The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_kern.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
    3  *
    4  * Copyright (c) 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * The Mach Operating System project at Carnegie-Mellon University.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      from: @(#)vm_kern.c     8.3 (Berkeley) 1/12/94
   35  *
   36  *
   37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   38  * All rights reserved.
   39  *
   40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   41  *
   42  * Permission to use, copy, modify and distribute this software and
   43  * its documentation is hereby granted, provided that both the copyright
   44  * notice and this permission notice appear in all copies of the
   45  * software, derivative works or modified versions, and any portions
   46  * thereof, and that both notices appear in supporting documentation.
   47  *
   48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   51  *
   52  * Carnegie Mellon requests users of this software to return to
   53  *
   54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   55  *  School of Computer Science
   56  *  Carnegie Mellon University
   57  *  Pittsburgh PA 15213-3890
   58  *
   59  * any improvements or extensions that they make and grant Carnegie the
   60  * rights to redistribute these changes.
   61  */
   62 
   63 /*
   64  *      Kernel memory management.
   65  */
   66 
   67 #include <sys/cdefs.h>
   68 __FBSDID("$FreeBSD$");
   69 
   70 #include "opt_vm.h"
   71 
   72 #include <sys/param.h>
   73 #include <sys/systm.h>
   74 #include <sys/kernel.h>         /* for ticks and hz */
   75 #include <sys/domainset.h>
   76 #include <sys/eventhandler.h>
   77 #include <sys/lock.h>
   78 #include <sys/proc.h>
   79 #include <sys/malloc.h>
   80 #include <sys/rwlock.h>
   81 #include <sys/sysctl.h>
   82 #include <sys/vmem.h>
   83 #include <sys/vmmeter.h>
   84 
   85 #include <vm/vm.h>
   86 #include <vm/vm_param.h>
   87 #include <vm/vm_domainset.h>
   88 #include <vm/vm_kern.h>
   89 #include <vm/pmap.h>
   90 #include <vm/vm_map.h>
   91 #include <vm/vm_object.h>
   92 #include <vm/vm_page.h>
   93 #include <vm/vm_pageout.h>
   94 #include <vm/vm_phys.h>
   95 #include <vm/vm_pagequeue.h>
   96 #include <vm/vm_radix.h>
   97 #include <vm/vm_extern.h>
   98 #include <vm/uma.h>
   99 
  100 vm_map_t kernel_map;
  101 vm_map_t exec_map;
  102 vm_map_t pipe_map;
  103 
  104 const void *zero_region;
  105 CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);
  106 
  107 /* NB: Used by kernel debuggers. */
  108 const u_long vm_maxuser_address = VM_MAXUSER_ADDRESS;
  109 
  110 u_int exec_map_entry_size;
  111 u_int exec_map_entries;
  112 
  113 SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD,
  114     SYSCTL_NULL_ULONG_PTR, VM_MIN_KERNEL_ADDRESS, "Min kernel address");
  115 
  116 SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD,
  117 #if defined(__arm__) || defined(__sparc64__)
  118     &vm_max_kernel_address, 0,
  119 #else
  120     SYSCTL_NULL_ULONG_PTR, VM_MAX_KERNEL_ADDRESS,
  121 #endif
  122     "Max kernel address");
  123 
  124 #if VM_NRESERVLEVEL > 0
  125 #define KVA_QUANTUM_SHIFT       (VM_LEVEL_0_ORDER + PAGE_SHIFT)
  126 #else
  127 /* On non-superpage architectures we want large import sizes. */
  128 #define KVA_QUANTUM_SHIFT       (8 + PAGE_SHIFT)
  129 #endif
  130 #define KVA_QUANTUM             (1 << KVA_QUANTUM_SHIFT)
  131 
  132 /*
  133  *      kva_alloc:
  134  *
  135  *      Allocate a virtual address range with no underlying object and
  136  *      no initial mapping to physical memory.  Any mapping from this
  137  *      range to physical memory must be explicitly created prior to
  138  *      its use, typically with pmap_qenter().  Any attempt to create
  139  *      a mapping on demand through vm_fault() will result in a panic. 
  140  */
  141 vm_offset_t
  142 kva_alloc(vm_size_t size)
  143 {
  144         vm_offset_t addr;
  145 
  146         size = round_page(size);
  147         if (vmem_alloc(kernel_arena, size, M_BESTFIT | M_NOWAIT, &addr))
  148                 return (0);
  149 
  150         return (addr);
  151 }
  152 
  153 /*
  154  *      kva_free:
  155  *
  156  *      Release a region of kernel virtual memory allocated
  157  *      with kva_alloc, and return the physical pages
  158  *      associated with that region.
  159  *
  160  *      This routine may not block on kernel maps.
  161  */
  162 void
  163 kva_free(vm_offset_t addr, vm_size_t size)
  164 {
  165 
  166         size = round_page(size);
  167         vmem_free(kernel_arena, addr, size);
  168 }
  169 
  170 static vm_page_t
  171 kmem_alloc_contig_pages(vm_object_t object, vm_pindex_t pindex, int domain,
  172     int pflags, u_long npages, vm_paddr_t low, vm_paddr_t high,
  173     u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
  174 {
  175         vm_page_t m;
  176         int tries;
  177         bool wait;
  178 
  179         VM_OBJECT_ASSERT_WLOCKED(object);
  180 
  181         wait = (pflags & VM_ALLOC_WAITOK) != 0;
  182         pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
  183         pflags |= VM_ALLOC_NOWAIT;
  184         for (tries = wait ? 3 : 1;; tries--) {
  185                 m = vm_page_alloc_contig_domain(object, pindex, domain, pflags,
  186                     npages, low, high, alignment, boundary, memattr);
  187                 if (m != NULL || tries == 0)
  188                         break;
  189 
  190                 VM_OBJECT_WUNLOCK(object);
  191                 if (!vm_page_reclaim_contig_domain(domain, pflags, npages,
  192                     low, high, alignment, boundary) && wait)
  193                         vm_wait_domain(domain);
  194                 VM_OBJECT_WLOCK(object);
  195         }
  196         return (m);
  197 }
  198 
  199 /*
  200  *      Allocates a region from the kernel address map and physical pages
  201  *      within the specified address range to the kernel object.  Creates a
  202  *      wired mapping from this region to these pages, and returns the
  203  *      region's starting virtual address.  The allocated pages are not
  204  *      necessarily physically contiguous.  If M_ZERO is specified through the
  205  *      given flags, then the pages are zeroed before they are mapped.
  206  */
  207 static vm_offset_t
  208 kmem_alloc_attr_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
  209     vm_paddr_t high, vm_memattr_t memattr)
  210 {
  211         vmem_t *vmem;
  212         vm_object_t object;
  213         vm_offset_t addr, i, offset;
  214         vm_page_t m;
  215         int pflags;
  216         vm_prot_t prot;
  217 
  218         object = kernel_object;
  219         size = round_page(size);
  220         vmem = vm_dom[domain].vmd_kernel_arena;
  221         if (vmem_alloc(vmem, size, M_BESTFIT | flags, &addr))
  222                 return (0);
  223         offset = addr - VM_MIN_KERNEL_ADDRESS;
  224         pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
  225         prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW;
  226         VM_OBJECT_WLOCK(object);
  227         for (i = 0; i < size; i += PAGE_SIZE) {
  228                 m = kmem_alloc_contig_pages(object, atop(offset + i),
  229                     domain, pflags, 1, low, high, PAGE_SIZE, 0, memattr);
  230                 if (m == NULL) {
  231                         VM_OBJECT_WUNLOCK(object);
  232                         kmem_unback(object, addr, i);
  233                         vmem_free(vmem, addr, size);
  234                         return (0);
  235                 }
  236                 KASSERT(vm_phys_domain(m) == domain,
  237                     ("kmem_alloc_attr_domain: Domain mismatch %d != %d",
  238                     vm_phys_domain(m), domain));
  239                 if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
  240                         pmap_zero_page(m);
  241                 m->valid = VM_PAGE_BITS_ALL;
  242                 pmap_enter(kernel_pmap, addr + i, m, prot,
  243                     prot | PMAP_ENTER_WIRED, 0);
  244         }
  245         VM_OBJECT_WUNLOCK(object);
  246         return (addr);
  247 }
  248 
  249 vm_offset_t
  250 kmem_alloc_attr(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high,
  251     vm_memattr_t memattr)
  252 {
  253 
  254         return (kmem_alloc_attr_domainset(DOMAINSET_RR(), size, flags, low,
  255             high, memattr));
  256 }
  257 
  258 vm_offset_t
  259 kmem_alloc_attr_domainset(struct domainset *ds, vm_size_t size, int flags,
  260     vm_paddr_t low, vm_paddr_t high, vm_memattr_t memattr)
  261 {
  262         struct vm_domainset_iter di;
  263         vm_offset_t addr;
  264         int domain;
  265 
  266         vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
  267         do {
  268                 addr = kmem_alloc_attr_domain(domain, size, flags, low, high,
  269                     memattr);
  270                 if (addr != 0)
  271                         break;
  272         } while (vm_domainset_iter_policy(&di, &domain) == 0);
  273 
  274         return (addr);
  275 }
  276 
  277 /*
  278  *      Allocates a region from the kernel address map and physically
  279  *      contiguous pages within the specified address range to the kernel
  280  *      object.  Creates a wired mapping from this region to these pages, and
  281  *      returns the region's starting virtual address.  If M_ZERO is specified
  282  *      through the given flags, then the pages are zeroed before they are
  283  *      mapped.
  284  */
  285 static vm_offset_t
  286 kmem_alloc_contig_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
  287     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
  288     vm_memattr_t memattr)
  289 {
  290         vmem_t *vmem;
  291         vm_object_t object;
  292         vm_offset_t addr, offset, tmp;
  293         vm_page_t end_m, m;
  294         u_long npages;
  295         int pflags;
  296 
  297         object = kernel_object;
  298         size = round_page(size);
  299         vmem = vm_dom[domain].vmd_kernel_arena;
  300         if (vmem_alloc(vmem, size, flags | M_BESTFIT, &addr))
  301                 return (0);
  302         offset = addr - VM_MIN_KERNEL_ADDRESS;
  303         pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
  304         npages = atop(size);
  305         VM_OBJECT_WLOCK(object);
  306         m = kmem_alloc_contig_pages(object, atop(offset), domain,
  307             pflags, npages, low, high, alignment, boundary, memattr);
  308         if (m == NULL) {
  309                 VM_OBJECT_WUNLOCK(object);
  310                 vmem_free(vmem, addr, size);
  311                 return (0);
  312         }
  313         KASSERT(vm_phys_domain(m) == domain,
  314             ("kmem_alloc_contig_domain: Domain mismatch %d != %d",
  315             vm_phys_domain(m), domain));
  316         end_m = m + npages;
  317         tmp = addr;
  318         for (; m < end_m; m++) {
  319                 if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
  320                         pmap_zero_page(m);
  321                 m->valid = VM_PAGE_BITS_ALL;
  322                 pmap_enter(kernel_pmap, tmp, m, VM_PROT_RW,
  323                     VM_PROT_RW | PMAP_ENTER_WIRED, 0);
  324                 tmp += PAGE_SIZE;
  325         }
  326         VM_OBJECT_WUNLOCK(object);
  327         return (addr);
  328 }
  329 
  330 vm_offset_t
  331 kmem_alloc_contig(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high,
  332     u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
  333 {
  334 
  335         return (kmem_alloc_contig_domainset(DOMAINSET_RR(), size, flags, low,
  336             high, alignment, boundary, memattr));
  337 }
  338 
  339 vm_offset_t
  340 kmem_alloc_contig_domainset(struct domainset *ds, vm_size_t size, int flags,
  341     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
  342     vm_memattr_t memattr)
  343 {
  344         struct vm_domainset_iter di;
  345         vm_offset_t addr;
  346         int domain;
  347 
  348         vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
  349         do {
  350                 addr = kmem_alloc_contig_domain(domain, size, flags, low, high,
  351                     alignment, boundary, memattr);
  352                 if (addr != 0)
  353                         break;
  354         } while (vm_domainset_iter_policy(&di, &domain) == 0);
  355 
  356         return (addr);
  357 }
  358 
  359 /*
  360  *      kmem_suballoc:
  361  *
  362  *      Allocates a map to manage a subrange
  363  *      of the kernel virtual address space.
  364  *
  365  *      Arguments are as follows:
  366  *
  367  *      parent          Map to take range from
  368  *      min, max        Returned endpoints of map
  369  *      size            Size of range to find
  370  *      superpage_align Request that min is superpage aligned
  371  */
  372 vm_map_t
  373 kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
  374     vm_size_t size, boolean_t superpage_align)
  375 {
  376         int ret;
  377         vm_map_t result;
  378 
  379         size = round_page(size);
  380 
  381         *min = vm_map_min(parent);
  382         ret = vm_map_find(parent, NULL, 0, min, size, 0, superpage_align ?
  383             VMFS_SUPER_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
  384             MAP_ACC_NO_CHARGE);
  385         if (ret != KERN_SUCCESS)
  386                 panic("kmem_suballoc: bad status return of %d", ret);
  387         *max = *min + size;
  388         result = vm_map_create(vm_map_pmap(parent), *min, *max);
  389         if (result == NULL)
  390                 panic("kmem_suballoc: cannot create submap");
  391         if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
  392                 panic("kmem_suballoc: unable to change range to submap");
  393         return (result);
  394 }
  395 
  396 /*
  397  *      kmem_malloc_domain:
  398  *
  399  *      Allocate wired-down pages in the kernel's address space.
  400  */
  401 static vm_offset_t
  402 kmem_malloc_domain(int domain, vm_size_t size, int flags)
  403 {
  404         vmem_t *arena;
  405         vm_offset_t addr;
  406         int rv;
  407 
  408         if (__predict_true((flags & M_EXEC) == 0))
  409                 arena = vm_dom[domain].vmd_kernel_arena;
  410         else
  411                 arena = vm_dom[domain].vmd_kernel_rwx_arena;
  412         size = round_page(size);
  413         if (vmem_alloc(arena, size, flags | M_BESTFIT, &addr))
  414                 return (0);
  415 
  416         rv = kmem_back_domain(domain, kernel_object, addr, size, flags);
  417         if (rv != KERN_SUCCESS) {
  418                 vmem_free(arena, addr, size);
  419                 return (0);
  420         }
  421         return (addr);
  422 }
  423 
  424 vm_offset_t
  425 kmem_malloc(vm_size_t size, int flags)
  426 {
  427 
  428         return (kmem_malloc_domainset(DOMAINSET_RR(), size, flags));
  429 }
  430 
  431 vm_offset_t
  432 kmem_malloc_domainset(struct domainset *ds, vm_size_t size, int flags)
  433 {
  434         struct vm_domainset_iter di;
  435         vm_offset_t addr;
  436         int domain;
  437 
  438         vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
  439         do {
  440                 addr = kmem_malloc_domain(domain, size, flags);
  441                 if (addr != 0)
  442                         break;
  443         } while (vm_domainset_iter_policy(&di, &domain) == 0);
  444 
  445         return (addr);
  446 }
  447 
  448 /*
  449  *      kmem_back_domain:
  450  *
  451  *      Allocate physical pages from the specified domain for the specified
  452  *      virtual address range.
  453  */
  454 int
  455 kmem_back_domain(int domain, vm_object_t object, vm_offset_t addr,
  456     vm_size_t size, int flags)
  457 {
  458         vm_offset_t offset, i;
  459         vm_page_t m, mpred;
  460         vm_prot_t prot;
  461         int pflags;
  462 
  463         KASSERT(object == kernel_object,
  464             ("kmem_back_domain: only supports kernel object."));
  465 
  466         offset = addr - VM_MIN_KERNEL_ADDRESS;
  467         pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
  468         pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
  469         if (flags & M_WAITOK)
  470                 pflags |= VM_ALLOC_WAITFAIL;
  471         prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW;
  472 
  473         i = 0;
  474         VM_OBJECT_WLOCK(object);
  475 retry:
  476         mpred = vm_radix_lookup_le(&object->rtree, atop(offset + i));
  477         for (; i < size; i += PAGE_SIZE, mpred = m) {
  478                 m = vm_page_alloc_domain_after(object, atop(offset + i),
  479                     domain, pflags, mpred);
  480 
  481                 /*
  482                  * Ran out of space, free everything up and return. Don't need
  483                  * to lock page queues here as we know that the pages we got
  484                  * aren't on any queues.
  485                  */
  486                 if (m == NULL) {
  487                         if ((flags & M_NOWAIT) == 0)
  488                                 goto retry;
  489                         VM_OBJECT_WUNLOCK(object);
  490                         kmem_unback(object, addr, i);
  491                         return (KERN_NO_SPACE);
  492                 }
  493                 KASSERT(vm_phys_domain(m) == domain,
  494                     ("kmem_back_domain: Domain mismatch %d != %d",
  495                     vm_phys_domain(m), domain));
  496                 if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
  497                         pmap_zero_page(m);
  498                 KASSERT((m->oflags & VPO_UNMANAGED) != 0,
  499                     ("kmem_malloc: page %p is managed", m));
  500                 m->valid = VM_PAGE_BITS_ALL;
  501                 pmap_enter(kernel_pmap, addr + i, m, prot,
  502                     prot | PMAP_ENTER_WIRED, 0);
  503                 if (__predict_false((prot & VM_PROT_EXECUTE) != 0))
  504                         m->oflags |= VPO_KMEM_EXEC;
  505         }
  506         VM_OBJECT_WUNLOCK(object);
  507 
  508         return (KERN_SUCCESS);
  509 }
  510 
  511 /*
  512  *      kmem_back:
  513  *
  514  *      Allocate physical pages for the specified virtual address range.
  515  */
  516 int
  517 kmem_back(vm_object_t object, vm_offset_t addr, vm_size_t size, int flags)
  518 {
  519         vm_offset_t end, next, start;
  520         int domain, rv;
  521 
  522         KASSERT(object == kernel_object,
  523             ("kmem_back: only supports kernel object."));
  524 
  525         for (start = addr, end = addr + size; addr < end; addr = next) {
  526                 /*
  527                  * We must ensure that pages backing a given large virtual page
  528                  * all come from the same physical domain.
  529                  */
  530                 if (vm_ndomains > 1) {
  531                         domain = (addr >> KVA_QUANTUM_SHIFT) % vm_ndomains;
  532                         while (VM_DOMAIN_EMPTY(domain))
  533                                 domain++;
  534                         next = roundup2(addr + 1, KVA_QUANTUM);
  535                         if (next > end || next < start)
  536                                 next = end;
  537                 } else {
  538                         domain = 0;
  539                         next = end;
  540                 }
  541                 rv = kmem_back_domain(domain, object, addr, next - addr, flags);
  542                 if (rv != KERN_SUCCESS) {
  543                         kmem_unback(object, start, addr - start);
  544                         break;
  545                 }
  546         }
  547         return (rv);
  548 }
  549 
  550 /*
  551  *      kmem_unback:
  552  *
  553  *      Unmap and free the physical pages underlying the specified virtual
  554  *      address range.
  555  *
  556  *      A physical page must exist within the specified object at each index
  557  *      that is being unmapped.
  558  */
  559 static struct vmem *
  560 _kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
  561 {
  562         struct vmem *arena;
  563         vm_page_t m, next;
  564         vm_offset_t end, offset;
  565         int domain;
  566 
  567         KASSERT(object == kernel_object,
  568             ("kmem_unback: only supports kernel object."));
  569 
  570         if (size == 0)
  571                 return (NULL);
  572         pmap_remove(kernel_pmap, addr, addr + size);
  573         offset = addr - VM_MIN_KERNEL_ADDRESS;
  574         end = offset + size;
  575         VM_OBJECT_WLOCK(object);
  576         m = vm_page_lookup(object, atop(offset)); 
  577         domain = vm_phys_domain(m);
  578         if (__predict_true((m->oflags & VPO_KMEM_EXEC) == 0))
  579                 arena = vm_dom[domain].vmd_kernel_arena;
  580         else
  581                 arena = vm_dom[domain].vmd_kernel_rwx_arena;
  582         for (; offset < end; offset += PAGE_SIZE, m = next) {
  583                 next = vm_page_next(m);
  584                 vm_page_unwire_noq(m);
  585                 vm_page_free(m);
  586         }
  587         VM_OBJECT_WUNLOCK(object);
  588 
  589         return (arena);
  590 }
  591 
  592 void
  593 kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
  594 {
  595 
  596         (void)_kmem_unback(object, addr, size);
  597 }
  598 
  599 /*
  600  *      kmem_free:
  601  *
  602  *      Free memory allocated with kmem_malloc.  The size must match the
  603  *      original allocation.
  604  */
  605 void
  606 kmem_free(vm_offset_t addr, vm_size_t size)
  607 {
  608         struct vmem *arena;
  609 
  610         size = round_page(size);
  611         arena = _kmem_unback(kernel_object, addr, size);
  612         if (arena != NULL)
  613                 vmem_free(arena, addr, size);
  614 }
  615 
  616 /*
  617  *      kmap_alloc_wait:
  618  *
  619  *      Allocates pageable memory from a sub-map of the kernel.  If the submap
  620  *      has no room, the caller sleeps waiting for more memory in the submap.
  621  *
  622  *      This routine may block.
  623  */
  624 vm_offset_t
  625 kmap_alloc_wait(vm_map_t map, vm_size_t size)
  626 {
  627         vm_offset_t addr;
  628 
  629         size = round_page(size);
  630         if (!swap_reserve(size))
  631                 return (0);
  632 
  633         for (;;) {
  634                 /*
  635                  * To make this work for more than one map, use the map's lock
  636                  * to lock out sleepers/wakers.
  637                  */
  638                 vm_map_lock(map);
  639                 addr = vm_map_findspace(map, vm_map_min(map), size);
  640                 if (addr + size <= vm_map_max(map))
  641                         break;
  642                 /* no space now; see if we can ever get space */
  643                 if (vm_map_max(map) - vm_map_min(map) < size) {
  644                         vm_map_unlock(map);
  645                         swap_release(size);
  646                         return (0);
  647                 }
  648                 map->needs_wakeup = TRUE;
  649                 vm_map_unlock_and_wait(map, 0);
  650         }
  651         vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_RW, VM_PROT_RW,
  652             MAP_ACC_CHARGED);
  653         vm_map_unlock(map);
  654         return (addr);
  655 }
  656 
  657 /*
  658  *      kmap_free_wakeup:
  659  *
  660  *      Returns memory to a submap of the kernel, and wakes up any processes
  661  *      waiting for memory in that map.
  662  */
  663 void
  664 kmap_free_wakeup(vm_map_t map, vm_offset_t addr, vm_size_t size)
  665 {
  666 
  667         vm_map_lock(map);
  668         (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
  669         if (map->needs_wakeup) {
  670                 map->needs_wakeup = FALSE;
  671                 vm_map_wakeup(map);
  672         }
  673         vm_map_unlock(map);
  674 }
  675 
  676 void
  677 kmem_init_zero_region(void)
  678 {
  679         vm_offset_t addr, i;
  680         vm_page_t m;
  681 
  682         /*
  683          * Map a single physical page of zeros to a larger virtual range.
  684          * This requires less looping in places that want large amounts of
  685          * zeros, while not using much more physical resources.
  686          */
  687         addr = kva_alloc(ZERO_REGION_SIZE);
  688         m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
  689             VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
  690         if ((m->flags & PG_ZERO) == 0)
  691                 pmap_zero_page(m);
  692         for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
  693                 pmap_qenter(addr + i, &m, 1);
  694         pmap_protect(kernel_pmap, addr, addr + ZERO_REGION_SIZE, VM_PROT_READ);
  695 
  696         zero_region = (const void *)addr;
  697 }
  698 
  699 /*
  700  * Import KVA from the kernel map into the kernel arena.
  701  */
  702 static int
  703 kva_import(void *unused, vmem_size_t size, int flags, vmem_addr_t *addrp)
  704 {
  705         vm_offset_t addr;
  706         int result;
  707 
  708         KASSERT((size % KVA_QUANTUM) == 0,
  709             ("kva_import: Size %jd is not a multiple of %d",
  710             (intmax_t)size, (int)KVA_QUANTUM));
  711         addr = vm_map_min(kernel_map);
  712         result = vm_map_find(kernel_map, NULL, 0, &addr, size, 0,
  713             VMFS_SUPER_SPACE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
  714         if (result != KERN_SUCCESS)
  715                 return (ENOMEM);
  716 
  717         *addrp = addr;
  718 
  719         return (0);
  720 }
  721 
  722 /*
  723  * Import KVA from a parent arena into a per-domain arena.  Imports must be
  724  * KVA_QUANTUM-aligned and a multiple of KVA_QUANTUM in size.
  725  */
  726 static int
  727 kva_import_domain(void *arena, vmem_size_t size, int flags, vmem_addr_t *addrp)
  728 {
  729 
  730         KASSERT((size % KVA_QUANTUM) == 0,
  731             ("kva_import_domain: Size %jd is not a multiple of %d",
  732             (intmax_t)size, (int)KVA_QUANTUM));
  733         return (vmem_xalloc(arena, size, KVA_QUANTUM, 0, 0, VMEM_ADDR_MIN,
  734             VMEM_ADDR_MAX, flags, addrp));
  735 }
  736 
  737 /*
  738  *      kmem_init:
  739  *
  740  *      Create the kernel map; insert a mapping covering kernel text, 
  741  *      data, bss, and all space allocated thus far (`boostrap' data).  The 
  742  *      new map will thus map the range between VM_MIN_KERNEL_ADDRESS and 
  743  *      `start' as allocated, and the range between `start' and `end' as free.
  744  *      Create the kernel vmem arena and its per-domain children.
  745  */
  746 void
  747 kmem_init(vm_offset_t start, vm_offset_t end)
  748 {
  749         vm_map_t m;
  750         int domain;
  751 
  752         m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
  753         m->system_map = 1;
  754         vm_map_lock(m);
  755         /* N.B.: cannot use kgdb to debug, starting with this assignment ... */
  756         kernel_map = m;
  757         (void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
  758 #ifdef __amd64__
  759             KERNBASE,
  760 #else                
  761             VM_MIN_KERNEL_ADDRESS,
  762 #endif
  763             start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
  764         /* ... and ending with the completion of the above `insert' */
  765         vm_map_unlock(m);
  766 
  767         /*
  768          * Initialize the kernel_arena.  This can grow on demand.
  769          */
  770         vmem_init(kernel_arena, "kernel arena", 0, 0, PAGE_SIZE, 0, 0);
  771         vmem_set_import(kernel_arena, kva_import, NULL, NULL, KVA_QUANTUM);
  772 
  773         for (domain = 0; domain < vm_ndomains; domain++) {
  774                 /*
  775                  * Initialize the per-domain arenas.  These are used to color
  776                  * the KVA space in a way that ensures that virtual large pages
  777                  * are backed by memory from the same physical domain,
  778                  * maximizing the potential for superpage promotion.
  779                  */
  780                 vm_dom[domain].vmd_kernel_arena = vmem_create(
  781                     "kernel arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
  782                 vmem_set_import(vm_dom[domain].vmd_kernel_arena,
  783                     kva_import_domain, NULL, kernel_arena, KVA_QUANTUM);
  784 
  785                 /*
  786                  * In architectures with superpages, maintain separate arenas
  787                  * for allocations with permissions that differ from the
  788                  * "standard" read/write permissions used for kernel memory,
  789                  * so as not to inhibit superpage promotion.
  790                  */
  791 #if VM_NRESERVLEVEL > 0
  792                 vm_dom[domain].vmd_kernel_rwx_arena = vmem_create(
  793                     "kernel rwx arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
  794                 vmem_set_import(vm_dom[domain].vmd_kernel_rwx_arena,
  795                     kva_import_domain, (vmem_release_t *)vmem_xfree,
  796                     kernel_arena, KVA_QUANTUM);
  797 #else
  798                 vm_dom[domain].vmd_kernel_rwx_arena =
  799                     vm_dom[domain].vmd_kernel_arena;
  800 #endif
  801         }
  802 }
  803 
  804 /*
  805  *      kmem_bootstrap_free:
  806  *
  807  *      Free pages backing preloaded data (e.g., kernel modules) to the
  808  *      system.  Currently only supported on platforms that create a
  809  *      vm_phys segment for preloaded data.
  810  */
  811 void
  812 kmem_bootstrap_free(vm_offset_t start, vm_size_t size)
  813 {
  814 #if defined(__i386__) || defined(__amd64__)
  815         struct vm_domain *vmd;
  816         vm_offset_t end, va;
  817         vm_paddr_t pa;
  818         vm_page_t m;
  819 
  820         end = trunc_page(start + size);
  821         start = round_page(start);
  822 
  823         for (va = start; va < end; va += PAGE_SIZE) {
  824                 pa = pmap_kextract(va);
  825                 m = PHYS_TO_VM_PAGE(pa);
  826 
  827                 vmd = vm_pagequeue_domain(m);
  828                 vm_domain_free_lock(vmd);
  829                 vm_phys_free_pages(m, 0);
  830                 vm_domain_free_unlock(vmd);
  831 
  832                 vm_domain_freecnt_inc(vmd, 1);
  833                 vm_cnt.v_page_count++;
  834         }
  835         pmap_remove(kernel_pmap, start, end);
  836         (void)vmem_add(kernel_arena, start, end - start, M_WAITOK);
  837 #endif
  838 }
  839 
  840 /*
  841  * Allow userspace to directly trigger the VM drain routine for testing
  842  * purposes.
  843  */
  844 static int
  845 debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
  846 {
  847         int error, i;
  848 
  849         i = 0;
  850         error = sysctl_handle_int(oidp, &i, 0, req);
  851         if (error != 0)
  852                 return (error);
  853         if ((i & ~(VM_LOW_KMEM | VM_LOW_PAGES)) != 0)
  854                 return (EINVAL);
  855         if (i != 0)
  856                 EVENTHANDLER_INVOKE(vm_lowmem, i);
  857         return (0);
  858 }
  859 
  860 SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem,
  861     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0, debug_vm_lowmem, "I",
  862     "set to trigger vm_lowmem event with given flags");
  863 
  864 static int
  865 debug_uma_reclaim(SYSCTL_HANDLER_ARGS)
  866 {
  867         int error, i;
  868 
  869         i = 0;
  870         error = sysctl_handle_int(oidp, &i, 0, req);
  871         if (error != 0)
  872                 return (error);
  873         if (i != 0)
  874                 uma_reclaim();
  875         return (0);
  876 }
  877 
  878 SYSCTL_PROC(_debug, OID_AUTO, uma_reclaim,
  879     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0, debug_uma_reclaim, "I",
  880     "set to generate request to reclaim uma caches");

Cache object: 0e6760af7cbfa6aa0da08f3c3e58aed7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.