FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_kern.c
1 /*-
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
53 * School of Computer Science
54 * Carnegie Mellon University
55 * Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61 /*
62 * Kernel memory management.
63 */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h> /* for ticks and hz */
71 #include <sys/eventhandler.h>
72 #include <sys/lock.h>
73 #include <sys/proc.h>
74 #include <sys/malloc.h>
75 #include <sys/rwlock.h>
76 #include <sys/sysctl.h>
77 #include <sys/vmem.h>
78
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/vm_kern.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_object.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_pageout.h>
87 #include <vm/vm_phys.h>
88 #include <vm/vm_radix.h>
89 #include <vm/vm_extern.h>
90 #include <vm/uma.h>
91
92 vm_map_t kernel_map;
93 vm_map_t exec_map;
94 vm_map_t pipe_map;
95
96 const void *zero_region;
97 CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);
98
99 /* NB: Used by kernel debuggers. */
100 const u_long vm_maxuser_address = VM_MAXUSER_ADDRESS;
101
102 u_int exec_map_entry_size;
103 u_int exec_map_entries;
104
105 SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD,
106 SYSCTL_NULL_ULONG_PTR, VM_MIN_KERNEL_ADDRESS, "Min kernel address");
107
108 SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD,
109 #if defined(__arm__) || defined(__sparc64__)
110 &vm_max_kernel_address, 0,
111 #else
112 SYSCTL_NULL_ULONG_PTR, VM_MAX_KERNEL_ADDRESS,
113 #endif
114 "Max kernel address");
115
116 /*
117 * kva_alloc:
118 *
119 * Allocate a virtual address range with no underlying object and
120 * no initial mapping to physical memory. Any mapping from this
121 * range to physical memory must be explicitly created prior to
122 * its use, typically with pmap_qenter(). Any attempt to create
123 * a mapping on demand through vm_fault() will result in a panic.
124 */
125 vm_offset_t
126 kva_alloc(vm_size_t size)
127 {
128 vm_offset_t addr;
129
130 size = round_page(size);
131 if (vmem_alloc(kernel_arena, size, M_BESTFIT | M_NOWAIT, &addr))
132 return (0);
133
134 return (addr);
135 }
136
137 /*
138 * kva_free:
139 *
140 * Release a region of kernel virtual memory allocated
141 * with kva_alloc, and return the physical pages
142 * associated with that region.
143 *
144 * This routine may not block on kernel maps.
145 */
146 void
147 kva_free(vm_offset_t addr, vm_size_t size)
148 {
149
150 size = round_page(size);
151 vmem_free(kernel_arena, addr, size);
152 }
153
154 /*
155 * Allocates a region from the kernel address map and physical pages
156 * within the specified address range to the kernel object. Creates a
157 * wired mapping from this region to these pages, and returns the
158 * region's starting virtual address. The allocated pages are not
159 * necessarily physically contiguous. If M_ZERO is specified through the
160 * given flags, then the pages are zeroed before they are mapped.
161 */
162 vm_offset_t
163 kmem_alloc_attr(vmem_t *vmem, vm_size_t size, int flags, vm_paddr_t low,
164 vm_paddr_t high, vm_memattr_t memattr)
165 {
166 vm_object_t object = vmem == kmem_arena ? kmem_object : kernel_object;
167 vm_offset_t addr, i, offset;
168 vm_page_t m;
169 int pflags, tries;
170
171 size = round_page(size);
172 if (vmem_alloc(vmem, size, M_BESTFIT | flags, &addr))
173 return (0);
174 offset = addr - VM_MIN_KERNEL_ADDRESS;
175 pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
176 pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
177 pflags |= VM_ALLOC_NOWAIT;
178 VM_OBJECT_WLOCK(object);
179 for (i = 0; i < size; i += PAGE_SIZE) {
180 tries = 0;
181 retry:
182 m = vm_page_alloc_contig(object, atop(offset + i),
183 pflags, 1, low, high, PAGE_SIZE, 0, memattr);
184 if (m == NULL) {
185 VM_OBJECT_WUNLOCK(object);
186 if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
187 if (!vm_page_reclaim_contig(pflags, 1,
188 low, high, PAGE_SIZE, 0) &&
189 (flags & M_WAITOK) != 0)
190 VM_WAIT;
191 VM_OBJECT_WLOCK(object);
192 tries++;
193 goto retry;
194 }
195 kmem_unback(object, addr, i);
196 vmem_free(vmem, addr, size);
197 return (0);
198 }
199 if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
200 pmap_zero_page(m);
201 m->valid = VM_PAGE_BITS_ALL;
202 pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL,
203 VM_PROT_ALL | PMAP_ENTER_WIRED, 0);
204 }
205 VM_OBJECT_WUNLOCK(object);
206 return (addr);
207 }
208
209 /*
210 * Allocates a region from the kernel address map and physically
211 * contiguous pages within the specified address range to the kernel
212 * object. Creates a wired mapping from this region to these pages, and
213 * returns the region's starting virtual address. If M_ZERO is specified
214 * through the given flags, then the pages are zeroed before they are
215 * mapped.
216 */
217 vm_offset_t
218 kmem_alloc_contig(struct vmem *vmem, vm_size_t size, int flags, vm_paddr_t low,
219 vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
220 vm_memattr_t memattr)
221 {
222 vm_object_t object = vmem == kmem_arena ? kmem_object : kernel_object;
223 vm_offset_t addr, offset, tmp;
224 vm_page_t end_m, m;
225 u_long npages;
226 int pflags, tries;
227
228 size = round_page(size);
229 if (vmem_alloc(vmem, size, flags | M_BESTFIT, &addr))
230 return (0);
231 offset = addr - VM_MIN_KERNEL_ADDRESS;
232 pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
233 pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
234 pflags |= VM_ALLOC_NOWAIT;
235 npages = atop(size);
236 VM_OBJECT_WLOCK(object);
237 tries = 0;
238 retry:
239 m = vm_page_alloc_contig(object, atop(offset), pflags,
240 npages, low, high, alignment, boundary, memattr);
241 if (m == NULL) {
242 VM_OBJECT_WUNLOCK(object);
243 if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
244 if (!vm_page_reclaim_contig(pflags, npages, low, high,
245 alignment, boundary) && (flags & M_WAITOK) != 0)
246 VM_WAIT;
247 VM_OBJECT_WLOCK(object);
248 tries++;
249 goto retry;
250 }
251 vmem_free(vmem, addr, size);
252 return (0);
253 }
254 end_m = m + npages;
255 tmp = addr;
256 for (; m < end_m; m++) {
257 if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
258 pmap_zero_page(m);
259 m->valid = VM_PAGE_BITS_ALL;
260 pmap_enter(kernel_pmap, tmp, m, VM_PROT_ALL,
261 VM_PROT_ALL | PMAP_ENTER_WIRED, 0);
262 tmp += PAGE_SIZE;
263 }
264 VM_OBJECT_WUNLOCK(object);
265 return (addr);
266 }
267
268 /*
269 * kmem_suballoc:
270 *
271 * Allocates a map to manage a subrange
272 * of the kernel virtual address space.
273 *
274 * Arguments are as follows:
275 *
276 * parent Map to take range from
277 * min, max Returned endpoints of map
278 * size Size of range to find
279 * superpage_align Request that min is superpage aligned
280 */
281 vm_map_t
282 kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
283 vm_size_t size, boolean_t superpage_align)
284 {
285 int ret;
286 vm_map_t result;
287
288 size = round_page(size);
289
290 *min = vm_map_min(parent);
291 ret = vm_map_find(parent, NULL, 0, min, size, 0, superpage_align ?
292 VMFS_SUPER_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
293 MAP_ACC_NO_CHARGE);
294 if (ret != KERN_SUCCESS)
295 panic("kmem_suballoc: bad status return of %d", ret);
296 *max = *min + size;
297 result = vm_map_create(vm_map_pmap(parent), *min, *max);
298 if (result == NULL)
299 panic("kmem_suballoc: cannot create submap");
300 if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
301 panic("kmem_suballoc: unable to change range to submap");
302 return (result);
303 }
304
305 /*
306 * kmem_malloc:
307 *
308 * Allocate wired-down pages in the kernel's address space.
309 */
310 vm_offset_t
311 kmem_malloc(struct vmem *vmem, vm_size_t size, int flags)
312 {
313 vm_offset_t addr;
314 int rv;
315
316 size = round_page(size);
317 if (vmem_alloc(vmem, size, flags | M_BESTFIT, &addr))
318 return (0);
319
320 rv = kmem_back((vmem == kmem_arena) ? kmem_object : kernel_object,
321 addr, size, flags);
322 if (rv != KERN_SUCCESS) {
323 vmem_free(vmem, addr, size);
324 return (0);
325 }
326 return (addr);
327 }
328
329 /*
330 * kmem_back:
331 *
332 * Allocate physical pages for the specified virtual address range.
333 */
334 int
335 kmem_back(vm_object_t object, vm_offset_t addr, vm_size_t size, int flags)
336 {
337 vm_offset_t offset, i;
338 vm_page_t m, mpred;
339 int pflags;
340
341 KASSERT(object == kmem_object || object == kernel_object,
342 ("kmem_back: only supports kernel objects."));
343
344 offset = addr - VM_MIN_KERNEL_ADDRESS;
345 pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
346 pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
347 if (flags & M_WAITOK)
348 pflags |= VM_ALLOC_WAITFAIL;
349
350 i = 0;
351 VM_OBJECT_WLOCK(object);
352 retry:
353 mpred = vm_radix_lookup_le(&object->rtree, atop(offset + i));
354 for (; i < size; i += PAGE_SIZE, mpred = m) {
355 m = vm_page_alloc_after(object, atop(offset + i), pflags,
356 mpred);
357
358 /*
359 * Ran out of space, free everything up and return. Don't need
360 * to lock page queues here as we know that the pages we got
361 * aren't on any queues.
362 */
363 if (m == NULL) {
364 if ((flags & M_NOWAIT) == 0)
365 goto retry;
366 VM_OBJECT_WUNLOCK(object);
367 kmem_unback(object, addr, i);
368 return (KERN_NO_SPACE);
369 }
370 if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
371 pmap_zero_page(m);
372 KASSERT((m->oflags & VPO_UNMANAGED) != 0,
373 ("kmem_malloc: page %p is managed", m));
374 m->valid = VM_PAGE_BITS_ALL;
375 pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL,
376 VM_PROT_ALL | PMAP_ENTER_WIRED, 0);
377 }
378 VM_OBJECT_WUNLOCK(object);
379
380 return (KERN_SUCCESS);
381 }
382
383 /*
384 * kmem_unback:
385 *
386 * Unmap and free the physical pages underlying the specified virtual
387 * address range.
388 *
389 * A physical page must exist within the specified object at each index
390 * that is being unmapped.
391 */
392 void
393 kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
394 {
395 vm_page_t m, next;
396 vm_offset_t end, offset;
397
398 KASSERT(object == kmem_object || object == kernel_object,
399 ("kmem_unback: only supports kernel objects."));
400
401 pmap_remove(kernel_pmap, addr, addr + size);
402 offset = addr - VM_MIN_KERNEL_ADDRESS;
403 end = offset + size;
404 VM_OBJECT_WLOCK(object);
405 for (m = vm_page_lookup(object, atop(offset)); offset < end;
406 offset += PAGE_SIZE, m = next) {
407 next = vm_page_next(m);
408 vm_page_unwire(m, PQ_NONE);
409 vm_page_free(m);
410 }
411 VM_OBJECT_WUNLOCK(object);
412 }
413
414 /*
415 * kmem_free:
416 *
417 * Free memory allocated with kmem_malloc. The size must match the
418 * original allocation.
419 */
420 void
421 kmem_free(struct vmem *vmem, vm_offset_t addr, vm_size_t size)
422 {
423
424 size = round_page(size);
425 kmem_unback((vmem == kmem_arena) ? kmem_object : kernel_object,
426 addr, size);
427 vmem_free(vmem, addr, size);
428 }
429
430 /*
431 * kmap_alloc_wait:
432 *
433 * Allocates pageable memory from a sub-map of the kernel. If the submap
434 * has no room, the caller sleeps waiting for more memory in the submap.
435 *
436 * This routine may block.
437 */
438 vm_offset_t
439 kmap_alloc_wait(vm_map_t map, vm_size_t size)
440 {
441 vm_offset_t addr;
442
443 size = round_page(size);
444 if (!swap_reserve(size))
445 return (0);
446
447 for (;;) {
448 /*
449 * To make this work for more than one map, use the map's lock
450 * to lock out sleepers/wakers.
451 */
452 vm_map_lock(map);
453 if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
454 break;
455 /* no space now; see if we can ever get space */
456 if (vm_map_max(map) - vm_map_min(map) < size) {
457 vm_map_unlock(map);
458 swap_release(size);
459 return (0);
460 }
461 map->needs_wakeup = TRUE;
462 vm_map_unlock_and_wait(map, 0);
463 }
464 vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_RW, VM_PROT_RW,
465 MAP_ACC_CHARGED);
466 vm_map_unlock(map);
467 return (addr);
468 }
469
470 /*
471 * kmap_free_wakeup:
472 *
473 * Returns memory to a submap of the kernel, and wakes up any processes
474 * waiting for memory in that map.
475 */
476 void
477 kmap_free_wakeup(vm_map_t map, vm_offset_t addr, vm_size_t size)
478 {
479
480 vm_map_lock(map);
481 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
482 if (map->needs_wakeup) {
483 map->needs_wakeup = FALSE;
484 vm_map_wakeup(map);
485 }
486 vm_map_unlock(map);
487 }
488
489 void
490 kmem_init_zero_region(void)
491 {
492 vm_offset_t addr, i;
493 vm_page_t m;
494
495 /*
496 * Map a single physical page of zeros to a larger virtual range.
497 * This requires less looping in places that want large amounts of
498 * zeros, while not using much more physical resources.
499 */
500 addr = kva_alloc(ZERO_REGION_SIZE);
501 m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
502 VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
503 if ((m->flags & PG_ZERO) == 0)
504 pmap_zero_page(m);
505 for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
506 pmap_qenter(addr + i, &m, 1);
507 pmap_protect(kernel_pmap, addr, addr + ZERO_REGION_SIZE, VM_PROT_READ);
508
509 zero_region = (const void *)addr;
510 }
511
512 /*
513 * kmem_init:
514 *
515 * Create the kernel map; insert a mapping covering kernel text,
516 * data, bss, and all space allocated thus far (`boostrap' data). The
517 * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
518 * `start' as allocated, and the range between `start' and `end' as free.
519 */
520 void
521 kmem_init(vm_offset_t start, vm_offset_t end)
522 {
523 vm_map_t m;
524
525 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
526 m->system_map = 1;
527 vm_map_lock(m);
528 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */
529 kernel_map = m;
530 (void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
531 #ifdef __amd64__
532 KERNBASE,
533 #else
534 VM_MIN_KERNEL_ADDRESS,
535 #endif
536 start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
537 /* ... and ending with the completion of the above `insert' */
538 vm_map_unlock(m);
539 }
540
541 /*
542 * kmem_bootstrap_free:
543 *
544 * Free pages backing preloaded data (e.g., kernel modules) to the
545 * system. Currently only supported on platforms that create a
546 * vm_phys segment for preloaded data.
547 */
548 void
549 kmem_bootstrap_free(vm_offset_t start, vm_size_t size)
550 {
551 #if defined(__i386__) || defined(__amd64__)
552 struct vm_domain *vmd;
553 vm_offset_t end, va;
554 vm_paddr_t pa;
555 vm_page_t m;
556
557 end = trunc_page(start + size);
558 start = round_page(start);
559
560 for (va = start; va < end; va += PAGE_SIZE) {
561 pa = pmap_kextract(va);
562 m = PHYS_TO_VM_PAGE(pa);
563
564 vmd = vm_phys_domain(m);
565 mtx_lock(&vm_page_queue_free_mtx);
566 vm_phys_free_pages(m, 0);
567 vmd->vmd_page_count++;
568 vm_phys_freecnt_adj(m, 1);
569 mtx_unlock(&vm_page_queue_free_mtx);
570
571 vm_cnt.v_page_count++;
572 }
573 pmap_remove(kernel_pmap, start, end);
574 (void)vmem_add(kernel_arena, start, end - start, M_WAITOK);
575 #endif
576 }
577
578 #ifdef DIAGNOSTIC
579 /*
580 * Allow userspace to directly trigger the VM drain routine for testing
581 * purposes.
582 */
583 static int
584 debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
585 {
586 int error, i;
587
588 i = 0;
589 error = sysctl_handle_int(oidp, &i, 0, req);
590 if (error)
591 return (error);
592 if ((i & ~(VM_LOW_KMEM | VM_LOW_PAGES)) != 0)
593 return (EINVAL);
594 if (i != 0)
595 EVENTHANDLER_INVOKE(vm_lowmem, i);
596 return (0);
597 }
598
599 SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
600 debug_vm_lowmem, "I", "set to trigger vm_lowmem event with given flags");
601 #endif
Cache object: 3933bf7599aadc1e6f1522ab52fdd1d4
|