 goto loop;
  789         }
  790         PROC_LOCK(p);
  791 
  792         /*
  793          * Another process may be bringing or may have already
  794          * brought this process in while we traverse all threads.
  795          * Or, this process may even be being swapped out again.
  796          */
  797         if (p->p_flag & (P_INMEM | P_SWAPPINGOUT | P_SWAPPINGIN)) {
  798                 PROC_UNLOCK(p);
  799                 goto loop;
  800         }
  801 
  802         /*
  803          * We would like to bring someone in. (only if there is space).
  804          * [What checks the space? ]
  805          */
  806         faultin(p);
  807         PROC_UNLOCK(p);
  808         goto loop;
  809 }
  810 
  811 void
  812 kick_proc0(void)
  813 {
  814 
  815         wakeup(&proc0);
  816 }
  817 
  818 #ifndef NO_SWAPPING
  819 
  820 /*
  821  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
  822  */
  823 static int swap_idle_threshold1 = 2;
  824 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
  825     &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
  826 
  827 /*
  828  * Swap_idle_threshold2 is the time that a process can be idle before
  829  * it will be swapped out, if idle swapping is enabled.
  830  */
  831 static int swap_idle_threshold2 = 10;
  832 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
  833     &swap_idle_threshold2, 0, "Time before a process will be swapped out");
  834 
  835 /*
  836  * Swapout is driven by the pageout daemon.  Very simple, we find eligible
  837  * procs and swap out their stacks.  We try to always "swap" at least one
  838  * process in case we need the room for a swapin.
  839  * If any procs have been sleeping/stopped for at least maxslp seconds,
  840  * they are swapped.  Else, we swap the longest-sleeping or stopped process,
  841  * if any, otherwise the longest-resident process.
  842  */
  843 void
  844 swapout_procs(action)
  845 int action;
  846 {
  847         struct proc *p;
  848         struct thread *td;
  849         int didswap = 0;
  850 
  851 retry:
  852         sx_slock(&allproc_lock);
  853         FOREACH_PROC_IN_SYSTEM(p) {
  854                 struct vmspace *vm;
  855                 int minslptime = 100000;
  856                 int slptime;
  857                 
  858                 /*
  859                  * Watch out for a process in
  860                  * creation.  It may have no
  861                  * address space or lock yet.
  862                  */
  863                 if (p->p_state == PRS_NEW)
  864                         continue;
  865                 /*
  866                  * An aio daemon switches its
  867                  * address space while running.
  868                  * Perform a quick check whether
  869                  * a process has P_SYSTEM.
  870                  */
  871                 if ((p->p_flag & P_SYSTEM) != 0)
  872                         continue;
  873                 /*
  874                  * Do not swapout a process that
  875                  * is waiting for VM data
  876                  * structures as there is a possible
  877                  * deadlock.  Test this first as
  878                  * this may block.
  879                  *
  880                  * Lock the map until swapout
  881                  * finishes, or a thread of this
  882                  * process may attempt to alter
  883                  * the map.
  884                  */
  885                 vm = vmspace_acquire_ref(p);
  886                 if (vm == NULL)
  887                         continue;
  888                 if (!vm_map_trylock(&vm->vm_map))
  889                         goto nextproc1;
  890 
  891                 PROC_LOCK(p);
  892                 if (p->p_lock != 0 ||
  893                     (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
  894                     ) != 0) {
  895                         goto nextproc;
  896                 }
  897                 /*
  898                  * only aiod changes vmspace, however it will be
  899                  * skipped because of the if statement above checking 
  900                  * for P_SYSTEM
  901                  */
  902                 if ((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) != P_INMEM)
  903                         goto nextproc;
  904 
  905                 switch (p->p_state) {
  906                 default:
  907                         /* Don't swap out processes in any sort
  908                          * of 'special' state. */
  909                         break;
  910 
  911                 case PRS_NORMAL:
  912                         /*
  913                          * do not swapout a realtime process
  914                          * Check all the thread groups..
  915                          */
  916                         FOREACH_THREAD_IN_PROC(p, td) {
  917                                 thread_lock(td);
  918                                 if (PRI_IS_REALTIME(td->td_pri_class)) {
  919                                         thread_unlock(td);
  920                                         goto nextproc;
  921                                 }
  922                                 slptime = (ticks - td->td_slptick) / hz;
  923                                 /*
  924                                  * Guarantee swap_idle_threshold1
  925                                  * time in memory.
  926                                  */
  927                                 if (slptime < swap_idle_threshold1) {
  928                                         thread_unlock(td);
  929                                         goto nextproc;
  930                                 }
  931 
  932                                 /*
  933                                  * Do not swapout a process if it is
  934                                  * waiting on a critical event of some
  935                                  * kind or there is a thread whose
  936                                  * pageable memory may be accessed.
  937                                  *
  938                                  * This could be refined to support
  939                                  * swapping out a thread.
  940                                  */
  941                                 if (!thread_safetoswapout(td)) {
  942                                         thread_unlock(td);
  943                                         goto nextproc;
  944                                 }
  945                                 /*
  946                                  * If the system is under memory stress,
  947                                  * or if we are swapping
  948                                  * idle processes >= swap_idle_threshold2,
  949                                  * then swap the process out.
  950                                  */
  951                                 if (((action & VM_SWAP_NORMAL) == 0) &&
  952                                     (((action & VM_SWAP_IDLE) == 0) ||
  953                                     (slptime < swap_idle_threshold2))) {
  954                                         thread_unlock(td);
  955                                         goto nextproc;
  956                                 }
  957 
  958                                 if (minslptime > slptime)
  959                                         minslptime = slptime;
  960                                 thread_unlock(td);
  961                         }
  962 
  963                         /*
  964                          * If the pageout daemon didn't free enough pages,
  965                          * or if this process is idle and the system is
  966                          * configured to swap proactively, swap it out.
  967                          */
  968                         if ((action & VM_SWAP_NORMAL) ||
  969                                 ((action & VM_SWAP_IDLE) &&
  970                                  (minslptime > swap_idle_threshold2))) {
  971                                 if (swapout(p) == 0)
  972                                         didswap++;
  973                                 PROC_UNLOCK(p);
  974                                 vm_map_unlock(&vm->vm_map);
  975                                 vmspace_free(vm);
  976                                 sx_sunlock(&allproc_lock);
  977                                 goto retry;
  978                         }
  979                 }
  980 nextproc:
  981                 PROC_UNLOCK(p);
  982                 vm_map_unlock(&vm->vm_map);
  983 nextproc1:
  984                 vmspace_free(vm);
  985                 continue;
  986         }
  987         sx_sunlock(&allproc_lock);
  988         /*
  989          * If we swapped something out, and another process needed memory,
  990          * then wakeup the sched process.
  991          */
  992         if (didswap)
  993                 wakeup(&proc0);
  994 }
  995 
  996 static void
  997 swapclear(p)
  998         struct proc *p;
  999 {
 1000         struct thread *td;
 1001 
 1002         PROC_LOCK_ASSERT(p, MA_OWNED);
 1003 
 1004         FOREACH_THREAD_IN_PROC(p, td) {
 1005                 thread_lock(td);
 1006                 td->td_flags |= TDF_INMEM;
 1007                 td->td_flags &= ~TDF_SWAPINREQ;
 1008                 TD_CLR_SWAPPED(td);
 1009                 if (TD_CAN_RUN(td))
 1010                         if (setrunnable(td)) {
 1011 #ifdef INVARIANTS
 1012                                 /*
 1013                                  * XXX: We just cleared TDI_SWAPPED
 1014                                  * above and set TDF_INMEM, so this
 1015                                  * should never happen.
 1016                                  */
 1017                                 panic("not waking up swapper");
 1018 #endif
 1019                         }
 1020                 thread_unlock(td);
 1021         }
 1022         p->p_flag &= ~(P_SWAPPINGIN|P_SWAPPINGOUT);
 1023         p->p_flag |= P_INMEM;
 1024 }
 1025 
 1026 static int
 1027 swapout(p)
 1028         struct proc *p;
 1029 {
 1030         struct thread *td;
 1031 
 1032         PROC_LOCK_ASSERT(p, MA_OWNED);
 1033 #if defined(SWAP_DEBUG)
 1034         printf("swapping out %d\n", p->p_pid);
 1035 #endif
 1036 
 1037         /*
 1038          * The states of this process and its threads may have changed
 1039          * by now.  Assuming that there is only one pageout daemon thread,
 1040          * this process should still be in memory.
 1041          */
 1042         KASSERT((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) == P_INMEM,
 1043                 ("swapout: lost a swapout race?"));
 1044 
 1045         /*
 1046          * remember the process resident count
 1047          */
 1048         p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
 1049         /*
 1050          * Check and mark all threads before we proceed.
 1051          */
 1052         p->p_flag &= ~P_INMEM;
 1053         p->p_flag |= P_SWAPPINGOUT;
 1054         FOREACH_THREAD_IN_PROC(p, td) {
 1055                 thread_lock(td);
 1056                 if (!thread_safetoswapout(td)) {
 1057                         thread_unlock(td);
 1058                         swapclear(p);
 1059                         return (EBUSY);
 1060                 }
 1061                 td->td_flags &= ~TDF_INMEM;
 1062                 TD_SET_SWAPPED(td);
 1063                 thread_unlock(td);
 1064         }
 1065         td = FIRST_THREAD_IN_PROC(p);
 1066         ++td->td_ru.ru_nswap;
 1067         PROC_UNLOCK(p);
 1068 
 1069         /*
 1070          * This list is stable because all threads are now prevented from
 1071          * running.  The list is only modified in the context of a running
 1072          * thread in this process.
 1073          */
 1074         FOREACH_THREAD_IN_PROC(p, td)
 1075                 vm_thread_swapout(td);
 1076 
 1077         PROC_LOCK(p);
 1078         p->p_flag &= ~P_SWAPPINGOUT;
 1079         p->p_swtick = ticks;
 1080         return (0);
 1081 }
 1082 #endif /* !NO_SWAPPING */

Cache object: f34acbc23f640b4a0d7eec6644b5cfe1


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.