FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_kern.c
1 /*-
2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * from: @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
35 *
36 *
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63 /*
64 * Kernel memory management.
65 */
66
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD: releng/12.0/sys/vm/vm_kern.c 340401 2018-11-13 18:21:47Z markj $");
69
70 #include "opt_vm.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h> /* for ticks and hz */
75 #include <sys/domainset.h>
76 #include <sys/eventhandler.h>
77 #include <sys/lock.h>
78 #include <sys/proc.h>
79 #include <sys/malloc.h>
80 #include <sys/rwlock.h>
81 #include <sys/sysctl.h>
82 #include <sys/vmem.h>
83 #include <sys/vmmeter.h>
84
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/vm_domainset.h>
88 #include <vm/vm_kern.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_phys.h>
95 #include <vm/vm_pagequeue.h>
96 #include <vm/vm_radix.h>
97 #include <vm/vm_extern.h>
98 #include <vm/uma.h>
99
100 vm_map_t kernel_map;
101 vm_map_t exec_map;
102 vm_map_t pipe_map;
103
104 const void *zero_region;
105 CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);
106
107 /* NB: Used by kernel debuggers. */
108 const u_long vm_maxuser_address = VM_MAXUSER_ADDRESS;
109
110 u_int exec_map_entry_size;
111 u_int exec_map_entries;
112
113 SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD,
114 SYSCTL_NULL_ULONG_PTR, VM_MIN_KERNEL_ADDRESS, "Min kernel address");
115
116 SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD,
117 #if defined(__arm__) || defined(__sparc64__)
118 &vm_max_kernel_address, 0,
119 #else
120 SYSCTL_NULL_ULONG_PTR, VM_MAX_KERNEL_ADDRESS,
121 #endif
122 "Max kernel address");
123
124 #if VM_NRESERVLEVEL > 0
125 #define KVA_QUANTUM_SHIFT (VM_LEVEL_0_ORDER + PAGE_SHIFT)
126 #else
127 /* On non-superpage architectures want large import sizes. */
128 #define KVA_QUANTUM_SHIFT (10 + PAGE_SHIFT)
129 #endif
130 #define KVA_QUANTUM (1 << KVA_QUANTUM_SHIFT)
131
132 /*
133 * kva_alloc:
134 *
135 * Allocate a virtual address range with no underlying object and
136 * no initial mapping to physical memory. Any mapping from this
137 * range to physical memory must be explicitly created prior to
138 * its use, typically with pmap_qenter(). Any attempt to create
139 * a mapping on demand through vm_fault() will result in a panic.
140 */
141 vm_offset_t
142 kva_alloc(vm_size_t size)
143 {
144 vm_offset_t addr;
145
146 size = round_page(size);
147 if (vmem_alloc(kernel_arena, size, M_BESTFIT | M_NOWAIT, &addr))
148 return (0);
149
150 return (addr);
151 }
152
153 /*
154 * kva_free:
155 *
156 * Release a region of kernel virtual memory allocated
157 * with kva_alloc, and return the physical pages
158 * associated with that region.
159 *
160 * This routine may not block on kernel maps.
161 */
162 void
163 kva_free(vm_offset_t addr, vm_size_t size)
164 {
165
166 size = round_page(size);
167 vmem_free(kernel_arena, addr, size);
168 }
169
170 /*
171 * Allocates a region from the kernel address map and physical pages
172 * within the specified address range to the kernel object. Creates a
173 * wired mapping from this region to these pages, and returns the
174 * region's starting virtual address. The allocated pages are not
175 * necessarily physically contiguous. If M_ZERO is specified through the
176 * given flags, then the pages are zeroed before they are mapped.
177 */
178 static vm_offset_t
179 kmem_alloc_attr_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
180 vm_paddr_t high, vm_memattr_t memattr)
181 {
182 vmem_t *vmem;
183 vm_object_t object = kernel_object;
184 vm_offset_t addr, i, offset;
185 vm_page_t m;
186 int pflags, tries;
187
188 size = round_page(size);
189 vmem = vm_dom[domain].vmd_kernel_arena;
190 if (vmem_alloc(vmem, size, M_BESTFIT | flags, &addr))
191 return (0);
192 offset = addr - VM_MIN_KERNEL_ADDRESS;
193 pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
194 pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
195 pflags |= VM_ALLOC_NOWAIT;
196 VM_OBJECT_WLOCK(object);
197 for (i = 0; i < size; i += PAGE_SIZE) {
198 tries = 0;
199 retry:
200 m = vm_page_alloc_contig_domain(object, atop(offset + i),
201 domain, pflags, 1, low, high, PAGE_SIZE, 0, memattr);
202 if (m == NULL) {
203 VM_OBJECT_WUNLOCK(object);
204 if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
205 if (!vm_page_reclaim_contig_domain(domain,
206 pflags, 1, low, high, PAGE_SIZE, 0) &&
207 (flags & M_WAITOK) != 0)
208 vm_wait_domain(domain);
209 VM_OBJECT_WLOCK(object);
210 tries++;
211 goto retry;
212 }
213 kmem_unback(object, addr, i);
214 vmem_free(vmem, addr, size);
215 return (0);
216 }
217 KASSERT(vm_phys_domain(m) == domain,
218 ("kmem_alloc_attr_domain: Domain mismatch %d != %d",
219 vm_phys_domain(m), domain));
220 if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
221 pmap_zero_page(m);
222 m->valid = VM_PAGE_BITS_ALL;
223 pmap_enter(kernel_pmap, addr + i, m, VM_PROT_RW,
224 VM_PROT_RW | PMAP_ENTER_WIRED, 0);
225 }
226 VM_OBJECT_WUNLOCK(object);
227 return (addr);
228 }
229
230 vm_offset_t
231 kmem_alloc_attr(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high,
232 vm_memattr_t memattr)
233 {
234
235 return (kmem_alloc_attr_domainset(DOMAINSET_RR(), size, flags, low,
236 high, memattr));
237 }
238
239 vm_offset_t
240 kmem_alloc_attr_domainset(struct domainset *ds, vm_size_t size, int flags,
241 vm_paddr_t low, vm_paddr_t high, vm_memattr_t memattr)
242 {
243 struct vm_domainset_iter di;
244 vm_offset_t addr;
245 int domain;
246
247 vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
248 do {
249 addr = kmem_alloc_attr_domain(domain, size, flags, low, high,
250 memattr);
251 if (addr != 0)
252 break;
253 } while (vm_domainset_iter_policy(&di, &domain) == 0);
254
255 return (addr);
256 }
257
258 /*
259 * Allocates a region from the kernel address map and physically
260 * contiguous pages within the specified address range to the kernel
261 * object. Creates a wired mapping from this region to these pages, and
262 * returns the region's starting virtual address. If M_ZERO is specified
263 * through the given flags, then the pages are zeroed before they are
264 * mapped.
265 */
266 static vm_offset_t
267 kmem_alloc_contig_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
268 vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
269 vm_memattr_t memattr)
270 {
271 vmem_t *vmem;
272 vm_object_t object = kernel_object;
273 vm_offset_t addr, offset, tmp;
274 vm_page_t end_m, m;
275 u_long npages;
276 int pflags, tries;
277
278 size = round_page(size);
279 vmem = vm_dom[domain].vmd_kernel_arena;
280 if (vmem_alloc(vmem, size, flags | M_BESTFIT, &addr))
281 return (0);
282 offset = addr - VM_MIN_KERNEL_ADDRESS;
283 pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
284 pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
285 pflags |= VM_ALLOC_NOWAIT;
286 npages = atop(size);
287 VM_OBJECT_WLOCK(object);
288 tries = 0;
289 retry:
290 m = vm_page_alloc_contig_domain(object, atop(offset), domain, pflags,
291 npages, low, high, alignment, boundary, memattr);
292 if (m == NULL) {
293 VM_OBJECT_WUNLOCK(object);
294 if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
295 if (!vm_page_reclaim_contig_domain(domain, pflags,
296 npages, low, high, alignment, boundary) &&
297 (flags & M_WAITOK) != 0)
298 vm_wait_domain(domain);
299 VM_OBJECT_WLOCK(object);
300 tries++;
301 goto retry;
302 }
303 vmem_free(vmem, addr, size);
304 return (0);
305 }
306 KASSERT(vm_phys_domain(m) == domain,
307 ("kmem_alloc_contig_domain: Domain mismatch %d != %d",
308 vm_phys_domain(m), domain));
309 end_m = m + npages;
310 tmp = addr;
311 for (; m < end_m; m++) {
312 if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
313 pmap_zero_page(m);
314 m->valid = VM_PAGE_BITS_ALL;
315 pmap_enter(kernel_pmap, tmp, m, VM_PROT_RW,
316 VM_PROT_RW | PMAP_ENTER_WIRED, 0);
317 tmp += PAGE_SIZE;
318 }
319 VM_OBJECT_WUNLOCK(object);
320 return (addr);
321 }
322
323 vm_offset_t
324 kmem_alloc_contig(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high,
325 u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
326 {
327
328 return (kmem_alloc_contig_domainset(DOMAINSET_RR(), size, flags, low,
329 high, alignment, boundary, memattr));
330 }
331
332 vm_offset_t
333 kmem_alloc_contig_domainset(struct domainset *ds, vm_size_t size, int flags,
334 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
335 vm_memattr_t memattr)
336 {
337 struct vm_domainset_iter di;
338 vm_offset_t addr;
339 int domain;
340
341 vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
342 do {
343 addr = kmem_alloc_contig_domain(domain, size, flags, low, high,
344 alignment, boundary, memattr);
345 if (addr != 0)
346 break;
347 } while (vm_domainset_iter_policy(&di, &domain) == 0);
348
349 return (addr);
350 }
351
352 /*
353 * kmem_suballoc:
354 *
355 * Allocates a map to manage a subrange
356 * of the kernel virtual address space.
357 *
358 * Arguments are as follows:
359 *
360 * parent Map to take range from
361 * min, max Returned endpoints of map
362 * size Size of range to find
363 * superpage_align Request that min is superpage aligned
364 */
365 vm_map_t
366 kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
367 vm_size_t size, boolean_t superpage_align)
368 {
369 int ret;
370 vm_map_t result;
371
372 size = round_page(size);
373
374 *min = vm_map_min(parent);
375 ret = vm_map_find(parent, NULL, 0, min, size, 0, superpage_align ?
376 VMFS_SUPER_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
377 MAP_ACC_NO_CHARGE);
378 if (ret != KERN_SUCCESS)
379 panic("kmem_suballoc: bad status return of %d", ret);
380 *max = *min + size;
381 result = vm_map_create(vm_map_pmap(parent), *min, *max);
382 if (result == NULL)
383 panic("kmem_suballoc: cannot create submap");
384 if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
385 panic("kmem_suballoc: unable to change range to submap");
386 return (result);
387 }
388
389 /*
390 * kmem_malloc_domain:
391 *
392 * Allocate wired-down pages in the kernel's address space.
393 */
394 static vm_offset_t
395 kmem_malloc_domain(int domain, vm_size_t size, int flags)
396 {
397 vmem_t *arena;
398 vm_offset_t addr;
399 int rv;
400
401 #if VM_NRESERVLEVEL > 0
402 if (__predict_true((flags & M_EXEC) == 0))
403 arena = vm_dom[domain].vmd_kernel_arena;
404 else
405 arena = vm_dom[domain].vmd_kernel_rwx_arena;
406 #else
407 arena = vm_dom[domain].vmd_kernel_arena;
408 #endif
409 size = round_page(size);
410 if (vmem_alloc(arena, size, flags | M_BESTFIT, &addr))
411 return (0);
412
413 rv = kmem_back_domain(domain, kernel_object, addr, size, flags);
414 if (rv != KERN_SUCCESS) {
415 vmem_free(arena, addr, size);
416 return (0);
417 }
418 return (addr);
419 }
420
421 vm_offset_t
422 kmem_malloc(vm_size_t size, int flags)
423 {
424
425 return (kmem_malloc_domainset(DOMAINSET_RR(), size, flags));
426 }
427
428 vm_offset_t
429 kmem_malloc_domainset(struct domainset *ds, vm_size_t size, int flags)
430 {
431 struct vm_domainset_iter di;
432 vm_offset_t addr;
433 int domain;
434
435 vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
436 do {
437 addr = kmem_malloc_domain(domain, size, flags);
438 if (addr != 0)
439 break;
440 } while (vm_domainset_iter_policy(&di, &domain) == 0);
441
442 return (addr);
443 }
444
445 /*
446 * kmem_back_domain:
447 *
448 * Allocate physical pages from the specified domain for the specified
449 * virtual address range.
450 */
451 int
452 kmem_back_domain(int domain, vm_object_t object, vm_offset_t addr,
453 vm_size_t size, int flags)
454 {
455 vm_offset_t offset, i;
456 vm_page_t m, mpred;
457 vm_prot_t prot;
458 int pflags;
459
460 KASSERT(object == kernel_object,
461 ("kmem_back_domain: only supports kernel object."));
462
463 offset = addr - VM_MIN_KERNEL_ADDRESS;
464 pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
465 pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
466 if (flags & M_WAITOK)
467 pflags |= VM_ALLOC_WAITFAIL;
468 prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW;
469
470 i = 0;
471 VM_OBJECT_WLOCK(object);
472 retry:
473 mpred = vm_radix_lookup_le(&object->rtree, atop(offset + i));
474 for (; i < size; i += PAGE_SIZE, mpred = m) {
475 m = vm_page_alloc_domain_after(object, atop(offset + i),
476 domain, pflags, mpred);
477
478 /*
479 * Ran out of space, free everything up and return. Don't need
480 * to lock page queues here as we know that the pages we got
481 * aren't on any queues.
482 */
483 if (m == NULL) {
484 if ((flags & M_NOWAIT) == 0)
485 goto retry;
486 VM_OBJECT_WUNLOCK(object);
487 kmem_unback(object, addr, i);
488 return (KERN_NO_SPACE);
489 }
490 KASSERT(vm_phys_domain(m) == domain,
491 ("kmem_back_domain: Domain mismatch %d != %d",
492 vm_phys_domain(m), domain));
493 if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
494 pmap_zero_page(m);
495 KASSERT((m->oflags & VPO_UNMANAGED) != 0,
496 ("kmem_malloc: page %p is managed", m));
497 m->valid = VM_PAGE_BITS_ALL;
498 pmap_enter(kernel_pmap, addr + i, m, prot,
499 prot | PMAP_ENTER_WIRED, 0);
500 #if VM_NRESERVLEVEL > 0
501 if (__predict_false((prot & VM_PROT_EXECUTE) != 0))
502 m->oflags |= VPO_KMEM_EXEC;
503 #endif
504 }
505 VM_OBJECT_WUNLOCK(object);
506
507 return (KERN_SUCCESS);
508 }
509
510 /*
511 * kmem_back:
512 *
513 * Allocate physical pages for the specified virtual address range.
514 */
515 int
516 kmem_back(vm_object_t object, vm_offset_t addr, vm_size_t size, int flags)
517 {
518 vm_offset_t end, next, start;
519 int domain, rv;
520
521 KASSERT(object == kernel_object,
522 ("kmem_back: only supports kernel object."));
523
524 for (start = addr, end = addr + size; addr < end; addr = next) {
525 /*
526 * We must ensure that pages backing a given large virtual page
527 * all come from the same physical domain.
528 */
529 if (vm_ndomains > 1) {
530 domain = (addr >> KVA_QUANTUM_SHIFT) % vm_ndomains;
531 while (VM_DOMAIN_EMPTY(domain))
532 domain++;
533 next = roundup2(addr + 1, KVA_QUANTUM);
534 if (next > end || next < start)
535 next = end;
536 } else {
537 domain = 0;
538 next = end;
539 }
540 rv = kmem_back_domain(domain, object, addr, next - addr, flags);
541 if (rv != KERN_SUCCESS) {
542 kmem_unback(object, start, addr - start);
543 break;
544 }
545 }
546 return (rv);
547 }
548
549 /*
550 * kmem_unback:
551 *
552 * Unmap and free the physical pages underlying the specified virtual
553 * address range.
554 *
555 * A physical page must exist within the specified object at each index
556 * that is being unmapped.
557 */
558 static struct vmem *
559 _kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
560 {
561 struct vmem *arena;
562 vm_page_t m, next;
563 vm_offset_t end, offset;
564 int domain;
565
566 KASSERT(object == kernel_object,
567 ("kmem_unback: only supports kernel object."));
568
569 if (size == 0)
570 return (NULL);
571 pmap_remove(kernel_pmap, addr, addr + size);
572 offset = addr - VM_MIN_KERNEL_ADDRESS;
573 end = offset + size;
574 VM_OBJECT_WLOCK(object);
575 m = vm_page_lookup(object, atop(offset));
576 domain = vm_phys_domain(m);
577 #if VM_NRESERVLEVEL > 0
578 if (__predict_true((m->oflags & VPO_KMEM_EXEC) == 0))
579 arena = vm_dom[domain].vmd_kernel_arena;
580 else
581 arena = vm_dom[domain].vmd_kernel_rwx_arena;
582 #else
583 arena = vm_dom[domain].vmd_kernel_arena;
584 #endif
585 for (; offset < end; offset += PAGE_SIZE, m = next) {
586 next = vm_page_next(m);
587 vm_page_unwire(m, PQ_NONE);
588 vm_page_free(m);
589 }
590 VM_OBJECT_WUNLOCK(object);
591
592 return (arena);
593 }
594
595 void
596 kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
597 {
598
599 (void)_kmem_unback(object, addr, size);
600 }
601
602 /*
603 * kmem_free:
604 *
605 * Free memory allocated with kmem_malloc. The size must match the
606 * original allocation.
607 */
608 void
609 kmem_free(vm_offset_t addr, vm_size_t size)
610 {
611 struct vmem *arena;
612
613 size = round_page(size);
614 arena = _kmem_unback(kernel_object, addr, size);
615 if (arena != NULL)
616 vmem_free(arena, addr, size);
617 }
618
619 /*
620 * kmap_alloc_wait:
621 *
622 * Allocates pageable memory from a sub-map of the kernel. If the submap
623 * has no room, the caller sleeps waiting for more memory in the submap.
624 *
625 * This routine may block.
626 */
627 vm_offset_t
628 kmap_alloc_wait(vm_map_t map, vm_size_t size)
629 {
630 vm_offset_t addr;
631
632 size = round_page(size);
633 if (!swap_reserve(size))
634 return (0);
635
636 for (;;) {
637 /*
638 * To make this work for more than one map, use the map's lock
639 * to lock out sleepers/wakers.
640 */
641 vm_map_lock(map);
642 if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
643 break;
644 /* no space now; see if we can ever get space */
645 if (vm_map_max(map) - vm_map_min(map) < size) {
646 vm_map_unlock(map);
647 swap_release(size);
648 return (0);
649 }
650 map->needs_wakeup = TRUE;
651 vm_map_unlock_and_wait(map, 0);
652 }
653 vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL,
654 VM_PROT_ALL, MAP_ACC_CHARGED);
655 vm_map_unlock(map);
656 return (addr);
657 }
658
659 /*
660 * kmap_free_wakeup:
661 *
662 * Returns memory to a submap of the kernel, and wakes up any processes
663 * waiting for memory in that map.
664 */
665 void
666 kmap_free_wakeup(vm_map_t map, vm_offset_t addr, vm_size_t size)
667 {
668
669 vm_map_lock(map);
670 (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
671 if (map->needs_wakeup) {
672 map->needs_wakeup = FALSE;
673 vm_map_wakeup(map);
674 }
675 vm_map_unlock(map);
676 }
677
678 void
679 kmem_init_zero_region(void)
680 {
681 vm_offset_t addr, i;
682 vm_page_t m;
683
684 /*
685 * Map a single physical page of zeros to a larger virtual range.
686 * This requires less looping in places that want large amounts of
687 * zeros, while not using much more physical resources.
688 */
689 addr = kva_alloc(ZERO_REGION_SIZE);
690 m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
691 VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
692 if ((m->flags & PG_ZERO) == 0)
693 pmap_zero_page(m);
694 for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
695 pmap_qenter(addr + i, &m, 1);
696 pmap_protect(kernel_pmap, addr, addr + ZERO_REGION_SIZE, VM_PROT_READ);
697
698 zero_region = (const void *)addr;
699 }
700
701 /*
702 * Import KVA from the kernel map into the kernel arena.
703 */
704 static int
705 kva_import(void *unused, vmem_size_t size, int flags, vmem_addr_t *addrp)
706 {
707 vm_offset_t addr;
708 int result;
709
710 KASSERT((size % KVA_QUANTUM) == 0,
711 ("kva_import: Size %jd is not a multiple of %d",
712 (intmax_t)size, (int)KVA_QUANTUM));
713 addr = vm_map_min(kernel_map);
714 result = vm_map_find(kernel_map, NULL, 0, &addr, size, 0,
715 VMFS_SUPER_SPACE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
716 if (result != KERN_SUCCESS)
717 return (ENOMEM);
718
719 *addrp = addr;
720
721 return (0);
722 }
723
724 /*
725 * Import KVA from a parent arena into a per-domain arena. Imports must be
726 * KVA_QUANTUM-aligned and a multiple of KVA_QUANTUM in size.
727 */
728 static int
729 kva_import_domain(void *arena, vmem_size_t size, int flags, vmem_addr_t *addrp)
730 {
731
732 KASSERT((size % KVA_QUANTUM) == 0,
733 ("kva_import_domain: Size %jd is not a multiple of %d",
734 (intmax_t)size, (int)KVA_QUANTUM));
735 return (vmem_xalloc(arena, size, KVA_QUANTUM, 0, 0, VMEM_ADDR_MIN,
736 VMEM_ADDR_MAX, flags, addrp));
737 }
738
739 /*
740 * kmem_init:
741 *
742 * Create the kernel map; insert a mapping covering kernel text,
743 * data, bss, and all space allocated thus far (`boostrap' data). The
744 * new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
745 * `start' as allocated, and the range between `start' and `end' as free.
746 * Create the kernel vmem arena and its per-domain children.
747 */
748 void
749 kmem_init(vm_offset_t start, vm_offset_t end)
750 {
751 vm_map_t m;
752 int domain;
753
754 m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
755 m->system_map = 1;
756 vm_map_lock(m);
757 /* N.B.: cannot use kgdb to debug, starting with this assignment ... */
758 kernel_map = m;
759 (void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
760 #ifdef __amd64__
761 KERNBASE,
762 #else
763 VM_MIN_KERNEL_ADDRESS,
764 #endif
765 start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
766 /* ... and ending with the completion of the above `insert' */
767 vm_map_unlock(m);
768
769 /*
770 * Initialize the kernel_arena. This can grow on demand.
771 */
772 vmem_init(kernel_arena, "kernel arena", 0, 0, PAGE_SIZE, 0, 0);
773 vmem_set_import(kernel_arena, kva_import, NULL, NULL, KVA_QUANTUM);
774
775 for (domain = 0; domain < vm_ndomains; domain++) {
776 /*
777 * Initialize the per-domain arenas. These are used to color
778 * the KVA space in a way that ensures that virtual large pages
779 * are backed by memory from the same physical domain,
780 * maximizing the potential for superpage promotion.
781 */
782 vm_dom[domain].vmd_kernel_arena = vmem_create(
783 "kernel arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
784 vmem_set_import(vm_dom[domain].vmd_kernel_arena,
785 kva_import_domain, NULL, kernel_arena, KVA_QUANTUM);
786
787 /*
788 * In architectures with superpages, maintain separate arenas
789 * for allocations with permissions that differ from the
790 * "standard" read/write permissions used for kernel memory,
791 * so as not to inhibit superpage promotion.
792 */
793 #if VM_NRESERVLEVEL > 0
794 vm_dom[domain].vmd_kernel_rwx_arena = vmem_create(
795 "kernel rwx arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
796 vmem_set_import(vm_dom[domain].vmd_kernel_rwx_arena,
797 kva_import_domain, (vmem_release_t *)vmem_xfree,
798 kernel_arena, KVA_QUANTUM);
799 #endif
800 }
801 }
802
803 /*
804 * kmem_bootstrap_free:
805 *
806 * Free pages backing preloaded data (e.g., kernel modules) to the
807 * system. Currently only supported on platforms that create a
808 * vm_phys segment for preloaded data.
809 */
810 void
811 kmem_bootstrap_free(vm_offset_t start, vm_size_t size)
812 {
813 #if defined(__i386__) || defined(__amd64__)
814 struct vm_domain *vmd;
815 vm_offset_t end, va;
816 vm_paddr_t pa;
817 vm_page_t m;
818
819 end = trunc_page(start + size);
820 start = round_page(start);
821
822 for (va = start; va < end; va += PAGE_SIZE) {
823 pa = pmap_kextract(va);
824 m = PHYS_TO_VM_PAGE(pa);
825
826 vmd = vm_pagequeue_domain(m);
827 vm_domain_free_lock(vmd);
828 vm_phys_free_pages(m, 0);
829 vm_domain_free_unlock(vmd);
830
831 vm_domain_freecnt_inc(vmd, 1);
832 vm_cnt.v_page_count++;
833 }
834 pmap_remove(kernel_pmap, start, end);
835 (void)vmem_add(kernel_arena, start, end - start, M_WAITOK);
836 #endif
837 }
838
839 #ifdef DIAGNOSTIC
840 /*
841 * Allow userspace to directly trigger the VM drain routine for testing
842 * purposes.
843 */
844 static int
845 debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
846 {
847 int error, i;
848
849 i = 0;
850 error = sysctl_handle_int(oidp, &i, 0, req);
851 if (error)
852 return (error);
853 if ((i & ~(VM_LOW_KMEM | VM_LOW_PAGES)) != 0)
854 return (EINVAL);
855 if (i != 0)
856 EVENTHANDLER_INVOKE(vm_lowmem, i);
857 return (0);
858 }
859
860 SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
861 debug_vm_lowmem, "I", "set to trigger vm_lowmem event with given flags");
862 #endif
Cache object: fb7b93967b9575fd97908251bfdad29e
|