The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_glue.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * This code is derived from software contributed to Berkeley by
    6  * The Mach Operating System project at Carnegie-Mellon University.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      from: @(#)vm_glue.c     8.6 (Berkeley) 1/5/94
   33  *
   34  *
   35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   36  * All rights reserved.
   37  *
   38  * Permission to use, copy, modify and distribute this software and
   39  * its documentation is hereby granted, provided that both the copyright
   40  * notice and this permission notice appear in all copies of the
   41  * software, derivative works or modified versions, and any portions
   42  * thereof, and that both notices appear in supporting documentation.
   43  *
   44  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   45  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   46  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   47  *
   48  * Carnegie Mellon requests users of this software to return to
   49  *
   50  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   51  *  School of Computer Science
   52  *  Carnegie Mellon University
   53  *  Pittsburgh PA 15213-3890
   54  *
   55  * any improvements or extensions that they make and grant Carnegie the
   56  * rights to redistribute these changes.
   57  */
   58 
   59 #include <sys/cdefs.h>
   60 __FBSDID("$FreeBSD: releng/9.2/sys/vm/vm_glue.c 240499 2012-09-14 13:56:50Z zont $");
   61 
   62 #include "opt_vm.h"
   63 #include "opt_kstack_pages.h"
   64 #include "opt_kstack_max_pages.h"
   65 
   66 #include <sys/param.h>
   67 #include <sys/systm.h>
   68 #include <sys/limits.h>
   69 #include <sys/lock.h>
   70 #include <sys/mutex.h>
   71 #include <sys/proc.h>
   72 #include <sys/racct.h>
   73 #include <sys/resourcevar.h>
   74 #include <sys/sched.h>
   75 #include <sys/sf_buf.h>
   76 #include <sys/shm.h>
   77 #include <sys/vmmeter.h>
   78 #include <sys/sx.h>
   79 #include <sys/sysctl.h>
   80 #include <sys/_kstack_cache.h>
   81 #include <sys/eventhandler.h>
   82 #include <sys/kernel.h>
   83 #include <sys/ktr.h>
   84 #include <sys/unistd.h>
   85 
   86 #include <vm/vm.h>
   87 #include <vm/vm_param.h>
   88 #include <vm/pmap.h>
   89 #include <vm/vm_map.h>
   90 #include <vm/vm_page.h>
   91 #include <vm/vm_pageout.h>
   92 #include <vm/vm_object.h>
   93 #include <vm/vm_kern.h>
   94 #include <vm/vm_extern.h>
   95 #include <vm/vm_pager.h>
   96 #include <vm/swap_pager.h>
   97 
   98 /*
   99  * System initialization
  100  *
  101  * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
  102  *
  103  * Note: run scheduling should be divorced from the vm system.
  104  */
  105 static void scheduler(void *);
  106 SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL);
  107 
  108 #ifndef NO_SWAPPING
  109 static int swapout(struct proc *);
  110 static void swapclear(struct proc *);
  111 static void vm_thread_swapin(struct thread *td);
  112 static void vm_thread_swapout(struct thread *td);
  113 #endif
  114 
  115 /*
  116  * MPSAFE
  117  *
  118  * WARNING!  This code calls vm_map_check_protection() which only checks
  119  * the associated vm_map_entry range.  It does not determine whether the
  120  * contents of the memory is actually readable or writable.  In most cases
  121  * just checking the vm_map_entry is sufficient within the kernel's address
  122  * space.
  123  */
  124 int
  125 kernacc(addr, len, rw)
  126         void *addr;
  127         int len, rw;
  128 {
  129         boolean_t rv;
  130         vm_offset_t saddr, eaddr;
  131         vm_prot_t prot;
  132 
  133         KASSERT((rw & ~VM_PROT_ALL) == 0,
  134             ("illegal ``rw'' argument to kernacc (%x)\n", rw));
  135 
  136         if ((vm_offset_t)addr + len > kernel_map->max_offset ||
  137             (vm_offset_t)addr + len < (vm_offset_t)addr)
  138                 return (FALSE);
  139 
  140         prot = rw;
  141         saddr = trunc_page((vm_offset_t)addr);
  142         eaddr = round_page((vm_offset_t)addr + len);
  143         vm_map_lock_read(kernel_map);
  144         rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
  145         vm_map_unlock_read(kernel_map);
  146         return (rv == TRUE);
  147 }
  148 
  149 /*
  150  * MPSAFE
  151  *
  152  * WARNING!  This code calls vm_map_check_protection() which only checks
  153  * the associated vm_map_entry range.  It does not determine whether the
  154  * contents of the memory is actually readable or writable.  vmapbuf(),
  155  * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
  156  * used in conjuction with this call.
  157  */
  158 int
  159 useracc(addr, len, rw)
  160         void *addr;
  161         int len, rw;
  162 {
  163         boolean_t rv;
  164         vm_prot_t prot;
  165         vm_map_t map;
  166 
  167         KASSERT((rw & ~VM_PROT_ALL) == 0,
  168             ("illegal ``rw'' argument to useracc (%x)\n", rw));
  169         prot = rw;
  170         map = &curproc->p_vmspace->vm_map;
  171         if ((vm_offset_t)addr + len > vm_map_max(map) ||
  172             (vm_offset_t)addr + len < (vm_offset_t)addr) {
  173                 return (FALSE);
  174         }
  175         vm_map_lock_read(map);
  176         rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
  177             round_page((vm_offset_t)addr + len), prot);
  178         vm_map_unlock_read(map);
  179         return (rv == TRUE);
  180 }
  181 
  182 int
  183 vslock(void *addr, size_t len)
  184 {
  185         vm_offset_t end, last, start;
  186         vm_size_t npages;
  187         int error;
  188 
  189         last = (vm_offset_t)addr + len;
  190         start = trunc_page((vm_offset_t)addr);
  191         end = round_page(last);
  192         if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
  193                 return (EINVAL);
  194         npages = atop(end - start);
  195         if (npages > vm_page_max_wired)
  196                 return (ENOMEM);
  197 #if 0
  198         /*
  199          * XXX - not yet
  200          *
  201          * The limit for transient usage of wired pages should be
  202          * larger than for "permanent" wired pages (mlock()).
  203          *
  204          * Also, the sysctl code, which is the only present user
  205          * of vslock(), does a hard loop on EAGAIN.
  206          */
  207         if (npages + cnt.v_wire_count > vm_page_max_wired)
  208                 return (EAGAIN);
  209 #endif
  210         error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
  211             VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
  212         /*
  213          * Return EFAULT on error to match copy{in,out}() behaviour
  214          * rather than returning ENOMEM like mlock() would.
  215          */
  216         return (error == KERN_SUCCESS ? 0 : EFAULT);
  217 }
  218 
  219 void
  220 vsunlock(void *addr, size_t len)
  221 {
  222 
  223         /* Rely on the parameter sanity checks performed by vslock(). */
  224         (void)vm_map_unwire(&curproc->p_vmspace->vm_map,
  225             trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
  226             VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
  227 }
  228 
  229 /*
  230  * Pin the page contained within the given object at the given offset.  If the
  231  * page is not resident, allocate and load it using the given object's pager.
  232  * Return the pinned page if successful; otherwise, return NULL.
  233  */
  234 static vm_page_t
  235 vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
  236 {
  237         vm_page_t m, ma[1];
  238         vm_pindex_t pindex;
  239         int rv;
  240 
  241         VM_OBJECT_LOCK(object);
  242         pindex = OFF_TO_IDX(offset);
  243         m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
  244         if (m->valid != VM_PAGE_BITS_ALL) {
  245                 ma[0] = m;
  246                 rv = vm_pager_get_pages(object, ma, 1, 0);
  247                 m = vm_page_lookup(object, pindex);
  248                 if (m == NULL)
  249                         goto out;
  250                 if (rv != VM_PAGER_OK) {
  251                         vm_page_lock(m);
  252                         vm_page_free(m);
  253                         vm_page_unlock(m);
  254                         m = NULL;
  255                         goto out;
  256                 }
  257         }
  258         vm_page_lock(m);
  259         vm_page_hold(m);
  260         vm_page_unlock(m);
  261         vm_page_wakeup(m);
  262 out:
  263         VM_OBJECT_UNLOCK(object);
  264         return (m);
  265 }
  266 
  267 /*
  268  * Return a CPU private mapping to the page at the given offset within the
  269  * given object.  The page is pinned before it is mapped.
  270  */
  271 struct sf_buf *
  272 vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
  273 {
  274         vm_page_t m;
  275 
  276         m = vm_imgact_hold_page(object, offset);
  277         if (m == NULL)
  278                 return (NULL);
  279         sched_pin();
  280         return (sf_buf_alloc(m, SFB_CPUPRIVATE));
  281 }
  282 
  283 /*
  284  * Destroy the given CPU private mapping and unpin the page that it mapped.
  285  */
  286 void
  287 vm_imgact_unmap_page(struct sf_buf *sf)
  288 {
  289         vm_page_t m;
  290 
  291         m = sf_buf_page(sf);
  292         sf_buf_free(sf);
  293         sched_unpin();
  294         vm_page_lock(m);
  295         vm_page_unhold(m);
  296         vm_page_unlock(m);
  297 }
  298 
  299 void
  300 vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz)
  301 {
  302 
  303         pmap_sync_icache(map->pmap, va, sz);
  304 }
  305 
  306 struct kstack_cache_entry *kstack_cache;
  307 static int kstack_cache_size = 128;
  308 static int kstacks;
  309 static struct mtx kstack_cache_mtx;
  310 SYSCTL_INT(_vm, OID_AUTO, kstack_cache_size, CTLFLAG_RW, &kstack_cache_size, 0,
  311     "");
  312 SYSCTL_INT(_vm, OID_AUTO, kstacks, CTLFLAG_RD, &kstacks, 0,
  313     "");
  314 
  315 #ifndef KSTACK_MAX_PAGES
  316 #define KSTACK_MAX_PAGES 32
  317 #endif
  318 
  319 /*
  320  * Create the kernel stack (including pcb for i386) for a new thread.
  321  * This routine directly affects the fork perf for a process and
  322  * create performance for a thread.
  323  */
  324 int
  325 vm_thread_new(struct thread *td, int pages)
  326 {
  327         vm_object_t ksobj;
  328         vm_offset_t ks;
  329         vm_page_t m, ma[KSTACK_MAX_PAGES];
  330         struct kstack_cache_entry *ks_ce;
  331         int i;
  332 
  333         /* Bounds check */
  334         if (pages <= 1)
  335                 pages = KSTACK_PAGES;
  336         else if (pages > KSTACK_MAX_PAGES)
  337                 pages = KSTACK_MAX_PAGES;
  338 
  339         if (pages == KSTACK_PAGES) {
  340                 mtx_lock(&kstack_cache_mtx);
  341                 if (kstack_cache != NULL) {
  342                         ks_ce = kstack_cache;
  343                         kstack_cache = ks_ce->next_ks_entry;
  344                         mtx_unlock(&kstack_cache_mtx);
  345 
  346                         td->td_kstack_obj = ks_ce->ksobj;
  347                         td->td_kstack = (vm_offset_t)ks_ce;
  348                         td->td_kstack_pages = KSTACK_PAGES;
  349                         return (1);
  350                 }
  351                 mtx_unlock(&kstack_cache_mtx);
  352         }
  353 
  354         /*
  355          * Allocate an object for the kstack.
  356          */
  357         ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
  358         
  359         /*
  360          * Get a kernel virtual address for this thread's kstack.
  361          */
  362 #if defined(__mips__)
  363         /*
  364          * We need to align the kstack's mapped address to fit within
  365          * a single TLB entry.
  366          */
  367         ks = kmem_alloc_nofault_space(kernel_map,
  368             (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE, VMFS_TLB_ALIGNED_SPACE);
  369 #else
  370         ks = kmem_alloc_nofault(kernel_map,
  371            (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
  372 #endif
  373         if (ks == 0) {
  374                 printf("vm_thread_new: kstack allocation failed\n");
  375                 vm_object_deallocate(ksobj);
  376                 return (0);
  377         }
  378 
  379         atomic_add_int(&kstacks, 1);
  380         if (KSTACK_GUARD_PAGES != 0) {
  381                 pmap_qremove(ks, KSTACK_GUARD_PAGES);
  382                 ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
  383         }
  384         td->td_kstack_obj = ksobj;
  385         td->td_kstack = ks;
  386         /*
  387          * Knowing the number of pages allocated is useful when you
  388          * want to deallocate them.
  389          */
  390         td->td_kstack_pages = pages;
  391         /* 
  392          * For the length of the stack, link in a real page of ram for each
  393          * page of stack.
  394          */
  395         VM_OBJECT_LOCK(ksobj);
  396         for (i = 0; i < pages; i++) {
  397                 /*
  398                  * Get a kernel stack page.
  399                  */
  400                 m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
  401                     VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
  402                 ma[i] = m;
  403                 m->valid = VM_PAGE_BITS_ALL;
  404         }
  405         VM_OBJECT_UNLOCK(ksobj);
  406         pmap_qenter(ks, ma, pages);
  407         return (1);
  408 }
  409 
  410 static void
  411 vm_thread_stack_dispose(vm_object_t ksobj, vm_offset_t ks, int pages)
  412 {
  413         vm_page_t m;
  414         int i;
  415 
  416         atomic_add_int(&kstacks, -1);
  417         pmap_qremove(ks, pages);
  418         VM_OBJECT_LOCK(ksobj);
  419         for (i = 0; i < pages; i++) {
  420                 m = vm_page_lookup(ksobj, i);
  421                 if (m == NULL)
  422                         panic("vm_thread_dispose: kstack already missing?");
  423                 vm_page_lock(m);
  424                 vm_page_unwire(m, 0);
  425                 vm_page_free(m);
  426                 vm_page_unlock(m);
  427         }
  428         VM_OBJECT_UNLOCK(ksobj);
  429         vm_object_deallocate(ksobj);
  430         kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
  431             (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
  432 }
  433 
  434 /*
  435  * Dispose of a thread's kernel stack.
  436  */
  437 void
  438 vm_thread_dispose(struct thread *td)
  439 {
  440         vm_object_t ksobj;
  441         vm_offset_t ks;
  442         struct kstack_cache_entry *ks_ce;
  443         int pages;
  444 
  445         pages = td->td_kstack_pages;
  446         ksobj = td->td_kstack_obj;
  447         ks = td->td_kstack;
  448         td->td_kstack = 0;
  449         td->td_kstack_pages = 0;
  450         if (pages == KSTACK_PAGES && kstacks <= kstack_cache_size) {
  451                 ks_ce = (struct kstack_cache_entry *)ks;
  452                 ks_ce->ksobj = ksobj;
  453                 mtx_lock(&kstack_cache_mtx);
  454                 ks_ce->next_ks_entry = kstack_cache;
  455                 kstack_cache = ks_ce;
  456                 mtx_unlock(&kstack_cache_mtx);
  457                 return;
  458         }
  459         vm_thread_stack_dispose(ksobj, ks, pages);
  460 }
  461 
  462 static void
  463 vm_thread_stack_lowmem(void *nulll)
  464 {
  465         struct kstack_cache_entry *ks_ce, *ks_ce1;
  466 
  467         mtx_lock(&kstack_cache_mtx);
  468         ks_ce = kstack_cache;
  469         kstack_cache = NULL;
  470         mtx_unlock(&kstack_cache_mtx);
  471 
  472         while (ks_ce != NULL) {
  473                 ks_ce1 = ks_ce;
  474                 ks_ce = ks_ce->next_ks_entry;
  475 
  476                 vm_thread_stack_dispose(ks_ce1->ksobj, (vm_offset_t)ks_ce1,
  477                     KSTACK_PAGES);
  478         }
  479 }
  480 
  481 static void
  482 kstack_cache_init(void *nulll)
  483 {
  484 
  485         EVENTHANDLER_REGISTER(vm_lowmem, vm_thread_stack_lowmem, NULL,
  486             EVENTHANDLER_PRI_ANY);
  487 }
  488 
  489 MTX_SYSINIT(kstack_cache, &kstack_cache_mtx, "kstkch", MTX_DEF);
  490 SYSINIT(vm_kstacks, SI_SUB_KTHREAD_INIT, SI_ORDER_ANY, kstack_cache_init, NULL);
  491 
  492 #ifndef NO_SWAPPING
  493 /*
  494  * Allow a thread's kernel stack to be paged out.
  495  */
  496 static void
  497 vm_thread_swapout(struct thread *td)
  498 {
  499         vm_object_t ksobj;
  500         vm_page_t m;
  501         int i, pages;
  502 
  503         cpu_thread_swapout(td);
  504         pages = td->td_kstack_pages;
  505         ksobj = td->td_kstack_obj;
  506         pmap_qremove(td->td_kstack, pages);
  507         VM_OBJECT_LOCK(ksobj);
  508         for (i = 0; i < pages; i++) {
  509                 m = vm_page_lookup(ksobj, i);
  510                 if (m == NULL)
  511                         panic("vm_thread_swapout: kstack already missing?");
  512                 vm_page_dirty(m);
  513                 vm_page_lock(m);
  514                 vm_page_unwire(m, 0);
  515                 vm_page_unlock(m);
  516         }
  517         VM_OBJECT_UNLOCK(ksobj);
  518 }
  519 
  520 /*
  521  * Bring the kernel stack for a specified thread back in.
  522  */
  523 static void
  524 vm_thread_swapin(struct thread *td)
  525 {
  526         vm_object_t ksobj;
  527         vm_page_t ma[KSTACK_MAX_PAGES];
  528         int i, j, k, pages, rv;
  529 
  530         pages = td->td_kstack_pages;
  531         ksobj = td->td_kstack_obj;
  532         VM_OBJECT_LOCK(ksobj);
  533         for (i = 0; i < pages; i++)
  534                 ma[i] = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY |
  535                     VM_ALLOC_WIRED);
  536         for (i = 0; i < pages; i++) {
  537                 if (ma[i]->valid != VM_PAGE_BITS_ALL) {
  538                         KASSERT(ma[i]->oflags & VPO_BUSY,
  539                             ("lost busy 1"));
  540                         vm_object_pip_add(ksobj, 1);
  541                         for (j = i + 1; j < pages; j++) {
  542                                 KASSERT(ma[j]->valid == VM_PAGE_BITS_ALL ||
  543                                     (ma[j]->oflags & VPO_BUSY),
  544                                     ("lost busy 2"));
  545                                 if (ma[j]->valid == VM_PAGE_BITS_ALL)
  546                                         break;
  547                         }
  548                         rv = vm_pager_get_pages(ksobj, ma + i, j - i, 0);
  549                         if (rv != VM_PAGER_OK)
  550         panic("vm_thread_swapin: cannot get kstack for proc: %d",
  551                                     td->td_proc->p_pid);
  552                         vm_object_pip_wakeup(ksobj);
  553                         for (k = i; k < j; k++)
  554                                 ma[k] = vm_page_lookup(ksobj, k);
  555                         vm_page_wakeup(ma[i]);
  556                 } else if (ma[i]->oflags & VPO_BUSY)
  557                         vm_page_wakeup(ma[i]);
  558         }
  559         VM_OBJECT_UNLOCK(ksobj);
  560         pmap_qenter(td->td_kstack, ma, pages);
  561         cpu_thread_swapin(td);
  562 }
  563 #endif /* !NO_SWAPPING */
  564 
  565 /*
  566  * Implement fork's actions on an address space.
  567  * Here we arrange for the address space to be copied or referenced,
  568  * allocate a user struct (pcb and kernel stack), then call the
  569  * machine-dependent layer to fill those in and make the new process
  570  * ready to run.  The new process is set up so that it returns directly
  571  * to user mode to avoid stack copying and relocation problems.
  572  */
  573 int
  574 vm_forkproc(td, p2, td2, vm2, flags)
  575         struct thread *td;
  576         struct proc *p2;
  577         struct thread *td2;
  578         struct vmspace *vm2;
  579         int flags;
  580 {
  581         struct proc *p1 = td->td_proc;
  582         int error;
  583 
  584         if ((flags & RFPROC) == 0) {
  585                 /*
  586                  * Divorce the memory, if it is shared, essentially
  587                  * this changes shared memory amongst threads, into
  588                  * COW locally.
  589                  */
  590                 if ((flags & RFMEM) == 0) {
  591                         if (p1->p_vmspace->vm_refcnt > 1) {
  592                                 error = vmspace_unshare(p1);
  593                                 if (error)
  594                                         return (error);
  595                         }
  596                 }
  597                 cpu_fork(td, p2, td2, flags);
  598                 return (0);
  599         }
  600 
  601         if (flags & RFMEM) {
  602                 p2->p_vmspace = p1->p_vmspace;
  603                 atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
  604         }
  605 
  606         while (vm_page_count_severe()) {
  607                 VM_WAIT;
  608         }
  609 
  610         if ((flags & RFMEM) == 0) {
  611                 p2->p_vmspace = vm2;
  612                 if (p1->p_vmspace->vm_shm)
  613                         shmfork(p1, p2);
  614         }
  615 
  616         /*
  617          * cpu_fork will copy and update the pcb, set up the kernel stack,
  618          * and make the child ready to run.
  619          */
  620         cpu_fork(td, p2, td2, flags);
  621         return (0);
  622 }
  623 
  624 /*
  625  * Called after process has been wait(2)'ed apon and is being reaped.
  626  * The idea is to reclaim resources that we could not reclaim while
  627  * the process was still executing.
  628  */
  629 void
  630 vm_waitproc(p)
  631         struct proc *p;
  632 {
  633 
  634         vmspace_exitfree(p);            /* and clean-out the vmspace */
  635 }
  636 
  637 void
  638 faultin(p)
  639         struct proc *p;
  640 {
  641 #ifdef NO_SWAPPING
  642 
  643         PROC_LOCK_ASSERT(p, MA_OWNED);
  644         if ((p->p_flag & P_INMEM) == 0)
  645                 panic("faultin: proc swapped out with NO_SWAPPING!");
  646 #else /* !NO_SWAPPING */
  647         struct thread *td;
  648 
  649         PROC_LOCK_ASSERT(p, MA_OWNED);
  650         /*
  651          * If another process is swapping in this process,
  652          * just wait until it finishes.
  653          */
  654         if (p->p_flag & P_SWAPPINGIN) {
  655                 while (p->p_flag & P_SWAPPINGIN)
  656                         msleep(&p->p_flag, &p->p_mtx, PVM, "faultin", 0);
  657                 return;
  658         }
  659         if ((p->p_flag & P_INMEM) == 0) {
  660                 /*
  661                  * Don't let another thread swap process p out while we are
  662                  * busy swapping it in.
  663                  */
  664                 ++p->p_lock;
  665                 p->p_flag |= P_SWAPPINGIN;
  666                 PROC_UNLOCK(p);
  667 
  668                 /*
  669                  * We hold no lock here because the list of threads
  670                  * can not change while all threads in the process are
  671                  * swapped out.
  672                  */
  673                 FOREACH_THREAD_IN_PROC(p, td)
  674                         vm_thread_swapin(td);
  675                 PROC_LOCK(p);
  676                 swapclear(p);
  677                 p->p_swtick = ticks;
  678 
  679                 wakeup(&p->p_flag);
  680 
  681                 /* Allow other threads to swap p out now. */
  682                 --p->p_lock;
  683         }
  684 #endif /* NO_SWAPPING */
  685 }
  686 
  687 /*
  688  * This swapin algorithm attempts to swap-in processes only if there
  689  * is enough space for them.  Of course, if a process waits for a long
  690  * time, it will be swapped in anyway.
  691  *
  692  * Giant is held on entry.
  693  */
  694 /* ARGSUSED*/
  695 static void
  696 scheduler(dummy)
  697         void *dummy;
  698 {
  699         struct proc *p;
  700         struct thread *td;
  701         struct proc *pp;
  702         int slptime;
  703         int swtime;
  704         int ppri;
  705         int pri;
  706 
  707         mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
  708         mtx_unlock(&Giant);
  709 
  710 loop:
  711         if (vm_page_count_min()) {
  712                 VM_WAIT;
  713                 goto loop;
  714         }
  715 
  716         pp = NULL;
  717         ppri = INT_MIN;
  718         sx_slock(&allproc_lock);
  719         FOREACH_PROC_IN_SYSTEM(p) {
  720                 PROC_LOCK(p);
  721                 if (p->p_state == PRS_NEW ||
  722                     p->p_flag & (P_SWAPPINGOUT | P_SWAPPINGIN | P_INMEM)) {
  723                         PROC_UNLOCK(p);
  724                         continue;
  725                 }
  726                 swtime = (ticks - p->p_swtick) / hz;
  727                 FOREACH_THREAD_IN_PROC(p, td) {
  728                         /*
  729                          * An otherwise runnable thread of a process
  730                          * swapped out has only the TDI_SWAPPED bit set.
  731                          * 
  732                          */
  733                         thread_lock(td);
  734                         if (td->td_inhibitors == TDI_SWAPPED) {
  735                                 slptime = (ticks - td->td_slptick) / hz;
  736                                 pri = swtime + slptime;
  737                                 if ((td->td_flags & TDF_SWAPINREQ) == 0)
  738                                         pri -= p->p_nice * 8;
  739                                 /*
  740                                  * if this thread is higher priority
  741                                  * and there is enough space, then select
  742                                  * this process instead of the previous
  743                                  * selection.
  744                                  */
  745                                 if (pri > ppri) {
  746                                         pp = p;
  747                                         ppri = pri;
  748                                 }
  749                         }
  750                         thread_unlock(td);
  751                 }
  752                 PROC_UNLOCK(p);
  753         }
  754         sx_sunlock(&allproc_lock);
  755 
  756         /*
  757          * Nothing to do, back to sleep.
  758          */
  759         if ((p = pp) == NULL) {
  760                 tsleep(&proc0, PVM, "sched", MAXSLP * hz / 2);
  761                 goto loop;
  762         }
  763         PROC_LOCK(p);
  764 
  765         /*
  766          * Another process may be bringing or may have already
  767          * brought this process in while we traverse all threads.
  768          * Or, this process may even be being swapped out again.
  769          */
  770         if (p->p_flag & (P_INMEM | P_SWAPPINGOUT | P_SWAPPINGIN)) {
  771                 PROC_UNLOCK(p);
  772                 goto loop;
  773         }
  774 
  775         /*
  776          * We would like to bring someone in. (only if there is space).
  777          * [What checks the space? ]
  778          */
  779         faultin(p);
  780         PROC_UNLOCK(p);
  781         goto loop;
  782 }
  783 
  784 void
  785 kick_proc0(void)
  786 {
  787 
  788         wakeup(&proc0);
  789 }
  790 
  791 #ifndef NO_SWAPPING
  792 
  793 /*
  794  * Swap_idle_threshold1 is the guaranteed swapped in time for a process
  795  */
  796 static int swap_idle_threshold1 = 2;
  797 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
  798     &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
  799 
  800 /*
  801  * Swap_idle_threshold2 is the time that a process can be idle before
  802  * it will be swapped out, if idle swapping is enabled.
  803  */
  804 static int swap_idle_threshold2 = 10;
  805 SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
  806     &swap_idle_threshold2, 0, "Time before a process will be swapped out");
  807 
  808 /*
  809  * First, if any processes have been sleeping or stopped for at least
  810  * "swap_idle_threshold1" seconds, they are swapped out.  If, however,
  811  * no such processes exist, then the longest-sleeping or stopped
  812  * process is swapped out.  Finally, and only as a last resort, if
  813  * there are no sleeping or stopped processes, the longest-resident
  814  * process is swapped out.
  815  */
  816 void
  817 swapout_procs(action)
  818 int action;
  819 {
  820         struct proc *p;
  821         struct thread *td;
  822         int didswap = 0;
  823 
  824 retry:
  825         sx_slock(&allproc_lock);
  826         FOREACH_PROC_IN_SYSTEM(p) {
  827                 struct vmspace *vm;
  828                 int minslptime = 100000;
  829                 int slptime;
  830                 
  831                 /*
  832                  * Watch out for a process in
  833                  * creation.  It may have no
  834                  * address space or lock yet.
  835                  */
  836                 if (p->p_state == PRS_NEW)
  837                         continue;
  838                 /*
  839                  * An aio daemon switches its
  840                  * address space while running.
  841                  * Perform a quick check whether
  842                  * a process has P_SYSTEM.
  843                  */
  844                 if ((p->p_flag & P_SYSTEM) != 0)
  845                         continue;
  846                 /*
  847                  * Do not swapout a process that
  848                  * is waiting for VM data
  849                  * structures as there is a possible
  850                  * deadlock.  Test this first as
  851                  * this may block.
  852                  *
  853                  * Lock the map until swapout
  854                  * finishes, or a thread of this
  855                  * process may attempt to alter
  856                  * the map.
  857                  */
  858                 vm = vmspace_acquire_ref(p);
  859                 if (vm == NULL)
  860                         continue;
  861                 if (!vm_map_trylock(&vm->vm_map))
  862                         goto nextproc1;
  863 
  864                 PROC_LOCK(p);
  865                 if (p->p_lock != 0 ||
  866                     (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
  867                     ) != 0) {
  868                         goto nextproc;
  869                 }
  870                 /*
  871                  * only aiod changes vmspace, however it will be
  872                  * skipped because of the if statement above checking 
  873                  * for P_SYSTEM
  874                  */
  875                 if ((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) != P_INMEM)
  876                         goto nextproc;
  877 
  878                 switch (p->p_state) {
  879                 default:
  880                         /* Don't swap out processes in any sort
  881                          * of 'special' state. */
  882                         break;
  883 
  884                 case PRS_NORMAL:
  885                         /*
  886                          * do not swapout a realtime process
  887                          * Check all the thread groups..
  888                          */
  889                         FOREACH_THREAD_IN_PROC(p, td) {
  890                                 thread_lock(td);
  891                                 if (PRI_IS_REALTIME(td->td_pri_class)) {
  892                                         thread_unlock(td);
  893                                         goto nextproc;
  894                                 }
  895                                 slptime = (ticks - td->td_slptick) / hz;
  896                                 /*
  897                                  * Guarantee swap_idle_threshold1
  898                                  * time in memory.
  899                                  */
  900                                 if (slptime < swap_idle_threshold1) {
  901                                         thread_unlock(td);
  902                                         goto nextproc;
  903                                 }
  904 
  905                                 /*
  906                                  * Do not swapout a process if it is
  907                                  * waiting on a critical event of some
  908                                  * kind or there is a thread whose
  909                                  * pageable memory may be accessed.
  910                                  *
  911                                  * This could be refined to support
  912                                  * swapping out a thread.
  913                                  */
  914                                 if (!thread_safetoswapout(td)) {
  915                                         thread_unlock(td);
  916                                         goto nextproc;
  917                                 }
  918                                 /*
  919                                  * If the system is under memory stress,
  920                                  * or if we are swapping
  921                                  * idle processes >= swap_idle_threshold2,
  922                                  * then swap the process out.
  923                                  */
  924                                 if (((action & VM_SWAP_NORMAL) == 0) &&
  925                                     (((action & VM_SWAP_IDLE) == 0) ||
  926                                     (slptime < swap_idle_threshold2))) {
  927                                         thread_unlock(td);
  928                                         goto nextproc;
  929                                 }
  930 
  931                                 if (minslptime > slptime)
  932                                         minslptime = slptime;
  933                                 thread_unlock(td);
  934                         }
  935 
  936                         /*
  937                          * If the pageout daemon didn't free enough pages,
  938                          * or if this process is idle and the system is
  939                          * configured to swap proactively, swap it out.
  940                          */
  941                         if ((action & VM_SWAP_NORMAL) ||
  942                                 ((action & VM_SWAP_IDLE) &&
  943                                  (minslptime > swap_idle_threshold2))) {
  944                                 if (swapout(p) == 0)
  945                                         didswap++;
  946                                 PROC_UNLOCK(p);
  947                                 vm_map_unlock(&vm->vm_map);
  948                                 vmspace_free(vm);
  949                                 sx_sunlock(&allproc_lock);
  950                                 goto retry;
  951                         }
  952                 }
  953 nextproc:
  954                 PROC_UNLOCK(p);
  955                 vm_map_unlock(&vm->vm_map);
  956 nextproc1:
  957                 vmspace_free(vm);
  958                 continue;
  959         }
  960         sx_sunlock(&allproc_lock);
  961         /*
  962          * If we swapped something out, and another process needed memory,
  963          * then wakeup the sched process.
  964          */
  965         if (didswap)
  966                 wakeup(&proc0);
  967 }
  968 
  969 static void
  970 swapclear(p)
  971         struct proc *p;
  972 {
  973         struct thread *td;
  974 
  975         PROC_LOCK_ASSERT(p, MA_OWNED);
  976 
  977         FOREACH_THREAD_IN_PROC(p, td) {
  978                 thread_lock(td);
  979                 td->td_flags |= TDF_INMEM;
  980                 td->td_flags &= ~TDF_SWAPINREQ;
  981                 TD_CLR_SWAPPED(td);
  982                 if (TD_CAN_RUN(td))
  983                         if (setrunnable(td)) {
  984 #ifdef INVARIANTS
  985                                 /*
  986                                  * XXX: We just cleared TDI_SWAPPED
  987                                  * above and set TDF_INMEM, so this
  988                                  * should never happen.
  989                                  */
  990                                 panic("not waking up swapper");
  991 #endif
  992                         }
  993                 thread_unlock(td);
  994         }
  995         p->p_flag &= ~(P_SWAPPINGIN|P_SWAPPINGOUT);
  996         p->p_flag |= P_INMEM;
  997 }
  998 
  999 static int
 1000 swapout(p)
 1001         struct proc *p;
 1002 {
 1003         struct thread *td;
 1004 
 1005         PROC_LOCK_ASSERT(p, MA_OWNED);
 1006 #if defined(SWAP_DEBUG)
 1007         printf("swapping out %d\n", p->p_pid);
 1008 #endif
 1009 
 1010         /*
 1011          * The states of this process and its threads may have changed
 1012          * by now.  Assuming that there is only one pageout daemon thread,
 1013          * this process should still be in memory.
 1014          */
 1015         KASSERT((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) == P_INMEM,
 1016                 ("swapout: lost a swapout race?"));
 1017 
 1018         /*
 1019          * remember the process resident count
 1020          */
 1021         p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
 1022         /*
 1023          * Check and mark all threads before we proceed.
 1024          */
 1025         p->p_flag &= ~P_INMEM;
 1026         p->p_flag |= P_SWAPPINGOUT;
 1027         FOREACH_THREAD_IN_PROC(p, td) {
 1028                 thread_lock(td);
 1029                 if (!thread_safetoswapout(td)) {
 1030                         thread_unlock(td);
 1031                         swapclear(p);
 1032                         return (EBUSY);
 1033                 }
 1034                 td->td_flags &= ~TDF_INMEM;
 1035                 TD_SET_SWAPPED(td);
 1036                 thread_unlock(td);
 1037         }
 1038         td = FIRST_THREAD_IN_PROC(p);
 1039         ++td->td_ru.ru_nswap;
 1040         PROC_UNLOCK(p);
 1041 
 1042         /*
 1043          * This list is stable because all threads are now prevented from
 1044          * running.  The list is only modified in the context of a running
 1045          * thread in this process.
 1046          */
 1047         FOREACH_THREAD_IN_PROC(p, td)
 1048                 vm_thread_swapout(td);
 1049 
 1050         PROC_LOCK(p);
 1051         p->p_flag &= ~P_SWAPPINGOUT;
 1052         p->p_swtick = ticks;
 1053         return (0);
 1054 }
 1055 #endif /* !NO_SWAPPING */

Cache object: 7cc1db8764631d0fcc02fcd0fbd9ec55


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.