FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_kern.c
1 /*-
2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
35 *
36 *
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63 /*
64 * Kernel memory management.
65 */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69
70 #include "opt_vm.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/asan.h>
75 #include <sys/domainset.h>
76 #include <sys/eventhandler.h>
77 #include <sys/kernel.h>
78 #include <sys/lock.h>
79 #include <sys/malloc.h>
80 #include <sys/msan.h>
81 #include <sys/proc.h>
82 #include <sys/rwlock.h>
83 #include <sys/sysctl.h>
84 #include <sys/vmem.h>
85 #include <sys/vmmeter.h>
86
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/vm_domainset.h>
90 #include <vm/vm_kern.h>
91 #include <vm/pmap.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_page.h>
95 #include <vm/vm_pageout.h>
96 #include <vm/vm_pagequeue.h>
97 #include <vm/vm_phys.h>
98 #include <vm/vm_radix.h>
99 #include <vm/vm_extern.h>
100 #include <vm/uma.h>
101
102 struct vm_map kernel_map_store;
103 struct vm_map exec_map_store;
104 struct vm_map pipe_map_store;
105
106 const void *zero_region;
107 CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);
108
109 /* NB: Used by kernel debuggers. */
110 const u_long vm_maxuser_address = VM_MAXUSER_ADDRESS;
111
112 u_int exec_map_entry_size;
113 u_int exec_map_entries;
114
115 SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD,
116 SYSCTL_NULL_ULONG_PTR, VM_MIN_KERNEL_ADDRESS, "Min kernel address");
117
118 SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD,
119 #if defined(__arm__)
120 &vm_max_kernel_address, 0,
121 #else
122 SYSCTL_NULL_ULONG_PTR, VM_MAX_KERNEL_ADDRESS,
123 #endif
124 "Max kernel address");
125
126 #if VM_NRESERVLEVEL > 0
127 #define KVA_QUANTUM_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT)
128 #else
129 /* On non-superpage architectures we want large import sizes. */
130 #define KVA_QUANTUM_SHIFT (8 + PAGE_SHIFT)
131 #endif
132 #define KVA_QUANTUM (1ul << KVA_QUANTUM_SHIFT)
133 #define KVA_NUMA_IMPORT_QUANTUM (KVA_QUANTUM * 128)
134
135 extern void uma_startup2(void);
136
137 /*
138 * kva_alloc:
139 *
140 * Allocate a virtual address range with no underlying object and
141 * no initial mapping to physical memory. Any mapping from this
142 * range to physical memory must be explicitly created prior to
143 * its use, typically with pmap_qenter(). Any attempt to create
144 * a mapping on demand through vm_fault() will result in a panic.
145 */
146 vm_offset_t
147 kva_alloc(vm_size_t size)
148 {
149 vm_offset_t addr;
150
151 TSENTER();
152 size = round_page(size);
153 if (vmem_alloc(kernel_arena, size, M_BESTFIT | M_NOWAIT, &addr))
154 return (0);
155 TSEXIT();
156
157 return (addr);
158 }
159
160 /*
161 * kva_free:
162 *
163 * Release a region of kernel virtual memory allocated
164 * with kva_alloc, and return the physical pages
165 * associated with that region.
166 *
167 * This routine may not block on kernel maps.
168 */
169 void
170 kva_free(vm_offset_t addr, vm_size_t size)
171 {
172
173 size = round_page(size);
174 vmem_free(kernel_arena, addr, size);
175 }
176
177 /*
178 * Update sanitizer shadow state to reflect a new allocation. Force inlining to
179 * help make KMSAN origin tracking more precise.
180 */
181 static __always_inline void
182 kmem_alloc_san(vm_offset_t addr, vm_size_t size, vm_size_t asize, int flags)
183 {
184 if ((flags & M_ZERO) == 0) {
185 kmsan_mark((void *)addr, asize, KMSAN_STATE_UNINIT);
186 kmsan_orig((void *)addr, asize, KMSAN_TYPE_KMEM,
187 KMSAN_RET_ADDR);
188 } else {
189 kmsan_mark((void *)addr, asize, KMSAN_STATE_INITED);
190 }
191 kasan_mark((void *)addr, size, asize, KASAN_KMEM_REDZONE);
192 }
193
194 static vm_page_t
195 kmem_alloc_contig_pages(vm_object_t object, vm_pindex_t pindex, int domain,
196 int pflags, u_long npages, vm_paddr_t low, vm_paddr_t high,
197 u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
198 {
199 vm_page_t m;
200 int tries;
201 bool wait, reclaim;
202
203 VM_OBJECT_ASSERT_WLOCKED(object);
204
205 wait = (pflags & VM_ALLOC_WAITOK) != 0;
206 reclaim = (pflags & VM_ALLOC_NORECLAIM) == 0;
207 pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
208 pflags |= VM_ALLOC_NOWAIT;
209 for (tries = wait ? 3 : 1;; tries--) {
210 m = vm_page_alloc_contig_domain(object, pindex, domain, pflags,
211 npages, low, high, alignment, boundary, memattr);
212 if (m != NULL || tries == 0 || !reclaim)
213 break;
214
215 VM_OBJECT_WUNLOCK(object);
216 if (!vm_page_reclaim_contig_domain(domain, pflags, npages,
217 low, high, alignment, boundary) && wait)
218 vm_wait_domain(domain);
219 VM_OBJECT_WLOCK(object);
220 }
221 return (m);
222 }
223
224 /*
225 * Allocates a region from the kernel address map and physical pages
226 * within the specified address range to the kernel object. Creates a
227 * wired mapping from this region to these pages, and returns the
228 * region's starting virtual address. The allocated pages are not
229 * necessarily physically contiguous. If M_ZERO is specified through the
230 * given flags, then the pages are zeroed before they are mapped.
231 */
232 static void *
233 kmem_alloc_attr_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
234 vm_paddr_t high, vm_memattr_t memattr)
235 {
236 vmem_t *vmem;
237 vm_object_t object;
238 vm_offset_t addr, i, offset;
239 vm_page_t m;
240 vm_size_t asize;
241 int pflags;
242 vm_prot_t prot;
243
244 object = kernel_object;
245 asize = round_page(size);
246 vmem = vm_dom[domain].vmd_kernel_arena;
247 if (vmem_alloc(vmem, asize, M_BESTFIT | flags, &addr))
248 return (0);
249 offset = addr - VM_MIN_KERNEL_ADDRESS;
250 pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
251 prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW;
252 VM_OBJECT_WLOCK(object);
253 for (i = 0; i < asize; i += PAGE_SIZE) {
254 m = kmem_alloc_contig_pages(object, atop(offset + i),
255 domain, pflags, 1, low, high, PAGE_SIZE, 0, memattr);
256 if (m == NULL) {
257 VM_OBJECT_WUNLOCK(object);
258 kmem_unback(object, addr, i);
259 vmem_free(vmem, addr, asize);
260 return (0);
261 }
262 KASSERT(vm_page_domain(m) == domain,
263 ("kmem_alloc_attr_domain: Domain mismatch %d != %d",
264 vm_page_domain(m), domain));
265 if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
266 pmap_zero_page(m);
267 vm_page_valid(m);
268 pmap_enter(kernel_pmap, addr + i, m, prot,
269 prot | PMAP_ENTER_WIRED, 0);
270 }
271 VM_OBJECT_WUNLOCK(object);
272 kmem_alloc_san(addr, size, asize, flags);
273 return ((void *)addr);
274 }
275
276 void *
277 kmem_alloc_attr(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high,
278 vm_memattr_t memattr)
279 {
280
281 return (kmem_alloc_attr_domainset(DOMAINSET_RR(), size, flags, low,
282 high, memattr));
283 }
284
285 void *
286 kmem_alloc_attr_domainset(struct domainset *ds, vm_size_t size, int flags,
287 vm_paddr_t low, vm_paddr_t high, vm_memattr_t memattr)
288 {
289 struct vm_domainset_iter di;
290 void *addr;
291 int domain;
292
293 vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
294 do {
295 addr = kmem_alloc_attr_domain(domain, size, flags, low, high,
296 memattr);
297 if (addr != NULL)
298 break;
299 } while (vm_domainset_iter_policy(&di, &domain) == 0);
300
301 return (addr);
302 }
303
304 /*
305 * Allocates a region from the kernel address map and physically
306 * contiguous pages within the specified address range to the kernel
307 * object. Creates a wired mapping from this region to these pages, and
308 * returns the region's starting virtual address. If M_ZERO is specified
309 * through the given flags, then the pages are zeroed before they are
310 * mapped.
311 */
312 static void *
313 kmem_alloc_contig_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
314 vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
315 vm_memattr_t memattr)
316 {
317 vmem_t *vmem;
318 vm_object_t object;
319 vm_offset_t addr, offset, tmp;
320 vm_page_t end_m, m;
321 vm_size_t asize;
322 u_long npages;
323 int pflags;
324
325 object = kernel_object;
326 asize = round_page(size);
327 vmem = vm_dom[domain].vmd_kernel_arena;
328 if (vmem_alloc(vmem, asize, flags | M_BESTFIT, &addr))
329 return (NULL);
330 offset = addr - VM_MIN_KERNEL_ADDRESS;
331 pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
332 npages = atop(asize);
333 VM_OBJECT_WLOCK(object);
334 m = kmem_alloc_contig_pages(object, atop(offset), domain,
335 pflags, npages, low, high, alignment, boundary, memattr);
336 if (m == NULL) {
337 VM_OBJECT_WUNLOCK(object);
338 vmem_free(vmem, addr, asize);
339 return (NULL);
340 }
341 KASSERT(vm_page_domain(m) == domain,
342 ("kmem_alloc_contig_domain: Domain mismatch %d != %d",
343 vm_page_domain(m), domain));
344 end_m = m + npages;
345 tmp = addr;
346 for (; m < end_m; m++) {
347 if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
348 pmap_zero_page(m);
349 vm_page_valid(m);
350 pmap_enter(kernel_pmap, tmp, m, VM_PROT_RW,
351 VM_PROT_RW | PMAP_ENTER_WIRED, 0);
352 tmp += PAGE_SIZE;
353 }
354 VM_OBJECT_WUNLOCK(object);
355 kmem_alloc_san(addr, size, asize, flags);
356 return ((void *)addr);
357 }
358
359 void *
360 kmem_alloc_contig(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high,
361 u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
362 {
363
364 return (kmem_alloc_contig_domainset(DOMAINSET_RR(), size, flags, low,
365 high, alignment, boundary, memattr));
366 }
367
368 void *
369 kmem_alloc_contig_domainset(struct domainset *ds, vm_size_t size, int flags,
370 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
371 vm_memattr_t memattr)
372 {
373 struct vm_domainset_iter di;
374 void *addr;
375 int domain;
376
377 vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
378 do {
379 addr = kmem_alloc_contig_domain(domain, size, flags, low, high,
380 alignment, boundary, memattr);
381 if (addr != NULL)
382 break;
383 } while (vm_domainset_iter_policy(&di, &domain) == 0);
384
385 return (addr);
386 }
387
388 /*
389 * kmem_subinit:
390 *
391 * Initializes a map to manage a subrange
392 * of the kernel virtual address space.
393 *
394 * Arguments are as follows:
395 *
396 * parent Map to take range from
397 * min, max Returned endpoints of map
398 * size Size of range to find
399 * superpage_align Request that min is superpage aligned
400 */
401 void
402 kmem_subinit(vm_map_t map, vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
403 vm_size_t size, bool superpage_align)
404 {
405 int ret;
406
407 size = round_page(size);
408
409 *min = vm_map_min(parent);
410 ret = vm_map_find(parent, NULL, 0, min, size, 0, superpage_align ?
411 VMFS_SUPER_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
412 MAP_ACC_NO_CHARGE);
413 if (ret != KERN_SUCCESS)
414 panic("kmem_subinit: bad status return of %d", ret);
415 *max = *min + size;
416 vm_map_init(map, vm_map_pmap(parent), *min, *max);
417 if (vm_map_submap(parent, *min, *max, map) != KERN_SUCCESS)
418 panic("kmem_subinit: unable to change range to submap");
419 }
420
421 /*
422 * kmem_malloc_domain:
423 *
424 * Allocate wired-down pages in the kernel's address space.
425 */
426 static void *
427 kmem_malloc_domain(int domain, vm_size_t size, int flags)
428 {
429 vmem_t *arena;
430 vm_offset_t addr;
431 vm_size_t asize;
432 int rv;
433
434 if (__predict_true((flags & M_EXEC) == 0))
435 arena = vm_dom[domain].vmd_kernel_arena;
436 else
437 arena = vm_dom[domain].vmd_kernel_rwx_arena;
438 asize = round_page(size);
439 if (vmem_alloc(arena, asize, flags | M_BESTFIT, &addr))
440 return (0);
441
442 rv = kmem_back_domain(domain, kernel_object, addr, asize, flags);
443 if (rv != KERN_SUCCESS) {
444 vmem_free(arena, addr, asize);
445 return (0);
446 }
447 kasan_mark((void *)addr, size, asize, KASAN_KMEM_REDZONE);
448 return ((void *)addr);
449 }
450
451 void *
452 kmem_malloc(vm_size_t size, int flags)
453 {
454
455 return (kmem_malloc_domainset(DOMAINSET_RR(), size, flags));
456 }
457
458 void *
459 kmem_malloc_domainset(struct domainset *ds, vm_size_t size, int flags)
460 {
461 struct vm_domainset_iter di;
462 void *addr;
463 int domain;
464
465 vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
466 do {
467 addr = kmem_malloc_domain(domain, size, flags);
468 if (addr != NULL)
469 break;
470 } while (vm_domainset_iter_policy(&di, &domain) == 0);
471
472 return (addr);
473 }
474
475 /*
476 * kmem_back_domain:
477 *
478 * Allocate physical pages from the specified domain for the specified
479 * virtual address range.
480 */
481 int
482 kmem_back_domain(int domain, vm_object_t object, vm_offset_t addr,
483 vm_size_t size, int flags)
484 {
485 vm_offset_t offset, i;
486 vm_page_t m, mpred;
487 vm_prot_t prot;
488 int pflags;
489
490 KASSERT(object == kernel_object,
491 ("kmem_back_domain: only supports kernel object."));
492
493 offset = addr - VM_MIN_KERNEL_ADDRESS;
494 pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
495 pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
496 if (flags & M_WAITOK)
497 pflags |= VM_ALLOC_WAITFAIL;
498 prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW;
499
500 i = 0;
501 VM_OBJECT_WLOCK(object);
502 retry:
503 mpred = vm_radix_lookup_le(&object->rtree, atop(offset + i));
504 for (; i < size; i += PAGE_SIZE, mpred = m) {
505 m = vm_page_alloc_domain_after(object, atop(offset + i),
506 domain, pflags, mpred);
507
508 /*
509 * Ran out of space, free everything up and return. Don't need
510 * to lock page queues here as we know that the pages we got
511 * aren't on any queues.
512 */
513 if (m == NULL) {
514 if ((flags & M_NOWAIT) == 0)
515 goto retry;
516 VM_OBJECT_WUNLOCK(object);
517 kmem_unback(object, addr, i);
518 return (KERN_NO_SPACE);
519 }
520 KASSERT(vm_page_domain(m) == domain,
521 ("kmem_back_domain: Domain mismatch %d != %d",
522 vm_page_domain(m), domain));
523 if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
524 pmap_zero_page(m);
525 KASSERT((m->oflags & VPO_UNMANAGED) != 0,
526 ("kmem_malloc: page %p is managed", m));
527 vm_page_valid(m);
528 pmap_enter(kernel_pmap, addr + i, m, prot,
529 prot | PMAP_ENTER_WIRED, 0);
530 if (__predict_false((prot & VM_PROT_EXECUTE) != 0))
531 m->oflags |= VPO_KMEM_EXEC;
532 }
533 VM_OBJECT_WUNLOCK(object);
534 kmem_alloc_san(addr, size, size, flags);
535 return (KERN_SUCCESS);
536 }
537
538 /*
539 * kmem_back:
540 *
541 * Allocate physical pages for the specified virtual address range.
542 */
543 int
544 kmem_back(vm_object_t object, vm_offset_t addr, vm_size_t size, int flags)
545 {
546 vm_offset_t end, next, start;
547 int domain, rv;
548
549 KASSERT(object == kernel_object,
550 ("kmem_back: only supports kernel object."));
551
552 for (start = addr, end = addr + size; addr < end; addr = next) {
553 /*
554 * We must ensure that pages backing a given large virtual page
555 * all come from the same physical domain.
556 */
557 if (vm_ndomains > 1) {
558 domain = (addr >> KVA_QUANTUM_SHIFT) % vm_ndomains;
559 while (VM_DOMAIN_EMPTY(domain))
560 domain++;
561 next = roundup2(addr + 1, KVA_QUANTUM);
562 if (next > end || next < start)
563 next = end;
564 } else {
565 domain = 0;
566 next = end;
567 }
568 rv = kmem_back_domain(domain, object, addr, next - addr, flags);
569 if (rv != KERN_SUCCESS) {
570 kmem_unback(object, start, addr - start);
571 break;
572 }
573 }
574 return (rv);
575 }
576
577 /*
578 * kmem_unback:
579 *
580 * Unmap and free the physical pages underlying the specified virtual
581 * address range.
582 *
583 * A physical page must exist within the specified object at each index
584 * that is being unmapped.
585 */
586 static struct vmem *
587 _kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
588 {
589 struct vmem *arena;
590 vm_page_t m, next;
591 vm_offset_t end, offset;
592 int domain;
593
594 KASSERT(object == kernel_object,
595 ("kmem_unback: only supports kernel object."));
596
597 if (size == 0)
598 return (NULL);
599 pmap_remove(kernel_pmap, addr, addr + size);
600 offset = addr - VM_MIN_KERNEL_ADDRESS;
601 end = offset + size;
602 VM_OBJECT_WLOCK(object);
603 m = vm_page_lookup(object, atop(offset));
604 domain = vm_page_domain(m);
605 if (__predict_true((m->oflags & VPO_KMEM_EXEC) == 0))
606 arena = vm_dom[domain].vmd_kernel_arena;
607 else
608 arena = vm_dom[domain].vmd_kernel_rwx_arena;
609 for (; offset < end; offset += PAGE_SIZE, m = next) {
610 next = vm_page_next(m);
611 vm_page_xbusy_claim(m);
612 vm_page_unwire_noq(m);
613 vm_page_free(m);
614 }
615 VM_OBJECT_WUNLOCK(object);
616
617 return (arena);
618 }
619
620 void
621 kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
622 {
623
624 (void)_kmem_unback(object, addr, size);
625 }
626
627 /*
628 * kmem_free:
629 *
630 * Free memory allocated with kmem_malloc. The size must match the
631 * original allocation.
632 */
633 void
634 kmem_free(void *addr, vm_size_t size)
635 {
636 struct vmem *arena;
637
638 size = round_page(size);
639 kasan_mark(addr, size, size, 0);
640 arena = _kmem_unback(kernel_object, (uintptr_t)addr, size);
641 if (arena != NULL)
642 vmem_free(arena, (uintptr_t)addr, size);
643 }
644
645 /*
646 * kmap_alloc_wait:
647 *
648 * Allocates pageable memory from a sub-map of the kernel. If the submap
649 * has no room, the caller sleeps waiting for more memory in the submap.
650 *
651 * This routine may block.
652 */
653 vm_offset_t
654 kmap_alloc_wait(vm_map_t map, vm_size_t size)
655 {
656 vm_offset_t addr;
657
658 size = round_page(size);
659 if (!swap_reserve(size))
660 return (0);
661
662 for (;;) {
663 /*
664 * To make this work for more than one map, use the map's lock
665 * to lock out sleepers/wakers.
666 */
667 vm_map_lock(map);
668 addr = vm_map_findspace(map, vm_map_min(map), size);
669 if (addr + size <= vm_map_max(map))
670 break;
671 /* no space now; see if we can ever get space */
672 if (vm_map_max(map) - vm_map_min(map) < size) {
673 vm_map_unlock(map);
674 swap_release(size);
675 return (0);
676 }
677 map->needs_wakeup = TRUE;
678 vm_map_unlock_and_wait(map, 0);
679 }
680 vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_RW, VM_PROT_RW,
681 MAP_ACC_CHARGED);
682 vm_map_unlock(map);
683 return (addr);
684 }
685
686 /*
687 * kmap_free_wakeup:
688 *
689 * Returns memory to a submap of the kernel, and wakes up any processes
690 * waiting for memory in that map.
691 */
692 void
693 kmap_free_wakeup(vm_map_t map, vm_offset_t addr, vm_size_t size)
694 {
695
696 vm_map_lock(map);
697 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
698 if (map->needs_wakeup) {
699 map->needs_wakeup = FALSE;
700 vm_map_wakeup(map);
701 }
702 vm_map_unlock(map);
703 }
704
705 void
706 kmem_init_zero_region(void)
707 {
708 vm_offset_t addr, i;
709 vm_page_t m;
710
711 /*
712 * Map a single physical page of zeros to a larger virtual range.
713 * This requires less looping in places that want large amounts of
714 * zeros, while not using much more physical resources.
715 */
716 addr = kva_alloc(ZERO_REGION_SIZE);
717 m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO);
718 for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
719 pmap_qenter(addr + i, &m, 1);
720 pmap_protect(kernel_pmap, addr, addr + ZERO_REGION_SIZE, VM_PROT_READ);
721
722 zero_region = (const void *)addr;
723 }
724
725 /*
726 * Import KVA from the kernel map into the kernel arena.
727 */
728 static int
729 kva_import(void *unused, vmem_size_t size, int flags, vmem_addr_t *addrp)
730 {
731 vm_offset_t addr;
732 int result;
733
734 KASSERT((size % KVA_QUANTUM) == 0,
735 ("kva_import: Size %jd is not a multiple of %d",
736 (intmax_t)size, (int)KVA_QUANTUM));
737 addr = vm_map_min(kernel_map);
738 result = vm_map_find(kernel_map, NULL, 0, &addr, size, 0,
739 VMFS_SUPER_SPACE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
740 if (result != KERN_SUCCESS)
741 return (ENOMEM);
742
743 *addrp = addr;
744
745 return (0);
746 }
747
748 /*
749 * Import KVA from a parent arena into a per-domain arena. Imports must be
750 * KVA_QUANTUM-aligned and a multiple of KVA_QUANTUM in size.
751 */
752 static int
753 kva_import_domain(void *arena, vmem_size_t size, int flags, vmem_addr_t *addrp)
754 {
755
756 KASSERT((size % KVA_QUANTUM) == 0,
757 ("kva_import_domain: Size %jd is not a multiple of %d",
758 (intmax_t)size, (int)KVA_QUANTUM));
759 return (vmem_xalloc(arena, size, KVA_QUANTUM, 0, 0, VMEM_ADDR_MIN,
760 VMEM_ADDR_MAX, flags, addrp));
761 }
762
763 /*
764 * kmem_init:
765 *
766 * Create the kernel map; insert a mapping covering kernel text,
767 * data, bss, and all space allocated thus far (`boostrap' data). The
768 * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
769 * `start' as allocated, and the range between `start' and `end' as free.
770 * Create the kernel vmem arena and its per-domain children.
771 */
772 void
773 kmem_init(vm_offset_t start, vm_offset_t end)
774 {
775 vm_size_t quantum;
776 int domain;
777
778 vm_map_init(kernel_map, kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
779 kernel_map->system_map = 1;
780 vm_map_lock(kernel_map);
781 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */
782 (void)vm_map_insert(kernel_map, NULL, 0,
783 #ifdef __amd64__
784 KERNBASE,
785 #else
786 VM_MIN_KERNEL_ADDRESS,
787 #endif
788 start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
789 /* ... and ending with the completion of the above `insert' */
790
791 #ifdef __amd64__
792 /*
793 * Mark KVA used for the page array as allocated. Other platforms
794 * that handle vm_page_array allocation can simply adjust virtual_avail
795 * instead.
796 */
797 (void)vm_map_insert(kernel_map, NULL, 0, (vm_offset_t)vm_page_array,
798 (vm_offset_t)vm_page_array + round_2mpage(vm_page_array_size *
799 sizeof(struct vm_page)),
800 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
801 #endif
802 vm_map_unlock(kernel_map);
803
804 /*
805 * Use a large import quantum on NUMA systems. This helps minimize
806 * interleaving of superpages, reducing internal fragmentation within
807 * the per-domain arenas.
808 */
809 if (vm_ndomains > 1 && PMAP_HAS_DMAP)
810 quantum = KVA_NUMA_IMPORT_QUANTUM;
811 else
812 quantum = KVA_QUANTUM;
813
814 /*
815 * Initialize the kernel_arena. This can grow on demand.
816 */
817 vmem_init(kernel_arena, "kernel arena", 0, 0, PAGE_SIZE, 0, 0);
818 vmem_set_import(kernel_arena, kva_import, NULL, NULL, quantum);
819
820 for (domain = 0; domain < vm_ndomains; domain++) {
821 /*
822 * Initialize the per-domain arenas. These are used to color
823 * the KVA space in a way that ensures that virtual large pages
824 * are backed by memory from the same physical domain,
825 * maximizing the potential for superpage promotion.
826 */
827 vm_dom[domain].vmd_kernel_arena = vmem_create(
828 "kernel arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
829 vmem_set_import(vm_dom[domain].vmd_kernel_arena,
830 kva_import_domain, NULL, kernel_arena, quantum);
831
832 /*
833 * In architectures with superpages, maintain separate arenas
834 * for allocations with permissions that differ from the
835 * "standard" read/write permissions used for kernel memory,
836 * so as not to inhibit superpage promotion.
837 *
838 * Use the base import quantum since this arena is rarely used.
839 */
840 #if VM_NRESERVLEVEL > 0
841 vm_dom[domain].vmd_kernel_rwx_arena = vmem_create(
842 "kernel rwx arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
843 vmem_set_import(vm_dom[domain].vmd_kernel_rwx_arena,
844 kva_import_domain, (vmem_release_t *)vmem_xfree,
845 kernel_arena, KVA_QUANTUM);
846 #else
847 vm_dom[domain].vmd_kernel_rwx_arena =
848 vm_dom[domain].vmd_kernel_arena;
849 #endif
850 }
851
852 /*
853 * This must be the very first call so that the virtual address
854 * space used for early allocations is properly marked used in
855 * the map.
856 */
857 uma_startup2();
858 }
859
860 /*
861 * kmem_bootstrap_free:
862 *
863 * Free pages backing preloaded data (e.g., kernel modules) to the
864 * system. Currently only supported on platforms that create a
865 * vm_phys segment for preloaded data.
866 */
867 void
868 kmem_bootstrap_free(vm_offset_t start, vm_size_t size)
869 {
870 #if defined(__i386__) || defined(__amd64__)
871 struct vm_domain *vmd;
872 vm_offset_t end, va;
873 vm_paddr_t pa;
874 vm_page_t m;
875
876 end = trunc_page(start + size);
877 start = round_page(start);
878
879 #ifdef __amd64__
880 /*
881 * Preloaded files do not have execute permissions by default on amd64.
882 * Restore the default permissions to ensure that the direct map alias
883 * is updated.
884 */
885 pmap_change_prot(start, end - start, VM_PROT_RW);
886 #endif
887 for (va = start; va < end; va += PAGE_SIZE) {
888 pa = pmap_kextract(va);
889 m = PHYS_TO_VM_PAGE(pa);
890
891 vmd = vm_pagequeue_domain(m);
892 vm_domain_free_lock(vmd);
893 vm_phys_free_pages(m, 0);
894 vm_domain_free_unlock(vmd);
895
896 vm_domain_freecnt_inc(vmd, 1);
897 vm_cnt.v_page_count++;
898 }
899 pmap_remove(kernel_pmap, start, end);
900 (void)vmem_add(kernel_arena, start, end - start, M_WAITOK);
901 #endif
902 }
903
904 /*
905 * Allow userspace to directly trigger the VM drain routine for testing
906 * purposes.
907 */
908 static int
909 debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
910 {
911 int error, i;
912
913 i = 0;
914 error = sysctl_handle_int(oidp, &i, 0, req);
915 if (error != 0)
916 return (error);
917 if ((i & ~(VM_LOW_KMEM | VM_LOW_PAGES)) != 0)
918 return (EINVAL);
919 if (i != 0)
920 EVENTHANDLER_INVOKE(vm_lowmem, i);
921 return (0);
922 }
923 SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem,
924 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0, debug_vm_lowmem, "I",
925 "set to trigger vm_lowmem event with given flags");
926
927 static int
928 debug_uma_reclaim(SYSCTL_HANDLER_ARGS)
929 {
930 int error, i;
931
932 i = 0;
933 error = sysctl_handle_int(oidp, &i, 0, req);
934 if (error != 0 || req->newptr == NULL)
935 return (error);
936 if (i != UMA_RECLAIM_TRIM && i != UMA_RECLAIM_DRAIN &&
937 i != UMA_RECLAIM_DRAIN_CPU)
938 return (EINVAL);
939 uma_reclaim(i);
940 return (0);
941 }
942 SYSCTL_PROC(_debug, OID_AUTO, uma_reclaim,
943 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0, debug_uma_reclaim, "I",
944 "set to generate request to reclaim uma caches");
945
946 static int
947 debug_uma_reclaim_domain(SYSCTL_HANDLER_ARGS)
948 {
949 int domain, error, request;
950
951 request = 0;
952 error = sysctl_handle_int(oidp, &request, 0, req);
953 if (error != 0 || req->newptr == NULL)
954 return (error);
955
956 domain = request >> 4;
957 request &= 0xf;
958 if (request != UMA_RECLAIM_TRIM && request != UMA_RECLAIM_DRAIN &&
959 request != UMA_RECLAIM_DRAIN_CPU)
960 return (EINVAL);
961 if (domain < 0 || domain >= vm_ndomains)
962 return (EINVAL);
963 uma_reclaim_domain(request, domain);
964 return (0);
965 }
966 SYSCTL_PROC(_debug, OID_AUTO, uma_reclaim_domain,
967 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0,
968 debug_uma_reclaim_domain, "I",
969 "");
Cache object: df35cd351a2b1d51d207b242e5249d8b
|