The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/vm/vm_kern.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
    3  *
    4  * Copyright (c) 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * This code is derived from software contributed to Berkeley by
    8  * The Mach Operating System project at Carnegie-Mellon University.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      from: @(#)vm_kern.c     8.3 (Berkeley) 1/12/94
   35  *
   36  *
   37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
   38  * All rights reserved.
   39  *
   40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
   41  *
   42  * Permission to use, copy, modify and distribute this software and
   43  * its documentation is hereby granted, provided that both the copyright
   44  * notice and this permission notice appear in all copies of the
   45  * software, derivative works or modified versions, and any portions
   46  * thereof, and that both notices appear in supporting documentation.
   47  *
   48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
   49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
   50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   51  *
   52  * Carnegie Mellon requests users of this software to return to
   53  *
   54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
   55  *  School of Computer Science
   56  *  Carnegie Mellon University
   57  *  Pittsburgh PA 15213-3890
   58  *
   59  * any improvements or extensions that they make and grant Carnegie the
   60  * rights to redistribute these changes.
   61  */
   62 
   63 /*
   64  *      Kernel memory management.
   65  */
   66 
   67 #include <sys/cdefs.h>
   68 __FBSDID("$FreeBSD$");
   69 
   70 #include "opt_vm.h"
   71 
   72 #include <sys/param.h>
   73 #include <sys/systm.h>
   74 #include <sys/kernel.h>         /* for ticks and hz */
   75 #include <sys/domainset.h>
   76 #include <sys/eventhandler.h>
   77 #include <sys/lock.h>
   78 #include <sys/proc.h>
   79 #include <sys/malloc.h>
   80 #include <sys/rwlock.h>
   81 #include <sys/sysctl.h>
   82 #include <sys/vmem.h>
   83 #include <sys/vmmeter.h>
   84 
   85 #include <vm/vm.h>
   86 #include <vm/vm_param.h>
   87 #include <vm/vm_domainset.h>
   88 #include <vm/vm_kern.h>
   89 #include <vm/pmap.h>
   90 #include <vm/vm_map.h>
   91 #include <vm/vm_object.h>
   92 #include <vm/vm_page.h>
   93 #include <vm/vm_pageout.h>
   94 #include <vm/vm_pagequeue.h>
   95 #include <vm/vm_phys.h>
   96 #include <vm/vm_radix.h>
   97 #include <vm/vm_extern.h>
   98 #include <vm/uma.h>
   99 
  100 struct vm_map kernel_map_store;
  101 struct vm_map exec_map_store;
  102 struct vm_map pipe_map_store;
  103 
  104 const void *zero_region;
  105 CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);
  106 
  107 /* NB: Used by kernel debuggers. */
  108 const u_long vm_maxuser_address = VM_MAXUSER_ADDRESS;
  109 
  110 u_int exec_map_entry_size;
  111 u_int exec_map_entries;
  112 
  113 SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD,
  114     SYSCTL_NULL_ULONG_PTR, VM_MIN_KERNEL_ADDRESS, "Min kernel address");
  115 
  116 SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD,
  117 #if defined(__arm__)
  118     &vm_max_kernel_address, 0,
  119 #else
  120     SYSCTL_NULL_ULONG_PTR, VM_MAX_KERNEL_ADDRESS,
  121 #endif
  122     "Max kernel address");
  123 
  124 #if VM_NRESERVLEVEL > 0
  125 #define KVA_QUANTUM_SHIFT       (VM_LEVEL_0_ORDER + PAGE_SHIFT)
  126 #else
  127 /* On non-superpage architectures we want large import sizes. */
  128 #define KVA_QUANTUM_SHIFT       (8 + PAGE_SHIFT)
  129 #endif
  130 #define KVA_QUANTUM             (1ul << KVA_QUANTUM_SHIFT)
  131 #define KVA_NUMA_IMPORT_QUANTUM (KVA_QUANTUM * 128)
  132 
  133 extern void     uma_startup2(void);
  134 
  135 /*
  136  *      kva_alloc:
  137  *
  138  *      Allocate a virtual address range with no underlying object and
  139  *      no initial mapping to physical memory.  Any mapping from this
  140  *      range to physical memory must be explicitly created prior to
  141  *      its use, typically with pmap_qenter().  Any attempt to create
  142  *      a mapping on demand through vm_fault() will result in a panic. 
  143  */
  144 vm_offset_t
  145 kva_alloc(vm_size_t size)
  146 {
  147         vm_offset_t addr;
  148 
  149         size = round_page(size);
  150         if (vmem_alloc(kernel_arena, size, M_BESTFIT | M_NOWAIT, &addr))
  151                 return (0);
  152 
  153         return (addr);
  154 }
  155 
  156 /*
  157  *      kva_free:
  158  *
  159  *      Release a region of kernel virtual memory allocated
  160  *      with kva_alloc, and return the physical pages
  161  *      associated with that region.
  162  *
  163  *      This routine may not block on kernel maps.
  164  */
  165 void
  166 kva_free(vm_offset_t addr, vm_size_t size)
  167 {
  168 
  169         size = round_page(size);
  170         vmem_free(kernel_arena, addr, size);
  171 }
  172 
  173 static vm_page_t
  174 kmem_alloc_contig_pages(vm_object_t object, vm_pindex_t pindex, int domain,
  175     int pflags, u_long npages, vm_paddr_t low, vm_paddr_t high,
  176     u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
  177 {
  178         vm_page_t m;
  179         int tries;
  180         bool wait;
  181 
  182         VM_OBJECT_ASSERT_WLOCKED(object);
  183 
  184         wait = (pflags & VM_ALLOC_WAITOK) != 0;
  185         pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
  186         pflags |= VM_ALLOC_NOWAIT;
  187         for (tries = wait ? 3 : 1;; tries--) {
  188                 m = vm_page_alloc_contig_domain(object, pindex, domain, pflags,
  189                     npages, low, high, alignment, boundary, memattr);
  190                 if (m != NULL || tries == 0)
  191                         break;
  192 
  193                 VM_OBJECT_WUNLOCK(object);
  194                 if (!vm_page_reclaim_contig_domain(domain, pflags, npages,
  195                     low, high, alignment, boundary) && wait)
  196                         vm_wait_domain(domain);
  197                 VM_OBJECT_WLOCK(object);
  198         }
  199         return (m);
  200 }
  201 
  202 /*
  203  *      Allocates a region from the kernel address map and physical pages
  204  *      within the specified address range to the kernel object.  Creates a
  205  *      wired mapping from this region to these pages, and returns the
  206  *      region's starting virtual address.  The allocated pages are not
  207  *      necessarily physically contiguous.  If M_ZERO is specified through the
  208  *      given flags, then the pages are zeroed before they are mapped.
  209  */
  210 static vm_offset_t
  211 kmem_alloc_attr_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
  212     vm_paddr_t high, vm_memattr_t memattr)
  213 {
  214         vmem_t *vmem;
  215         vm_object_t object;
  216         vm_offset_t addr, i, offset;
  217         vm_page_t m;
  218         int pflags;
  219         vm_prot_t prot;
  220 
  221         object = kernel_object;
  222         size = round_page(size);
  223         vmem = vm_dom[domain].vmd_kernel_arena;
  224         if (vmem_alloc(vmem, size, M_BESTFIT | flags, &addr))
  225                 return (0);
  226         offset = addr - VM_MIN_KERNEL_ADDRESS;
  227         pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
  228         prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW;
  229         VM_OBJECT_WLOCK(object);
  230         for (i = 0; i < size; i += PAGE_SIZE) {
  231                 m = kmem_alloc_contig_pages(object, atop(offset + i),
  232                     domain, pflags, 1, low, high, PAGE_SIZE, 0, memattr);
  233                 if (m == NULL) {
  234                         VM_OBJECT_WUNLOCK(object);
  235                         kmem_unback(object, addr, i);
  236                         vmem_free(vmem, addr, size);
  237                         return (0);
  238                 }
  239                 KASSERT(vm_page_domain(m) == domain,
  240                     ("kmem_alloc_attr_domain: Domain mismatch %d != %d",
  241                     vm_page_domain(m), domain));
  242                 if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
  243                         pmap_zero_page(m);
  244                 vm_page_valid(m);
  245                 pmap_enter(kernel_pmap, addr + i, m, prot,
  246                     prot | PMAP_ENTER_WIRED, 0);
  247         }
  248         VM_OBJECT_WUNLOCK(object);
  249         return (addr);
  250 }
  251 
  252 vm_offset_t
  253 kmem_alloc_attr(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high,
  254     vm_memattr_t memattr)
  255 {
  256 
  257         return (kmem_alloc_attr_domainset(DOMAINSET_RR(), size, flags, low,
  258             high, memattr));
  259 }
  260 
  261 vm_offset_t
  262 kmem_alloc_attr_domainset(struct domainset *ds, vm_size_t size, int flags,
  263     vm_paddr_t low, vm_paddr_t high, vm_memattr_t memattr)
  264 {
  265         struct vm_domainset_iter di;
  266         vm_offset_t addr;
  267         int domain;
  268 
  269         vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
  270         do {
  271                 addr = kmem_alloc_attr_domain(domain, size, flags, low, high,
  272                     memattr);
  273                 if (addr != 0)
  274                         break;
  275         } while (vm_domainset_iter_policy(&di, &domain) == 0);
  276 
  277         return (addr);
  278 }
  279 
  280 /*
  281  *      Allocates a region from the kernel address map and physically
  282  *      contiguous pages within the specified address range to the kernel
  283  *      object.  Creates a wired mapping from this region to these pages, and
  284  *      returns the region's starting virtual address.  If M_ZERO is specified
  285  *      through the given flags, then the pages are zeroed before they are
  286  *      mapped.
  287  */
  288 static vm_offset_t
  289 kmem_alloc_contig_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
  290     vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
  291     vm_memattr_t memattr)
  292 {
  293         vmem_t *vmem;
  294         vm_object_t object;
  295         vm_offset_t addr, offset, tmp;
  296         vm_page_t end_m, m;
  297         u_long npages;
  298         int pflags;
  299 
  300         object = kernel_object;
  301         size = round_page(size);
  302         vmem = vm_dom[domain].vmd_kernel_arena;
  303         if (vmem_alloc(vmem, size, flags | M_BESTFIT, &addr))
  304                 return (0);
  305         offset = addr - VM_MIN_KERNEL_ADDRESS;
  306         pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
  307         npages = atop(size);
  308         VM_OBJECT_WLOCK(object);
  309         m = kmem_alloc_contig_pages(object, atop(offset), domain,
  310             pflags, npages, low, high, alignment, boundary, memattr);
  311         if (m == NULL) {
  312                 VM_OBJECT_WUNLOCK(object);
  313                 vmem_free(vmem, addr, size);
  314                 return (0);
  315         }
  316         KASSERT(vm_page_domain(m) == domain,
  317             ("kmem_alloc_contig_domain: Domain mismatch %d != %d",
  318             vm_page_domain(m), domain));
  319         end_m = m + npages;
  320         tmp = addr;
  321         for (; m < end_m; m++) {
  322                 if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
  323                         pmap_zero_page(m);
  324                 vm_page_valid(m);
  325                 pmap_enter(kernel_pmap, tmp, m, VM_PROT_RW,
  326                     VM_PROT_RW | PMAP_ENTER_WIRED, 0);
  327                 tmp += PAGE_SIZE;
  328         }
  329         VM_OBJECT_WUNLOCK(object);
  330         return (addr);
  331 }
  332 
  333 vm_offset_t
  334 kmem_alloc_contig(vm_size_t size, int flags, vm_paddr_t low, vm_paddr_t high,
  335     u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr)
  336 {
  337 
  338         return (kmem_alloc_contig_domainset(DOMAINSET_RR(), size, flags, low,
  339             high, alignment, boundary, memattr));
  340 }
  341 
  342 vm_offset_t
  343 kmem_alloc_contig_domainset(struct domainset *ds, vm_size_t size, int flags,
  344     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
  345     vm_memattr_t memattr)
  346 {
  347         struct vm_domainset_iter di;
  348         vm_offset_t addr;
  349         int domain;
  350 
  351         vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
  352         do {
  353                 addr = kmem_alloc_contig_domain(domain, size, flags, low, high,
  354                     alignment, boundary, memattr);
  355                 if (addr != 0)
  356                         break;
  357         } while (vm_domainset_iter_policy(&di, &domain) == 0);
  358 
  359         return (addr);
  360 }
  361 
  362 /*
  363  *      kmem_subinit:
  364  *
  365  *      Initializes a map to manage a subrange
  366  *      of the kernel virtual address space.
  367  *
  368  *      Arguments are as follows:
  369  *
  370  *      parent          Map to take range from
  371  *      min, max        Returned endpoints of map
  372  *      size            Size of range to find
  373  *      superpage_align Request that min is superpage aligned
  374  */
  375 void
  376 kmem_subinit(vm_map_t map, vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
  377     vm_size_t size, bool superpage_align)
  378 {
  379         int ret;
  380 
  381         size = round_page(size);
  382 
  383         *min = vm_map_min(parent);
  384         ret = vm_map_find(parent, NULL, 0, min, size, 0, superpage_align ?
  385             VMFS_SUPER_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
  386             MAP_ACC_NO_CHARGE);
  387         if (ret != KERN_SUCCESS)
  388                 panic("kmem_subinit: bad status return of %d", ret);
  389         *max = *min + size;
  390         vm_map_init(map, vm_map_pmap(parent), *min, *max);
  391         if (vm_map_submap(parent, *min, *max, map) != KERN_SUCCESS)
  392                 panic("kmem_subinit: unable to change range to submap");
  393 }
  394 
  395 /*
  396  *      kmem_malloc_domain:
  397  *
  398  *      Allocate wired-down pages in the kernel's address space.
  399  */
  400 static vm_offset_t
  401 kmem_malloc_domain(int domain, vm_size_t size, int flags)
  402 {
  403         vmem_t *arena;
  404         vm_offset_t addr;
  405         int rv;
  406 
  407         if (__predict_true((flags & M_EXEC) == 0))
  408                 arena = vm_dom[domain].vmd_kernel_arena;
  409         else
  410                 arena = vm_dom[domain].vmd_kernel_rwx_arena;
  411         size = round_page(size);
  412         if (vmem_alloc(arena, size, flags | M_BESTFIT, &addr))
  413                 return (0);
  414 
  415         rv = kmem_back_domain(domain, kernel_object, addr, size, flags);
  416         if (rv != KERN_SUCCESS) {
  417                 vmem_free(arena, addr, size);
  418                 return (0);
  419         }
  420         return (addr);
  421 }
  422 
  423 vm_offset_t
  424 kmem_malloc(vm_size_t size, int flags)
  425 {
  426 
  427         return (kmem_malloc_domainset(DOMAINSET_RR(), size, flags));
  428 }
  429 
  430 vm_offset_t
  431 kmem_malloc_domainset(struct domainset *ds, vm_size_t size, int flags)
  432 {
  433         struct vm_domainset_iter di;
  434         vm_offset_t addr;
  435         int domain;
  436 
  437         vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
  438         do {
  439                 addr = kmem_malloc_domain(domain, size, flags);
  440                 if (addr != 0)
  441                         break;
  442         } while (vm_domainset_iter_policy(&di, &domain) == 0);
  443 
  444         return (addr);
  445 }
  446 
  447 /*
  448  *      kmem_back_domain:
  449  *
  450  *      Allocate physical pages from the specified domain for the specified
  451  *      virtual address range.
  452  */
  453 int
  454 kmem_back_domain(int domain, vm_object_t object, vm_offset_t addr,
  455     vm_size_t size, int flags)
  456 {
  457         vm_offset_t offset, i;
  458         vm_page_t m, mpred;
  459         vm_prot_t prot;
  460         int pflags;
  461 
  462         KASSERT(object == kernel_object,
  463             ("kmem_back_domain: only supports kernel object."));
  464 
  465         offset = addr - VM_MIN_KERNEL_ADDRESS;
  466         pflags = malloc2vm_flags(flags) | VM_ALLOC_WIRED;
  467         pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
  468         if (flags & M_WAITOK)
  469                 pflags |= VM_ALLOC_WAITFAIL;
  470         prot = (flags & M_EXEC) != 0 ? VM_PROT_ALL : VM_PROT_RW;
  471 
  472         i = 0;
  473         VM_OBJECT_WLOCK(object);
  474 retry:
  475         mpred = vm_radix_lookup_le(&object->rtree, atop(offset + i));
  476         for (; i < size; i += PAGE_SIZE, mpred = m) {
  477                 m = vm_page_alloc_domain_after(object, atop(offset + i),
  478                     domain, pflags, mpred);
  479 
  480                 /*
  481                  * Ran out of space, free everything up and return. Don't need
  482                  * to lock page queues here as we know that the pages we got
  483                  * aren't on any queues.
  484                  */
  485                 if (m == NULL) {
  486                         if ((flags & M_NOWAIT) == 0)
  487                                 goto retry;
  488                         VM_OBJECT_WUNLOCK(object);
  489                         kmem_unback(object, addr, i);
  490                         return (KERN_NO_SPACE);
  491                 }
  492                 KASSERT(vm_page_domain(m) == domain,
  493                     ("kmem_back_domain: Domain mismatch %d != %d",
  494                     vm_page_domain(m), domain));
  495                 if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
  496                         pmap_zero_page(m);
  497                 KASSERT((m->oflags & VPO_UNMANAGED) != 0,
  498                     ("kmem_malloc: page %p is managed", m));
  499                 vm_page_valid(m);
  500                 pmap_enter(kernel_pmap, addr + i, m, prot,
  501                     prot | PMAP_ENTER_WIRED, 0);
  502                 if (__predict_false((prot & VM_PROT_EXECUTE) != 0))
  503                         m->oflags |= VPO_KMEM_EXEC;
  504         }
  505         VM_OBJECT_WUNLOCK(object);
  506 
  507         return (KERN_SUCCESS);
  508 }
  509 
  510 /*
  511  *      kmem_back:
  512  *
  513  *      Allocate physical pages for the specified virtual address range.
  514  */
  515 int
  516 kmem_back(vm_object_t object, vm_offset_t addr, vm_size_t size, int flags)
  517 {
  518         vm_offset_t end, next, start;
  519         int domain, rv;
  520 
  521         KASSERT(object == kernel_object,
  522             ("kmem_back: only supports kernel object."));
  523 
  524         for (start = addr, end = addr + size; addr < end; addr = next) {
  525                 /*
  526                  * We must ensure that pages backing a given large virtual page
  527                  * all come from the same physical domain.
  528                  */
  529                 if (vm_ndomains > 1) {
  530                         domain = (addr >> KVA_QUANTUM_SHIFT) % vm_ndomains;
  531                         while (VM_DOMAIN_EMPTY(domain))
  532                                 domain++;
  533                         next = roundup2(addr + 1, KVA_QUANTUM);
  534                         if (next > end || next < start)
  535                                 next = end;
  536                 } else {
  537                         domain = 0;
  538                         next = end;
  539                 }
  540                 rv = kmem_back_domain(domain, object, addr, next - addr, flags);
  541                 if (rv != KERN_SUCCESS) {
  542                         kmem_unback(object, start, addr - start);
  543                         break;
  544                 }
  545         }
  546         return (rv);
  547 }
  548 
  549 /*
  550  *      kmem_unback:
  551  *
  552  *      Unmap and free the physical pages underlying the specified virtual
  553  *      address range.
  554  *
  555  *      A physical page must exist within the specified object at each index
  556  *      that is being unmapped.
  557  */
  558 static struct vmem *
  559 _kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
  560 {
  561         struct vmem *arena;
  562         vm_page_t m, next;
  563         vm_offset_t end, offset;
  564         int domain;
  565 
  566         KASSERT(object == kernel_object,
  567             ("kmem_unback: only supports kernel object."));
  568 
  569         if (size == 0)
  570                 return (NULL);
  571         pmap_remove(kernel_pmap, addr, addr + size);
  572         offset = addr - VM_MIN_KERNEL_ADDRESS;
  573         end = offset + size;
  574         VM_OBJECT_WLOCK(object);
  575         m = vm_page_lookup(object, atop(offset)); 
  576         domain = vm_page_domain(m);
  577         if (__predict_true((m->oflags & VPO_KMEM_EXEC) == 0))
  578                 arena = vm_dom[domain].vmd_kernel_arena;
  579         else
  580                 arena = vm_dom[domain].vmd_kernel_rwx_arena;
  581         for (; offset < end; offset += PAGE_SIZE, m = next) {
  582                 next = vm_page_next(m);
  583                 vm_page_xbusy_claim(m);
  584                 vm_page_unwire_noq(m);
  585                 vm_page_free(m);
  586         }
  587         VM_OBJECT_WUNLOCK(object);
  588 
  589         return (arena);
  590 }
  591 
  592 void
  593 kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
  594 {
  595 
  596         (void)_kmem_unback(object, addr, size);
  597 }
  598 
  599 /*
  600  *      kmem_free:
  601  *
  602  *      Free memory allocated with kmem_malloc.  The size must match the
  603  *      original allocation.
  604  */
  605 void
  606 kmem_free(vm_offset_t addr, vm_size_t size)
  607 {
  608         struct vmem *arena;
  609 
  610         size = round_page(size);
  611         arena = _kmem_unback(kernel_object, addr, size);
  612         if (arena != NULL)
  613                 vmem_free(arena, addr, size);
  614 }
  615 
  616 /*
  617  *      kmap_alloc_wait:
  618  *
  619  *      Allocates pageable memory from a sub-map of the kernel.  If the submap
  620  *      has no room, the caller sleeps waiting for more memory in the submap.
  621  *
  622  *      This routine may block.
  623  */
  624 vm_offset_t
  625 kmap_alloc_wait(vm_map_t map, vm_size_t size)
  626 {
  627         vm_offset_t addr;
  628 
  629         size = round_page(size);
  630         if (!swap_reserve(size))
  631                 return (0);
  632 
  633         for (;;) {
  634                 /*
  635                  * To make this work for more than one map, use the map's lock
  636                  * to lock out sleepers/wakers.
  637                  */
  638                 vm_map_lock(map);
  639                 addr = vm_map_findspace(map, vm_map_min(map), size);
  640                 if (addr + size <= vm_map_max(map))
  641                         break;
  642                 /* no space now; see if we can ever get space */
  643                 if (vm_map_max(map) - vm_map_min(map) < size) {
  644                         vm_map_unlock(map);
  645                         swap_release(size);
  646                         return (0);
  647                 }
  648                 map->needs_wakeup = TRUE;
  649                 vm_map_unlock_and_wait(map, 0);
  650         }
  651         vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_RW, VM_PROT_RW,
  652             MAP_ACC_CHARGED);
  653         vm_map_unlock(map);
  654         return (addr);
  655 }
  656 
  657 /*
  658  *      kmap_free_wakeup:
  659  *
  660  *      Returns memory to a submap of the kernel, and wakes up any processes
  661  *      waiting for memory in that map.
  662  */
  663 void
  664 kmap_free_wakeup(vm_map_t map, vm_offset_t addr, vm_size_t size)
  665 {
  666 
  667         vm_map_lock(map);
  668         (void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
  669         if (map->needs_wakeup) {
  670                 map->needs_wakeup = FALSE;
  671                 vm_map_wakeup(map);
  672         }
  673         vm_map_unlock(map);
  674 }
  675 
  676 void
  677 kmem_init_zero_region(void)
  678 {
  679         vm_offset_t addr, i;
  680         vm_page_t m;
  681 
  682         /*
  683          * Map a single physical page of zeros to a larger virtual range.
  684          * This requires less looping in places that want large amounts of
  685          * zeros, while not using much more physical resources.
  686          */
  687         addr = kva_alloc(ZERO_REGION_SIZE);
  688         m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
  689             VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
  690         if ((m->flags & PG_ZERO) == 0)
  691                 pmap_zero_page(m);
  692         for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
  693                 pmap_qenter(addr + i, &m, 1);
  694         pmap_protect(kernel_pmap, addr, addr + ZERO_REGION_SIZE, VM_PROT_READ);
  695 
  696         zero_region = (const void *)addr;
  697 }
  698 
  699 /*
  700  * Import KVA from the kernel map into the kernel arena.
  701  */
  702 static int
  703 kva_import(void *unused, vmem_size_t size, int flags, vmem_addr_t *addrp)
  704 {
  705         vm_offset_t addr;
  706         int result;
  707 
  708         KASSERT((size % KVA_QUANTUM) == 0,
  709             ("kva_import: Size %jd is not a multiple of %d",
  710             (intmax_t)size, (int)KVA_QUANTUM));
  711         addr = vm_map_min(kernel_map);
  712         result = vm_map_find(kernel_map, NULL, 0, &addr, size, 0,
  713             VMFS_SUPER_SPACE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
  714         if (result != KERN_SUCCESS)
  715                 return (ENOMEM);
  716 
  717         *addrp = addr;
  718 
  719         return (0);
  720 }
  721 
  722 /*
  723  * Import KVA from a parent arena into a per-domain arena.  Imports must be
  724  * KVA_QUANTUM-aligned and a multiple of KVA_QUANTUM in size.
  725  */
  726 static int
  727 kva_import_domain(void *arena, vmem_size_t size, int flags, vmem_addr_t *addrp)
  728 {
  729 
  730         KASSERT((size % KVA_QUANTUM) == 0,
  731             ("kva_import_domain: Size %jd is not a multiple of %d",
  732             (intmax_t)size, (int)KVA_QUANTUM));
  733         return (vmem_xalloc(arena, size, KVA_QUANTUM, 0, 0, VMEM_ADDR_MIN,
  734             VMEM_ADDR_MAX, flags, addrp));
  735 }
  736 
  737 /*
  738  *      kmem_init:
  739  *
  740  *      Create the kernel map; insert a mapping covering kernel text, 
  741  *      data, bss, and all space allocated thus far (`boostrap' data).  The 
  742  *      new map will thus map the range between VM_MIN_KERNEL_ADDRESS and 
  743  *      `start' as allocated, and the range between `start' and `end' as free.
  744  *      Create the kernel vmem arena and its per-domain children.
  745  */
  746 void
  747 kmem_init(vm_offset_t start, vm_offset_t end)
  748 {
  749         vm_size_t quantum;
  750         int domain;
  751 
  752         vm_map_init(kernel_map, kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
  753         kernel_map->system_map = 1;
  754         vm_map_lock(kernel_map);
  755         /* N.B.: cannot use kgdb to debug, starting with this assignment ... */
  756         (void)vm_map_insert(kernel_map, NULL, 0,
  757 #ifdef __amd64__
  758             KERNBASE,
  759 #else                
  760             VM_MIN_KERNEL_ADDRESS,
  761 #endif
  762             start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
  763         /* ... and ending with the completion of the above `insert' */
  764 
  765 #ifdef __amd64__
  766         /*
  767          * Mark KVA used for the page array as allocated.  Other platforms
  768          * that handle vm_page_array allocation can simply adjust virtual_avail
  769          * instead.
  770          */
  771         (void)vm_map_insert(kernel_map, NULL, 0, (vm_offset_t)vm_page_array,
  772             (vm_offset_t)vm_page_array + round_2mpage(vm_page_array_size *
  773             sizeof(struct vm_page)),
  774             VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
  775 #endif
  776         vm_map_unlock(kernel_map);
  777 
  778         /*
  779          * Use a large import quantum on NUMA systems.  This helps minimize
  780          * interleaving of superpages, reducing internal fragmentation within
  781          * the per-domain arenas.
  782          */
  783         if (vm_ndomains > 1 && PMAP_HAS_DMAP)
  784                 quantum = KVA_NUMA_IMPORT_QUANTUM;
  785         else
  786                 quantum = KVA_QUANTUM;
  787 
  788         /*
  789          * Initialize the kernel_arena.  This can grow on demand.
  790          */
  791         vmem_init(kernel_arena, "kernel arena", 0, 0, PAGE_SIZE, 0, 0);
  792         vmem_set_import(kernel_arena, kva_import, NULL, NULL, quantum);
  793 
  794         for (domain = 0; domain < vm_ndomains; domain++) {
  795                 /*
  796                  * Initialize the per-domain arenas.  These are used to color
  797                  * the KVA space in a way that ensures that virtual large pages
  798                  * are backed by memory from the same physical domain,
  799                  * maximizing the potential for superpage promotion.
  800                  */
  801                 vm_dom[domain].vmd_kernel_arena = vmem_create(
  802                     "kernel arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
  803                 vmem_set_import(vm_dom[domain].vmd_kernel_arena,
  804                     kva_import_domain, NULL, kernel_arena, quantum);
  805 
  806                 /*
  807                  * In architectures with superpages, maintain separate arenas
  808                  * for allocations with permissions that differ from the
  809                  * "standard" read/write permissions used for kernel memory,
  810                  * so as not to inhibit superpage promotion.
  811                  *
  812                  * Use the base import quantum since this arena is rarely used.
  813                  */
  814 #if VM_NRESERVLEVEL > 0
  815                 vm_dom[domain].vmd_kernel_rwx_arena = vmem_create(
  816                     "kernel rwx arena domain", 0, 0, PAGE_SIZE, 0, M_WAITOK);
  817                 vmem_set_import(vm_dom[domain].vmd_kernel_rwx_arena,
  818                     kva_import_domain, (vmem_release_t *)vmem_xfree,
  819                     kernel_arena, KVA_QUANTUM);
  820 #else
  821                 vm_dom[domain].vmd_kernel_rwx_arena =
  822                     vm_dom[domain].vmd_kernel_arena;
  823 #endif
  824         }
  825 
  826         /*
  827          * This must be the very first call so that the virtual address
  828          * space used for early allocations is properly marked used in
  829          * the map.
  830          */
  831         uma_startup2();
  832 }
  833 
  834 /*
  835  *      kmem_bootstrap_free:
  836  *
  837  *      Free pages backing preloaded data (e.g., kernel modules) to the
  838  *      system.  Currently only supported on platforms that create a
  839  *      vm_phys segment for preloaded data.
  840  */
  841 void
  842 kmem_bootstrap_free(vm_offset_t start, vm_size_t size)
  843 {
  844 #if defined(__i386__) || defined(__amd64__)
  845         struct vm_domain *vmd;
  846         vm_offset_t end, va;
  847         vm_paddr_t pa;
  848         vm_page_t m;
  849 
  850         end = trunc_page(start + size);
  851         start = round_page(start);
  852 
  853 #ifdef __amd64__
  854         /*
  855          * Preloaded files do not have execute permissions by default on amd64.
  856          * Restore the default permissions to ensure that the direct map alias
  857          * is updated.
  858          */
  859         pmap_change_prot(start, end - start, VM_PROT_RW);
  860 #endif
  861         for (va = start; va < end; va += PAGE_SIZE) {
  862                 pa = pmap_kextract(va);
  863                 m = PHYS_TO_VM_PAGE(pa);
  864 
  865                 vmd = vm_pagequeue_domain(m);
  866                 vm_domain_free_lock(vmd);
  867                 vm_phys_free_pages(m, 0);
  868                 vm_domain_free_unlock(vmd);
  869 
  870                 vm_domain_freecnt_inc(vmd, 1);
  871                 vm_cnt.v_page_count++;
  872         }
  873         pmap_remove(kernel_pmap, start, end);
  874         (void)vmem_add(kernel_arena, start, end - start, M_WAITOK);
  875 #endif
  876 }
  877 
  878 /*
  879  * Allow userspace to directly trigger the VM drain routine for testing
  880  * purposes.
  881  */
  882 static int
  883 debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
  884 {
  885         int error, i;
  886 
  887         i = 0;
  888         error = sysctl_handle_int(oidp, &i, 0, req);
  889         if (error)
  890                 return (error);
  891         if ((i & ~(VM_LOW_KMEM | VM_LOW_PAGES)) != 0)
  892                 return (EINVAL);
  893         if (i != 0)
  894                 EVENTHANDLER_INVOKE(vm_lowmem, i);
  895         return (0);
  896 }
  897 
  898 SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, 0,
  899     debug_vm_lowmem, "I", "set to trigger vm_lowmem event with given flags");

Cache object: 5f3e1c30950232ed4ccd1af572f4166b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.